金榜 2018考研数学历年真题威解析(数学一) 定价 59.80 出版社 西安交通大学出版社 版次 第2版第1次印刷 出版时间 2017年01月 开本 16开 作者 李永乐 王式安 季文铎 装帧 平装-胶订 页数 404 字数 480000 ISBN编码 9787560581415 及时篇 新真题
2017年全国硕士研究生入学统一考试
2017年全国硕士研究生入学统一考试数学(一)参考答案
第二篇 历年真题
2016年全国硕士研究生入学统一考试试题
2015年全国硕士研究生入学统一考试试题
2014年全国硕士研究生入学统一考试试题
2013年全国硕士研究生入学统一考试试题
2012年全国硕士研究生入学统一考试试题
2011年全国硕士研究生入学统一考试试题
2010年全国硕士研究生入学统一考试试题
2009年全国硕士研究生入学统一考试试题
2008年全国硕士研究生入学统一考试试题
2007年全国硕士研究生入学统一考试试题
2006年全国硕士研究生入学统一考试试题
2005年全国硕士研究生入学统一考试试题
第三篇 真题解析
及时部分 高等数学
及时章 函数极限连续
第二章 一元函数微分学
第三章 一元函数积分学
第四章 向量代数和空间解析几何
第五章 多元函数的微分学
第六章 重积分
第七章 曲线、曲面积分
第八章 无穷级数
第九章 常微分方程
第二部分 线性代数
及时章 行列式
第二章 矩阵
第三章 向量
第四章 线性方程组
第五章 特征值与特征向量
第六章 二次型
第三部分 概率论与数理统计
及时章 随机事件和概率
第二章 随机变量及其分布
第三章 多维随机变量及其分布
第四章 随机变量的数字特征
第五章 大数定律和中心极限定理
第六章 数理统计的基本概念
第七章 参数估计
第八章 假设检验
金榜 2018考研数学 基础过关660题(数学一) 定价 59.80 出版社 西安交通大学出版社 版次 第7版第2次印刷 出版时间 2017年01月 开本 16开 作者 李永乐 王式安 装帧 平装-胶订 页数 372 字数 545000 ISBN编码 9787560534442 第1部分 选择题
高等数学
线性代数
概率论与数理统计
参考答案
高等数学
线性代数
概率论与数理统计
第2部分 填空题
高等数学
线性代数
概率论与数理统计
参考答案
高等数学
线性代数
概率论与数理统计
李永乐
清华大学应用数学系教授,北京高教学会数学研究会副理事长。全国著名的考研数学线性代数辅导专家,多次参加考研数学大纲修订和全国性数学考试命题工作。
王式安
1987-2001年间担任全国研究生入学考试数学命题组组长,教育部考研数学命题组博学专家。原北京理工大学研究生院院长、应用数学系系主任、教授,享受国务院特殊津贴,是美国哥伦比亚、南佛罗里达、纽约等大学的客座教授。王老师是2004年中央电视台一采访的考研辅导名师!凭着王老师多年参加考研数学命题工作的经验,使他对考研数学的命题思路和命题方向了如指掌。
季文铎
全国研究生入学考试数学试卷命题组组长,北京交通大学教授(享受国家津贴),教学成果奖获得者。季文铎教授自1989年以来至今一直致力研究生入学考试数学科目的命题工作,常年担任该命题组组长、阅卷组组长,对硕士研究生入学考试命题有着精准的把握及深刻的洞察;长期承担大学生数学竞赛、数学建模竞赛及大学基础数学的教学和理论研究工作。
金榜 2018考研数学复习全书(数学一) 定价 69.80 出版社 国家行政学院出版社 版次 第5版第1次印刷 出版时间 2017年01月 开本 16开 作者 李永乐 王式安 季文铎 装帧 平装-胶订 页数 532 字数 760000 ISBN编码 9787515018119 及时篇高等数学
及时章函数极限连续(3)
考点与要求(3)
1函数(3)
内容精讲(3)
一、定义(3)
二、重要性质、定理、公式(5)
例题分析(6)
一、求分段函数的复合函数(6)
二、关于函数有界(无界)的讨论(7)
2极限(8)
内容精讲(8)
一、定义(8)
二、重要性质、定理、公式(9)
三、计算极限的一些有关方法(10)
例题分析(12)
一、求函数的极限(13)
二、已知极限值求其中的某些参数,或已知极限求另一与此有关的某极限(18)
三、含有|x|,e1x的x→0时的极限,含有取整函数[x]的x趋于整数时的极限(21)
四、无穷小的比较(21)
五、数列的极限(22)
六、极限运算定理的正确运用(26)
3函数的连续与间断(28)
内容精讲(28)
一、定义(28)
二、重要性质、定理、公式(29)
例题分析(30)
一、讨论函数的连续与间断(30)
二、在连续条件下求参数(30)
三、连续函数的零点问题(31)
第二章一元函数微分学(32)
考点与要求(32)
1导数与微分,导数的计算(32)
内容精讲(32)
一、定义(32)
二、重要性质、定理、公式(33)
例题分析(36)
一、按定义求一点处的导数(36)
二、已知f(x)在某点x=x0处可导,求与此有关的某极限或其中某参数,或已知某极限求f(x)在x=x0处的导数(38)
三、值函数的导数(42)
四、由极限式表示的函数的可导性(43)
五、导数与微分、增量的关系(44)
六、求导数的计算题(44)
2导数的应用(46)
内容精讲(46)
一、定义(46)
二、重要性质、定理、公式与方法(47)
例题分析(49)
一、增减性、极值、凹凸性、拐点的讨论(49)
二、渐近线(51)
三、曲率与曲率圆(52)
四、大值、小值问题(52)
3中值定理、不等式与零点问题(54)
内容精讲(54)
一、重要定理(54)
二、重要方法(55)
例题分析(56)
一、不等式的证明(56)
二、f(x)的零点与f′(x)的零点问题(61)
三、复合函数ψ(x,f(x),f′(x))的零点(63)
四、复合函数ψ(x,f(x),f′(x),f″(x))的零点(64)
五、"双中值"问题(65)
六、零点的个数问题(66)
七、证明存在某ξ满足某不等式(67)
八、利用中值定理求极限、f′(x)与f(x)的一些极限性质的关系(68)
第三章一元函数积分学(70)
考点与要求(70)
1不定积分与定积分的概念、性质、理论(70)
内容精讲(70)
一、定义(70)
二、重要性质、定理、公式(71)
例题分析(72)
一、分段函数的不定积分与定积分(72)
二、定积分与原函数的存在性(74)
三、奇、偶函数、周期函数的原函数及变限积分(75)
2不定积分与定积分的计算(78)
内容精讲(78)
一、基本积分公式(78)
二、基本积分方法(79)
例题分析(81)
一、简单有理分式的积分(81)
二、三角函数的有理分式的积分(82)
三、简单无理式的积分(82)
四、两种不同类型的函数相乘的积分(84)
五、被积函数中含有导数或变限函数的积分(85)
六、对称区间上的定积分,周期函数的定积分(86)
七、含参变量带值号的定积分(88)
八、积分计算杂例(89)
3反常积分及其计算(91)
内容精讲(91)
一、定义(91)
二、重要性质、定理、公式(92)
例题分析(93)
一、反常积分的计算与反常积分的敛散性(93)
二、关于奇、偶函数的反常积分(95)
4定积分的应用(96)
内容精讲(96)
一、基本方法(96)
二、重要几何公式与物理应用(97)
例题分析(98)
一、几何应用(98)
二、物理应用(101)
5定积分的证明题(105)
内容精讲(105)
例题分析(105)
一、讨论变限积分所定义的函数的奇偶性、周期性、极值、单调性等(105)
二、由积分定义的函数求极限(107)
三、积分不等式的证明(108)
四、零点问题(114)
第四章向量代数与空间解析几何(117)
考点与要求(117)
1向量代数(117)
内容精讲(117)
一、与向量有关的基本概念(117)
二、向量的运算及性质(118)
例题分析(119)
一、向量的运算(119)
二、向量运算的应用及向量的位置关系(121)
2平面与直线(122)
内容精讲(122)
一、平面方程(122)
二、直线方程(122)
三、平面与直线间的位置关系(123)
例题分析(124)
一、建立平面方程(124)
二、建立直线方程(125)
三、与平面和直线的位置关系有关的问题(127)
3空间曲面与曲线(130)
内容精讲(130)
一、旋转面及其方程(130)
二、柱面及其方程(130)
三、常见的二次曲面及图形(131)
四、空间曲线及其方程(132)
五、空间曲线的投影(132)
例题分析(132)
一、建立柱面方程(132)
二、建立旋转面方程(133)
三、建立空间曲线的投影曲线方程(135)
第五章多元函数微分学(136)
考点与要求(136)
1多元函数的极限、连续、偏导数与全微分(概念)(136)
内容精讲(136)
一、多元函数(136)
二、二元函数的极限与连续(137)
三、二元函数的偏导数与全微分(137)
例题分析(139)
一、讨论二重极限(139)
二、讨论二元函数的连续性、偏导数存在性(141)
三、讨论二元函数的可微性(142)
2多元函数的微分法(146)
内容精讲(146)
一、复合函数的偏导数与全微分(146)
二、隐函数的偏导数与全微分(148)
例题分析(148)
一、求复合函数的偏导数与全微分(148)
二、求隐函数的偏导数与全微分(157)
3极值与值(162)
内容精讲(162)
一、无条件极值(162)
二、条件极值(163)
例题分析(163)
一、无条件极值问题(163)
二、条件极值(值)问题(166)
三、多元函数的大(小)值问题(167)
4方向导数与梯度多元微分在几何上的应用泰勒定理(172)
内容精讲(172)
一、方向导数(172)
二、梯度(172)
三、曲面的切平面与法线(173)
四、曲线的切线和法平面(173)
五、泰勒定理(174)
例题分析(174)
一、有关方向导数与梯度(174)
二、有关曲面的切平面和曲线的切线(177)
三、泰勒定理(179)
第六章多元函数积分学(180)
考点与要求(180)
1重积分(180)
内容精讲(180)
一、二重积分(180)
二、三重积分(183)
例题分析(185)
一、计算二重积分(185)
二、累次积分交换次序及计算(194)
三、与二重积分有关的综合题(197)
四、与二重积分有关的积分不等式问题(199)
五、计算三重积分(202)
六、三重积分的累次积分(205)
2曲线积分(206)
内容精讲(206)
一、对弧长的线积分(及时类线积分)(206)
二、对坐标的线积分(第二类线积分)(207)
例题分析(209)
一、对弧长的线积分(及时类线积分)(209)
二、对坐标的线积分(第二类线积分)(211)
3曲面积分(220)
内容精讲(220)
一、对面积的面积分(及时类面积分)(220)
二、对坐标的面积分(第二类面积分)(221)
例题分析(223)
一、对面积的面积分(及时类面积分)(223)
二、对坐标的面积分(第二类面积分)(225)
4场论初步(231)
内容精讲(231)
一、梯度(详见第五章第4节之二)(231)
二、通量(231)
三、散度(231)
四、旋度(231)
例题分析(232)
一、梯度、旋度、散度的计算(232)
5多元积分的应用(233)
内容精讲(233)
例题分析(234)
一、几何应用(234)
二、求物理量(235)
第七章无穷级数(239)
考点与要求(239)
1常数项级数(239)
内容精讲(239)
一、级数的概念与性质(239)
二、级数的判敛准则(240)
例题分析(241)
一、正项级数敛散性的判定(241)
二、交错级数敛散性的判定(245)
三、任意项级数敛散性判定(246)
四、有关常数项级数的证明题与综合题(251)
2幂级数(256)
内容精讲(256)
一、函数项级数及收敛域与和函数(256)
二、幂级数的收敛半径,收敛区间及收敛域(257)
三、幂级数的性质(258)
四、函数的幂级数展开(258)
例题分析(259)
一、求幂级数的收敛域(259)
二、将函数展开为幂级数(262)
三、级数求和(265)
3傅里叶级数(270)
内容精讲(270)
一、三角函数及其正交性(270)
二、傅里叶级数(270)
三、收敛性定理(270)
四、周期为2π的函数的傅里叶展开(271)
五、周期为2l的函数的傅里叶展开(271)
例题分析(272)
一、有关收敛定理的问题(272)
二、将函数展开为傅里叶级数(273)
...........