在线客服
数学女孩3 哥德尔不完备定理图书
人气:53

数学女孩3 哥德尔不完备定理

好玩的数学科普书 走进迷人的数学故事 神奇的数学到底有多神奇 日本数学会强烈推荐的数学科普书
  • 所属分类:图书 >科普读物>科学世界>数学  
  • 作者:[日][结城浩]
  • 产品参数:
  • 丛书名:图灵新知
  • 国际刊号:9787115469915
  • 出版社:人民邮电出版社
  • 出版时间:2017-11
  • 印刷时间:2017-12-01
  • 版次:1
  • 开本:大32开
  • 页数:--
  • 纸张:胶版纸
  • 包装:平装-胶订
  • 套装:

内容简介

《数学女孩》系列以小说的形式展开,重点描述一群年轻人探寻数学中的美。内容由浅入深,数学讲解部分十分精妙,被称为“绝赞的数学科普书”。 《数学女孩3:哥德尔不完备定理》有许多巧思。每一章针对不同议题进行解说,再于后一章切入正题——哥德尔不完备定理。作者巧妙地以每一章的概念作为拼图,拼出与塔斯基的形式语言的真理论、图灵机和判定问题一道被誉为“现代逻辑科学在哲学方面的三大成果”的哥德尔不完备定理的大概证明。整本书一气呵成,非常适合对数学感兴趣的初高中生以及成人阅读。

编辑推荐

《数学女孩》系列第三弹! 日本数学会强力推荐 绝赞的数学科普书 原版全系列累计销量突破40万册! 在动人的故事中走近数学,在青春的浪漫中理解数学 如果你还没有明白,那么就算全世界的人都说“明白了,很简单啊”,你仍然要鼓起勇气说“不,我还不明白”。这一点很重要。 ——结城浩

作者简介

结城浩 生于1963年。日本知名技术作家和程序员。在编程语言、设计模式、数学、加密技术等领域,编写了很多深受欢迎的入门书。代表作有《数学女孩》系列、《程序员的数学》、《图解密码技术》等。 作者主页:www.hyuki.com

目录

序言

第1章 镜子的独白 1

1.1 谁是老实人.1

1.1.1 镜子呀镜子.1

1.1.2 谁是老实人.3

1.1.3 相同的回答.7

1.1.4 回答是沉默.8

1.2 逻辑谜题.9

1.2.1 爱丽丝、博丽丝和克丽丝.9

1.2.2 用表格来想 10

1.2.3 出题者的心思 14

1.3 帽子是什么颜色 15

1.3.1 不知道 15

1.3.2 对出题者的验证 18

1.3.3 镜子的独白 19

第2章 皮亚诺算术 23

2.1 泰朵拉 23

2.1.1 皮亚诺公理 23

2.1.2 无数个愿望 27

2.1.3 皮亚诺公理.PA1.28

2.1.4 皮亚诺公理.PA2.29

2.1.5 养大 32

2.1.6 皮亚诺公理 PA3.34

2.1.7 小的? 35

2.1.8 皮亚诺公理.PA4.36

2.2 米尔嘉 39

2.2.1 皮亚诺公理 PA5.42

2.2.2 数学归纳法 43

2.3 在无数脚步之中 49

2.3.1 有限?无限? 49

2.3.2 动态?静态? 50

2.4 尤里 52

2.4.1 加法运算? 52

2.4.2 公理呢? 53

第3章 伽利略的犹豫 57

3.1 集合 57

3.1.1 美人的集合 57

3.1.2 外延表示法 58

3.1.3 餐桌 60

3.1.4 空集 61

3.1.5 集合的集合 62

3.1.6 公共部分 64

3.1.7 并集 67

3.1.8 包含关系 68

3.1.9 为什么要研究集合 71

3.2 逻辑 72

3.2.1 内涵表示法 72

3.2.2 罗素悖论 74

3.2.3 集合运算和逻辑运算 77

3.3 无限 79

3.3.1 双射鸟笼 79

3.3.2 伽利略的犹豫 83

3.4 表示 86

3.4.1 归途 86

3.4.2 书店 87

3.5 沉默 88

第4章 无限接近的目的地 91

4.1 家中 91

4.1.1 尤里 91

4.1.2 男生的“证明” 92

4.1.3 尤里的“证明” 93

4.1.4 尤里的“疑惑” 96

4.1.5 我的讲解 97

4.2 超市 99

4.3 音乐教室 104

4.3.1 字母的导入 104

4.3.2 极限 106

4.3.3 凭声音决定音乐 108

4.3.4 极限的计算 111

4.4 归途 119

第5章 莱布尼茨之梦 123

5.1 若尤里,则非泰朵拉 123

5.1.1 “若……则……”的含义 123

5.1.2 莱布尼茨之梦 126

5.1.3 理性的界限? 128

5.2 若泰朵拉,则非尤里 129

5.2.1 备战高考 129

5.2.2 上课 131

5.3 若米尔嘉,则米尔嘉 133

5.3.1 教室 133

5.3.2 形式系统 135

5.3.3 逻辑公式 137

5.3.4 “若……则……”的形式 140

5.3.5 公理 142

5.3.6 证明论 143

5.3.7 推理规则 145

5.3.8 证明和定理 147

5.4 不是我,还是我 149

5.4.1 家中 149

5.4.2 形式的形式 150

5.4.3 含义的含义 152

5.4.4 若“若……则……”,则…… 153

5.4.5 邀约 157

第6章 -δ语言 159

6.1 数列的极限 159

6.1.1 从图书室出发 159

6.1.2 到达阶梯教室 160

6.1.3 理解复杂式子的方法 164

6.1.4 看“值” 166

6.1.5 看“若……则……” 169

6.1.6 看“所有”和“某个” 170

6.2 函数的极限 174

6.2.1 -δ 174

6.2.2 -δ的含义 177

6.3 摸底考试 178

6.3.1 上榜 178

6.3.2 静寂的声音、沉默的声音 179

6.4 “连续”的定义 181

6.4.1 图书室 181

6.4.2 在所有点处都不连续 184

6.4.3 是否存在在一点处连续的函数 186

6.4.4 逃出无限的迷宫 187

6.4.5 在一点处连续的函数! 188

6.4.6 诉衷肠 192

第7章 对角论证法 197

7.1 数列的数列 197

7.1.1 可数集 197

7.1.2 对角论证法 201

7.1.3 挑战:给实数编号 209

7.1.4 挑战:有理数和对角论证法 213

7.2 形式系统的形式系统 215

7.2.1 相容性和完备性 215

7.2.2 哥德尔不完备定理 222

7.2.3 算术 224

7.2.4 形式系统的形式系统 225

7.2.5 词汇的整理 229

7.2.6 数项 229

7.2.7 对角化 230

7.2.8 数学的定理 232

7.3 失物的失物 233

第8章 两份孤独所衍生的产物 239

8.1 重叠的对 239

8.1.1 泰朵拉的发现 239

8.1.2 我的发现 245

8.1.3 谁都没发现的事实 246

8.2 家中 247

8.2.1 自己的数学 247

8.2.2 表现的压缩 247

8.2.3 加法运算的定义 251

8.2.4 教师的存在 254

8.3 等价关系 255

8.3.1 毕业典礼 255

8.3.2 对衍生的产物 257

8.3.3 从自然数到整数 258

8.3.4 图 259

8.3.5 等价关系 264

8.3.6 商集 268

8.4 餐厅 272

8.4.1 两个人的晚饭 272

8.4.2 一对翅膀 272

8.4.3 无力考试 275

第9章 令人迷惑的螺旋楼梯 277

9.1 π弧度 277

9.1.1 不高兴的尤里 277

9.1.2 三角函数 279

9.1.3 sin45° 282

9.1.4 sin60° 286

9.1.5 正弦曲线 290

9.2 π弧度 294

9.2.1 弧度 294

9.2.2 教人 296

9.3 π弧度 297

9.3.1 停课 297

9.3.2 余数 298

9.3.3 灯塔 300

9.3.4 海边 303

9.3.5 消毒 304

第10章 哥德尔不完备定理 307

10.1 双仓图书馆 307

10.1.1 入口 307

10.1.2 氯 308

10.2 希尔伯特计划 310

10.2.1 希尔伯特 310

10.2.2 猜谜 312

10.3 哥德尔不完备定理 316

10.3.1 哥德尔 316

10.3.2 讨论 318

10.3.3 证明的概要 320

10.4 春天—形式系统 P.320

10.4.1 基本符号 320

10.4.2 数项和符号 322

10.4.3 逻辑公式 323

10.4.4 公理 324

10.4.5 推理规则 327

10.5 午饭时间 328

10.5.1 元数学 328

10.5.2 用数学研究数学 329

10.5.3 苏醒 329

10.6 夏天—哥德尔数 331

10.6.1 基本符号的哥德尔数 331

10.6.2 序列的哥德尔数 332

10.7 秋天—原始递归性 335

10.7.1 原始递归函数 335

10.7.2 原始递归函数(谓词)的性质 338

10.7.3 表现定理 340

10.8 冬天—通往可证明性的漫长之旅 343

10.8.1 整理行装 343

10.8.2 数论 344

10.8.3 序列 346

10.8.4 变量 符号 逻辑公式 348

10.8.5 公理、定理、形式证明 358

10.9 新春—不可判定语句 362

10.9.1 “季节”的确认 362

10.9.2 种子—从含义的世界到形式的世界 364

10.9.3 绿芽—p的定义 366

10.9.4 枝杈—r的定义 367

10.9.5 叶子—从 A1往下走 368

10.9.6 蓓蕾—从 B1开始往下走 369

10.9.7 不可判定语句的定义 369

10.9.8 梅花—.IsProvable(g).370

10.9.9 桃花—.IsProvable(not(g))的证明 372

10.9.10 樱花—证明形式系统 P是不完备的 374

10.10 不完备定理的意义 376

10.10.1 “‘我’是无法证明的” 376

10.10.2 第二不完备定理的证明之概要 380

10.10.3 不完备定理衍生的产物 383

10.10.4 数学的界限? 384

10.11 带上梦想 386

10.11.1 并非结束 386

10.11.2 属于我 387

尾 声 391

后 记 395

参考文献和导读 399

网友评论(不代表本站观点)

免责声明

更多相关图书