在线客服

通信系统论文

引论:我们为您整理了1篇通信系统论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

通信系统论文

通信系统论文:无线宽带接入通信系统论文

1. 引言

到2001年底,全球移动电话用户总数突破了10亿大关,并有100多个国家的移动用户数超过了固定用户数。移动通信已成为普遍接入的必要手段之一,而不再是传统所认为的固定电话的补充。另一方面,定向话音仍是当前移动通信的主要业务,但包括高速数据在内的多媒体业务的比重逐年增加,预计2010年话音业务和多媒体业务之比将为1:2 。移动多媒体业务是把文本、图形、语音和视频等信息以任意组合的方式给移动用户提供的服务。为了提供品质的移动多媒体业务,必须构筑大范围覆盖的高质量无线宽带网络。从2002年开始,无线宽带网的建设进入高速发展阶段,许多国家均在政府支持和电信制造商、运营商的积极投入下,研究和建设各种不同类型的无线宽带网络。

我们知道,无线通信是利用无线电波(电磁波、激光)在空间的传播来传递声音、文字、图像和其它信息的。空间信道具有可移动性、共享性、广播性和可迅速建设等优点,同时也具有高干扰、强衰落、窄带宽的缺点。因此,无线宽带网络需要特殊的发送和接收技术来保障。本文按固定无线接入、移动无线接入和蜂窝移动三大系列介绍国内外无线宽带网络的现状和发展。

2.固定无线宽带接入通信系统

由于固定无线接入比移动通信场合容易现实操作,智能天线、软件无线电、现代编码调制及自适应信号处理等功率/频谱有效利用的新技术往往首先在固定无线接入中试验与装备应用,固定无线接入往往成为新一代移动通信的技术先导。

目前,与xDSL、HFC、FTTx、APON等有线宽带传输的发展相对应,LMDS、MMDS、SFO等无线宽带接入亦在快速推进。固定无线宽带接入系统采用TDMA和CDMA等多址技术将点对点微波传输系统发展到一点对多点的无线集中系统,它可以提供本地交换局至终端用户之间的宽带通信服务。

2.1 本地多点分配接入系统 (LMDS)

LMDS在1998年被美国电信界评选为十大新兴通信技术之一。其较大的特点在于宽带特性,可用频谱往往达1GHz以上。在不同国家或地区,电信管理部门分配给LMDS的具体工作频段及频带宽度有所不同,其中大部分国家将 27.5GHz~29.5GHz定为LMDS频段。我国则采用26GHz及38GHz。

由于该技术利用高容量点对多点毫米波进行传输,它几乎可以提供任何种类的业务,如话音、数据及视频图像等,能够实现从64Kbps到2Mbps,甚至高达155Mbps的用户接入速率,并具有很高的性,被认为是一种"无线光纤"技术。它是解决电信接入网问题的利器,为电信运营商开展业务、发展用户提供了高成效、低成本的有效手段。尤其适合于新兴运营商进入电信市场。

LMDS系统通常由四个部分组成:基础骨干网络、基站、用户端设备以及网管系统。由于LMDS直接支持无线ATM协议,可以使链路效率得到提高。

2.2 多点多信道分布式系统 (MMDS)

LMDS的缺点是覆盖范围小,为了覆盖30平方英里以上的面积,可以使用另外一种成本低廉的宽带无线技术—MMDS技术,它有时被称为无线DSL。如图1所示,MMDS不需要本地电信或有线广播公司的干涉就能够通过用户安装在屋顶上的天线为每位用户提供服务。

图1 MMDS宽带接入图

MMDS最初用于单向传输的影像广播服务,包括城市与城市之间的无线网络系统。现在则可以采用双向的数据业务传输,允许更加灵活地使用MMDS频谱。而LMDS技术,则属于区域性的无线技术,可被应用在城市内、郊区等小范围的通信网络,它们的比较如表1。

表1 LMDS 与MMDS的比较

2.3自由空间光通信(FSO)

激光无线通信与以往的利用电磁波(radio)的无线通信相比,具有容量大、发射装置和功率小、不用政府特许证、对人体无影响等优点。但容易受到天气和障碍物的影响,一般用于近距离室内通信,如各种遥控信号的传递、微机间和手机间的数据通信等。现在开始应用到室外通信,但需要使用抗天气劣化的自适应技术。

自由空间光通信(FSO)使用光脉冲调制信号,按照FSO联盟的规定可以采用两个红外线波长:长波长1550nm和短波长800nm。以提供100、155和622Mbps的数据速率。

3 移动无线宽带接入通信系统

移动通信是处于移动状态的通信对象之间的通信,一般采用无线方式。移动通信系统可以分为两大类:移动无线接入通信系统和蜂窝移动无线通信系统。前者依赖于现有网络系统,仅仅是现有网络的接入系统;后者是一个独立的网络系统,除了骨干传输部分外,都需要重新建立。移动无线接入通信系统以往主要包括及时代(CT1)、第二代(CT2)、第三代(CT3和PHS)无绳电话,它们仅提供语音和低速数据业务。移动无线宽带接入通信系统则有以下几种:

3.1 宽带无线局域网络(WLAN)

无线局域网络是便携式移动通信的产物,终端多为便携式微机。如图2所示,其构成包括无线网卡、无线接入点(AP)和无线路由器等。目前流行的是IEEE802.11系列标准,它们主要用于解决办公室、校园、机场、车站及购物中心等处用户终端的无线接入。

图2 802.11网络的典型应用

在802.11的基础上,IEEE相继推出了802.11b和802.11a两个标准。三者之间技术上的主要差别在于MAC子层和物理层。802.11b使用动态速率漂移,可因环境变化,在11 Mbps、5.5 Mbps、2 Mbps、1 Mbps之间切换,且在2Mbps、1Mbps速率时与802.11兼容。 802.11a工作在5GHz频段,物理层速率可达54Mbps,传输层可达25Mbps。 可提供25Mbps的无线ATM接口和10Mbps的以太网无线帧结构接口,以及TDD/TDMA的空中接口。

表 2 无线局域网标准比较

目前,2波段兼容(2.4GHz 802.11b 和 5GHz 802.11a)的产品最为流行,3波段 (2.4GHz 802.11b, 5GHz 802.11a和1.8 GHz GSM/GPRS/WCDMA) 产品也走出了实验室。另外,802.11g标准刚刚被推出,它可以在2.4GHz频段上实现54Mbps的数据速率。

欧洲的宽带WLAN标准是HiperLAN2,它与IEEE 802.11a非常相似。它希望和3G移动通信协议互通,并且能提供不同等级的QoS,以满足多媒体或VoIP等不同类型的应用需求。

3.2 无线ATM网络

无线ATM的目的是在ATM骨干网的基础上实现端到端的ATM连接,以提供质量可保障的各种服务,如ABR、VBR、CBR和UBR等。由于无线ATM网络采用的无线传输信道与ATM骨干网所采用的光纤传输信道具有很大的差异,一些新的问题,如介质共享性、广播性、较长的传输延时、较高的信道误比特率以及信道衰落的影响等等,必须加以解决。因而无线ATM除了具有与ATM相同的ATM层、AAL层以及信令部分外,还要增加与无线通信有关的无线物理层(PHY)、介质访问控制层(MAC)、数据链路控制层(DLC),以及相应的无线控制功能,这样才能在无线网络中实现ATM服务。为支持对各种业务的服务质量控制,DLC协议常常针对不同的业务采用不同的差错控制方式;MAC协议则一般采用信道动态分配算法来支持业务速率的可变。

另外,无线ATM通信网要支持移动用户,因此网络应具有移动管理功能。当无线ATM通信网采用微蜂窝小区形式的网络结构时,越区切换控制就是移动管理的一项关键技术。无线ATM网和现有的移动通信系统(如GSM)相比具有一些不同的特点。例如,无线ATM网可支持多种类型的业务及多速率业务的通信,越区切换时需保障各种业务的服务质量 (信元丢失率、延时等)不恶化;ATM信元字头没有序号字段,越区切换时可能出现信元次序混乱,造成信元丢失;现有的ATM网络采用固定VP/VC连接方式(即固定路由),而越区切换需更新原来的连接、重建路由。这就必须研究适用于无线ATM网络的切换控制方案。

关于无线ATM的无线接口方面和移动管理方面的标准分别由ETSI和ATM论坛负责制定。依据这些标准,许多无线ATM系统被推出,如表3所示。无线ATM技术在生活中的深层次应用主要包括如何帮助人们完成远程医疗、保健和教育。

表3 无线ATM系统比较

移动无线宽带接入还包括欧洲ACTS项目中着名的AWACS、SAMBA及MEDLAN系统,其工作频段分别使用19GHz、40GHz、61GHz等,MEDIAN为室内慢速移动,AWACS及SAMBA可用于室外较高移动速度的情况,覆盖范围一般较小,为数十米至200米左右。它们的目标是实现155Mbps乃至速率更高的移动或半移动环境下高速品质多媒体个人通信服务。

另外,在移动无线宽带接入通信方面还有两个技术动向应引起注意:

最近美国FCC公布了近期频率分配政策,批准有限使用在超宽频带(UWB)上传送高速数据的非许可无线系统,但UWB的使用须高于3.1GHz或低于960MHz。有些厂商已经开始推出UWB产品的试验样机,它最适用于拥挤的室内通信。

作为一种多跳无中心分布控制网络,自组网(ad hoc) 的研究方兴未艾,它组网灵活、生存力强,可以迅速应用到某些特殊环境和紧急情况, 是无线网络发展的新方向。

4.蜂窝移动无线通信系统

蜂窝移动无线通信系统是当前移动通信的主力军,它采用蜂窝结构,频率可重复利用,实现了大区域覆盖;并支持漫游和越区切换,实现了高速移动环境下的不间断通信。从70年代起,它已经历了及时代(1G)、第二代(2G)并开始进入第三代(3G),未来向超(Beyond)3G过渡。图3描述了移动无线接入和蜂窝移动无线通信系统的发展过程,它们的数据传输速率分别对应于不同的固定通信系统,其中MMAC、HAPS和ITS将在后面介绍。

图3 不同移动通信系统与固定通信系统的比较

1G采用FDMA和模拟调制,由于频率利用率低、通话质量差、容量小,在中国已经退出市场。目前,国内外的主流系统是2G,它采用TDMA/CDMA和数字调制,提高了系统容量和通话质量。但1G/2G主要提供语音服务,为了提供自由的移动多媒体接入,例如话音、可视电话和高速数据传输,则需要发展3G和超3G移动通信系统。

4.1 第三代移动通信系统 (3G)

为了支持多媒体业务和全球无缝漫游,90年代初,一些标准化组织就已经对3G进行研究。在1999年10月的ITU芬兰会议上,3G(即IMT-2000)的无线接口技术规范(如图4)获得通过,标志着第三代技术的格局最终确定。它分为CDMA和TDMA两大类共五种技术,其中主流技术为三种CDMA技术:CDMA-DS(直接扩频)即欧洲和日本共同提出的WCDMA技术;CDMA-MC(多载波)即美国提出的cdma2000技术;CDMA-TDD(时分双工)包括我国提出的TD-SCDMA和欧洲提出的UTRA TDD。这些标准的制定主要靠3GPP和3GPP2两个国际组织。

图4 IMT-2000标准

3GPP研究制定并推广基于演变的GSM核心网络的3G标准,即WCDMA、TDS-CDMA等。 GSM系统在向3G演进的过程中,其无线接入网络采用新型WCDMA技术,引入了适于分组数据传输的协议和机制,可支持144Kbps、384Kbps、2Mbps的数据速率,这是一个革命性的变化。而在网络部分则采用演进的方式,即在初期针对话音和数据业务分别接入到不同的交换网络--电路型和分组型的交换网络。通过提高现有GSM的传输带宽,逐步向提供3G所要求的2Mbps速率的方向努力。目前,3GPP完成了许多标准版本,其中版本5完成了IP多媒体子系统的定义,诸如路由选取及多媒体会话,其下行峰值数据速率可高达8-10Mbps,并具有高的数据吞吐量和低的延时。

按照从事CDMA2000标准研究的国际组织—3GPP2的规范,窄带CDMA系统 (IS-95) 无论是无线接口部分还是网络部分在向3G过渡时,都将采用演进的方式。cdma2000-1X商用初期,网络部分在窄带CDMA网络基础上,保持电路交换、引入分组交换,以分别支持话音和移动IP业务。为了进一步增强传输能力, 3GPP2开始制订支持速率高于2Mbps的cdma2000-1X增强标准,其中高通公司的HDR、摩托罗拉和诺基亚公司联合提交的1Xtreme,还有中国的LAS-CDMA都作为候选技术在探讨中。

目前移动通信业界已基本达成一个共识:未来的移动通信核心网络将是一个全IP的宽带分组网络。3GPP和3GPP2都将3G发展的目标设定为全IP网,它将承载从实时话音、视频到Web浏览、电子商务等多种业务。

IMT-2000的原意是指2000年在2000MHz频段实现2000Kbps的数据传输速率。但由于2.5G和WLAN的加强运作,延长了2G的寿命,再加上超(beyond)3G的基本概念与框架结构的研究已经启动,这使得3G处于2.5G/WLAN及超3G的夹击之下。另外3G标准和技术上也存在一些问题,近来世界经济也处于低潮,这都使得3G的大规模使用比预想的要晚些到来。

为了在2G网络上实现移动数据通信,许多2.5G过渡方案被提出,象GPRS和WAP技术。目前发展最快的是NTT DoCoMo公司的i-mode,它很好地实现了在线上网。在i-mode的基础上,i-motion、i-area、i-appli等业务陆续在日本被推出。为了更好地提供这些服务,NTT DoCoMo公司于2001年10月1日开通了世界上及时个商业3G网—FOMA系统。

4.2超第三代移动通信系统

如图3所示,即使3G系统建成了,也仅仅实现了相当于窄带ISDN的数据速率。为了提供交互式移动多媒体服务、更高速数据接入(相当于宽带ISDN)、真正的全球漫游和服务可携带性,超3G的研究已经启动。目前的设想是将各种无线接入手段(包括宏/微蜂窝漫游、高/低速率传输等)组合起来,与以IPv6为基础的核心网相连接,构成超3G的框架,从而形成慢速移动与快速移动的有机融合。ITU认为,可以将IMT重新定义为Internet Mobile/Multimedia Telecommunications即互联网移动/多媒体通信。目前,超3G的研究主要包括:

多媒体接入通信系统(MMAC)--高速率传输

MMAC是由日本推出的多媒体无线接入系统, 其目标是通过便携式可视电话和因特网获得信息。如表4所示,目前主要提供两类高速无线接入。及时类用于室内外宽带移动通信系统,用3-60GHz频段传输30Mbps的数据,该项目从2001年开始;第二类提供超高速WLAN室内接入,传输速率达到600Mbps,采用60GHz频率,即毫米波。但是这些系统不能提供大范围覆盖,也不能用于车辆业务环境,只能用于“热点地区”。研制出的毫米波样机可以演示60GHz的WLAN与ATM或100BASE以太网接口,其数据速率可以达到155Mbps。

表4系统诸元表

移动宽带系统(MBS) --高速率传输

欧洲MBS的目标是使蜂窝系统具备低时延、高QoS保障,数据传输率达到155Mbps的水平,比现行速率要快数千倍。MBS将朝着“与服务无关性”方向发展,即随着数据传输率的提高,无线通信设备将能实现任何应用。

MBS创建于1995年,原型的数据传输率为34M的水平,但通过并行运用多路链接可提高数据传输率。MBS经过很多室内和室外环境的测试,包括在比较拥塞的城区以每小时30英里的速度行进。MBS的物理层采用独特的TDMA技术,这也是大多数2G蜂窝电话所采纳的标准;更高层则采用ATM方式。不过开发人员认为,MBS原型的功能仍不是很强,成熟的产品将在2010年出现。这期间规范肯定要作相应变更,物理层将会采用OFDM技术,网络层则会采用IP协议。

智能运输系统(ITS)--高速度移动

ITS是新型的传输系统,由先进的信息通信网组成,为用户道路、车辆等提供高速运动中的信息传递。ITS不仅提供道路情况、交通事故等,同时还能为驾驶员和乘客提供多媒体业务。

ITS由9个开发层面组成,包括导航系统、电子长途数据采集(ETC)、安全行车辅助系统等。ETC是利用两对5.8GHz的频段进行连续的长途数据采集。ITS的通信系统分为路途车辆通信和车辆互通,其中最主要的是路途车辆通信。ITS系统在沿途布上光纤网,光纤无线收发信机是关键技术。

平流层高空平台(HAPS)--宏蜂窝漫游

HAPS系统基于高空平台提供多媒体电信业务和大气层监测。基站将被安放在长时间停留在空中的气艇、气球或其他飞行器上。这些飞行器处于距地面20km至50km的空中,基本静止。基站之间彼此通过光互连链路形成网络。由于基站所处位置很高,使得每个基站有非常大的覆盖范围。因此,只需较少的基站就可以完成全网覆盖,部署较快。

按照设计目标,HAPS将兼取卫星系统和地面通信系统的长处,以作为地面移动通信系统强有力的补充手段。HAPS可以支持固定终端、便携终端和移动终端。典型的接入速率为25Mbps,对于有些固定终端可达几百Mbps。由于采用了毫米波频段(47/48GHz),容许使用高增益小口径天线。

5 结语

无线通信方式深深改变了我们和世界,它与我们的生活、工作和娱乐已经紧密相连。回溯到60年前,绝大多数国际电话是通过无线短波传送的,人们也通过无线方式获取近期时事新闻。展望未来,多数国际呼叫仍将通过手持或可携带的终端收发,而且这些设备还能从全球不同渠道接收网页和实时视频的更新。目前移动通信、图象通信和互联网正走向融合,多媒体业务将成为今后移动通信业的一个新的增长点。无线将越来越多地被用于提供接入,而使用有线网络提供长途大容量传输。

通信系统论文:城际铁路通信系统论文

1AMC-HARQ跨层自适应传输设计

城际铁路通信系统承载的主要业务,有电路域数据话音业务和分组域数据业务。具体如表1所示。电路域数据话音业务对实时性要求较高,又要十分地传递信息,具有较高或者较高的优先级;分组域数据业务对实时性要求较低(与电路域业务相比),突发性强,有一定的数据量。本文将跨层设计应用于城际铁路无线通信系统中,根据业务类型的不同,在物理层和链路层进行AMC-HARQ跨层优化设计。AMC-HARQ跨层自适应传输的系统模型如图1所示。

物理层釆用自适应调制编码技术,根据业务类型分类,制定M种调制方式和编码方式。首先,接收端通过信道测量技术,估计出信道质量信息,并通过反馈信道,将信道质量信息反馈给发送端;然后,发送端根据接收到的信道质量,选择下次传输要使用的调制编码阶数。MAC层采用同步并行停等协议即HARQ协议。首先对各数据帧分别进行CRC编码,级联构成数据帧进入物理层。物理层使用FEC编码对整个数据帧进行编码,然后存入缓存用以进行重传。接收端经过译码、CRC校验后,回送确认帧。确认帧包含了帧确认号和重传比特向量。

帧确认号表示链路层上一个按序接收的帧的序号,重传比特向量比接收窗口长度(W)小1的比特向量,即长度为W-1。比特向量表示当前接收窗口的所有帧接收情况,如“1”表示需要重传,“0”表示接收成功。由于重传比特向量是接收窗口的历史移位记录,即使当前的确认帧因信道变化而丢失,确认帧也不应重发,因为后续的确认帧包含历史的接收记录。确认帧格式如图2所示。收发双方的链路层都缓存W个数据帧。发方维护发送缓存和重传列表,发送缓存中保存着当前发送窗口中未确认的帧,重传列表中保存了待重传的帧序号。收方的接收缓存保存当前接收窗口中乱序的数据帧,当接收到的帧有序后,链路层向。

2AMC-HARQ跨层自适应传输性能分析

本文使用Matlab仿真工具对基于AMC-HARQ跨层自适应传输系统进行仿真分析,模拟信道使用瑞利衰落信道模型,每个数据包中含信息位500bit,通过1/3码率的卷积码,仿真包数目每次1000个,结果取6次平均值,同时假设CRC能正确校验。在物理层,提供不调制、BPSK、QPSK、8PSK等4种传输模式,系统可以根据AMC中每种传输模式的瞬时误包率(PER)和接收到的SNR在各种物理层传输模式之间的关系,自适应地选择合适的调制编码方式。在链路层,要综合考虑时延、误包率和吞吐量,真正满足城际铁路不同业务的QoS要求。设置较大重传次数为N=0、1、2,测试在不同干扰条件下,不同的业务类型的成功率,见图3,图4,图5。可见,通过AMC-HARQ跨层自适应传输方案,当链路层重传1次,可以在5%干扰情况下实现95%的接收成功率;链路层重传2次,可以在5%干扰情况下实现99%的接收成功率,在10%干扰情况下实现94%以上的接收成功率。

综上所述,根据业务类型不同分类,对实时性要求较高且数据量小的电路域数据、话音业务,系统可采用不重传或重传1次模式;对实时性要求较低分组域数据业务,突发性强,且有一定的数据量,系统可采用重传2次模式保障接收成功率。

作者:张婷单位:广东珠三角城际轨道交通有限公司

通信系统论文:超高速通信系统论文

1OFDM系统分析

一些传统的调制技术对于超高速移动产生的多普勒频移有较大的容忍度。然而、未来空-空通信网中宽带传输(包括高清图像和高清视频)是必然的需求和发展趋势。从宽带传输的需求看,OFDM在超高速通信系统中仍然是具有较强竞争力的调制技术,尽管它对频偏比较敏感。因此对于超高速移动宽带通信系统,本文仍然以OFDM调制为研究对象。OFDM传输系统的结构如图1所示。为了消除码间串扰和载波间干扰,OFDM系统根据DFT的循环移位性质,采用循环前缀序列替代空白的保护间隔,如图2所示,即将每个待发送的时域符号的Ng个数据复制到符号的起始位置(发送的数据的长度从N变为Ng+N)。(4)式中第1项为FFT变换后的有用信号,可以看到其幅度和相位都包含了相对频偏和信道信息。由于频偏的存在和信道的影响,接收序列存在子载波间干扰(式中第2项)。

2基于循环前缀的短时频偏估计

由上述分析可知,频偏的存在和信道的影响会使得接收序列Y(k)不等于发送序列X(k),同时会产生子载波间的干扰。因此必须在FFT处理前进行频偏和信道的估计与补偿。本文利用循环前缀进行短时频偏估计,即在一个FFT数据帧内进行估计。该方法比利用导频的频偏估计具有更好的实时性,更适合于高速和超高速移动场景。在频偏估计中还需考虑多径传输问题。多径信道的时延会导致上一个数据符号“污染”下一个数据符号的循环前缀。假定等效基带信号的较大多径时延为L,即循环前缀的前L个数据中有多径干扰。为了降低频偏估计误差,实际计算时(11)式修正为。

3仿真结果与分析

为了验证本文频偏信道联合估计的算法性能,采用Matlab软件构建超高速移动OFDM系统通信平台,结合典型城市信道的实际传输条件设计了如下仿真无线信道仿真参数:高速OFDM系统共有256个子载波,系统采用16QAM调制,采用块状导频结构,循环前缀CP=64。信道多径数为5,各径时延在0~12μs均匀分布,各径功率(τi)按e-τi/τmax衰减,其中τi为第i路径时延。本文中均方根时延τrms取为4μs。

3.1频偏估计误差影响实验为了验证多普勒频偏估计误差对于传统信道估计算法的性能影响,设计验证实验,设置系统信噪比SNR-dB=20dB,系统频偏为800Hz,多普勒频偏估计误差从0Hz每次增加20Hz一直到200Hz,观察各个多普勒频偏对信道估计性能的影响。实验结果如图3所示。图3所示使用传统的LS算法和LMMSE算法进行信道估计,在多普勒频偏误差为0Hz时,信道估计误码率较小,估计性能好。随着多普勒频偏估计误差增加,信道估计性能急剧恶化,在多普勒频偏为200Hz时,2种信道估计算法误码率都在0.07左右,此时信道估计的误码率已经不能满足信道估计的误码率要求。通过实验可以验证多普勒频偏对信道估计性能影响较大,在多普勒频偏较大时,传统的信道估计的误码率较大,估计性能不能满足实际传输需求。通过该实验可知较小的多普勒频偏估计误差对OFDM系统产生较大的性能恶化,本文设计的实时频偏可以实际估计频偏变化,大大提高频偏估计的实时性和性。

3.2频偏估计算法性能验证为了验证基于循环前缀的频偏估计性能,进行了Moose算法、SC算法和本文的频偏估计的对比实验,设置系统的归一化频偏为0.1时3种算法的频偏估计均方误差(LMMSE)的对比实验,实验结果如图4所示。由图4可知,Moose算法的频偏估计性能好,本文算法和性能较好的SC算法性能差异不明显。本文算法是盲估计算法,利用循环前缀的冗余信息,相比于SC算法、Moose算法,不需要训练序列,降低了系统的数据利用率,且能够和传统信道估计的算法相结合,不需要改变信道估计的导频序列,综上本文的算法性能较好。但本文算法是基于循环前缀的,故对循环前缀的数量有要求,本文循环前缀长度是数据符号长度的1/4。上述实验过程验证了多普勒频偏对于信道估计的影响,通过分析实验结果,本文设计的频偏估计算法具有较好的估计性能。

4结束语

本文针对超高速通信系统中多普勒频移对于传统信道估计算法的性能影响,提出了一种实时频偏估计算法。在分析了超高速通信系统结构基础上,根据循环前缀包含的频偏信息,设计了一种多普勒频移的实时估计算法,克服传统算法多普勒频偏估计滞后性的缺点对信道估计性能的影响。在搭建系统信道模型的基础上,通过设计的实验方案考察了多普勒频偏对信道估计的性能影响。基于循环前缀的频偏估计算法性能的验证实验,表明设计的频偏估计算法具有较好的估计性能,在超高速移动通信系统中具有应用价值。

作者:但德东丁志中单位:中国电子科技集团公司第五十四研究所

通信系统论文:非线性通信系统论文

1信道特性专项仿真

1.1幅频及群时延特性卫星通信系统信道传输特性的系统函数可以。信道群时延响应是相位频率响应的导数,用于表示相位频率响应的畸变程度,在信道频带的边缘由滤波器过渡带抑制变化引起的相位畸变尤其严重。式(1)中,θ(w)为相位频率响应。实际信道中的群时延响应是非线性的,当非单一信号传输时必然引起信号畸变。在传输数据速率高、码元周期短及频带宽的情况下,群时延畸变的影响就比较明显。一般来说,带内群时延分为抛物线群时延、线性群时延以及波动群时延。假定其他信道参数为理想的情况下,带宽36MHz卫星转发器典型幅频特性仿真条件如表1所示,仿真结果如表2所示。假定其他信道参数为理想情况下,分别仿真了10MHz和36MHz两个转发器的抛物线群时延特性对卫星通信系统的影响,卫星转发器典型抛物线群时延特性仿真条件如表3所示,仿真结果如表4所示。

1.2相位噪声理想情况下,卫星通信系统中的本振输出信号的频谱应该是一根无限窄的谱线。但是在实际的通信系统中,由于射频硬件(比如振荡器)不是理想的,因此振荡器产生的载波也不是理想的,表现为相位不稳定(即相位噪声)。为了便于分析和对数字通信系统进行仿真,可用一个维纳随机过程作为相位噪声的模型。相位噪声采用在频域模拟的方法,为了使仿真相位噪声情况更为接近实际的相位噪声,按分辨率1Hz产生数字相位噪声。假定其他信道参数为理想情况下,仿真了3种相位噪声对卫星通信系统性能的影响,仿真条件如表5所示。仿真发现在相位噪声值1的情况下会出现误码平台,在相位噪声值2和相位噪声值3的情况下,传输性能损失小于0.2dB2.3非线性失真功率放大器的非线性失真会引起调制信号幅相特性的变化,在接近饱和点工作时影响较大。星上功率放大器(行波管放大器,TWTA)是一个非线性器件,该器件将引起包括幅度(AM/AM)和相位(AM/PM)在内的非线性失真。

2综合仿真及系统指标建议

假设功率放大器在不同非线性工作点的群时延特性、幅频特性和相位噪声特性是一致的,选择带宽36MHz卫星转发器,依据上述仿真参数对信道群时延特性、幅频特性、相位噪声特性和非线性失真进行综合仿真。将卫星转发器的放大器的输入功率相对饱和点回退10dB,保障功率放大器工作在近似线性状态。对卫星信道的群时延特性、相位噪声特性及幅频特性进行综合仿真,仿真结果表明,当误码率1×10-6时传输性能损失约11dB。将转发器的放大器的输入功率相对饱和点回退0dB(即饱和)、2dB、5dB和10dB时,综合仿真卫星通信系统的群时延特性、相位噪声特性、幅频特性对系统传输性能的影响,仿真结果如表7所示。:当转发器的功率放大器工作于饱和点时,接收机射频指标在中频指标的基础上增加大于2.3dB;在功率放大器的输入功率回退2dB的情况下,接收机射频指标在中频指标的基础上增加大于1.6dB;在功率放大器的输入功率回退5dB的情况下,接收机射频指标在中频指标的基础上增加大于1.3dB;在功率放大器的输入功率回退10dB的情况下,即在功率放大器工作于线性状态下,接收机射频指标应在中频指标的基础上增加大于1.1dB。

3结束语

设计了卫星通信系统仿真模型,为分析卫星通信系统的传输特性提供了有效方法。由仿真结果可以看出,当幅频响应的带内波动小于1dB时,幅频特性对传输性能的影响可以忽略不计;群时延特性对宽带信号传输性能的影响要大于对窄带信号传输性能的影响;当系统出现误码平台时,应当分析相位噪声的指标是否满足系统要求;当功率放大器的入口功率小于饱和输入功率约5dB时,放大器的非线性失真特性不会影响卫星通信系统的传输性能;射频传输性能相对中频传输性能至少有1.1dB的损失。

作者:张金贵单位:中国电子科技集团公司第五十四研究所

通信系统论文:无线语音通信系统论文

1技术方案

1.1系统原理

1.1.1系统构成矿井无线语音通信系统主要由SIP语音服务器、调度软件、矿用分站、矿用无线分站、手持机、骨传导耳机、矿用本安型光交换机等组成。SIP语音服务器:SIP服务器是语音系统在井上的数据交互中心,井下所有的数据通过光纤传递到本服务器,并进行数据交换。调度软件:实现系统设备管理、通话管理、广播、定位等功能。矿用分站:矿用分站是系统的固定终端,在煤矿井下系统的布设中起到支撑作用,是无线与有线之间的转接设备,并且可以在一定程度上不依赖井上的中心设备管理无线自组网工作,并通过光缆与地面的主机连通,通过无线网络连到就近矿用无线分站、手持机。矿用无线分站:矿用无线分站是系统固定终端,在煤矿井下的系统布设中起到矿用分站的扩展作用,并且可以在一定程度上不依赖井上的中心设备管理无线自组网工作,也通过无线网络连到就近矿用分站、手持机。手持机:手持机是井下无线语音通信的移动终端,与矿用分站或矿用无线分站的2400MHz无线网络连接,实现手持机的无线语音通信功能。骨传导耳机:是手持机的配套设备,主要用于工作面等高噪环境。

1.1.2硬件部分工作原理语音通信系统实现了语音通信功能。该系统设备包括SIP语音服务器、矿用分站、矿用无线分站、手持机、骨传导耳机、矿用本安型光交换机等设备。手持机通过无线网络(工作在特高频2.4GHz附近)连接就近矿用分站或矿用无线分站,并通过它们与地面语音服务器连通,共同组成一体的计算机网络系统,实现语音通话功能。手持机配备骨传导耳机后,可以在工作面等高噪环境中实现清晰通话,解决综采工作面通话难的问题。

1.2系统主要功能及特点(1)正常模式功能:通话功能、短信功能、漫游功能、操控功能、调度功能、管理功能。(2)应急模式功能:通话功能、短信功能。

2系统主要硬件设备功能

2.1矿用分站

2.1.1设备技术说明矿用分站通过光纤网络与地面的主机连通,通过无线网络连接就近矿用无线分站,并使其也与地面主机连通,共同组成一体的计算机网络系统;矿用分站还将通过2.4GHz无线网络连接就近的手持机,传递手持机与语音服务器之间的管理信息和语音信息。功能特点:该产品采用OMAP5912及ARM920T处理器和Linux操作系统进行设计,具有本质安全型设计、环境适应性强、处理速度快、软件智能化高、通信速度高等特点,可以满足煤矿井下人员监测与跟踪管理及无线语音通信的自动化和信息化管理要求。

2.1.2技术特性较大传输距离:无阻挡环境下,视距400m。

2.2矿用无线分站

2.2.1设备技术说明矿用无线分站通过无线网络(工作在特高频2.4GHz附近)连接就近矿用分站,并通过它与地面的主机连通,共同组成一体的计算机网络系统;矿用无线分站还将通过2.4GHz无线网络连接就近的手持机,传递手持机与语音服务器之间的管理信息和语音信息。

2.2.2技术特性较大传输距离:无阻挡环境下,视距300m。

2.3井下手持机

2.3.1主要技术指标无线协议:IEEE802.11b;频率范围:2.341~2.539GHz;发射功率:-25~-10dBm/m;接收灵敏度≤-85dBm/m;较大传输距离:无阻挡环境下,视距400m;调制方式:IEEE802.11b(DSSS)CCK、DQPSK、DBPSK根据所接收信号强度自适应;电流:小于100mA(静态电流)/小于500mA(工作电流);额定工作电压:3.7V;电池参数:电池1节,额定电压3.7V,电池较高开路电压U0=4.3V,较大短路电流I0=3.3A。

2.3.2本安参数本安电路较大输出电压:DC4.3V;本安电路较大输出电流:3.3A。

3无线语音通信系统在煤矿的应用

该系统2014年8月在某矿406盘区设计安装,现已开始试运行。系统主机安装在调度二楼机房,主机通过四芯光缆经副井井筒入井至大巷,从大巷延伸至406盘区轨道巷及皮带巷。406盘区轨道巷长度800m,皮带巷长度800m,工作面长度800m,为了保障信号在轨道巷、皮带巷98%覆盖,在轨道巷材料斜井底、斜井上、8607工作面、8607工作面以里200m、8603工作面安装了5台分站,工作面采煤机安装了1台无线分站;皮带巷人行斜井上、皮带巷头、皮带巷2603安装了3台分站,皮带巷过道安装1台无线分站;机房内安装1台分站。手持机分配情况:运输二区4部、皮带队4部、综采四队4部。该系统与调度交换机通过3条中继线相连。手持机用户可与调度交换机用户无阻碍通话。系统在试运行阶段,各项指标运行正常后,将在其他盘区安装使用。

4需改进之处

信号直线传播距离300m左右;有阻挡环境下信号传递受限;手持机接收信号效果有时不佳,这方面的技术问题有待进一步解决。

作者:李建英单位:山西省同煤集团煤峪口矿电讯科

通信系统论文:故障分析的电力通信系统论文

1MSTP技术

1.1技术特点MSTP的出现迎合了电力二次系统针对各类通信业务(如安稳系统、继电保护、远动通信、电力系统信息化等)接入和动态带宽处理的需要。基于SDH系统,MSTP具备集成对多种业务(主要是时分多工TDM、以太网业务和ATM业务)支持的能力,实现了对城域网业务的汇聚。其技术特点大致有以下几点:1)延续了SDH技术的诸多优势:如具有杰出的网络倒换保护性能和良好的TDM信号业务支持能力,能很好地兼容现有的TDM信号业务。2)对多种协议的支持。对多种协议支持以增强网络边界智能硬件性能,通过对各种业务的交换、聚合或路由划分来筛取不同种类的传输流,使MSTP对多种业务支持的能力得以实现。3)可支持波分复用(WavelengthDivisionMulti⁃plexing,WDM)扩展。MSTP的信号类型随所处网络位置的变化而发生变化,如MSTP设备被置于核心层时,信号类型低可为OC-48,并能扩展为密集波分复用信号;当MSTP被置于汇聚层和接入层时,其信号类型则变为OC-3/OC-12,且可在必要时扩展至支持密集波分复用(DenseWavelengthDivisionMultiplexing,DWDM)的OC-48。4)支持动态带宽的分配。MSTP具备支持虚级联和级联的功能,因此MSTP可对所用带宽进行灵活多样的分配,其通常的带宽可分配颗粒为2Mbit/s,某些厂商甚至能将带宽可分配颗粒调整至576kbit/s。基于此,MSTP不但可以满足对SDH帧中的列级别以上带宽的分配需求,还能通过支持其链路容量调整机制(LinkCapacityAdjustmentScheme,LCAS)技术,动态地配置、调整链路带宽。5)提供综合网络管理功能。拥有对不同协议层的综合管理能力,有利于MSTP管理和维护网络[5-6]。MSTP管理涵盖整个网络,无论是对网内性能的告警监控还是对业务的配置,均基于直接为用户提供的网络业务。配置MSTP网管上的业务时,仅需要配置好网络业务的源、宿及相应的时隙、端口等参数,网络业务便能快速自动生成,避免传统的SDH系统需逐个对网元相关参数进行设置的繁复操作,进而实现业务的快速开通。此外MSTP还具备一些非电力通信需要但被运营商广泛使用的功能,如计费和带宽租用等。

1.2MSTP技术在电力通信中的应用广西某市地区电力通信网涵盖网内20多个变电站,每个变电站建立一个网元节点,组网采用产自UT斯达康公司的NetRing系列光传输设备,该系列设备均具有MSTP特性。其中NetRing10000-(IV2)系列设备主要针对大型网络的骨干网和城域核心层需求设计,是高集成STM-1/4/16/64(155M/622M/2.5G/10G)多业务传输平台,具有大容量高、低阶交叉连接矩阵,分插复用功能及Ethernet/ATM信元交换功能,较大交叉连接能力为512×512VC-4,4032×4032VC-12。此外该设备可按实际需要,灵活配置成2.5G或l0G,可平滑地由2.5G升级到10G。基于NetRing传输平台,该市地区电力通信网为电力系统提供了多条符合实际生产管理和管理信息需求的通道,如地区级综合数据网通道,承载的业务包括:综合信息化管理、电力统一通信、电视电话视频会议系统、营业所及变电站在线视频监控;地区调度数据网电力调度自动化、电能在线计费、电网一体化运行智能、VoIP(VoiceoverInternetProtocol)调度电话等。保障了该市地调与各变电站之间、发电厂之间及厂站间的各类专线信号;供电局与各下属二层机构之间的专线信号的信息传递与交互。

2MSTP设备的日常维护与故障分析

2.1MSTP设备的日常维护作为一项综合性较强的工作,MSTP光传输系统的日常维护项目很多,例如对光缆设备的定时巡视记录、设备电源清洁保养、配线架端子测试等。下面是MSTP设备日常维护的一些简单但值得注意的要求:1)供电电压不可超限。传输设备可正常工作的直流电压范围是-57.6~-38.4V,即MSTP设备的直流电压允许范围为-48±20%V。2)保障设备的运行环境。通常MSTP设备的允许机房温度是0~40℃,但根据实践经验,通信机房的建议保持温度约为25℃[7]。3)设备应按照行业规范采用三地联合接地,综合通信大楼的接地电阻要求小于1Ω,普通变电站内通信点接地电阻要求小于5Ω,否则雷击打坏设备的概率会大大增加;另外接地线的长度好小于30m,并且尽可能短;两个接地体在最近点用导线短接。4)禁止小角度弯折尾纤,避免经常打开光连接器。5)网管、本地维护终端(LocalCraftTerminal,LCT)用电脑应专机专用,严禁挪作他用,以免电脑中毒瘫痪。6)插入单板时,先将单板的上下边沿与机框的左右导槽对齐,然后沿左右导槽慢慢推进单板,直至其刚好嵌入母板。更换单板时,在更换前要确认待换单板与在用单板型号一致。

2.2MSTP设备的故障分析高效地开展MSTP设备维护工作是电力通信网络安全稳定运行的保障。但由于网区内各个站点之间、厂站之间的距离较远,因此能否分析并定位故障,是MSTP设备故障处理中极为关键的切入点。与传统SDH故障定位方法一样,MSTP设备的故障定位也遵循“先系统,后单站;先线缆,后设备;先设备,后单板;先线路,后支路”的准则。通信检修人员可结合设备网管、光时域反射仪(OpticalTimeDomainReflectometer,OTDR)等测试仪表,充分利用性能事件、环回、在线检测帧等技术手段,分步、有计划地对MSTP设备故障定位。在故障出现初期,先分析告警的可能成因、相关业务流向及性能事件,初步判断后,再逐步缩小故障点的范围;然后通过分别对支路板和光板进行逐段环回(注意设备参照点)的方式,排除外部干扰,把故障点定位到单站,接着到单板。在MSTP设备故障处理过程中,首先应该排查SDH层面的问题,较为常用的SDH故障定位方法有告警性能分析法、仪表测试法、环回测试法及替换法等。1)告警性能分析法。该方法借助网管捕获有关的性能及告警信息,定位潜在故障。检修人员通过网管可以获得每一个站、每一块单板故障的详细情况;全网设备的故障状况,以及业务两端间的告警信号;告警信号的产生、结束时间和所有历史告警信息。例如检查网管时如果发现网管报TU-AIS和TU-LOP等SDH层告警,就可初步判定单板硬件有问题,需准备更换故障板件。2)仪表测试法。该方法需要采用各种仪表(如2M误码仪、万用表、光源、光功率计、以太网测试仪、SDH分析仪等)检查传输设备的故障点。如:用2M误码仪检测业务信号通断情况、误码数量;用光源、光功率计测试相关设备的收发光状况;用万用表检测设备的直流供电电压,判断是否存在电压越限影响设备运行的问题。用仪表定位故障的方法很有说服力,但前提是故障现场需要备有相关的仪器仪表。3)环回测试法。该方法使信号在网元的Tx、Rx端口间环回流转,藉此定位故障。环回测试法的两种典型方法:硬件环回和软件环回。硬件环回又分光接口、电接口两种,其中光接口的硬件环回,用尾纤或借助光纤配线架(OpticalDistributionFrame,ODF)配线端子,使光接口板的Tx端口和Rx端口互联;电接口的硬件环回,用电缆线或经由数字配线架(DigitalDistributionFrame,DDF)配线端子,将电接口板的Tx端口与Rx端口连在一起。软件环回则是指通过网管下发命令环回某一网元中的某一单板,又可分为内环回和外环回两种,如图2、图3所示。软环回的对象相对较多,包括电支路、光支路、光线路等。在分段自环设备的各种不同位置点后,便可将故障点从纷繁的信息中剥离出来,继而排除故障。值得注意的是,硬件环回光板时必须视具体情况在光板加入适当衰耗,以免损坏光板4)替换法。该方法是使用正常部件去替换疑似异常工作部件,以达到定位、排除故障的目的。这里的部件,是指与设备相关的物品,如线缆、单板、模块甚至于芯片等。这种方法在排除传输外部设备问题时应用较多,当故障被定位到单站后,替换法则更多地用于排除站内设备单板或模块的问题。通过上述方法排除SDH层面的问题后,检修人员可以转入以太网层面对故障进行定位。实践中一般采取环回手段+Ping和测试帧定位以太网层面的故障。例如在本端MSTP设备以太网单板端口Ping对端路由器或者交换机的IP地址,若能Ping通,则可基本确认本端设备以太网层无异常,Ping包的格式有很多种,常用的Ping包格式如下:pingxxx.xxx.xxx.xxx-11000-t11000表示数据包的包长是1000,-t即持续不断Ping包。其中的包长可视具体情况设定,在测试时不妨同时多开几个Ping窗口来尝试。如果Ping不通,则考虑检查线缆、网线、设备等硬件工作正常与否,在排除硬件方面的问题后,应在网管或LCT排查网元上的端口工作模式的设置、TAG属性、封装协议的匹配、虚容器(VisualContainer,VC)通道捆绑情况、端口VLANID的设置等,假如这些设置均被正确配置,但网络还是Ping不通,此时就应考虑检查两端站点路由器循环冗余校验码(CyclicRedundan⁃cyCheck,CRC)的配置情况。较常见的,如本端设CRC校验,对端不设CRC校验,也会造成Ping不通。但是即便Ping包正常也不可轻易认为本端MSTP设备以太网层无异常,因为当端口工作模式配置不正确时,也可能出现小流量Ping包能通过但大流量Ping包存在时延或丢包的现象。此时应考虑查验本端站点与对端站点设备的使能流控设置一致与否,两端设置不一致的情况下,大流量Ping包很可能存在丢包现象,故建议双方都关闭流控。此外这种现象也可能与带宽配置不够有关,带宽配置不够有用户业务量小但突发业务比较大或用户业务量大两种情况。带宽是否充足可通过多绑定几个2Mbit/s的方法来验证。针对基于多协议标记交换(Multi-ProtocolLa⁃belSwitching,MPLS)的报文类型或基于VLAN的报文类型的故障业务,最有效的手段是借助以太网性能分析仪辅助定位故障点,如果现场没有相关的测试仪表,则可借助“模拟发包”类的软件,使用计算机网卡模拟设备发送业务报文的办法来定位故障点。当涉及用户内网时,tracert也是一个非常实用的命令,其可用于圈定IP数据包访问目标所采取的路径。通过跟踪数据包的访问路径,检修人员可以了解数据走向,缩小故障范围,有助于故障信息的定位和处理。

3结语

建立在SDH基础上的MSTP是近几年在城域光网络中被广泛采用的一种光通信技术。MSTP技术优势主要体现在多种业务的接入和处理方面的能力,因此十分适合当前电力系统数据业务高速发展的要求。本文介绍了MSTP技术的工作原理、技术特点及其在电力通信网的应用现状,探讨的MSTP设备故障处理过程,为电力通信检修人员更好地开展MSTP设备运维工作提供了实用性的参考。

作者:罗锦泉欧阳博单位:广西电网有限责任公司梧州供电局

通信系统论文:模拟信号通信系统论文

1模拟信号传输系统模型

模拟通信系统模型如图1所示。在发送端,基带信号经过调制后,变换成频带适合信道传输的信号,并且相应地在接收端进行反调制,即解调。利用Matlab作为软件开发工具,可以完成如图1所示模拟系统的代码编写与仿真调试,实时显示各点的时域波形和频谱结构,将仿真结果和理论结果相比较,加深对信号传输原理的理解。实验中关于滤波器的选取,考虑到FIR滤波器具有严格的线性相位特性,又因为窗函数法比较简单且有现成的窗函数公式可用,在技术指标要求不高的场合使用比较灵活,故本次实验中采用Kaiser窗设计FIR滤波器实现滤波。基于Mtlab的模拟传输实验步骤归纳如下:1)根据实验内容和要求,综合运用课堂理论知识,完成模拟信号幅度调制调解与角度调制解调的系统模块设计,增强学生对理论知识的综合运用能力。2)根据设计方案进行软件仿真,通过观察仿真图,掌握常见模拟幅度与角度调制信号的波形与频谱特点,让学生更直观地感受常见模拟波形的特点,培养学生软件调试能力。

2模拟信号传输实验设计

根据模拟通信系统模型,基于Matlab完成模拟幅度调制和模拟角度调制实验。在实验过程中,鼓励学生采用多种不同的设计思想来解决问题,保障学生独立自主完成实验方案的设计以及软件仿真调试的过程。使学生能够通过本次实验,加深对模拟通信的认识,使自己的创新思维得到培养,动手能力得到提高。

2.1模拟幅度调制实验方案设计通过课堂学习,学生已经掌握模拟幅度调制的基本原理和方法。已调信号乘以相干载波后经低通滤波、隔直流便可得到输出信号,由此完成了解调过程。

2.2模拟角度调制实验方案设计角度调制也称非线性调制,通常是通过改变载波的频率或相位来达到的,而频率或相位的变化都可以看成是载波角度的变化。角度调制信号的一般表示。角度调制分宽带与窄带两种,由调频或调相所引起的较大瞬时相位偏移远小于30°时,称为窄带调频(NBFM)或窄带调相(NBPM),否则,称为宽带调频(WBFM)或宽带调相(WBPM)。

2.3滤波器设计用Kaiser窗设计FIR滤波器时要进行参数估计。Kaiserord函数用于返回滤波器的阶数n和beta参数,去指定一个函数fir1需要的Kaiser窗。该函数计算出滤波器的大约阶数n,频带的边缘归一化频率Wn,以及参数beta和ftype。其中,参数fcuts是频带边缘频率向量,mags是各频带的理想幅值向量;devs是通带与阻带纹波向量,用于限制通带与阻带的波动幅度;fsamp为采样频率。下面给出带通滤波器对应的fcuts和mags值所要遵循的规则:带通滤波器的fcuts为四元矢量,分别对应两个通带截止频率和两个阻带起始频率,如,fcuts=[16000175002250024000],表示17500~22500Hz为通带,阻带为小于16000Hz及大于24000Hz区域;mags为三元矢量,可设置为mags=[010]。hh=fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale')其中,kaiser(n+1,beta)函数表示返回一个n点的kaiser窗,参数beta是凯撒窗的β参数,在kaiserord()函数中获得,它影

响着窗函数傅里叶变化中旁瓣的衰减。函数fir1()返回一个包含有n阶FIR滤波器的系数向量,其归一化截止频率为Wn’。noscale’表示不对滤波器归一化。2.4Matlab仿真演示完成代码编写后需要进行仿真调试,基带信号为2kHz余弦波,载波频率为20kHz,采样率为1MHz,考虑信道噪声(加性高斯白噪声)。模拟幅度调制的几种常见方式中,给出AM调制的仿真图,模拟角度调制则给出FM调制的仿真图,分别如图3~图5所示。

3结束语

通过在模拟信号传输实验中采用基础理论与软件仿真相结合的教学方法,调动了学生的积极性与主动性,有利于学生更系统、更地掌握整个模拟通信系统的概念,同时,软件仿真的实验平台让学生认识到了利用计算机辅助设计来验证理论结果的重要性,在完善知识体系的同时也锻炼了自身的动手操作能力与独立思考能力。

作者:陈小敏朱秋明徐大专党小宇单位:南京航空航天大学电子信息工程学院

通信系统论文:资源优化的通信系统论文

1多小区D2D功率控制和信道分布

多小区下的D2D资源优化中,小区间干扰是主要的问题难点。基于规划思想的优化对信道状态信息的依赖程度加高,而依赖程度高不仅促使小区内信令开销得到极大的增加,而且对小区间信令交互的需求也会增加。除此之外,但小区下的结果不能简单地复制应用于多小区环境中。例如D2D用户处于小区的边缘,如果只将同小区下的资源优化作为考虑范围,D2D用户会严重受到来自于相邻小区中使用相同信道的蜂窝用户的干扰。在分布式的方法中,小区间干扰通常被D2D用户归为同小区干扰,但是这基站的定价策略不符,因而会影响定价策略,导致定价策略出现偏差。但是如果考虑多小区下的博弈,领导者需要协调所有追随者的网络组建,而不是仅仅局限在某个小区的基站。另外,如果追随者数量成倍增长,会给收敛速度带来巨大的挑战。

2异构网络下的D2D资源优化

2.1异构网络下的D2D模式选择和信道分配与同构网络的D2D资源分配方式不同,异构网络下的D2D通信具有小蜂窝模式和复用小蜂窝信道模式可供选择。小蜂窝模式是指D2D通信双方如果处于同一个小蜂窝的覆盖范围,D2D通信可以通过小蜂窝接入点实现数据交换。虽然小蜂窝的覆盖范围不光,但是小蜂窝的覆盖范围依旧比D2D通信距离要广。因此,处于同一小蜂窝内的D2D双方可以将小蜂窝作为接入点中转,而且小蜂窝接入点中转带来的好处更多。因此D2D用户可以考虑使用小蜂窝模式。复用小蜂窝信道模式和复用宏峰模式具有一定的相似性。由于小蜂窝具有覆盖范围小的特点,通过提高频段以及重新设计参考信号的方式可以提高资源的使用效率。而且作为近距离通信的D2D通信系统,复用小蜂窝信道也可以从新的设计中获得效益。

2.2异构网络下的D2D中继资源优化一是基于分支定界算法的资源优化方案。该方案中将所有WUE的接入成功率和低作为目标,算法复杂,复杂程度为指数级别。但是在许多情况下,该算法的求解速度较快。二是基于中继有限的资源优化方案。该方案主要基于D2D通信在提升频谱效率中的优势。该算法以分支定界算法为基础,从分支定界算法转化而来。三是基于贪婪散发的资源优化方案。该算法属于先到服务的算法,它的计算复杂程度较低,但是不能获得用户分集增益。先到的用户可以优先选择满足限制条件,同时能降低自身功率的的接入模式和信道资源。四是基于服用中继优先的资源优化方案[3]。该方案优先选择服用D2D中继模式,但是它与中继优先算法有一定的差异。即用户被分配到非法制的功率后,用户不能参与选择其它模式。服用中继优先算法的功耗虽然比中继优先算法高,但是它的频谱效率也更高。

3结语

文章主要针对D2D通信在当前和未来网络中可能出现的干扰协调和资源优化两个问题进行分析和研究,单纯的蜂窝网络下的D2D通信技术已日趋成熟,通过对干扰协调和资源优化的研究有利于提高D2D通信系统的价值,提升服务质量,这也是当前D2D通信研究领域的主要方向。

作者:殷鹤陈思羽单位:九二八五三部队黑龙江省哈尔滨市

通信系统论文:电力系统广域保护通信系统论文

1广域保护系统结构

目前,关于广域保护系统结构国内外学者提出不同的见解,一般可分为分布式、区域集中式、变电站集中式以及分层集中式。其中,在分布式广域保护系统中,广域保护算法内置于每个装设在变电站内部的保护IED中,分布式广域保护系统的广域保护决策过程在单个保护IED中实现,这使得分布式广域保护系统更适合于实现广域继电保护的功能。区域集中式广域保护系统其功能包括实现传统继电保护功能、通过通信网络与广域保护决策中心设备交换信息等。变电站集中式广域保护系统主要是利用收集到的信息实现广域保护算法,并向站内相应保护IED发送控制命令。分层集中式广域保护系统继承了区域集中式和变电站集中式广域保护系统的优势,而且它既能够与上层区域广域保护决策中心设备通信又能够与下层的保护IED通信,同时也能够弥补变电站集中式存在的一些缺点。

2电力系统信息综合传输调度算法研究

电力系统不同于其他系统的运行,尤其是顺利实现其信息的综合传输不可避免的需要解决诸多潜在的问题,尤其是信息业务综合传输过程中存在的流量冲突问题,特别需要注意的是不仅要保障实时信息业务的服务质量,同时也不可忽视各类非实时信息服务质量,这些非实时信息也是传输过程中重要的组成部分。实现基于IP技术和区分服务体系结构模型的网络通信模式的关键技术包括队列调度法,本文主要对队列调度算法进行深入讨论,使其在对电力系统信息综合传输的服务质量问题进行解决时能够发挥出关键的作用。WFQ算法的分组服务顺序与GPS模型有很大差异,它是一种模拟通用处理器共享模型的队列调度算法,本文在WFQ算法基础上提出了WF2Q+算法,并通过将“虚拟延迟时间”引入WF2Q+算法解决了该算法在推迟传输高优先级信息业务分组的问题,进而提出了提出以基于IWF2Q+算法的区分服务体系结构模型实现电力系统信息综合传输。

2.1WF2Q+算法介绍及分析WF2Q+算法是一种基于GPS模型的分组公平队列调度算法。在实际的信息业务传输过程中,分组到达各列队头部的时间会存在一定的微小差别,致使根据GPS模型得到的各队列头部分组服务顺序也出现微小差别,从而也会影响到WF2Q+调度器先为高优先级队列内分组提供服务,还是为低优先级队列提供服务。观察图1我们可以发现,优先级较高的信息业务在电力系统分组传输过程中不能保障其实时性,关键在于优先级较高的信息业务分组到达时间较晚,从而使得优先级较低的信息业务“捷足先登”,到达时间稍快,影响了电力系统高优先级信息业务分组传输的实时性。

2.2改进的WF2Q+算法——IWF2Q基于上述问题,为了保障电力系统信息综合传输中高优先级信息业务分组的实时性,本文采用了PQ调度算法,并用PQ算法原理对WF2Q+算法进行改进,按照这种方式获得的算法非常有可能将高优先级分组推迟传输问题轻而易举地解决,同时也能保持良好的公平性。具体操作如下:将优先级较高队列中传输个分组所需时间的倍定义为队列的“虚拟延迟时间。IWF2Q+算法与WF2Q+算法都采用SEFF分组选择策略,此时,不得大于系统虚拟时间,并且越小的队列中的分组越优先获得调度器的服务,通过这种方式高优先级队列中所转发分组的延时得到了降低。

3仿真分析

本文首先仿真对比电网发生故障时WFQ算法、WF2Q+算法和IWF2Q+算法情况下IEEE14母线系统各变电站与控制中心站之间变换信息时4类信息业务分组的平均延时,结果如图2所示。观察图2可知,WF2Q+算法与WFQ算法在保障信息业务实时性方面的性能不相上下,而WF2Q+算法推迟传输高优先级信息业务分组的问题可通过IWF2Q+算法解决,并且能够减小高优先级信息业务分组延时,同时也会导致低优先级信息业务分组延时变大。其次仿真对比电网发生故障时PQ算法、WF2Q+算法和IWF2Q+算法情况下得到的系统中各变电站与控制中心站之间传输四类信息业务的平均服务速率,如图3所示。该结果说明基于WF2Q+算法和IWF2Q+算法的区分服务体系结构模型能够较好地协调不同优先级信息业务获得的服务效率,达到了各类信息业务传输的公平性,且性能相当。

4课题研究结论及展望

现代经济和社会的发展使得电力系统的电网复杂程度增加,未来的电网不可避免的将是信息网与电力网构成的相互依存的复合网络,广域保护能够避免传统继电保护和安全稳定控制存在问题,而先进的通信技术与信息技术的使用将有望提高电网的性、安全性以及运行效率。基于互联网协议的通信技术,将为实现广域保护系统通信提供新的技术手段,为未来电网同一电力信息专用网络平台的构建奠定理论基础。

作者:林钢单位:佛山供电局

通信系统论文:2ASK调制通信系统论文

1、2ASK调制与解调仿真设计

文中使用LabVIEW软件对2ASK通信系统进行仿真。LabVIEW具备了仪器的基本属性,其程序的基本构成包括两部分:(1)前面板,用于反映仪器的控制操作和显示;(2)程序框图,用以反映仪器内部的分析处理过程。2ASK的调制与解调分别采用模拟幅度调制法和相干解调法,将基带信号与载波信号相乘得到已调的2ASK信号,用高斯白噪声模拟信道,在接收端将接收信号与同频同相的载波相乘,并经过巴特沃斯低通滤波器,滤波器的截止频率为归一化频率,进行抽样判决,判决门限取0.125,从而得到输出序列,程序框图如图3所示。

在前面板中,输入序列的产生采用根据序列个数而随机产生相应个数的二进制码元,基带波形采用余弦波,根据产生的二进制码元可得到相对应的基带信号波形,载波采用正弦波。所以,前面板中需要创建码元个数、码元速率、采样点数、采样频率、载波频率数值输入控件、基带信号波形、载波波形、2ASK信号波形和频谱、滤波后波形等图形显示控件,以及输入和输出序列等数值显示控件。

使用修饰控件可对前面板进行调整和修饰,得到2ASK调制与解调.vi前面板,如图4所示。在前面板的参数输入模块输入如图4所示的参数并运行可得到输出结果。由结果可看出,此仿真实验在调制端产生了一串码元个数为10的二进制码元序列,并得到了输入序列波形、载波波形、2ASK信号波形和频谱,2ASK信号经过高斯白噪声信道后,在接收端得到了低通滤波器滤波后的波形、抽样判决后的输出序列波形和输出序列二进制码组。对比输出序列和输入序列可看出,此系统除了一个码元的延时以外,其余部分都正确地进行了信号的还原,表明仿真实验结果正确,达到了2ASK通信系统的调制与解调在教学中的意义。

2、结束语

本文以2ASK信号调制解调为例,实现了在LabVIEW虚拟仪器平台上设计通信系统仿真的方法。通过调节各个实验参数,对实验结果进行比较,可以很形象地得到或验证所需要的或已有的结论,使实验效果更加清晰,从而使学生更好地理解通信系统中的基本概念和原理。LabVIEW软件把一些复杂的程序变得很直观,方便操作,而且易于修改和以后的维护,可作为老师课堂教学的辅助教学软件,将抽象的概念具体化、形象化,达到加深理解,强化记忆,提高教学质量的效果,从而调动学生的学习积极性和提高学生的创新能力,具有实际应用意义。

作者:付国兰刘晓山刘正奇单位:江西师范大学物理与通信电子学院

通信系统论文:信道仿真通信系统论文

1信道特性仿真

通信系统的信号传输质量与信道的性能密切相关,与光纤等有线信道相比,无线信道处于开放的电磁环境中,更容易受到衰落、干扰、噪声等多种因素的影响。而DSRC通信信道除了具有一般无线信道的特征外,还存在快速移动等特有情况。典型的DSRC通信有路车通信(R2V)和车车通信(V2V)两种方式。R2V是指车辆和路边设备进行通信,属于移动设备和固定设备的通信过程。V2V是指车辆和车辆之间进行通信,属于移动设备之间的通信。充分掌握DSRC系统无线信道的特征,可以为提出改善系统通信质量的技术方案提供参考,从而保障R2V和V2V通信的性。

1.1仿真测试平台结构

基于AgilentN5106A基带信号发生器与信道仿真器搭建的面向DSRC通信信道的仿真测试系统如图2所示。N5106A具有120MHz的调制带宽,能够模拟各种通信信道。本仪器配备了8路实时衰落仿真器,支持的信道衰落类型包括Rayleigh、PureDoppler、Rician、Suzuki等,多普勒功率谱频谱形状有classical3db,classical6db,flat,rounded,jakeclassical和jakerounded。由图2可见,该系统还包括了一台矢量信号发生器E4438C和一台信号分析仪N9020A,E4438C和N5106A之间的控制信号通过LAN口连接,数据信号通过数据总线(DigitalBus)传输。 测试系统如图2所示。首先使用Agilent的N7617BSignalStudio软件生成符合IEEE802.11p协议的理想基带信号数据文件,该数据文件经过N5106A产生基带信号,并通过信道模拟器得到包含信道特性的基带信号。N5106A产生的信号通过DigitalBus输入信号发生器E4438C,由该仪器将基带信号调制到5.9GHz的载波上,经过射频输出端输出到信号分析仪N9020A进行分析。

1.2仿真测试实例

DSRC系统信道模型如表2所示。图3至图6给出了不同信道条件下信号的测试结果。其中,图3为信号通过白噪声信道后产生的星座图,其中EVM(误差向量幅度)为-27.62dB,CPE(同相位误差)为0.903%rms。由于车车通信,可能存在直射路径,因此图4给出了信号经过信道3模型,即在单径莱斯分布的作用下,多普勒频移为1345Hz,路径损耗为-14.2dB,K因子为5.7时的测试结果,结果表明,此时EVM上升为-3.047dB,CPE上升为6.938%rms,说明在该种信道作用下,信号的接收质量显著下降。图5给出了信号经过信道7模型,即在单径瑞利衰落,多普勒频移为1522Hz,路径损耗为-27.9dB时的测试结果,此时,EVM为-16.791dB,CPE为5.542%rms。图6给出了信号经过信道11模型,即信号在单径瑞利衰落,多普勒频移为1562Hz,路径损耗为-27.9dB时的测试结果,图中EVM为-16.065dB,CPE为1.455%rms。比较图5和图6,说明了在类似的信道作用下,信号接收质量存在一定的随机性。另外,这两条路径的延时分别为400ns和700ns,在帧结构的保护时隙范围之内,因此可以通过均衡消除延时的影响。

2小结

本文搭建了面向DSRC应用的无线信道仿真和测试系统,介绍了系统的工作流程和测试方法,根据DSRC信道模型,给出4种典型信道的测试结果。本文工作为ITS系统设计提供了参考。

作者:殷晓敏金婕孙玲单位:南通大学江苏省专用集成电路设计重点实验室中国科学院计算技术研究所计算机体系结构国家重点实验室

通信系统论文:飞机高频通信系统论文

1故障分析

高频通信系统是工作在2-29.9999Mz的频率范围内的,在排除CRJ-200飞机的高频故障时有一些技巧,系统上电时能听到短暂的调谐声,在RTU上调节一个高频频率瞬间按压PTT能够听到1000Hz的调谐声,调谐周期大约在1-3秒钟。如果该频率已经调谐过,再次按压PTT时调谐声的时间会变得非常短,大约为30ms,这个时间太短不容易听出来。高频耦合器具有频率存储功能,耦合器的存储空间被划分为很多个站点,每次调谐完频率后耦合器将回到起点,等待下一次的调谐指令。耦合器的工作性质就决定了可能由于耦合器的某个调谐站点出现故障而导致高频系统在某个工作频率时通信不正常,如果某个频率点出现故障,按压PTT后会出现调谐音,连续输出不会中断。在实际的运行中,机组也反映过此类问题。研究高频收发机和高频耦合器的工作原理目的就是,根据故障现象来大致判断是高频收发机的故障还是高频耦合器的故障。然而对于高频收发机,其主要的工作过程是频率合成,变频以及功率放大,对高频通信的话音质量和通信距离都有着不同程度的影响。高频收发机是由多个模块所组成的,其中包括处理器模块,射频/中频模块,频率合成器,频率基准器,电源/音频模块和功率放大器,其中处理器模块控制着收/发单元的所有功能,由于模块性能的下降将导致高频通信出现通话效果不佳或者出现不能完成语音的接收和发射。在高频收发机组件内还有一个静噪电路,这个电路在排故过程中也有一定的帮助作用,静噪电路对高频收发机有自检的作用,特别是在对故障判断很困难时,关闭静噪电路去听噪音背景声,这样可以对高频收发机的自身工作性能进行判断,这也是一种排除相关故障件的方法。

在排故过程中应该还注意这样一些问题,在安装高频收发机和高频耦合器时应该特别注意收发机和耦合器之间两根同轴电缆的链接线,这两跟线很容易接反而造成高频通信系统不工作。高频收发机和高频耦合器安装在后设备舱内,具体位置如图2。

这种部件的布局可以说是CRJ-200飞机设计上的缺陷,因为在这个区域范围内邻近APU,一号、二号液压系统,滑油散热系统,空调系统的ACM,这些系统都会出现滑油和液压油的渗漏,长时间必然对该区域的安装部件存在油污染的情况,高频收发机和高频耦合器之间有同轴电缆的连接,还有波导管等部件,长时间机器表面被大量的油污所覆盖,这将会影响到机器的散热,降低了机器本身的使用寿命。同轴电缆的接头处也覆盖了大量的油污,长时间慢慢渗透进入接头内,在实践工作中也碰到拆装高频收发机和高频耦合器时,发现同轴电缆接头内有少量的油污,这将导致高频收发机和高频耦合器信号传输出现衰减。这要求在安装机器时对接头的连接要特别注意。

对于CRJ-200飞机的高频故障还可以根据FIM23-12-00来进行排故,但是要根据FIM来进行排故的话,在MDC(维护诊断计算机)的当前状态页必须出现和高频相关的故障信息才能依据FIM进行排故,这也是CRJ-200飞机在FIM设计上存在的缺陷。在实际工作中大量的有关高频的故障出现时,MDC的当前状态页是没有任何信息出现的,那么我们是不是就束手无策,失去排故得方向了?如果有相关的信息,利用FIM是可以很方便地解决问题的,但是在没有相关的信息指引时,就只能应用上面笔者所总结的一些思路和经验来进行排故,也就是说在故障现象很模糊的情况下,运用高频收发机和高频耦合器的工作原理和自身特点来进行排故是一个很好的方法,能快速确认故障点及时排除故障。

2总结

在对高频通信系统的日常维护工作中,要善于对出现的故障现象进行分析,找到导致故障的关键因素,通过查阅手册、资料,或者利用工作经验,及时地排除故障,保障航班正常运行。

作者:雷鑫单位:国航工程技术分公司重庆维修基地

通信系统论文:藏羚羊的无线通信系统论文

1监控中心对于数据的收集和分析

藏羚羊由于活动范围广,我们可以通过无线传感器传输数据到上位PC机,这些数据制作成一个表,记录藏羚羊经常活动的范围,从而更好地实施保护措施。通过移动GPRS网络为用户提供透明TCP无线远距离数据传输或者透明UDP无线远距离数据传输的功能。监控中心在接到数据以后要完成数据备份,以防止系统故障造成的数据丢失,多数据的传递要完成同步,进而对数据很好地收集和分析;它同时能完成高速、稳定、的TCP/UDP透明数据传输功能。

2工作原理

欲监测和保护藏羚羊,就要建立一个完善的控制管理系统。首先藏羚羊自身的体温和心跳的信息转化成虚拟信息传递到无线传感器,经过A/D转换把虚拟信息转化为数字信息,运用GPRS技术传递到一些基站,这些基站通过信息的整合后,传递给监控中心,该系统根据藏羚羊的心跳和体温来判断其位置和是否安全。传感器设置较高的体温和低的体温,较大的心跳频率和最小的心跳频率;CC2431完成信息的转换,GPRS无线通信完成数据的远距离传输,监控中心对数据信息进行收集和分析,给出一些判断。

热释电红外传感器和反射式光电传感器有四种测量信号报警上限信号Ps,报警下限信号Px,正常上限信号Pu,正常下限信号Pd。这四个测量信号把藏羚羊的安全分为三个区域。安全区:Pd<P<PsorPx<P<Pd;警戒区:P>Ps;危险区:P<Px;(1)若藏羚羊的心跳和体温大于正常下限小于报警上限或者大于报警下限小于正常下限,说明藏羚羊在正常的活动,它们是安全的;(2)若藏羚羊的心跳和体温大于它的报警上限,这说明藏羚羊有两种可能,一种是藏羚羊大规模的迁徙;另一种是受到盗猎人的追赶,在拼命地逃生。(3)若藏羚羊的心跳和体温小于报警下限,这说明藏羚羊有危险,盗猎人猎杀了藏羚羊死以后温度下降,这时需要最近的藏羚羊保护人员采取相应的措施保护它。通过传感器传递的数据信息,实现藏羚羊保护的及时性和有效性,同时减少了资金的投入、能源的消耗。因为藏羚羊是恒温动物,它会根据外部的温度调节自身的体温一直维持在相对稳定地范围内,这样不管是白天还是夜晚都能够无偏差的监测藏羚羊的安全情况。还能够通过藏羚羊的活动路线和范围,使得人们对于藏羚羊的迁徙和生活范围有更地了解和认识,也有利于在迁徙的过程中和生活的范围内,实施一些人为的保护措施。

3结论

本文运用了当代的无线通信系统来监测和研究藏羚羊,对于藏羚羊的保护起到了关键的作用。无线通信系统采用的网络化管理,不用布线,就能完成传感器到监控中心PC计算机的数据信息传输,由于其能实现复杂、高效的监控,因此增加了应用的范围。伴随着大数据时代的到来,无线通信系统能更广泛的应用到工业、农业、运输业等。无线通信系统的推广和应用,对于未来的科研和社会效益都能带来巨大的优势。

作者:张金良单位:西藏大学

通信系统论文:医疗领域电子通信系统论文

1传真

利用电话线实行数据传递的传真,目前已经在很多领域得到了广泛应用,医疗领域也不例外,利用电话线传真已经成为一种重要的电子通信形式,传真实现信息传递的具体步骤为:及时步:利用传真机内部影像扫描器,对信息发送者需要发送的图像、图形、文字等进行扫描,并转换为二进制数值;第二步:借助调制解调器的转换功能,将及时步中获得的二进制数值转换成模拟信号,此时便可以利用电话线进行信息传输;第三步:完成了第二步向接收方传输信息之后,接收方再通过传真机进行反向转换,再借助打印机将其进行打印。具体在医疗领域,传真的作用主要是在各个医疗单位之间,或者是为个人传递病人的个人基本信息、化验单据、B超声波扫描图、CT扫描图、诊治意见等,通过将这些信息进行互相传递,可以获得更多人的帮助,也方便了病人在遇到转院治疗等情况时,相关信息的传递。随着社会的发展及医疗事业的进步,传真不仅表现出其速度快、信息传递方便等优势,同时也明显表现出其一定的劣势,笔者总结为以下几点:①通过打印机打印出来的传真内容依旧比较模糊,不利于远程联合诊断工作的进行;②传真在使用过程中是需要进行扫描与打印的,如果传输的数据量比较大,那么就会直接带来经济上的负担;③存在“失真”的情况,这主要是由信息形式的多样化导致的,不同的信息形式,如文字、图像等通过纸介质的传真进行表现之后,就不容易进行数据转换。所以,在医疗机构运用传真的过程中,要注意传输的信息量,合理使用传真,还要注意传递的信息形式,保障接受者接受信息的性。

2数据交换

数据交换出现于上世纪九十年代,它是一种标准数据传输方式,已经在国内外的众多行业中得到了应用,并取得了较好的应用效果,因为数据交换的自动化处理能力较大,尽管涉及了较大的用户范围,但是依然能够较好的保障数据处理的正确性,所以,数据交换在医疗领域的应用前景也是比较大的。本文接下来以面向区域医疗的临床数据交换系统设计为例,研究其实际应用。一方案整体架构医疗机构内部系统较低的集成水平,导致医疗机构与区域医疗中心的信息交换的性与实时性特点表现的不够明显,为了能够更好的实现二者之间的数据交换和共享,所以设计了面向区域医疗的临床数据交换系统,整体架构如图1所示:从图1中我们可以看出,在这一临床数据交换系统中,主要包含两部分,一是区域医疗边界网关,二是数据交换标准化接口。其中,区域医疗边界网关是通过集成平台提供的SQL、File、FTP等接口,将EMR、LIS、PACS、药库系统等进行信息集成,从而形成一套有效的医疗信息元数据,以实现区域医疗的各项需求,在文件服务器中存储整个过程中出现的图像、文件等,为本系统实现数据交换提供数据基础;数据交换标准化接口主要是利用集成平台与MML标准,实现上述医疗信息元数据的标准化,通过运用区域医疗中心的集成平台,对标准文件进行解析,并在区域医疗区域数据库中进行存储,最终实现数据的交换和共享。二数据获取方式设计数据获取的基础是系统中的集成平台的设计,通过它来获取各种医嘱、文书等关键信息,并在特定的数据库中进行保存,通过集成采集挂号、EMR、PACS、等异构系统中的离散数据,并在数据库表中进行存储。通过面向区域医疗的临床数据交换系统的设计及以上分析,充分证明了数据交换技术在医疗领域的应用。

3电子邮件

随着通信技术的不断创新与进步,以及计算机技术的广泛应用,在人们目前的工作、生活中计算机已经成为一种不可或缺的交流工具,电子邮件(E-mail)已经基本上取代了传统的书信。通过E-mail进行信息交流仅能够将传送者的文字信息快速传递,还能够传输生动的图片、音乐、视频等数据信息,而且,E-mail还可以通过群发功能将同一信息快速传递给多个人,大大提升了信息传递效率,也节约了传递者的时间,提高了他们的工作效率。电子邮件的这些优点都决定了其在医学领域的广泛应用,它操作简单方便、传输信息,并具备邮件接受自动提醒功能,医生以及医院之间通常会使用E-mail作为其主要通信方式,甚至在一些医院信息管理以及办法自动化系统中,内部信息交流的基本通信方式就是使用E-mail。

4远程医疗

远程治疗是指利用现代网络和电子计算机等多媒体来实现远程临床诊治。从其定义来看,远程医疗实现的最基本条件就是网络,医生通过网络了解病人的基本信息及病情,并通过计算机技术,进行远程指导与治疗,从而大大节约了诊治所需的时间。比如,远程手术就是专家及医生通过运用计算机网络技术观察和了解病人图像和声音,再利用现代医疗器械对病人实施远程遥控手术,从而在危急时刻,在最短的时间内挽救病人生命;再比如远程联合会诊,各个专家不必在同一地点出现,而可以直接通过计算机远程技术,让身处不同地方的专家同时清楚地观察到病人的病情,并能够实现专家间的相互沟通。

5结论

综上所述,随着科学技术的不断进步,电子通信系统在医学领域的应用成为一种必然,本文通过对电子通信系统的介绍,进一步了分析了电子通信系统在医学领域的广泛应用,并着重分析了交换数据技术在这一领域中的具体应用。

作者:张泽月罗俊波杨芳孙强易显富戢晓珊单位:湖北医药学院附属十堰市太和医院湖北省十堰市妇幼保健院

通信系统论文:风力发电场通信系统论文

1风力发电场通信系统设计要遵循的基本原则

首先,在进行风力发电场通信系统的系统设计过程之中,要严格按照电力系统设计的基本原则完成风力发电场内部各种基本设计,并在完成风力发电场的基本设计的过程之后,再进行相应的风力发电场通信系统设计;其次,在进行风力发电场通信系统设计的过程之中,要充分的分析风力发电场在通信系统之中扮演的角色,并根据相应的电信业务的计算,对风力发电场的通信规模进行设计,并对风力发电场的通信容量进行设计,规划好风力发电场通信系统;然后,在进行风力发电场通信系统设计的过程之中,要充分的考虑到如何进行区域通信网络共享,帮助风力发电场充分的利用到区域的通信资源;,在进行风力发电场的电力通信建设方案的设计和技术方案的规划的过程之中,要充分考虑到风力发电场的实际通信需求,与此同时,还要充分考虑到风力发电场的远期发展的情况,提出可行的通信设计方案(一般情况下至少要设计出两套较为合理的方案),在进行设备的选型和购买,完成风力发电场的电力通信建设过程。

2风力发电场通信系统设计方案

2.1风力发电场通信系统光纤通信设计方案。风力发电场通信系统光纤通信设计的过程之中,要根据风力发电场的实际施工环境进行对光缆类型的选择。例如,在进行风力发电场电力通信系统的架设光缆的选择的过程之中,如果在线路架下方有地线就需要选择OPGW光缆,如果在线路架下方没有地线,则需要选取ADSS光缆。在进行电力通信系统的光缆数量的确定的过程之中,要根据电力通信系统的传输长度以及针对电力通信系统的线路保护的原则来进行选择。例如,如果电力通信系统的线路长度如果是在六十千米之下,还需要对电力通信系统之中对两个相互独立的传输通道进行保护,就需要为电力通信系统建立两条光缆。如果如果电力通信系统的线路长度如果是在六十千米以上,只需要对电力通信系统之中的一条传输通道进行保护,就只需要架设一条光缆。在进行风力发电场通信系统光纤的配置的设计过程之中,也要针对实际的情况进行对风力发电场通信系统光纤的配置进行设计。例如,如果进行电力通信系统的线路保护过程之中涉及到了两个光纤的通行通道的,就需要使用两个2Mbit/s的光纤专用通道来进行设计。如果进行电力通信系统的线路保护过程之中只涉及到了一个光纤的通行通道的,就只需要使用一个2Mbit/s的光纤专用通道来进行设计。与此同时,在进行完光缆的设计过程之中,后续的设备选型要满足光纤选择的需求。

2.2风力发电场通信系统载波通信设计方案。在进行风力发电场通信系统线路的设计过程之中,要充分考虑到线路的实际高频保护问题,具体的来说,目前的高压线路主要有500千伏、220千伏、110千伏、35千伏这几种,这就需要针对不同的电压数值进行风力发电场通信系统载波通信设计,并专门规划好相应的载波通道。在载波通道的开通过程之中,要充分的考虑到风力发电场的内部的载波现状,保障所选取的载波频率的筛选不会干扰的风力发电场通信系统载波通信的正常运行,与此同时,还要求所选的载波机的型号和风力发电场通信系统的设备选型保持一致。

2.3风力发电场场内通信系统设计。所谓风力发电场场内通信系统设计,主要满足的是风力发电场内部的各个用来发电的风力发电机机组与风力发电场的升压站监控主机之间的通信连接系统的功能的发挥。在进行设计的过程之中,要满足以下几个方面的设计原则:首先,要保障风力发电场的升压站监控主机可以有效的对用来发电的风力发电机机组进行控制,还需要使用光缆将风力发电机机组和升压站监控主机有效的连接在一起,保障升压站监控主机对风力发电机机组的实时监控;其次,进行设计的连接用来发电的风力发电机机组与风力发电场的升压站监控主机之间的光缆要满足相应的通信频率和载波频率的要求;然后,为了保障信息传输的性,还要求架设相应的通信支路,并杜绝这些通信支路之间的相互干扰;再者,风电场内通信光缆的埋设方式应当采用直埋敷设的埋设方式,当风力发电场内部的架空线路走向与风力发电场的通信电缆的走向相同的时候,就可以有效的利用风力发电场内部的架空线路同杆架设的架设方式,以便于有效的减少电缆沟的施工,与此同时,电缆一般情况下要选用铠装电缆;,要保障好通信设备的接地操作,保障通信过程的安全运行。

3结束语

综上所述,在进行风力发电场通信系统设计的过程之中,首先要分清设计的两个系统,并根据风力发电场的实际情况,进行相关设计方案的选择,保障风力发电场通信系统的正常有效运行。

作者:陈枣儿桂知进单位:甘肃建筑职业技术学院