在线客服
机器学习与R语言图书
人气:20

机器学习与R语言

机器学习的核心是将信息转化为可行动智能的算法。这一事实使得机器学习非常适合于当今的大数据时代。如果没有机器学习,要跟上海量信息数据流的步伐几乎是不可能的。 鉴于R不断增长的地位(R是一个跨平台、零成本的...
  • 所属分类:图书 >计算机/网络>人工智能  
  • 作者:(美)[兰兹] 著,[李洪成],[许金炜],[李舰] 译
  • 产品参数:
  • 丛书名:数据科学与工程技术丛书
  • 国际刊号:9787111491576
  • 出版社:机械工业出版社
  • 出版时间:2015-03
  • 印刷时间:2015-03-01
  • 版次:1
  • 开本:16开
  • 页数:--
  • 纸张:胶版纸
  • 包装:平装
  • 套装:

内容简介

R本身是一款十分的数据分析和数据可视化软件。《机器学习与R语言》通过将实践案例与核心的理论知识相结合,提供了你开始将机器学习应用到你自己项目中所需要的知识。《机器学习与R语言》主要内容:机器学习的基本概念和理论,用于机器学习的R软件环境;如何应用R来管理数据,进行数据的探索分析和数据可视化;典型的机器学习算法和案例,并给出了详细的分析步骤;模型性能评价的原理和方法;提高模型性能的几种常用方法;其他机器学习主题。《机器学习与R语言》适用于任何希望使用数据来采取行动的人。读者只需要具有R的一些基本知识,不需要具备机器学习的深厚基础。不管是R初学者,还是熟练的R用户都能从书中找到对自己有用的内容。

目录

推荐序

译者序

致谢

关于技术评审人

第1章机器学习简介

1.1机器学习的起源

1.2机器学习的使用与滥用

1.3机器如何学习

1.3.1抽象化和知识表达

1.3.2一般化

1.3.3评估学习的成功性

1.4将机器学习应用于数据中的步骤

1.5选择机器学习算法

1.5.1考虑输入的数据

1.5.2考虑机器学习算法的类型

1.5.3为数据匹配合适的算法

1.6使用R进行机器学习

1.7总结

第2章数据的管理和理解

2.1R数据结构

2.2向量

2.3因子

2.3.1列表

2.3.2数据框

2.3.3矩阵和数组

2.4用R管理数据

2.4.1保存和加载R数据结构

2.4.2用CSV文件导入和保存数据

2.4.3从SQL数据库导入数据

2.5探索和理解数据

2.5.1探索数据的结构

2.5.2探索数值型变量

2.5.3探索分类变量

2.5.4探索变量之间的关系

2.6总结

第3章懒惰学习——使用近邻分类

3.1理解使用近邻进行分类

3.1.1kNN算法

3.1.2为什么kNN算法是懒惰的

3.2用kNN算法诊断乳腺癌

3.2.1第1步——收集数据

3.2.2第2步——探索和准备数据

3.2.3第3步——基于数据训练模型

3.2.4第4步——评估模型的性能

3.2.5第5步——提高模型的性能

3.3总结

第4章概率学习——朴素贝叶斯分类

4.1理解朴素贝叶斯

4.1.1贝叶斯方法的基本概念

4.1.2朴素贝叶斯算法

4.2例子——基于贝叶斯算法的手机垃圾短信过滤

4.2.1第1步——收集数据

4.2.2第2步——探索和准备数据

4.2.3数据准备——处理和分析文本数据

4.2.4第3步——基于数据训练模型

4.2.5第4步——评估模型的性能

4.2.6第5步——提升模型的性能

4.3总结

第5章分而治之——应用决策树和规则进行分类

5.1理解决策树

5.1.1分而治之

5.1.2C5.0决策树算法

5.2例子——使用C5.0决策树识别高风险银行贷款

5.2.1第1步——收集数据

5.2.2第2步——探索和准备数据

5.2.3第3步——基于数据训练模型

5.2.4第4步——评估模型的性能

5.2.5第5步——提高模型的性能

5.3理解分类规则

5.3.1独立而治之

5.3.2单规则(1R)算法

5.3.3RIPPER算法

5.3.4来自决策树的规则

5.4例子——应用规则学习识别有毒的蘑菇

5.4.1第1步——收集数据

5.4.2第2步——探索和准备数据

5.4.3第3步——基于数据训练模型

5.4.4第4步——评估模型的性能

5.4.5第5步——提高模型的性能

5.5总结

第6章预测数值型数据——回归方法

6.1理解回归

6.1.1简单线性回归

6.1.2普通最小二乘估计

6.1.3相关系数

6.1.4多元线性回归

6.2例子——应用线性回归预测医疗费用

6.2.1第1步——收集数据

6.2.2第2步——探索和准备数据

6.2.3第3步——基于数据训练模型

6.2.4第4步——评估模型的性能

6.2.5第5步——提高模型的性能

6.3理解回归树和模型树

6.4例子——用回归树和模型树估计葡萄酒的质量

6.4.1第1步——收集数据

6.4.2第2步——探索和准备数据

6.4.3第3步——基于数据训练模型

6.4.4第4步——评估模型的性能

6.4.5第5步——提高模型的性能

6.5总结

第7章黑箱方法——神经网络和支持向量机

7.1理解神经网络

7.1.1从生物神经元到人工神经元

7.1.2激活函数

7.1.3网络拓扑

7.1.4用后向传播训练神经网络

7.2用人工神经网络对混凝土的强度进行建模

7.2.1第1步——收集数据

7.2.2第2步——探索和准备数据

7.2.3第3步——基于数据训练模型

7.2.4第4步——评估模型的性能

7.2.5第5步——提高模型的性能

7.3理解支持向量机

7.3.1用超平面分类

7.3.2寻找较大间隔

7.3.3对非线性空间使用核函数

7.4用支持向量机进行光学字符识别

7.4.1第1步——收集数据

7.4.2第2步——探索和准备数据

7.4.3第3步——基于数据训练模型

7.4.4第4步——评估模型的性能

7.4.5第5步——提高模型的性能

7.5总结

第8章探寻模式——基于关联规则的购物篮分析

8.1理解关联规则

8.2例子——用关联规则确定经常一起购买的食品杂货

8.2.1第1步——收集数据

8.2.2第2步——探索和准备数据

8.2.3第3步——基于数据训练模型

8.2.4第4步——评估模型的性能

8.2.5第5步——提高模型的性能

8.3总结

第9章寻找数据的分组——k均值聚类

9.1理解聚类

9.1.1聚类——一种机器学习任务

9.1.2k均值聚类算法

9.1.3用k均值聚类探寻青少年市场细分

9.1.4第1步——收集数据

9.1.5第2步——探索和准备数据

9.1.6第3步——基于数据训练模型

9.1.7第4步——评估模型的性能

9.1.8第5步——提高模型的性能

9.2总结

第10章模型性能的评价

10.1度量分类方法的性能

10.1.1在R中处理分类预测数据

10.1.2深入探讨混淆矩阵

10.1.3使用混淆矩阵度量性能

10.1.4度之外的其他性能评价指标

10.1.5性能权衡的可视化

10.2评估未来的性能

10.2.1保持法

10.2.2交叉验证

10.2.3自助法抽样

10.3总结

第11章提高模型的性能

11.1调整多个模型来提高性能

11.2使用元学习来提高模型的性能

11.2.1理解集成学习

11.2.2bagging

11.2.3boosting

11.2.4随机森林

11.3总结

第12章其他机器学习主题

12.1分析专用数据

12.1.1用RCurl添加包从网上获取数据

12.1.2用XML添加包读/写XML格式数据

12.1.3用rjson添加包读/写JSON

12.1.4用xlsx添加包读/写MicrosoftExcel电子表格

12.1.5生物信息学数据

12.1.6社交网络数据和图数据

12.2提高R语言的性能

12.2.1处理非常大的数据集

12.2.2使用并行处理来加快学习过程

12.2.3GPU计算

12.2.4部署的学习算法

12.3总结

网友评论(不代表本站观点)

来自匿名用**的评论:

很好,很不错,推荐

2017-02-26 18:39:59
来自l***6(**的评论:

data&code:百度网盘 1qY25Hbm

2017-03-02 15:34:17
来自s***y(**的评论:

努力凑足5个字

2017-03-12 17:56:02
来自匿名用**的评论:

很不错很不错,还没来得及看

2017-03-24 12:06:18
来自爱***生**的评论:

值得花时间一读

2017-03-30 13:50:27
来自c***6(**的评论:

书籍内容不错,没有什么问题的和好评的就用这个通用评价,差评的和不满意的就单独指出!

2017-04-19 10:26:42
来自匿名用**的评论:

我还以为很厚呢。嘿嘿~然而没有。快递很傻逼

2017-04-24 23:50:10
来自匿名用**的评论:

内容不错啊

2017-04-25 16:25:52
来自匿名用**的评论:

书不错,挺好的

2017-04-26 09:46:30
来自***(匿**的评论:

书还不错,不过最好买第二版。。。。

2017-04-27 08:09:18
来自匿名用**的评论:

盗版书,还敢当

2017-04-27 15:42:31
来自匿名用**的评论:

代码怎么下载呢?

2017-05-09 21:12:44
来自***(匿**的评论:

挺好,学习了

2017-05-15 20:11:46
来自匿名用**的评论:

好好好好好

2017-05-23 10:43:37
来自c***3(**的评论:

买来送人的

2017-06-01 17:05:57
来自匿名用**的评论:

包装很好,质量不错

2017-06-14 13:11:53
来自T***8(**的评论:

电子阅读器不到半个月坏了,还不给修。

2017-06-14 16:19:29
来自匿名用**的评论:

机器学习与R语言 哼哼哈嘿真不错,妈妈再也不怕我不会写代码啦

2017-06-19 10:55:26
来自macmitn**的评论:

这本书真的很不错,就是有点小贵,翻译的很好,适合大家购买,绝对物有所值

2017-08-05 01:35:26
来自澎湃123**的评论:

专业书籍的学习。

2017-09-02 21:06:41
来自无昵称**的评论:

这个商品不错。

2017-11-09 13:47:22
来自无昵称**的评论:

这本书翻译的很好,适合大家购买,绝对物有所值

2015-09-18 23:08:41
来自无昵称**的评论:

这本书真的很不错,就是有点小贵,255页的书55块钱,还没开始看,看了在追评论

2015-07-01 15:53:05
来自加菲KIT**的评论:

书是挺好的,但里面的数据文件要从哪里下载呀?PACKT网站上找不到啊!!!求高手指点~

2016-03-05 22:46:41
来自福娃100**的评论:

这个主要是用来开阔视野的,估计知道R语言的人也不多吧,这书看上去还不错。

2016-04-23 20:43:36
来自匿名用**的评论:

运送的包装不行,用一个纸盒装的,没有防护措施。平装书,包装太low啊,连塑封都没有!封面有划痕!纸质比较薄400页,厚度不到2cm,跟教材书差不多,和这价格相比,真的有点小失望!

2017-04-30 14:55:40
来自无昵称**的评论:

介绍R语言在机器学习方面的应用,非常好的入门书

2016-10-13 16:58:30

免责声明

更多相关图书