本书精辟地阐述了计算课程的入门理论,简明地解释了复杂的思想并且提供了坚实的数学基础知识。作者提供了直观的证明,同时避免过多数学细节,这样学生就能够集中精力理解基本理论。许多精心选择的例子在几种上下文中重复出现,这样学生就能够通过对比式的研究加强理解。
Peter Linz 在威斯康星大学获得博士学位,是加州大学戴维斯分校计算机科学系退休教授,其研究领域为计算机数值分析理论。除本书外,他还撰有《Exploring Numerical Methods:Fan Introduction to Scientific Computing》一书。
Chapter 1 Introduction to the Theory of Computation
1.1 Mathematical Preliminaries and Notation
1.2 Three Basic Concepts
1.3 Some Applications
Chapter 2 Finite Automata
2.1 Deterministic Finite Accepters
2.2 Nondeterministic Finite Accepter
2.3 Equivalence of deterministic and Nondeterminsitic Finite Accepters
2.4 Reduction of the Number of States in Finite Automata
Chapter 3 Regular Languages and Regular Grammars
3.1 Regular Expressions
3.2 Connection Between Regular Expressions and Regular Languages
3.3 Regular Grammars
Chapter 4 Properties of Regular Languages
4.1 Closure puoperties of Regular Languages
4.2 Elementary Questions about Regular Languages
4.3Identifying Nonregular Languages
Chapter 5 Context-Free Languages
Chapter 6 Simplification of Context-Free Grammars
Chapter 7 Pushdown Automata
Chapter 8 Puoperties of Context-Free Languages
Chapter 9 Turing Machines
Chapter 10 Other Models of Turing Machines
Chapter 11 A Hierarchy of Formal Languages and Automata
Chapter 12 Limits of Algorithmic Computation
Chapter 13 Other Models of Computation
Chapter 14 An Introduction to Computational Complexity
Answers to Selected Exercises
References
Index