在线客服
数字图像处理(MATLAB版)(第二版)图书
人气:28

数字图像处理(MATLAB版)(第二版)

Preface This edition of Digital Image Processing Using MATLAB is a major revision of the book. As in the previous edition, the focus of the book is based on the fact that solutions to problems in t...

内容简介

这是图像处理基础理论论述同以MATLAB为主要工具的软件实践方法相对照的及时本书。本书集成了冈萨雷斯和伍兹所著的《数字图像处理(第三版)》一书中重要的原文材料和MathWorks公司的图像处理工具箱。本书的特色在于重点强调怎样通过开发新代码来加强这些软件工具。本书在介绍MATLAB编程基础知识之后,讲述了图像处理的主干内容,包括灰度变换、线性和非线性空间滤波、频率域滤波、图像复原与重建、几何变换和图像配准、彩色图像处理、小波、图像压缩、形态学图像处理、图像分割、区域和边界表示与描述。

编辑推荐

本书是图像处理基础理论论述同以MATLAB为工具的软件实践方法相结合的本书,集成了冈萨雷斯和伍兹所著的《数字图像处理(第三版)》一书中的重要内容和MathWorks公司的图像处理工具箱。该版本包括重点术语的中文注释。

本书的主要特色:

(1) 自成体系,以工具书的风格书写

(2) 开发了100多个图像处理函数,同时讨论数字图像处理主流算法和MATLAB函数

(3) 涵盖雷登变换、几何变换、图像配准、独立与设备的彩色变换、针对视频的压缩函数;自适应阈值算法等

(4) 部分代码为MATLAB与C结合使用

(5) 书中包含GUI详细设计

原书作者Rafael C. Gonzalez是数字图像处理领域的人物,他在模式识别、图像处理和机器人领域编写或与人合著了100多篇技术文章、两本书和4本教材。冈萨雷斯博士的著作已被世界1000多所大学和研究所采用,深受读者喜爱。

作者简介

Rafael C. Gonzalez于福罗里达大学电子工程系获得博士学位,田纳西大学电气和计算机工程系教授,田纳西大学图像和模式分析实验室、机器人和计算机视觉实验室的创始人及IEEE会士。冈萨雷斯博士在模式识别、图像处理和机器人领域编写或鱼人合著了100多篇技术文章两本书和4本教材,他的书已被世界1000多所大学和研究所采用。

目录

Contents

Preface

Acknowledgements

About the Authors

1 Introduction

Preview

1.1 Background

1.2 What Is Digital Image Processing?

1.3 Background on MATLAB and the Image Processing Toolbox

1.4 Areas of Image Processing Covered in the Book

1.5 The Book Web Site

1.6 Notation

1.7 Fundamentals

1.7.1 The MATLAB Desktop

1.7.2 Using the MATLAB Editor/Debugger

1.7.3 Getting Help

1.7.4 Saving and Retrieving Work Session Data

1.7.5 Digital Image Representation

1.7.6 Image I/O and Display

1.7.7 Classes and Image Types

1.7.8 M-Function Programming

1.8 How References Are Organized in the Book

Summary

2 Intensity Transformations and Spatial Filtering

Preview

2.1 Background

2.2 Intensity Transformation Functions

2.2.1 Functions imadjust and stretchlim

2.2.2 Logarithmic and Contrast- Stretching Transformations

2.2.3 Specifying Arbitrary Intensity Transformations

2.2.4 Some Utility M-functions for Intensity Transformations

2.3 Histogram Processing and Function Plotting

2.3.1 Generating and Plotting Image Histograms

2.3.2 Histogram Equalization

2.3.3 Histogram Matching (Specification)

2.3.4 Function adapthisteq

2.4 Spatial Filtering

2.4.1 Linear Spatial Filtering

2.4.2 Nonlinear Spatial Filtering

2.5 Image Processing Toolbox Standard Spatial Filters

2.5.1 Linear Spatial Filters

2.5.2 Nonlinear Spatial Filters

2.6 Using Fuzzy Techniques for Intensity Transformations and Spatial

Filtering

2.6.1 Background

2.6.2 Introduction to Fuzzy Sets

2.6.3 Using Fuzzy Sets

2.6.4 A Set of Custom Fuzzy M-functions

2.6.5 Using Fuzzy Sets for Intensity Transformations

2.6.6 Using Fuzzy Sets for Spatial Filtering

Summary

3 Filtering in the Frequency Domain

Preview

3.1 The 2-D Discrete Fourier Transform

3.2 Computing and Visualizing the 2-D DFT in MATLAB

3.3 Filtering in the Frequency Domain

3.3.1 Fundamentals

3.3.2 Basic Steps in DFT Filtering

3.3.3 An M-function for Filtering in the Frequency Domain

3.4 Obtaining Frequency Domain Filters from Spatial Filters

3.5 Generating Filters Directly in the Frequency Domain

3.5.1 Creating Meshgrid Arrays for Use in Implementing Filters

in the Frequency Domain

3.5.2 Lowpass (Smoothing) Frequency Domain Filters

3.5.3 Wireframe and Surface Plotting

3.6 Highpass (Sharpening) Frequency Domain Filters

3.6.1 A Function for Highpass Filtering

3.6.2 High-Frequency Emphasis Filtering

3.7 Selective Filtering

3.7.1 Bandreject and Bandpass Filters

3.7.2 Notchreject and Notchpass Filters

Summary

4 Image Restoration and Reconstruction

Preview

4.1 A Model of the Image Degradation/Restoration Process

4.2 Noise Models

4.2.1 Adding Noise to Images with Function imnoise

4.2.2 Generating Spatial Random Noise with a Specified

Distribution

4.2.3 Periodic Noise

4.2.4 Estimating Noise Parameters

4.3 Restoration in the Presence of Noise Only—Spatial Filtering

4.3.1 Spatial Noise Filters

4.3.2 Adaptive Spatial Filters

4.4 Periodic Noise Reduction Using Frequency Domain Filtering

4.5 Modeling the Degradation Function

4.6 Direct Inverse Filtering

4.7 Wiener Filtering

4.8 Constrained Least Squares (Regularized) Filtering

4.9 Iterative Nonlinear Restoration Using the Lucy-Richardson

Algorithm

4.10 Blind Deconvolution

4.11 Image Reconstruction from Projections

4.11.1 Background

4.11.2 Parallel-Beam Projections and the Radon Transform

4.11.3 The Fourier Slice Theorem and Filtered Backprojections

4.11.4 Filter Implementation

4.11.5 Reconstruction Using Fan-Beam Filtered Backprojections

4.11.6 Function radon

4.11.7 Function iradon

4.11.8 Working with Fan-Beam Data

Summary

5 Geometric Transformations and Image

Registration

Preview

5.1 Transforming Points

5.2 Affine Transformations

5.3 Projective Transformations

5.4 Applying Geometric Transformations to Images

5.5 Image Coordinate Systems in MATLAB

5.5.1 Output Image Location

5.5.2 Controlling the Output Grid

5.6 Image Interpolation

5.6.1 Interpolation in Two Dimensions

5.6.2 Comparing Interpolation Methods

5.7 Image Registration

5.7.1 Registration Process

5.7.2 Manual Feature Selection and Matching Using cpselect

5.7.3 Inferring Transformation Parameters Using cp2tform

5.7.4 Visualizing Aligned Images

5.7.5 Area-Based Registration

5.7.6 Automatic Feature-Based Registration

Summary

6 Color Image Processing

Preview

6.1 Color Image Representation in MATLAB

6.1.1 RGB Images

6.1.2 Indexed Images

6.1.3 Functions for Manipulating RGB and Indexed Images

6.2 Converting Between Color Spaces

6.2.1 NTSC Color Space

6.2.2 The YCbCr Color Space

6.2.3 The HSV Color Space

6.2.4 The CMY and CMYK Color Spaces

6.2.5 The HSI Color Space

6.2.6 Device-Independent Color Spaces

6.3 The Basics of Color Image Processing

6.4 Color Transformations

6.5 Spatial Filtering of Color Images

6.5.1 Color Image Smoothing

6.5.2 Color Image Sharpening

6.6 Working Directly in RGB Vector Space

6.6.1 Color Edge Detection Using the Gradient

6.6.2 Image Segmentation in RGB Vector Space

Summary

7 Wavelets

Preview

7.1 Background

7.2 The Fast Wavelet Transform

7.2.1 FWTs Using the Wavelet Toolbox

7.2.2 FWTs without the Wavelet Toolbox

7.3 Working with Wavelet Decomposition Structures

7.3.1 Editing Wavelet Decomposition Coefficients without the

Wavelet Toolbox

7.3.2 Displaying Wavelet Decomposition Coefficients

7.4 The Inverse Fast Wavelet Transform

7.5 Wavelets in Image Processing

Summary

8 Image Compression

Preview

8.1 Background

8.2 Coding Redundancy

8.2.1 Huffman Codes

8.2.2 Huffman Encoding

8.2.3 Huffman Decoding

8.3 Spatial Redundancy

8.4 Irrelevant Information

8.5 JPEG Compression

8.5.1 JPEG

8.5.2 JPEG 2000

8.6 Video Compression

8.6.1 MATLAB Image Sequences and Movies

8.6.2 Temporal Redundancy and Motion Compensation

Summary

9 Morphological Image Processing

Preview

9.1 Preliminaries

9.1.1 Some Basic Concepts from Set Theory

9.1.2 Binary Images, Sets, and Logical Operators

9.2 Dilation and Erosion

9.2.1 Dilation

9.2.2 Structuring Element Decomposition

9.2.3 The strel Function

9.2.4 Erosion

9.3 Combining Dilation and Erosion

9.3.1 Opening and Closing

9.3.2 The Hit-or-Miss Transformation

9.3.3 Using Lookup Tables

9.3.4 Function bwmorph

9.4 Labeling Connected Components

9.5 Morphological Reconstruction

9.5.1 Opening by Reconstruction

9.5.2 Filling Holes

9.5.3 Clearing Border Objects

9.6 Gray-Scale Morphology

9.6.1 Dilation and Erosion

9.6.2 Opening and Closing

9.6.3 Reconstruction

Summary

10 Image Segmentation

Preview

10.1 Point, Line, and Edge Detection

10.1.1 Point Detection

10.1.2 Line Detection

10.1.3 Edge Detection Using Function edge

10.2 Line Detection Using the Hough Transform

10.2.1 Background

10.2.2 Toolbox Hough Functions

10.3 Thresholding

10.3.1 Foundation

10.3.2 Basic Global Thresholding

10.3.3 Optimum Global Thresholding Using Otsu's Method

10.3.4 Using Image Smoothing to Improve Global Thresholding

10.3.5 Using Edges to Improve Global Thresholding

10.3.6 Variable Thresholding Based on Local Statistics

10.3.7 Image Thresholding Using Moving Averages

10.4 Region-Based Segmentation

10.4.1 Basic Formulation

10.4.2 Region Growing

10.4.3 Region Splitting and Merging

10.5 Segmentation Using the Watershed Transform

10.5.1 Watershed Segmentation Using the Distance Transform

10.5.2 Watershed Segmentation Using Gradients

10.5.3 Marker-Controlled Watershed Segmentation

Summary

11 Representation and Description

Preview

11.1 Background

11.1.1 Functions for Extracting Regions and Their Boundaries

11.1.2 Some Additional MATLAB and Toolbox Functions Used

in This Chapter

11.1.3 Some Basic Utility M-Functions

11.2 Representation

11.2.1 Chain Codes

11.2.2 Polygonal Approximations Using Minimum-Perimeter Polygons

11.2.3 Signatures

11.2.4 Boundary Segments

11.2.5 Skeletons

11.3 Boundary Descriptors

11.3.1 Some Simple Descriptors

11.3.2 Shape Numbers

11.3.3 Fourier Descriptors

11.3.4 Statistical Moments

11.3.5 Corners

11.4 Regional Descriptors

11.4.1 Function regionprops

11.4.2 Texture

11.4.3 Moment Invariants

11.5 Using Principal Components for Description

Summary

Appendix A M-Function Summary

Appendix B ICE and MATLAB Graphical User Interfaces

Appendix C Additional Custom M-functions

Bibliography

Index

网友评论(不代表本站观点)

免责声明

更多出版社