本书提供了非常易学的自然语言处理入门介绍,该领域涵盖从文本和电子邮件预测过滤,到自动总结和翻译等多种语言处理技术。在本书中,你将学会编写Python程序处理大量非结构化文本。你还将通过使用综合语言数据结构访问含有丰富注释的数据集,理解用于分析书面通信内容和结构的主要算法。
本书提供了非常易学的自然语言处理入门介绍,该领域涵盖从文本和电子邮件预测过滤,到自动总结和翻译等多种语言处理技术。在本书中,你将学会编写Python程序处理大量非结构化文本。你还将通过使用综合语言数据结构访问含有丰富注释的数据集,理解用于分析书面通信内容和结构的主要算法。
Preface
1.Language Processing and Python
1.1 Computing with Language: Texts and Words
1.2 A Closer Look at Python: Texts as Lists of Words
1.3 Computing with Language: Simple Statistics
1.4 Back to Python: Making Decisions and Taking Control
1.5 Automatic Natural Language Understanding
1.6 Summary
1.7 Further Reading
1.8 Exercises
2.Accessing Text Corpora and Lexical Resources
2.1 Accessing Text Corpora
2.2 Conditional Frequency Distributions
2.3 More Python: Reusing Code
2.4 Lexical Resources
2.5 WordNet
2.6 Summary
2.7 Further Reading
2.8 Exercises
3.Processing Raw Text
3.1 Accessing Text from the Web and from Disk
3.2 Strings: Text Processing at the Lowest Level
3.3 Text Processing with Unicode
3.4 Regular Expressions for Detecting Word Patterns
3.5 Useful Applications of Regular Expressions
3.6 Normalizing Text
3.7 Regular Expressions for Tokenizing Text
3.8 Segmentation
3.9 Formatting: From Lists to Strings
3.10 Summary
3.11 Further Reading
3.12 Exercises
4.Writing Structured Programs
4.1 Back to the Basics
4.2 Sequences
4.3 Questions of Style
4.4 Functions: The Foundation of Structured Programming
4.5 Doing More with Functions
4.6 Program Development
4.7 Algorithm Design
4.8 A Sample of Python Libraries
4.9 Summary
4.10 Further Reading
4.11 Exercises
5.Categorizing andTagging Words
5.1 Using a Tagger
5.2 Tagged Corpora
5.3 Mapping Words to Properties Using Python Dictionaries
5.4 Automatic Tagging
5.5 N-Gram Tagging
5.6 Transformation-Based Tagging
5.7 How to Determine the Category of a Word
5.8 Summary
5.9 Further Reading
5.10 Exercises
6.Learning to Classify Text
6.1 Supervised Classification
6.2 Further Examples of Supervised Classification
6.3 Evaluation
6.4 Decision Trees
6.5 Naive Bayes Classifiers
6.6 Maximum Entropy Classifiers
6.7 Modeling Linguistic Patterns
6.8 Summary
6.9 Further Reading
6.10 Exercises
7.Extracting Information from Text
7.1 Information Extraction
7.2 Chunking
7.3 Developing and Evaluating Chunkers
7.4 Recursion in Linguistic Structure
7.5 Named Entity Recognition
7.6 Relation Extraction
7.7 Summary
7.8 Further Reading
7.9 Exercises
8.Analyzing Sentence Structure
8.1 Some Grammatical Dilemmas
8.2 What's the Use of Syntax?
8.3 Context-Free Grammar
8.4 Parsing with Context-Free Grammar
8.5 Dependencies and Dependency Grammar
8.6 Grammar Development
8.7 Summary
8.8 Further Reading
8.9 Exercises
9.Building Feature-Based Grammars
9.1 Grammatical Features
9.2 Processing Feature Structures
9.3 Extending a Feature-Based Grammar
9.4 Summary
9.5 Further Reading
9.6 Exercises
10.Analyzing the Meaning of Sentences
10.1 Natural Language Understanding
10.2 Propositional Logic
10.3 First-Order Logic
10.4 The Semantics of English Sentences
10.5 Discourse Semantics
10.6 Summary
10.7 Further Reading
10.8 Exercises
11.Managing Linguistic Data
11.1 Corpus Structure: A Case Study
11.2 The Life Cycle of a Corpus
11.3 Acquiring Data
11.4 Working with XML
11.5 Working with Toolbox Data
11.6 Describing Language Resources Using OLAC Metadata
11.7 Summary
11.8 Further Reading
11.9 Exercises
Afterword: The Language Challenge
Bibliography
NLTK Index
General Index
价格还可以,书质量不错
结合 NPL那个库,
还没看呢,应该很好很强大
没有中文版的吗?
好评
python深入学习用书,还没看听说写的还可以
先介绍下自身的情况,本人是国内某前三计算机专业的研究生,方向是信息检索,当然主要是基于机器学习和数据挖掘的一些方法。这本书应该说不需要任何的背景,当然有一些编程的基础更好,也不要求有机器学习的背景,有则更加。因为这两个背景我都有,因此花了大概五六天的时间阅读了一半,此刻我来写评语。这门书的结构很清楚,尤其是第一章介绍了自然语言处理的pipeline,接下来的chapter都紧扣这个pipeline,如果没有python的基础建议跟着进度敲一下代码,如果觉得pyhon自带的ide不方便,个人推荐用ulipad,有自动代码提示的功能不用按tab键了。从第六章开始有learnin…
自然语言处理的实战之书,内容不深,但相对比较实用。
对语料库感兴趣,听程序员朋友说过Python处理字符串特别方便。这是一本介绍如何利用Python进行自然语言处理的专业图书,但非常好读。Python编程知识和技巧、自然语言处理基本概念和方法(如分词、标注、句法分析等等)尽在此书。特别适用对自然语言处理有所了解,但对编程还不太摸门的读者。