近年来,随着新的数据分析方法在生态学和环境科学研究中的迅速发展和大数据时代的来临,R语言统计软件以其灵活、开放、易于掌握、免费等诸多优点,在生态科学和环境科学研究领域迅速传播并赢得广大研究者的青睐。数量生态学方法是现代生态学研究的重要工具,本书是连接数量生态学方法和R语言的桥梁。(加)博卡德、(法)吉莱、(加)勒让德编著的《数量生态学--R语言的应用》首先介绍探索性数据分析和关联矩阵的构建,然后介绍数量生态学的三类主要方法:聚类分析、排序(非约束排序和典范排序) 和空间分析。本书的重点不是介绍数量方法的理论基础和数学公式,而是在简要介绍原理的基础上,利用案例数据,手把手地教大家如何在R中实现数量分析。《数量生态学--R语言的应用》可作为生态学、环境科学及其他相关领域(例如海洋学、分子生态学、农学和土壤科学)本科生和研究生的教材,也可作为相关专业科研人员的自学参考书。
加)博卡德、(法)吉莱、(加)勒让德编著的《数量生态学--R语言的应用》的特色是在简要介绍分析方法原理的基础上,利用案例数据逐步展示如何在R中实现生态学数据数量分析的基本方法(数据描述性统计、关联测度计算)和高级方法(聚类分析、排序分析和空间分析),与Numerical Ecology互为补充。
Daniel Borcard博士,加拿大蒙特利尔大学生物科学系高级研究员。长期从事数量生态学、群落生态学和生物统计学方面的科研和教学工作,曾获蒙特利尔大学教学奖。 Francois Gillet博士,法国弗朗什孔泰大学科学与技术学院教授。长期从事群落生态学、植被生态学、数量生态学和生态模型方面的科研和教学工作。 Pierre Legendre博士,加拿大蒙特利尔大学生物科学系教授,加拿大皇家学会会员。在群落生态学、数量生态学、统计生态学和系统发育中的数量方法等领域具有很高的造诣,是国际数量生态学界的,著有影响力极大的Numerical Ecology一书,200余篇。他也是生态学/环境科学领域lsI检索较高引用率的学者之一。
第1章 绪论
1.1 为什么需要数量生态学?
1.2 为什么用R?
1.3 本书的读者群和结构
1.4 如何使用本书
1.5 数据集
1.5.1 Doubs鱼类数据集 显示全部信息第1章 绪论
1.1 为什么需要数量生态学?
1.2 为什么用R?
1.3 本书的读者群和结构
1.4 如何使用本书
1.5 数据集
1.5.1 Doubs鱼类数据集
1.5.2 甲螨数据集
1.6 关于R帮助资源的提醒
1.7 现在是时候了
第2章 探索性数据分析
2.1 目标
2.2 数据探索
2.2.1 数据提取
2.2.2 物种数据:及时次接触
2.2.3 物种数据:进一步分析
2.2.4 物种数据转化
2.2.5 环境数据
2.3 小结
第3章 关联测度与矩阵
3.1 目标
3.2 关联测度的主要类别(简短概述
3.2.1 Q模式和R模式
3.2.2 Q模式下对称或非对称的系数:双零问题
3.2.3 定性或定量数据的关联测度
3.2.4 概括
3.3 Q模式:计算对象之间的距离矩阵
3.3.1 Q模式:定量的物种数据
3.3.2 Q模式:二元(有一无)物种数据
3.3.3 Q模式:定量数据(除物种多度数据外的数据
3.3.4 Q模式:二元数据(除物种有一无数据外的数据
3.3.5 Q模式:混合类型、包括分类(定性多级)变量
3.4 R模式:计算变量之间的依赖矩阵
3.4.1 R模式:物种多度数据
3.4.2 R模式:物种有一无数据
3.4.3 R模式:定量和序数数据(除物种多度外的数据
3.4.4 R模式:二元数据(除物种多度外的数据
3.5 物种数据的预转化
3.6 小结
第4章 聚类分析
4.1 目标
4.2 聚类概述
4.3 基于连接的层次聚类
4.3.1 单连接聚合聚类
4.3.2 连接聚合聚类
4.4 平均聚合聚类
4.5 ward最小方差聚类
4.6 灵活聚类
4.7 解读和比较层次聚类结果
4.7.1 引