引论:我们为您整理了1篇卫星通信论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
卫星通信论文:车载站载波卫星通信论文
1信号采集
信标机提供串行通信接口,通过串口服务器,将串行通信做协议转换为网络通信协议,再通过一根网线与交换机连接,最终与控制计算机进行数据交换。设备连线后,在计算机上要进行虚拟串口映射,即把串口服务器的串口映射到计算机上,映射成功后,就可以把这些虚拟串口作为计算机上的串口使用,解决计算机本身无串口的问题。载波的发射状态是通过改变调制解调器参数来实现的,控制载波发射状态实际上通过控制调制解调器的发射状态继而达到控制载波状态的目的。调制解调器提供网络接口,通过交换机最终与控制计算机进行数据交换。控制软件实时监视信标机和调制解调器的工作状态,以此作为发送控制指令的依据。
2信号处理
通过监控软件完成,为了不占用更多的主线程资源,监控软件分别建立两个独立的线程CThreadBeacon信标机线程类和CThreadModem调制解调器线程类,通过这两个线程的通信处理载波的关闭与开启。当确定天线进入遮挡区后,CThreadBeacon信标机线程根据当前的信标强度和调制解调器载波发射的状态,发送打开或关闭载波的消息给CThreadModem线程。CThreadModem线程主要有两个作用,一是读取调制解调器当前的参数,明确设备的工作状态,二是负责接收由CThrea-dBeacon线程发送过来的消息,根据消息的具体内容,向调制解调器发送相应的控制指令。车载站在载波发射的行进中,如遇到高大的货车或小面积的建筑遮挡瞬间遮挡时,这时关闭载波是不必要的,故在信标机线程中,设定当遮挡超过10s后发送关闭消息给调制解调器线程,进而关闭载波发射。同样在离开遮挡区超过5s后发送开启消息给调制解调器线程,进而开启载波发射。具体流程见图1“载波自动关闭流程图”。
3实现过程
软件以visualc++6.0作为开发编译环境,在基于对话框的应用程序界面中,运用多线程串口通信编程和SNMP网络编程方法,利用线程间通信机制,完成载波自动关闭功能。软件启动时,建立CThreadBeacon线程并启动运行,运用串口通信编程,在InitInstance函数中,初始化串口参数,线程中使用定时器,频率为300ms,按照通信协议格式,以查询方式读取信标强度,经过适当处理后,以浮点数显示在监控界面上,范围是0~10,根据浮点数的大小,来判定天线是否进入遮挡区,如当信标强度小于3时,确定天线进入遮挡区,再以PostThreadMessage的方式发送消息给CThrea-dModem线程。建立CThreadModem线程,运用SNMP网络编程,在In-itInstance函数中,初始化调制解调器SNMP相关参数,创建两消息响应函数OnGetParam_Modem用来获取设备当前状态,和OnSetParam_Modem用来接收由CThreadBeacon线程发送过来的消息,根据消息的附加参数和当前调制解调器的状态,确定发送关闭或开启载波的指令。
4结语
车载站在进行移动卫星通信过程中,如果天线偏离目标卫星,对周围的环境同样产生辐射危害,及时关闭发射载波也是至关重要,本文阐述的载波自动关闭系统同样适用于天线偏离目标卫星的情况。软件使用方便,已经成功用于多套车载站项目。
作者:江国焱 王宝安 单位:北京航天控制仪器研究所
卫星通信论文:幅频特性卫星通信论文
1信道特性专项仿真
信道群时延响应是相位频率响应的导数,用于表示相位频率响应的畸变程度,在信道频带的边缘由滤波器过渡带抑制变化引起的相位畸变尤其严重。式(1)中,θ(w)为相位频率响应,群时延响应τ(w)可以表示为:τ(相位噪声采用在频域模拟的方法,为了使仿真相位噪声情况更为接近实际的相位噪声,按分辨率1Hz产生数字相位噪声。假定其他信道参数为理想情况下,仿真了3种相位噪声对卫星通信系统性能的影响,仿真条件如表5所示。仿真发现在相位噪声值1的情况下会出现误码平台,在相位噪声值2和相位噪声值3的情况下,传输性能损失小于0.2dB。
2综合仿真及系统指标建议
假设功率放大器在不同非线性工作点的群时延特性、幅频特性和相位噪声特性是一致的,选择带宽36MHz卫星转发器,依据上述仿真参数对信道群时延特性、幅频特性、相位噪声特性和非线性失真进行综合仿真。将卫星转发器的放大器的输入功率相对饱和点回退10dB,保障功率放大器工作在近似线性状态。对卫星信道的群时延特性、相位噪声特性及幅频特性进行综合仿真,仿真结果表明,当误码率1×10-6时传输性能损失约11dB。将转发器的放大器的输入功率相对饱和点回退0dB(即饱和)、2dB、5dB和10dB时,综合仿真卫星通信系统的群时延特性、相位噪声特性、幅频特性对系统传输性能的影响,仿真结果如表7所示。
参考综合仿真结果,对系统指标分配提出如下建议:当转发器的功率放大器工作于饱和点时,接收机射频指标在中频指标的基础上增加大于2.3dB;在功率放大器的输入功率回退2dB的情况下,接收机射频指标在中频指标的基础上增加大于1.6dB;在功率放大器的输入功率回退5dB的情况下,接收机射频指标在中频指标的基础上增加大于1.3dB;在功率放大器的输入功率回退10dB的情况下,即在功率放大器工作于线性状态下,接收机射频指标应在中频指标的基础上增加大于1.1dB。
3结束语
设计了卫星通信系统仿真模型,为分析卫星通信系统的传输特性提供了有效方法。由仿真结果可以看出,当幅频响应的带内波动小于1dB时,幅频特性对传输性能的影响可以忽略不计;群时延特性对宽带信号传输性能的影响要大于对窄带信号传输性能的影响;当系统出现误码平台时,应当分析相位噪声的指标是否满足系统要求;当功率放大器的入口功率小于饱和输入功率约5dB时,放大器的非线性失真特性不会影响卫星通信系统的传输性能;射频传输性能相对中频传输性能至少有1.1dB的损失。
作者:张金贵 单位:中国电子科技集团公司第五十四研究所
卫星通信论文:数字预失真卫星通信论文
1数字预失真方法
根据预失真器所处的位置,可将预失真分为基带预失真、中频预失真和射频预失真。随着数字信号处理技术的飞速发展,预失真技术可在数字域内实现,具有电路灵活、成本低等优点;而且可利用自适应算法来跟踪补偿功放因环境因素改变而产生的特性变化。图1是数字基带预失真技术结构框图。数字预失真分为查找表法和非线性函数法2大类。其中,非线性函数法包括Volterra级数法和神经网络法。考虑到Volterra级数的计算复杂度较高,一般采用其简化形式(如记忆多项式法)来实现预失真。
1.1查找表法
查找表法是通过建立查找表来离散地描述功放的反向特性,传统的基于查找表法的预失真实现过程如下:1)测试功放的输入/输出信号,获取功放的即时非线性特性;2)找出功放的理想增益,即功放在线性区工作时的较大增益;3)将功放的输入特性/输出特性反转,由此生成查找表,为每一个输入信号提供一个相应的预失真信号。建立查找表之后,须考虑查找表的量化误差问题。由于查找表的表项是有限的,查找表输入端信号量化时,必然会引起误差,此时,采用不同的索引技术会对预失真性能产生不同的影响。作为查找表法的核心,查找表地址索引技术阐释了如何有效地从查找表中找到有用的补偿数据。查找表预失真的内部结构如图2所示,表示输入信号的幅度,Q模块为量化器。查找表的地址索引方法包括均匀量化法和非均匀量化法。均匀量化是以输入信号的幅度为指针,均匀分配其整个变化域以生成查找表。功率法是最常见的均匀量化手段,其把输入信号功率作为指针,在变化域内均匀量化。但对小信号而言,功率法表项分布稀疏,量化间隔较大,引起的误差和失真也很大,因此,该方法不适用于小信号较多的功放预失真系统。传统的查找表法仅根据输入信号幅度,找出表中最接近该幅度值的一项,该项对应的输出值即为相应预失真信号的输出值,不过此方法存在量化误差。采用插值技术可在一定程度上改善系统的量化误差,线性插值法是最简单常用的插值方法。均匀索引的实现过程比较简单,但存在2个重要问题:输入信号的统计特性和各区间信号的非线性程度。常见的非均匀索引有功率索引、法索引及μ率法索引等。这些方法虽考虑了信号各区间非线性程度的不同,但却忽视了输入信号的统计特性。由此可知,查找表建立简单,实现容易,但是也存在缺点:1)存在量化效应;2)精度要求越高,对查找表的尺寸要求越高,即表项越多,意味着速度性能会下降;3)不能补偿功放的记忆效应;4)自适应能力较差。为了尽可能减小这些问题对预失真器性能的影响,文献[2-3]对无记忆预失真器进行了改进,分别构造二维查找表和分段预均衡器。但当功放记忆效应较强时,二维查找表的线性化效果不太理想。另外,可根据信号的特性,制定相应的改进查找表法,文献[4]提出了一种改进查找表法,该算法根据OFDM(OrthogonalFrequencyDivisionMultiple-xing,正交频分复用)信号的分布特性,对出现概率较小的大幅值信号增加迭代次数,提高了查找表法的收敛速度。
1.2多项式法
由于查找表法结构简单、易实现,早期多采用该方法对功放进行预失真处理,但其预失真性能的优劣取决于表项的多少,性能改善越好,所需表项越多,相应地,所需的存储空间也就越大,查找表项的数据和更新表项所需时间、计算量也就越大,因此,对情况复杂的系统,该方法不可取。非线性函数法是常用的预失真方法,其将输出信号的采样值与输入信号一一对应起来,用非线性函数把输入和输出信号进行拟合,得到功放的工作函数曲线,由于预失真器的特性与功放特性相反,由功放的非线性函数可得预失真器的非线性工作函数。非线性函数预失真方法已成为近年研究的热点。功放的建模及模型参数的辨识是功放预失真技术的2个重要组成部分。对于功放的建模,常用的无记忆模型包括Saleh模型、Rapp模型和幂级数模型;有记忆模型包括Volterra级数模型、Winner模型、Hammerstein模型和MP(MemoryPolynomial,记忆多项式)模型。分数阶记忆多项式抑制了高阶交调分量,但对强记忆效应的功放预失真性能没有改善;广义记忆多项式明显提升了对强记忆效应的抑制能力,但计算量大,复杂度高。文献[8]在广义记忆多项式的基础上,去掉其滞后部分,降低模型系数数量,去掉偶数阶次,引入分数阶次,提出了一种改进型的广义分数阶记忆多项式模型。仿真表明这种改进模型在系数数量、计算复杂度和线性化能力等方面取得了良好的折中。除上述模型外,增强型Hammerstein模型、EMP(EnvelopeMemoryPolynomial,包络记忆多项式)模型及DDR(DynamicDeviationReduction,动态偏差)模型都是Volterra级数模型的简化形式,这些简化模型可在很大程度上降低计算复杂度。模型建立和模型辨识是记忆多项式预失真的2个重要内容,模型是否合适直接决定预失真方法性能的优劣,如果没有合适的模型,再好的算法也不会取得的预失真结果。模型确定之后,选择的模型辨识算法是否得当决定着预失真技术的计算复杂度、收敛速度和性能。系统学习结构很大程度上决定了预失真系统的复杂度,须根据具体情况折中选择学习结构。根据学习器训练方式的不同,可将学习结构分为直接学习结构和间接学习结构,如图3所示。从图3可以看出:直接学习结构简单,是一个完整的闭环,实时性好,且参数不受系统引入噪声的影响[7]。自适应算法得到的权值是否是全局值会受到初值的影响,可能不[8]。不同于直接学习结构的逆,间接学习结构采用的是后逆,学习器在训练时,对信号参数的敏感度降低,对实时闭环系统和自适应算法要求不再苛刻,较易于工程实现[9]。预失真训练器的训练过程即预失真模型参数的提取过程,核心是自适应算法不断更新得到的权值最终达到收敛目标值。自适应算法的复杂度和参数提取度决定了预失真器的性能及系统实现难易程度。目前参数提取算法大致可分为3类:LS(Least-Squares,最小二乘)算法、LMS(LeastMeanSquare,最小均方)算法和RLS(RecursiveLeastSquares,递归最小二乘)算法。在LMS和RLS的基础上,相继出现了较多的改进算法,比如变步长LMS算法和QR-RLS算法[10-12]。相比查找表预失真,多项式预失真度更高、自适应性能更好,但是其计算复杂度却比查找表法高得多,线性化性能优劣也严重受功放模型描述功放特性程度的影响。
1.3神经网络法
随着生物仿真学的发展,神经网络算法日益得到人们的广泛关注,引起研究者的探索热情。由于该方法能对功放的非线性特性函数进行拟合,可将其引入预失真器的设计中[13]。神经网络是根据生物学神经元网络的原理建立的,它的自适应系统由许多神经元的简单处理单元组成,所有神经元通过回馈或前向方式相互作用、相互关联。文献[14]首先提出了采用神经网络的方法对功放进行预失真处理。目前最为常用的神经网络是Minsky和Papert所提出的前向神经元网络。神经网络法被广泛应用在函数逼近和模式分类中,文献[15]证明了由任意多个隐层神经元组成的多层前向神经网络可逼近任意连续函数。因此,可利用神经网络来拟合预失真器的工作曲线,且可用改进的反向算法自适应地更新工作函数的系数。文献[16]提出一种单入/单出的神经网络方法,仿真结果表明:该方式能较好地改善三阶、五阶互调分量,与一般的多项式拟合技术相比,其收敛性能和硬件实现都有一定优势。文献[17]提出了一种基于动态神经网络的幅相分离的方法,核心是对卫星信号的幅度和相位进行分离。由于现有的神经网络预失真方法的延时效应较大,文中对网络的系数矩阵进行实时调整,有效减小了计算复杂度,较好地消除了功放非线性和记忆效应,具有较大的实用价值。文献[18-20]也对神经网络法做了相关研究,结果表明:与查找表法和记忆多项式法相比,神经网络有效地提升了功放的预失真精度。目前,在几种参数辨识方法中,神经网络法预失真性能好,具有研究价值。
1.4联合查找表和多项式法
在窄带通信系统中,不须考虑功放的记忆效应,但在进行宽带通信时,不可忽略功放的记忆效应,但此时基于查找表法的预失真不能补偿功放的记忆效应,基于记忆多项式的预失真方法可以补偿功放记忆效应。当功放的非线性程度较高时,记忆多项式的预失真性能会有所下降。为解决这个问题,联合使用查找表法和记忆多项式法来补偿功放的非线性和记忆效应。QualidHammi在文献[21]中提出TNTB(TwinNonlinearTwo-Box,双非线性两箱)模型。这种模型由1个MP单元和1个查找表单元构成,按照2个单元位置的不同可分为前向TNTB、后向TNTB和并联TNTB模型。这种方法的核心思想是:将有记忆效应功放引起的信号非线性失真分解为无记忆的非线性部分和记忆部分,根据查找表法和记忆多项式法各自的特点,采用查找表法补偿失真的无记忆非线性部分,采用记忆多项式法来解决失真的记忆效应。文献[22-28]对结合查找表法和记忆多项式法的应用方法做了实验验证,仿真结果证明该方法的预失真性能优于查找表法和多项式法,且并联TNTB模型预失真性能好。文献[29]在上述联合算法的基础上,推导出分段方法,并将这种基于分段数的联合预失真算法同上述联合算法进行对比,结果证明分段方法能取得更优的效果。为降低TNTB模型的复杂度,MayadaYounes提出一种更,同时又能降低复杂度的PLUME(Parallel-LUT-MP-EMP)模型[30],它由LUT(Look-upTable,查找表法)、MP和EMP并联组成,实验证明PLUME模型精度高于TNTB模型,在保障和GMP同样精度的条件下,能减少45%的系数数量。
2信号处理技术结合预失真技术
为了在有限的频段内实现更多的数据传输,宽带、高峰值平均功率比信号〔如MCM(MultipleCar-rierModulation,多载波信号)〕得到越来越广泛的应用,FDMA(FrequencyDivisionMultipleAccess,频分复用)信号就是多载波传输信号的一种。多载波调制的原理是把高速传输的数据流转换为N路速率较低的子数据流进行传输,符号周期为原来的N倍,远大于信道的较大时延扩展。此时,将1个频率选择性信道划分成N个窄带平坦衰落信道(均衡要求降低),使其具备很强的抗多径和抗干扰能力,适用于高速无线数据传输。但FDMA技术的缺陷在于它的峰均功率比高,因此放大器的非线性特性给通信传输带来的各种问题会更加突出。在数字预失真效果改善的基础上,为进一步提高线性化功放的线性度效率,可根据信号特性采取相应的信号处理技术与预失真项组合方案。针对高峰均比信号,文献[30-32]还提出了以下几种组合方案:DPD与CFR(CrestFactorReduc-tion,削峰技术)的结合,DPD、CFR与Doherty技术的结合,以及DPD、CFR与ET(EnvelopeTrack-ing,包络跟踪)技术的结合等。对CFR的研究已有20多年,随着最近十年现代移动通信的飞速发展,CFR的研究成为热点。相关文献著作中也给出了许多CFR实现方案,可归结如下:限幅滤波法、峰值加窗法及部分序列传输法等。相关的实验仿真已证明,对进入预失真器前的高峰均比信号进行削峰处理,可以提高系统的预失真性能。
3结论
本文概述了近年来预失真系统几个关键技术的发展,其中,记忆多项式预失真技术目前应用较为广泛,神经网络预失真性能好,随着仿生学的发展,神经网络法具有非常好的应用前景。目前也有详尽的线性化技术效果评价标准体系(如频谱改善、传输误比特率、星座图改善和技术可实现性等),在实际工程中,可根据需求选择合适的预失真实现方法和预失真性能评价标准。
作者:韩冰 晋东立 单位:北京跟踪与通信技术研究所
卫星通信论文:通信业务与卫星通信论文
1基本框架的结构设计思路
为了使构建的卫星通信业务基本框架符合企业运营流程管理逻辑,支撑卫星网络规划建设,提供面向客户的运营服务和保障,卫星通信业务基本框架采用自顶向下的方法,对卫星通信服务进行模块划分、描述和定义,力争构建起一个涵盖卫星通信业务建设、运营、管理完整业务链、系统的基本框架。
1.1基本框架的模块设计思路
对于卫星通信企业来说,卫星通信业务是其最根本的核心产品,卫星通信企业是通过向客户销售卫星通信业务产品,以实现满足客户需求、增加客户价值和公司盈利发展。因此,我们首先选取卫星通信业务为切入点,希望采用价值链分析方法对卫星通信业务产品的全生命周期进行细化分解,力争能够理清、认识、理解各组成环节要素及其相互关系,为基础框架的设计奠定基础。如图1所示,在一个卫星通信业务的全生命周期中,主要包括了前期客户需求调查研究、业务规划、产品设计、能力建设,中期的市场营销、业务开通、服务保障、运行维护,以及后期的业务产品退出或转型升级等各环节要素;另外在其各个环节实施过程中还需要企业人力、财务、质量管理、知识管理、品牌建设等运作管理环节进行基础支撑保障。从图1可以看出,卫星通信业务的全生命周期基本上分为两个阶段,及时阶段为前期卫星通信业务规划和能力建设,其主要完成了由战略和业务目标驱动,进行基础设施建设和形成业务产品或服务能力;第二阶段为中后期的卫星通信业务的运营和服务,主要承担了对业务产品进行运营管理并形成服务能力和产生收益。两个阶段之间相互关联、协同发展。业务规划与能力建设工作是运营与服务工作的前提和条件。只有设计出满足市场需求的业务产品,并能够及时具备能力并推出市场,才能够向客户提供满意的服务和地运营保障;另一方面,运营与服务工作是业务规划和能力建设的实现和发展。业务规划和能力建设工作完成之后,必须通过运营和服务来实现产品销售和客户价值增加,在给客户提供服务的过程中不断发现和挖掘客户需求,并能够及时反馈给业务规划与能力建设进行业务产品的改进、提升和开发,从而形成最令用户满意、具竞争力的品质服务产品。与此同时,两个阶段的各个环节都需要企业管理来进行支撑和保障。对于运营服务型企业来说,其更加关注运营与服务,所有业务规划与建设以及企业管理工作,都是企业为了通过运营服务产生价值、满足客户需求所需不同层面的服务保障工作。因此,为了在基础框架中突出强调卫星通信业务的规划建设和运营服务支撑的两个关键环节,同时体现出企业管理的基础支撑和保障作用,我们从总体上将卫星通信业务基本框架分为三大模块,即,战略与基础设施模块、运营与服务模块和企业管理模块,如图2所示。
1.2基本框架的层次设计思路
客户的卫星通信业务需求分类多种多样,我们可从市场、产品、资源和组织四个关键因素进行分析研究。客户购买的是卫星通信业务产品,而卫星通信企业的核心基础设施所能支撑的仅是企业向客户提供产品所需要的资源能力,要想将资源能力转化为客户需求实现,还需要通过卫星通信业务产品进行有效衔接。对于卫星通信企业而言就是对各种卫星通信资源和服务能力进行规划、设计和组装,形成了可以独立计价和运维支撑的业务产品。此外,客户所需业务产品多样,卫星通信服务商还需要结合供应商或者合作伙伴的基础设施资源进行有效组合使用,以发挥核心资源的较大效能和满足客户需求实现。因此,客户需求的实现主要由卫星通信企业的市场、业务、资源和供应商等关键因素协同完成。另外一方面,在基本框架的设计中,我们希望构建起能够面向客户的端到端运营服务支撑体系,即以客户需求为引导,业务实现为手段,资源、供应商和组织管理流程为保障的运营服务体系。主要经过市场需求的挖掘、提炼与转达,业务的开发、集成与实施,调动内外部资源,最终实现业务并反馈给用户的过程,如图3所示。该过程中,输入端是市场,输出端也是市场,形成的是一个从市场到市场的端到端的闭环,从而最终实现为客户提供最为品质和满意的服务。综上所述,为了表明客户需求实现过程中四个关键要素及其之间的相互支撑关系,并强调打造端到端的高效运营服务体系,我们在三大模块基础上,又将卫星通信业务基本框架划分为四个层次,包括市场层、业务层、资源层和供应链层,如图4所示。如图4的层次设计,将市场层放在较高层客户紧邻的及时位,突出强调企业是从客户需求出发,以客户需求为根本依据的理念;逐级向下的各层分别为业务层、资源层和供应链层,充分体现了客户需求实现是通过具体业务来实现,业务产品需要资源提供支撑,最底层的供应商和合作伙伴为企业提供除核心资源以外所需配套资源的各要素协同关系。这种层次设计充分体现出卫星通信企业的以客户为中心为市场服务的运营理念。
2基本框架各模块的设计
根据前述基本框架结构设计思路,我们对卫星通信业务基本框架各模块进行进一步设计和定义,各模块功能描述如下。战略与基础设施模块设计战略与基础设施模块主要负责指导和支撑运营服务。包括市场战略、资源战略的制定、基础设施规划、基础设施的构筑、产品和服务的开发和管理以及供应链/价值链的开发和管理。其中,基础设施不仅包括空间卫星资源的规划、建造、测控、运营和退役的全生命周期管理,还包括支撑产品运营服务的其他硬资源和软资源,如地面测控系统、客户关系管理、知识共享库,等等。运营与服务模块设计运营与服务模块主要负责客户需求实现和服务保障。包括日常的服务提供、运营支撑准备、质量保障以及销售管理和供应商/合作伙伴关系管理等,其包含所有由客户驱动的直接面向客户的运行和管理工作。组织管理模块设计组织管理模块为完成战略与基础设施模块和运营与服务模块所需进行的公司内部机构组建,包括了任何商业运行所必须的基本的企业或商务支持。
3基本框架各层次的设计
3.1市场层设计
市场层主要包括客户需求挖掘、分析、客户细分、销售和渠道管理、市场营销管理、服务产品和定价管理,以及客户关系管理、问题处理、服务等级协议管理和计费等。在战略与基础设施模块内,市场层提供对企业核心业务产品的规划开发管理,包括制定战略、开发新产品服务、管理现有资源、实施市场及战略等所需职能。在运营与服务模块内,客户关系管理集中考虑客户需求的基础情况和管理。
3.2业务层设计
业务层包括业务的设计开发、业务配置、业务问题管理、质量分析以及业务使用量的计费等。在战略与基础设施模块中的服务开发与管理就是为运营与服务模块提供所需产品或服务能力的规划、开发和建设,它包括服务战略制定、服务的性能管理和评估、确保未来服务需求能力等所必须的功能。在运营与服务模块中业务运行管理聚焦于对客户服务的提供,包括客户需求分析、服务方案设计、和服务保障等客户服务所需的功能性需要。本层的焦点是服务提供和管理,面向客户提供个性化服务。
3.3资源层设计
资源层主要包括基础设施的规划设计、建设和管理,是为支持卫星通信运营服务所需的卫星资源、地面基础设施和软资源等的规划、开发和交付,主要包括卫星资源、卫星测控站、业务监测站、运营服务网络平台、IT系统、知识共享库等,以及新技术的引入与现有资源技术的互相作用、现有资源性能管理和评估,确保满足未来服务需求的能力等所必须的功能。资源管理和运行主要负责卫星资源管控(卫星性能监视、分析和控制)和其他地面基础设资源的运维管理等所有功能性责任,确保各类基础设施资源平稳运转,能够为客户提供所需的端到端服务能力,并直接或间接地响应服务、客户和员工的需求。同时也包括对资源的功能集成、关联和实时数据统计,以便进行信息综合管理和采取提质增效措施。
3.4供应链层设计
供应链层主要包括处理与卫星建造商、设备提供商、集成商和工程服务商等合作伙伴的交互,它既包括基础设施的供应链管理,也包括与供应商和合作伙伴之间关于日常运营的接口管理。
4基本框架的整体设计
综合上述分析,卫星通信业务基本框架模型一方面突出卫星服务商的基础设施规划建设和运营服务支撑的核心重要性,另一方面强调面向客户、聚焦前端提供端到端的服务交付能力,从而我们可以得出卫星通信业务基本框架的整体结构设计,如图5所示。如图5所示,箭头以上半部分代表从卫星通信业务的全生命周期管理和客户需求实现两个维度进行的三个模块、四个层次结构设计思路;箭头的下半部分表示抽象化、可视化的卫星通信业务基本框架结构设计。该基本框架从顶层将卫星通信业务服务商划分为战略与基础设施、运营与服务和组织管理三大模块,并在框架布局上体现出面向客户的服务中战略与基础设施是前提先导,运营与服务是关键实施,组织管理是全过程支撑的运营特点;该框架自上而下的四个层次架构设计,充分体现出卫星通信企业是以客户需求为引导,以业务实现为手段,以资源和供应商为保障的层次递进关系,各层次环环相扣,紧密链接。这种以客户为中心,面向市场的层次设计,确保企业在享用客户需求时更迅速、策略更灵活,大大提供客户满意度,同时能够更优化企业内外部软硬资源的工作效能,以较高效的方式为客户提供最适当的信息服务,真正做到让大市场来主导企业的流程架构。
5结束语
本文自上而下,从顶层设计搭建了卫星通信业务基本框架的整体架构。一是总结提炼卫星通信业务建设及运营、管理经验,按照卫星通信业务规划建设、业务运行、经营管理“三大方面”主要任务,构思设计了规划与基础设施、运营与服务、组织管理“三大模块”,突出体现了业务规划与基础设施的核心先导位势、运营与服务的经济中心位势、以及经营管理的支撑保障位势,确立了基本架构的垂直结构。二是结合卫星通信业务分类“四个维度”,以面向市场、服务客户、统筹资源、全球供应为基本设计原则,从端到端将卫星通信业务链条划分为市场、业务、资源、供应链“四个层次”,确立了基本构架的水平层次。三是将“三大模块”和“四个层次”相结合,对规划与基础设施、运营与服务两个模块,分垂直和水平两个方向过程进行设计,并以组织管理模块作为上述业务活动的支撑,搭建了卫星通信业务的整体架构,明确了基本框架中各模块、层次的结构关系,实现了对卫星通信业务建设、运营、管理各方面工作的全覆盖。
作者:闫钊 钱曦 徐平 杨宁 朱霁 夏月辉 单位:中国卫通集团有限公司
卫星通信论文:系统级备件卫星通信论文
1备件取用策略
热备件平时与工作设备(主用设备)一起存放于地球站收发设备在线机柜中,与主用设备一同构成二备一工作模式,当主用设备出现故障时,只需通过设备面板本地控制或监控台远程控制进行主备切换,即可完成热备件的取用;对于离线的冷备件,系统采用以下取用策略:(1)系统某主用设备单元故障报警,通过本地控制/远程控制方式进行主备切换,恢复系统正常工作状态;(2)利用备件管理系统查询仓库中相应故障设备单元的完好备件余量,并打印显示完好备件存放位置和相关信息;(3)若有余量且备件性能检测系统中也有相应备件,则率先从备件性能检测系统中取出相应备件进行更换,恢复系统双机热备工作模式,同时从仓库中取出一个相应备件单元放入备件性能检测系统中,恢复备件性能检测系统的完整性,并记录更换信息;(4)若有余量但备件性能检测系统中无相应备件,则根据具体信息从相应库位中选择一个备件进行更换,恢复系统双机热备工作模式,并记录更换信息;(5)替换下的故障单元放入备件性能检测系统进一步确认故障状态和进行故障定位分析,然后做好标记,再存入专门的故障设备仓库中,同时进行故障单元的入库登记;(6)若无可用备件,则修改系统对应故障设备单元的热备件状态以及系统对应的该设备单元的双机热备工作状态,上报备件缺少情况,以便及时采购进行备件补充。
2备件性能检测系统
基于上述备件维护管理策略可知,要实现地球站收发设备备件的离线性能检测,拟设计构建备件性能检测系统,以对备件性能的长期稳定性进行测试与维护,使更换备件的上线成功率达,确保更换备件的可用性和性,从而为卫星通信系统的连续稳定运行提供保障。地球站收发设备的备件分为系统级备件和部件级备件,其中系统级备件是指具备集成为有线闭环测试系统条件的备件,部件级备件是指不具备集成为有线闭环测试系统条件的备件。依据收发设备的备件分类情况,可将备件性能检测系统分为系统级备件性能检测系统和部件级备件性能检测平台,组成框图如图1所示。
2.1系统级备件性能检测系统
备件性能检测系统是针对具备集成为有线闭环测试系统条件的备件进行测试的平台,其设计思想是:利用信息产生器及模拟转发器将地球站的发送链路和接收链路的部分零散备件集成为一个自发自收的有线闭环检测链路,用来完成系统级备件的加电测试,并通过监测环路时延值达到对备件的检查与维护,确保更换备件的可用性和性。同时,可完成返修设备及新增设备的验收考核测试、新进人员的业务培训、模拟故障处理演练等任务,具体组成框图如图2所示。
2.2部件级备件性能检测平台
部件级备件性能检测平台是针对不具备集成为有线闭环测试系统条件的备件进行测试的平台,其设计思想是:利用信号源、频谱仪、矢量网络分析仪、逻辑分析仪、功率计等测试仪器对零散的部件级备件进行定期检测维护和指标测试,以确保部件级备件的可用性和性。同时,可作为新购置备件的验收测试平台,具体组成框图如图3所示。
3备件管理系统
3.1备件管理系统的体系结构
对于地球站收发设备的备件设备的管理,传统的管理方法是直接将备件设备放入库房,需要时人工从繁杂的备件设备中查找需要更换的备件设备,费时费力且延误备件上线时间,降低了系统不间断运行的性;并且在系统备件状态发生变化时,表格记录形式无法得到及时更新,容易造成管理上的混乱。因此,为提高备件的使用效率,解决备件分散和备件存取造成的管理混乱等问题,本文建立备件管理系统,通过构建备件信息数据库,设计实现备件出入库管理和备件档案管理流程,实现备件设备信息的科学管理,并为地球站装备管理和采购提供数据支持。备件管理系统的体系结构如图4所示。
3.2备件管理系统的功能模块
本文从系统实用性出发,对信号收发备件管理系统进行需求分析,将系统功能模块划分为基本信息管理、备件库存管理、备件计划管理、使用信息管理、查询统计管理、系统信息管理等几个部分。系统各模块的功能如下:(1)基本信息管理基本信息管理用来设置系统的基础数据信息,如用户信息、备件信息、备件供应商信息、仓库及库位信息等,以便为其它的管理模块提供一个统一规范的基础性数据,并且方便系统的维护。(2)备件库存管理备件库存管理是备件管理系统最为重要的管理模块之一,该模块涵盖了备件从入库到出库之间的全部业务流程,主要实现对备件入库管理、备件出库管理、备件档案管理、库存备件明细、库存备件汇总以及库存报警等的管理。(3)备件计划管理备件计划管理主要实现备件采购计划工作中的备件计划、备件需求统计等功能。(4)库房管理库房及存放柜管理是对备件存放的直接映射,通过库房信息以及备件存放位置的信息,方便快捷地将备件定位到库房存放柜中,解决了原始的纸面记录或无库存记录造成的弊端。(5)使用信息管理使用信息管理主要记录备件上机使用情况,为合理采购备件,提供了及时手资料。(6)查询统计管理查询统计管理可提供灵活多样且直观的查询统计方式,统计出的数据,用户可以通过统计汇总出各个备件的库存、维修、使用等数据,为领导决策提供依据。(7)系统信息管理系统信息管理主要完成对信号收发备件管理系统的用户信息和用户密码修改的管理。
4结论
本文取得的研究结果为地球站收发设备的备件性能检测、故障单元备件合理更换以及备件的系统化管理提供了一套科学有效的解决方案。根据系统发送链路和接收链路的特点,利用零散备件设计形成闭环检测链路,对备件进行性能维护测试,确保了更换备件的完好性,提高了系统的性;研制设计的备件管理系统对所有备件进行系统化管理,方便备件的查找和及时补充,大大提高了卫星通信系统的维护效率,为系统的稳定运行提供了重要保障。同时,本文研究的备件维护管理策略、备件取用策略、备件管理方案等成果,具有广阔的应用前景和推广价值,可推广应用于其它卫星系统中。
作者:杨华 刘安斐 窦晓晶 张婷 单位:北京导航中心
卫星通信论文:入侵检测系统卫星通信论文
1地球站
(1)地球站的安全问题地球站作为卫星通信网络地面应用系统的重要组成部分,是负责发送和接收通信信息的地面终端,地球站的数据和发送的信令是用户行为的直接体现。作为卫星通信网络中的节点,地球站的正常运行直接关系到整个卫星通信网络通信的质量高低和安全性。地球站异常包括很多方面,除了地球站本身的故障之外,还包括地球站被仿冒、丢失,被非法用户使用或者被敌方缴获等。在非安全的环境下,敌方可以通过监听网络、控制信道,分析网络管理信息的模式、格式和内容,获得通信网的大量信息,这些信息包括网内地球站成员及其入退网事件,通信流量和多个地球站之间的通信频率。同时,也可以直接伪造、篡改网控中心信息、对地球站设置非法参数、干扰地球站的通信流程、使地球站之间的通信失败、使合法用户异常退网。敌方还可以侵入地球站,干扰网管主机、窃取网络配置信息、篡改网络运行参数等。造成地球站异常的这些原因中,由于用户的非法操作和非法用户的入侵行为引起的异常,对卫星网的安全威胁更大,造成的损失更严重。因此,通过卫星网络检测到地球站的行为异常,对整个卫星通信网的安全运行具有重要的意义。(2)地球站的工作网管中心相当于管理器,主要完成网络管理与控制功能,是全网的核心控制单元(ControlUnit,CU),其信令在卫星网中担负网络管理协议的作用。网络管理与控制功能可以是集中式或分散式,对于星上透明转发卫星通信系统,卫星不具有星上处理能力,只完成放大、转发的功能,由地面的主站集中进行网络管理与控制。卫星网管作为一个资源管理控制系统,它对全网的信道资源、地球站配置资源、用户号码资源进行控制;同时它作为操作员对全网的通信进行控制、检测和干预,向用户提供配置资源管理查看的接口以及资源状态显示和统计接口,并将当前通信系统中的异常情况向用户进行报告;它还具备用户设备操作权限管理、网控中心其它设备管理等功能。
2卫星通信网入侵检测系统的实现
2.1入侵检测系统的体系结构
入侵检测是检测计算机网络和系统以发现违反安全策略事件的过程。如图2所示,作为入侵检测系统至少应该包括三个功能模块:提供事件记录的信息源、发现入侵迹象的分析引擎和基于分析引擎的响应部件。CIDF阐述了一个入侵检测系统的通用模型,即入侵检测系统可以分为4个组件:事件产生器、事件分析器、响应单元、事件数据库。
2.2入侵检测系统的功能
卫星通信网络采用的是分布式的入侵检测系统,其主要功能模块包括:(1)数据采集模块。收集卫星发送来的各种数据信息以及地面站提供的一些数据,分为日志采集模块、数据报采集模块和其他信息源采集模块。(2)数据分析模块。对应于数据采集模块,也有三种类型的数据分析模块:日志分析模块、数据报分析模块和其他信息源分析模块。(3)告警统计及管理模块。该模块负责对数据分析模块产生的告警进行汇总,这样能更好地检测分布式入侵。(4)决策模块。决策模块对告警统计上报的告警做出决策,根据入侵的不同情况选择不同的响应策略,并判断是否需要向上级节点发出警告。(5)响应模块。响应模块根据决策模块送出的策略,采取相应的响应措施。其主要措施有:忽略、向管理员报警、终止连接等响应。(6)数据存储模块。数据存储模块用于存储入侵特征、入侵事件等数据,留待进一步分析。(7)管理平台。管理平台是管理员与入侵检测系统交互的管理界面。管理员通过这个平台可以手动处理响应,做出最终的决策,完成对系统的配置、权限管理,对入侵特征库的手动维护工作。
2.3数据挖掘技术
入侵检测系统中需要用到数据挖掘技术。数据挖掘是从大量的、不的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。将数据挖掘技术应用于入侵检测系统的主要优点:(1)自适应能力强。专家根据现有的攻击从而分析、建立出它们的特征模型作为传统入侵检测系统规则库。但是如果一种攻击跨越较长一段时间,那么原有的入侵检测系统规则库很难得到及时更新,并且为了一种新的攻击去更换整个系统的成本将大大提升。因为应用数据挖掘技术的异常检测与信号匹配模式是不一样的,它不是对每一个信号一一检测,所以新的攻击可以得到有效的检测,表现出较强实时性。(2)误警率低。因为现有系统的检测原理主要是依靠单纯的信号匹配,这种生硬的方式,使得它的报警率与实际情况不一致。数据挖掘技术与入侵检测技术相结合的系统是从等报发生的序列中发现隐含在其中的规律,可以过滤出正常行为的信号,从而降低了系统的误警率。(3)智能性强。应用了数据挖掘的入侵检测系统可以在人很少参与的情况下自动地从大量的网络数据中提取人们不易发现的行为模式,也提高了系统检测的性。
3结束语
本文结合目前卫星通信的发展和网络安全状况,首先探讨了卫星通信主要的安全隐患,提出了具体实现的思路,说明了各个功能模块实现的最终功能,从而保障卫星通信的安全性、高效性与兼容性。
作者:刘丹丹 张洋洋 单位:河北科技大学
卫星通信论文:通信技术与卫星通信论文
有效载荷是执行通信任务的分系统,主要包括天线和转发器;卫星平台则是由保障系统组成的可支持一种或几种有效载荷的组合体。地球站的组成:天线设备、发射设备、接收设备和信道终端设备等组成。同步轨道:卫星轨道周期与地球自转周期相等时就称为同步轨道,轨道的偏心率e=0时为圆轨道,因此卫星在轨道上以恒定的角速度运动。轨道高度为35786km。静止轨道:属于地球同步轨道的一种。在这轨道上进行地球环绕运动的卫星或人造卫星始终位于地球表面的同一位置。它的轨道离心率和轨道倾角均为零。运动周期为23h56min04s,与地球自转周期吻合。由于在静止轨道运动的卫星的星下点轨迹是一个点,所以地表上的观察者在任意时辰始终可以在天空的同一个位置观察到卫星,会发现卫星在天空中静止不动,因此许多人造卫星,尤其是通讯卫星,多采用地球静止轨道。星蚀:卫星和太阳之间的直视路径被地球或月球遮挡,从而造成太阳能电池失效或效率降低的现象就是星蚀,如图2所示。日凌中断:每年春分、秋分时,地球、卫星、太阳在同一直线上。当卫星在地球与太阳之间时,地球上的小站在接收卫星信号的同时,受到太阳辐射的影响,使通讯中断,此现象称为日凌中断。雨衰:雨衰,是指电波进入雨层中引起的衰减。它包括雨粒吸收引起的衰减和雨粒散射引起的衰减。雨衰对C波段影响较小,但对Ku波段影响很大。双跳:双跳就是通过中央控制站进行转接控制进行的两个卫星站间的通信。双跳延时大,甚至达到秒级。单跳:一般单跳就是两个卫星站间直接通信。单跳相对双跳延时小,一般为数百毫秒。
1卫星通信技术引进的必要性
我厂在2008年“5.12”特大地震发生后,微波站房屋损坏、电源中断,蓄电池损坏,铁塔倾斜;光缆全被打断,通信机房倒塌等所有通信系统全部损坏。六月初首先在映站建立一个卫星小站,在整个抗震救灾过程中,保障了通信畅通,使救灾工作得以顺利进行。但在使用过程中,该卫星通信系统有明显不足:①延时太大,无法及时进行相互交流,让人很难受;②经常无故“死机”,需重新启动语音网关才能恢复正常通信;③小到中雨就中断通信。虽然有这些缺点,但是在震后,泥石流频发,通信线路经常被打断,或是道路被冲毁(故地埋通信光缆也不现实),危险性太大根本无法架设线路,卫星通信的优势就非常明显地体现出来。在恢复重建中,这是一种不可或缺的重要通信手段,我们把缺点尽量进行完善,来满足人们的通信需求。比如延时大的问题,就可由双跳改为单跳,延时就会明显改善,让人能够接受。还有将天线尺寸加大,只要不是暴雨,通信还是能保障畅通。总之卫星通信对震后恢复重建中的我厂来说,还是一种重要的通信方式,对及时了解灾情,指挥救灾能起到关键作用。
2卫星通信在我厂的应用
2010年5月将映站的卫星小站由原来的双跳改为单跳,卫星信息传播路径减少一半,延时明显改善,在通话中人们能够接受这样的效果。8月在我厂耿站生活区新建了一个卫星通信小站,卫星天线直径由原来的1.2m变成了1.8m,天线增益变大,抗雨衰能力加强。我厂的卫星通信系统网络如图3所示。我厂建设的卫星小站是Linkstar小站,工作在Ku波段,通过亚太V号通信卫星与位于北京的关口站进行连接,通过地面光纤网络,联入四川本地的基础运营商,解决本地通话。耿站卫星小站建成没几天,就发生“8.13”特大泥石流,耿站成为孤岛,唯有卫星通信畅通,该系统在此次灾害中发挥了关键作用,使省公司和总厂领导及时了解灾情,并指挥耿站恢复重建的人员安全撤离,避免了人身伤亡事故。为此,我厂通信专业受到四川省电力公司领导的公开表扬。在这之后,我厂陆续在耿闸、渔闸、映闸和渔站建起了卫星小站。在建站过程中我们吸取了“8.13”泥石流灾害发生时映站的卫星小站未能起到作用,原因是卫星小站的电源和厂房共用一套电源系统,未给小站单独配蓄电池,所以厂房被淹,电源也就中断。没有电源卫星小站不能工作,也就没有发挥作用。在以后建站中,都单独配有蓄电池,使其在灾害发生时能起到作用。各小站建成后,先后经历2011年的“7.03”泥石流及2013年的“7.09”洪灾,在光纤通信中断时确保我厂耿站安全发电,同时也取得不错的经济效益。由于我厂卫星小站工作在Ku波段,加之卫星在同步轨道工作(欧星、海事卫星也工作在同步轨道),下暴雨、大雪都会中断通信,如果用C波段能解决此问题,但C波段的卫星天线比较大,安装不方便。铱星属于低轨通信卫星,但人站在暴雨中手持铱星终端打电话同样不现实,且易遭雷击。这些问题随着通信技术的发展,相信不久后会得到圆满解决。总之,卫星通信系统的建立,为我厂恢复重建和安全生产起到了重要保障作用。卫星通信技术具有很好地发展前景,应用也日益广泛。
作者:周忠喜 单位:国网四川省电力公司映秀湾水力发电总厂
卫星通信论文:调制解调器卫星通信论文
一、帧结构与传统方法
在实际系统中,不作此限制。可以看到,发端仅定义了缓存提速前和物理成帧后的数据流必须使用信息速率和信道速率外,并没有定义其它模块的接口速率。从实现角度来说,最简单的方式是从信息速率提速至高速时钟,利用高速时钟完成信息成帧和编码,待物理成帧输出时再降速至信道速率,但此时的延时较大可接近帧长。若收端也采用该时钟方式,整个调制解调延时将至两倍帧长。为减少时延,传统方法在实现该帧结构时,信息速率为3kbps的连续数据流经缓存后,被提速至信道速率,后续模块的输入输出时钟均使用信道速率。若忽略各模块内部的处理时延,仅考虑各模块间的相对时延,传统方法实现该帧结构的时序可以用图2表示。图2中的带圈标号与图1中的标号一致,分别表示①缓存提速、②信息成帧、③分组编码和④物理成帧,且时序图中连接相邻模块的单箭头表示两端的时刻点相同(下同)。简单计算可知,按照传统方法成帧后,帧尾时刻与对应的信息数据流分块的间隔时刻相比,时间差Dt为16比特(信道速率)。收端在解调时,假定不存在频偏和定时误差。传统方法在搜索到独特码之后,缓存降速至信息速率之前,各模块的输入输出时钟均使用信道速率。传统方法的解帧时序可以用图3表示。图3中的带圈标号分别表示图2中对应标号的逆过程,即①缓存降速、②信息解帧、③分组解码和④物理解帧。由于分组解码模块需要每个码组全部输入后再进行解码,所以1个码组的解码结果,最早可以在全部码组输入解码模块后开始输出。而其它码组的结果必须缓存后延迟输出,以便和码组的输出连接,形成数据块后进入信息解帧模块。简单计算可知,按照传统方法解帧后,帧头时刻与对应的信息数据流分块的间隔时刻相比,时间差Dr为120比特(信道速率)。
二、二次变速方法
由于忽略了各模块内部的处理时延,上节描述的传统方法的时延,在一次变速的限制下已减至最小。观察图2发现,Dt的长度正好是分组编码附加的全部监督码元的长度。也就是说,除了首个码组的信息码元是无延时地输出外,其它码组的信息码元都是被延时后再输出的。随着分组编码不断在码组后插入监督码元,越靠后的码组的延时就越大。要想减少该延时,就必须把首个码组进入编码模块的时刻尽量提前。观察图3同样发现,虽然1个码组的解码结果的最早输出时刻是固定的,但其它码组的结果若能尽早输出,就可以减小时间差Dr的长度。当然全部码组的输出仍然要互相连接不能分离,供信息解帧模块使用。为此本文提出一种二次变速的方法,在信息速率和信道速率之间增加中间速率,用于成解帧和编解码的部分处理。通过将码组尽早输入或输出分组编解码模块,进一步减小调制解调时延,新方法的成解帧时序分别如图4和图5所示。图4中,信息速率为3kbps的连续数据流经缓存后,被提速至中间速率3.625kbps进行信息成帧,并送入分组编码模块。同样不考虑编码延迟,即监督码元可在高速时钟下得到。当分组编码模块使用信道速率输出时,Dt的长度正好是1个码组的监督码元的长度。其它码组在中间速率的作用下,与传统方法相比,因为提前进入了编码模块,已经被提前输出了。在每帧包含多个码组的情况下,新方法在发端减少时延的效果将更加明显。图5中,通过在分组解码模块的输出端使用中间速率,与传统方法比较,虽然1个码组的开始输出时刻不变,但其它码组的开始输出时刻被提前。继续使用该中间速率进行信息解帧后,缓存降速至信息速率的开始输出时刻也就被提前了。简单计算可知,此时的Dr约为104.8比特(信道速率)。显然,中间速率越小,Dr的值将越小。若码组的信息码元数不变,每帧包含的码组越多,Dr的值也将越小。
三、结论
在需要进行分组编解码的卫星话音业务中,一次变速的传统方法没能提供最小的调制解调器时延。本文提出了一种二次变速的方法,在信息速率和信道速率之间,再增加中间速率,用于编解码和成解帧的部分处理。比较二者实现假设的物理层信号帧结构的时序知,新方法可进一步减少调制解调器的时延。且帧结构中每帧包含的码组越多,调制和解调的时延越小;选用的中间速率越小,即越接近信息速率,解调的时延也越小。实际应用至某卫星话音业务中,与传统方法相比,新方法减少了1/3的调制解调器时延。
作者:雷俊 罗荣华 邱文静 秦红祥
卫星通信论文:移动卫星通信论文
借助电子束自动转向功能,该系统实现了自动操作,其电子束可以在100Hz频率上指向并跟踪卫星。也就是说,该系统每秒要计算该卫星的相对位置100次。分布式相阵天线还解决了“钥匙孔”(keynole)以及“常平架自锁”(gimballock)问题。前者是稳定电子机械天线系统的难题。由于俯仰角不到90°,这样在顶点处就会有一片空域无法被天线光束覆盖。后者的问题在于其天线系统俯仰角>90°、<180°,所以当常平架达到其仰角极,方位转台必须旋转180°才能继续跟踪,因而不能平滑跟踪经过其顶点的卫星。宽波束可以缓解这个问题,但是高增益天线都是窄波束,必须要有所取舍。在相控阵天线覆盖重复区域,可以通过电子方式轻松解决。由于设计之初就是为了解决移动中的语音、数据以及流视频问题,这种全双向系统可以用于很多卫星通信系统,比如美国的全球宽带卫星通信系统(WGS)和XTAR系统、西班牙卫星系统(SpainSat)以及英国的天网卫星系统(Skynet)。该系统采用115V交流电或28V直流电,功耗700W,重68kg。埃尔比特公司2013年9月,以色列艾尔比特公司(Elbit)在伦敦国际防务展上展示了基于MSR-2000系列的下一代天线Elsat2000E。该天线采用新型被动波导平面面板技术,能够覆盖Ku波段。该公司称Elsat2000E技术性能有了巨大提升,大大超越了采用印刷电路多成分平板技术的Elsat2000。Elsat2000E新型天线直径50cm,重15kg,性能和效率是Elsat2000的两倍。埃尔比特公司称其具有30Mb/s的下行速率和5Mb/s的上行速率。该公司强调该系统有个关键特性,即它有先进的三重跟踪机制,具备100°仰角能力,因而可以提升移动中的跟踪和重新锁定性能。该公司声称该系统的G/T比为7dB/K,而这是信号噪声比方式,是天线能够接收的信号。该比值越大,从背景噪音中提取微弱信号的效果就越好。和Elsat2100相似,2000E也集成了该公司的InterSky4M军用战术卫星通信系统平台,能够在视线内、视线外以及超越地平线模式下,提供“无缝”宽带连接。该系统在机械扫描中结合平板相阵技术,较大限度提升了覆盖角度。它能够达成360°全覆盖,俯仰角度从0°~100°,这是其他系统做不到的。通常情况下,天线系统会采用碟状天线,这是因为其增益很好,但是由于高度原因极易被探测到。
一、Ibetor公司X波段终端
2014年2月28日,西班牙Ibetor公司在华盛顿哥伦比亚特区2014卫星展上推出了新型的X波段Ib-Stom100X终端,其特点就是低矮不易探测。由于该终端高度只有20cm,该天线系统实现空气动力的高效能和自由调整(discretion),同时还能在极端地形情况下高效连通。Ib-Stom100X专为舰船、飞机和地面车辆设计,加入了Ibetor公司设计的天线控制单元(ACU),包括惯性单元(IMU)、同千赫兹双GPS接收器、三轴陀螺仪、加速计和磁力计。通过这种组合,该系统号称指向精度提高0.3!,能在移动车辆上获取卫星信号并能“瞬时”再次找回。能做到这一点,部分原因是由于该系统使用的软件程序始终让机械扫描天线指向卫星位置,即使信号受到遮挡仍旧如此。其关键参数为瞬间频率500MHz、G/T比7.5dB/K以及波束中心上行速率高达8Mb/s。依据不同配置,其重量从75~85kg不等。根据Ibetor公司的信息,该系统已在西班牙军队服役。Indra公司西班牙的Indra公司提供了备选方案,它的Sotm解决方案运行在X和Ku波段上,使用低矮天线,并集成惯性导航。通过IP电台和骨干能力,该系统的卫星通信可为旅、营一级的巡逻部队提供服务。该系统经过专门设计,可用于任何车辆,甚至可用于小型船只。另外,其可选方案还包括Ku波段扩展频率(13.75~14.5GHz)、加密、运行时间20min的不间断电源,还可载有发电机,能够提供10h电力供应。吉拉特卫星网络公司就在Ibetor公司推出低矮天线终端之后,以色列吉拉特卫星网络公司(Gilat)也紧随其后,于2014年3月11日推出了“低矮光线卫星隐形光线(RaySatStealthRay)300X-M”。该系统经过专门设计,可与任何X波段卫星配套使用,可用于全球宽带卫星通信系统(WGS)以及崎岖道路行驶的车辆。它集成了多种动作传感器,可以进行跟踪、在最短时间获取信号以及能够“瞬间”再次找回信号。该系统经过设计,可以轻易装到未经改装的车辆上。它包含一个外置天线,长55.6cm、宽49cm、高25cm、重15kg。另外,它还有内置天线控制单元(ACU),重4.5kg。但是,由于它可以和集成MLT-1000调制解调器一起使用,故不必安装天线控制单元。吉拉特公司新产品的G/T比为2dB/K,传输和接收增益分别是23和25dBi,其接收频率为7.25~7.75GHz,传输频率为7.9!8.4GHz。SR300系列还包括用于Ku波段和Ka波段的低矮天线。
二、DRS技术公司X46-V认证
2013年5月,随着DRS技术公司的X46-V终端获得认证,允许用于美国国防部高性能卫星网络,该公司已能提供X-波段,为更多的偏远、分散的军事单位提供接入全球信息网络(GIG)。该认证由美国国防部联合卫星通信工程中心和美国陆军战略司令部颁发,从而允许X46-V用户接入全球宽带卫星通信系统(WGS),其语音、数据和视频传输速率高达6Mb/s。除了美国部队,澳大利亚、加大那、丹麦、卢森堡、荷兰以及新西兰军队都可以使用该系统卫星。另外,由于可以运行K-y以及Ka波段,该系统能为其它商业和军事卫星提供更大灵活性和冗余能力。该公司还于2013年8月27日宣布,其L-3Linkabit可以提供系列移动卫星通信终端,刚刚升级了Alsat长期移动地球站许可证,可以在美国境内以及其它商业航空器上使用其Ku波段终端。该证书允许的终端包括L-3DatronFSS-4180-LP(0.33×0.46m)、FSS-4180-LC小型孔径天线(圆周长0.46m),还包括LinkabitMPM-1000网络中心IP卫星通信调制解调器。美国陆军的“战术级作战人员信息网”(WIN-T)以及美国海军陆战队的“移动网络”中都采用了L-3终端。
三、全球移动网络主动布局系统
Elexis公司宣布,在成功将全球移动网络主动布局系统(Gnomad)集成到“斯特赖克”装甲车辆之后,公司又将这一经受战斗考验的系统扩展到另一美军的重要平台,并在美国乔治亚州本宁堡的美国陆军第7远征作战试验部队完成安装。全球移动网络主动布局系统易于安装,并且不需要对现有车辆进行改造。该系统包括卫星天线、RF组件以及几代模块底盘,使其可以安装在美国军用产品目录内以及商业用等车辆上,比如“悍马”等。该低矮型天线尺寸为45×35×7in(合114.3×88.9×17.78cm),重量不到25kg,可用于商业和军事卫星。由于采用开放式架构,该系统可以和许多视线内电台以及卫星调制解调器共用,并通过解调器实现全双向语音、数据和视频通信。通过和超高频或甚高频电台配合,比如和“单信道地面及机载无线电系统”(Sincgars)以及嵌入式GPS共用,该系统能够在运行图像中直接嵌入跟踪蓝军数据。该系统传送频率为14.0~14.5GHz、接收频率为17.7GHz或11.7~12.75GHz,速率分别高达512kb/s和2Mb/s。在30°仰角、23℃情况下,G/T值低为8dB/k。罗克韦尔•柯林斯公司罗克韦尔•柯林斯瑞典通信技术公司的终端和萨博公司的四轴稳定平台结合,从而产生了一种新型的移动卫星通信终端,既可适用崎岖路面也可用于海上。它可以安装到轻型越野车辆和小型船只上,也可以安装在指挥所车辆和中型滨海船只上。这些应用由于速度快、颠簸剧烈、移动幅度大,建立和保持卫星连接非常困难。但是,该系统可以轻易解决这些问题,在高海况下时速高达50节以及崎岖地形下速度超过40km/h,它都能在1s内自动恢复丢失的连接,同时宽带通信速率可达10Mb/s。该系统全重约140kg,在20°仰角、11.0GHz情况下,G/T值为19dB/K。
四、泰利斯公司
2010年法国陆军首次在阿富汗战场部署移动卫星通信系统,而在马里,法国陆军也采用了泰利斯公司开发的设备,将其集成到VAB轮式装甲车上。由于配备了X、Ku和Ka波段,该系统能够为部署在偏远、敌对地区的部队提供连续不间断的语音、数据和视频服务。这些卫星通信系统为战斗网络无线电系统提供远距离通信连通,主要用于法国“维纳斯”计划的甚高频PR4G网络,尽管它也可方便地集成到甚高频/超高频的系统中。泰利斯公司是最早应用相控阵技术公司之一,而作为主动雷达天线,它具备优越的越野跟踪能力,集成了现代波形、抗干扰、抗简易爆炸装置的发射机,甚至还有防弹天线罩。长期以来移动卫星通信系统不断革新,毫无疑问,将来还会有更多的新技术应用到该系统中。
作者:姜天元 刘华
卫星通信论文:CFDAMA公平性卫星通信论文
目前CFDAMA基本协议类型有CFDAMA-PA、CFDAMA-RA、CFDAMA-PB等几种。CF-DAMA-PA的上下行链路帧结构和基本的CF-DAMA相同,不同的是协议中的每一个用户在上行链路都有自己的预约请求时隙,系统将该时隙固定的分配给相应的用户,用户在这个固定的预约请求时隙中发出请求消息进行预约。CFDAMA-RA的上下行链路帧同样与CFDAMA-PA协议类似,不同的是其控制部分的预约时隙不再是固定分配给用户或者通过星上调度采用轮询的方式进行分配,而是用户终端通过竞争预约的方法来获取预约请求时隙的位置。CFDAMA-PB的上行链路帧结构不同于前面两种接入方式,如图2。上行链路帧不再划分为控制部分和数据部分,而是由一系列的数据信息时隙组成,数据信息时隙里面包含有按需分配时隙和自由分配时隙,它们随机的被安排在上行链路帧中,每一个数据信息时隙都对应一个业务分组,各用户的预约时隙请求信息附带在相应业务分组上以捎带的方式发送给星上集中调度器[4]。
1.性能分析
CFDAMA基本接入方式能够实现较好的时延/吞吐量性能。CFDAMA-PA成功的将按需分配和自由分配结合在一起,采用固定预约时隙分配的形式来保障用户接入的公平性和实际业务需求量,在信道负荷较低的时候,其平均时延和固定分配方式保持一致,在信道负荷逐渐增大和接入用户数变化较大时,存在资源利用率下降的问题。CFDAMA-RA在低信道负荷时由于采用的竞争方式进行接入,对信道利用率更高,但对于用户接入的公平性却不能保障,并且存在接入过程中的碰撞,在高信道负荷时碰撞概率逐渐增大,平均时延性能也急剧下降。CFDAMA-PB通过对上行数据帧结构的改进,减小了用户发送预约时隙请求的间隔时间,但随着信道负荷的增大,某些用户会因为其他用户预约请求的资源占用导致无法发出预约时隙请求,同样不能保障接入的公平性。因此,如何保障用户的接入时延和接入过程中的公平性,成为本文的一个研究重点。
2.CFDAMA-PRI
由于当前数据业务大多突发性较强并且业务类型呈现多样性,抽象出来这类数据业务流通常用ON-OFF信源模型来表示[5]。而在此信源模型的情况下,数据业务具有很强的突发特性,用户的预约时隙请求也带有很强的随机性和不确定性。基本的CFDAMA接入方式此时由于多次请求造成的再分配策略和预约请求的冲突概率增大,在信道负荷较高和接入用户数逐渐增大时,其性能受到明显的影响。CFDAMA-PR协议在用户时隙申请阶段对发送队列的堆积状况进行判断,比较当前时刻和上一时刻发送队列中数据分组的差值Δ,如果Δ>0表示当前发送队列有数据包的堆积,则通过加权的方式向星上调度器发送更多的预约时隙请求[6]。该协议的好处在于实际应用中可以根据用户发送队列的堆积情况获得更多的分配时隙,能在突发数据分组到来情况下实时的将新的数据分组发送出去。因此,本文在CFDAMA-PR的基础上提出了基于用户优先级排序的改进协议CFDAMA-PRI,优化星上调度算法,进一步保障接入的时延性能和接入的公平性。
3.仿真分析
本文采用OPNET仿真平台[7],将基本的CF-DAMA-PA、CFDAMA-PR和改进的CFDAMA-PRI进行对比仿真。具体的仿真参数设置如表2所示。对信道负荷固定但用户数目变化条件下的仿真结果进行分析,目的是为了得出CFDAMA-PRI的时延性能和在用户接入公平性方面的优越性。选取信道负荷为0.8,用户数目依次为5、10、20、40、80,CFDAMA-PA的预约时隙数为20,得到的仿真结果如图5、图6所示。由仿真结果可以看出,当系统中用户数不断增大时,由于CFDAMA-PA在一个链路帧中仅使用了一部分时隙用作预约请求时隙点,那么更多有请求的用户就无法通过预约时隙点接入链路帧,加之信道负荷较大,突发数据强,用户申请时隙的不确定性也大。如果增大预约请求时隙数的比例也会以牺牲数据时隙为代价,平均时延和队列的分组累积同样会增加。CFDAMA-PRI则采用CFDAMA-PR对信源突发数据分组的计算方法,并使用优先级排序的方法对时隙需求量大的用户给予更高的时隙分配权,确保了用户的可接入次数,降低了时延,提高了接入公平性。
4.结语
本文分析了宽带卫星通信系统中的CFDAMA接入协议,阐述其原理,分析了CFDAMA相关协议的优缺点,在CFDAMA-PR协议的基础上提出了用户优先级排序的改进协议CFDAMA-PRI,以适应当前突发性较强的数据业务流。该协议通过优先级排序的算法,在星上调度的过程中让时隙需求量越大的用户获得更高的时隙分配优先权和更快的接入过程,优化了整个处理流程。,在OPNET仿真平台下选择突发信源模型下进行对比仿真测试,测试结果表明CFDAMA-PRI协议在突发增强、信道负荷加大的情况下能很好的控制平均时延和队列分组累计数,具有更好的性能表现,在今后的实际应用中也具备良好的可操作性。
作者:郭爽 曹宝 刘心迪 单位:中国电子科技集团公司第三十研究所
卫星通信论文:半物理仿真卫星通信论文
1半物理仿真平台的构建
半物理仿真平台的建立采用.NET环境下应用C#编程语言设计具有Windows风格的人机交互半物理仿真平台。通过各个模块的点击模拟操作,可以很好地实现用户对仿真模型的智能化运动控制,并且在完成仿真运动后,读取并记录显示卫星通信机动站运动过程的所有状态位置信息以及虚拟传感器的测距数据,生成仿真动画,达到直观的效果,虚拟场景测得的数据最终和真实环境中的实物所得数据进行比较,从而验证智能化控制算法的合理性、适用性。上位机用户平台包括虚拟现实展示、DLL调用测试、卫星通信机动站控制器半物理仿真通讯平台、状态信息的记录与读取、传感器测距信息的记录与读取,状态信号实现卫星通信机动站的虚拟现实运动动画的展示,人机交互半物理仿真平台,如图2所示。
2卫星通信机动站动力学模型的建立
Maplesim是一个多领域物理建模和仿真工具,它提供了一个三维可视化的环境建模以及动画显示仿真结果,在这种环境下,可以通过简单且直观的方式搭建各种复杂系统的模型,还可以可视化分析仿真结果。在Maplesim中能将建立好的模型转换到C代码中,可以在其他应用程序和工具中使用此C代码。在3D可视化建模环境下可以快捷、方便且直观地创建所需要的动力学仿真模型,之后将模型转生成C代码,在VC++环境下编译C代码生成动力学模型的DLL文件,这样可以方便其他应用程序的调用仿真。本研究基于.NET开发平台采用C#语言编写上位机仿真用户界面,进而对生成的DLL文件进行调用。半物理仿真系统开始执行,给定一个初始时间t0(初始值),每次经过t时间后,对动力学模型DLL文件进行调用,从卫星通信机动站的动力学模型DLL中输出及时个状态信号,将这个状态参数传递给卫星通信机动站控制器实物,控制器中对输入的状态参数完成控制算法后将再次发出控制信号并传递给C#软件环境,再经过t时间,再次调用DLL中的动力学模型。此时卫星通信机动站动力学模型的DLL输出第二个状态信号。如此循环反复执行此过程,如图3所示,形成了一个闭环的半物理仿真系统。
3半物理仿真系统设计
卫星通信机动站半物理仿真系统主要由人机交互操作界面、STM32控制器、信号转换器、数据采集系统以及PC机中的卫星通信机动站动力学模型5部分组成。以STM32控制器为核心的卫星通信机动站半物理仿真系统本身是一个闭环系统,在仿真通讯过程中,由卫星通信机动站控制器实物发出控制信号,控制信号模拟量经过信号转换器转换成数字信号,再通过USB虚拟串口通讯传递给PC机,PC机则调用WindowsAPI(Windows系统中可用的核心应用程序编程接口)对数字信号进行接收。PC机将接收到的信号再调用C#软件环境的动力学仿真模型,输出一个状态信号。PC机再将输出的状态信号通过WindowsAPI接口发送出去,状态信号经过USB虚拟串口传递给信号转换器。信号转换器将状态信号数字量转换成模拟量后传给卫星通信机动站控制器,在控制器中完成控制算法后,重新输出新的控制信号。此控制信号再经信号转换器PC机动力学模型的DLL,最终返回状态信号,如此循环地执行就形成了一个闭环的半物理仿真系统[4-5],如图4所示为半物理仿真系统框图。
4硬件系统的构建
卫星通信机动站的智能化控制是一个复杂的运动控制系统,其具有多自由度、多传感器、多驱动器、多运动形态的特点,对卫星通信机动站在现实运动过程中的多个传感器的输出模拟量数据进行采集,同时采用SPI串口通讯、蓝牙无线通讯的方式将数据传递给PC机上位机软件用户界面,以数据和虚拟动画相结合的方式直观地显示卫星通信机动站的实时运行状态。采用ADAS3022数据采集系统采集传感器数据,经ADAS3022的数字接口SPI与MCU选用的STM32芯片内部自带的SPI通讯,并且可实现内部自带的ADC(模/数转换器)进行信号转换,再通过HC-05嵌入式蓝牙模块与PC机进行通讯,如图5所示为系统总体设计方案。硬件系统设计了一个完整的5V单电源、8通道、多路复用的数据采集系统,可以集成用于工业级信号的可编程增益仪表放大器(PGIA)[6]。如图6所示为数据采集系统电路原理图。数据采集系统主要是以ADAS3022芯片为核心设计的,ADAS3022芯片上具有完整的DAS,它可以以较高1MSPS转换速率进行转换,能够接受的较大输入信号范围较高可达±24.576V的差分模拟输入信号。与传统的数据采集相比,在标准的数据采集方案中都会涉及到信号缓冲、电平转换、放大、噪声抑制以及其它模拟信号调理等,但是在ADAS3022中则无需这些辅助调理电路。这样一种高性能的核心芯片的应用,简化了具有高精密16位数据采集系统的设计难点,降低了成本。此外,在外观上,它具有更小的外形尺寸(6mm×6mm),40引脚的LFCSP封装;在性能方面,它可以提供的时序和噪声性能,工作温度跨度-40℃到+85℃的工业温度范围[7-8]。此电路系统采用ADAS3022、ADP1613、ADR434和AD8031精密器件的组合,可同时提供高精度和低噪声性能。
5结语
基于PAC的卫星通信机动站半物理仿真系统研究是联合控制对象的动力学仿真模型与控制器实物来进行的仿真过程。这种仿真方式可以真实地体现出实物的各项动力学、运动学特性等。一般大型卫星通信机动站搭建实物仿真较为困难,只能采用半物理仿真,这样的仿真系统联合了动力学模型与控制器实物的研究,既可以缩短周期、节约经费、辅助研发,也可以提高仿真系统的性以及稳定性。此应用半物理仿真技术搭建卫星通信机动站的半物理仿真平台,目的在于能够模拟真实的运行状态,测试各项性能,虚拟现实仿真动画,验证智能化控制和智能化算法,对研究卫星通信机动站的智能化控制具有一定的理论和实践意义。
作者:马新生 秦文科 李婧铱 郭刚涛 韩宝庆 单位:航天天绘科技有限公司
卫星通信论文:频谱仪卫星通信论文
1技术方案
本系统采用LabWindowsCVI来进行设计与开发,系统软件框图如图2所示。软件系统由监控界面、参数设置模块、数据采集模块、程控命令模块、数据处理模块、图像显示模块和数据存储模块组成。各模块功能通过LabWindowsCVI进行模块化设计。计算机通过GPIB通信接口对AV4033的功能控制是通过程控仪器标准指令来实现的,程控指令是可以对频谱仪进行远端控制的一组特殊格式串,包括仪器设置、通道配置、数据扫描方式、控制输出、读取数据、状态报警、接口设置等指令集。这些指令的发送均是字符串形式,所有的频谱仪命令都必须符合特殊的语法规则,在应用高级语言进行编程时,程控指令一般是作为一个独立的参数在调用函数中出现,这类针对远程控制的函数随GPIB接口和采用的高级语言的不同而不同,但其程控指令是相同的,AV4033系列频谱仪的语法命令图如图3所示。本文利用程控指令和频谱仪进行通信时,选择LabWindowsCVI自带的GPIB函数库,可以方便地进行程控命令发送和数据读取操作。
2应用举例
卫星固定通信台站天线口径大波束窄,对天线伺服系统的自动跟踪性能要求较高,为确保通信效果,需定期测量卫星天线系统的自动跟踪性能,传统的测试方法需用频谱仪在射频方舱内测试,且测试结果保持和记录都不方便,利用本系统可以方便进行远程测试,而且可以将测试结果保存在数据存储单元中,方便后续查询和参考。卫星天线跟踪性能测试流程如下:(1)调整卫星天线使其对准通信卫星;(2)在监控主机上按下述过程设置频谱仪;a)按卫星信标频率设置频谱仪中心频率,设置SPAN为0到100KHzb)根据信标信号的电平变化范围设置Sacle/DIV,以使测量过程中的载波电平变化始终落在频谱仪的可显示电平范围内c)根据信标频率稳定度,选择尽可能窄的RBWd)根据载波的峰值频率和功率,调整频谱仪的中心频率和参考电平e)利用键盘调窄SPAN,重复4f)重复5,将SPAN调整到最小g)将SPAN置0,使载波显示谱线作水平运动h)输入扫描时间,确定扫描长度(3)用手控方式调偏卫星天线的方位角和俯仰角,频谱仪显示谱线的电平将随天线偏离卫星而下降(4)启动天线自动跟踪功能,观察卫星信标电平随时间的变化,记录自动跟踪天线的对星过程以及跟踪速度和精度(5)存储记录数据,重复3、4步骤,多记录几次测试结果,分析卫星天线自动跟踪性能。
3结束语
基于GPIB总线技术构建的频谱仪可以建立快速、高效的卫星信号测试系统,该系统人机界面更加友好,测试功能更为方便,用户能够在值勤终端上方便对频谱仪进行控制和使用,能够快速、方便、的完成测试任务。
作者:张德文 尹训锋 景丹玉
卫星通信论文:业务基本框架卫星通信论文
1资源运行管理
该过程组负责对为客户提供服务所需的所有资源管理和运行维护工作,主要资源包括卫星空间资源、地面卫星系统、知识资源库、IT系统以及后勤配套设施等。该部分负责对基础设施资源进行管理、运行和维护,确保基础设施资源稳定运行,保障基础设施资源处于良好状态并可快速响应客户需求或员工需要。另外,该过程还承担资源信息监控、收集、汇总和统计分析工作,通过对资源信息的汇总、关联和统计分析,从而提高资源使用效率。(4)供应商和合作伙伴关系管理。供应商/合作伙伴主要包含卫星建造商、设备供应商、系统集成商及工程服务商等合作伙伴,该过程组主要负责与各供应商或合作伙伴进行接口和管理,负责采购信息、分析评估、对比选择、合同签署、到货付款以及质量管理等工作。
2战略与基础设施模块垂直过程分组细化设计
战略与基础设施模块垂直过程分为战略和基础设施生命周期管理两个垂直过程分组,如图3所示。战略指出了为开发和实现某个特定市场战略所需的资源建设重点任务,基础设施生存期管理过程驱动和支持为客户提供产品。它们的重点是满足客户对商务的期望,包括为客户提供的产品或服务、支持运营服务的基础设施,或者在企业为客户提供产品的过程中涉及的供应商或合作伙伴。(1)战略。该过程负责制定支持产品服务和基础设施的战略,还负责在企业内为实现这些战略而建立的规划方案的落实实施。它覆盖了市场、客户、产品服务和资源各种层次的运营,通过所基于的服务和资源及涉及到的供应商/合作伙伴来满足客户需求。战略高度重视分析研究,其给出企业内专门的业务战略和业务购入策略的侧重点,战略实现的成功与否需要进行有效性跟踪,并且在必要时做相应的调整。(2)基础设施生命周期管理。基础设施生命周期管理负责对基础设施的性能进行评估,并确定新的基础设施或新服务引进开发和建设部署,从而为满足市场和客户需求的运营服务提供支撑。因此,基础设施生命周期管理对客户需求响应和提供企业竞争力具有重要的意义。
3战略与基础设施模块水平过程分组细化设计
与运营和服务模块的四个水平分组相对应,战略与基础设施模块也有四个水平的功能过程分组:营销和定价、业务规划和建设、资源规划和建设、供应链开发和管理。这四个水平的功能过程分组为战略与基础设施模块的垂直过程分组提供支持。如图4所示。(1)营销和定价。该部分包含制定和实施营销和定价策略、开发新的服务和产品、管理已有的产品等所有必须的功能。在竞争越来越激烈的卫星运营市场,革新的速度和品牌的认同决定了企业的成功,因此营销和定价管理是很重要的业务过程。(2)业务规划和建设。为运营过程提供支持,强调业务的计划、开发和交付。它包括制定业务生成和设计的策略;管理和评估现有业务的性能、确保有相应的能力以满足未来业务发展的需要。(3)资源规划和建设。为运营过程提供支持,强调卫星资源等基础设施的规划、建造和交付。主要包括卫星资源建造、知识共享库建设和基础设施配套互联互通,管理和评估现有资源的性能,确保拥有可满足未来业务发展需要的资源能力。(4)供应链开发和管理。强调企业与供应商及合作伙伴的交互,负责建立和维护企业与供应商及合作伙伴之间的所有信息流和资金流,确保企业能够选择好的供应商和合作伙伴;确保企业有相应的能力与它的供应商和合作伙伴进行交互;确保供应商和合作伙伴能够及时地交付所需要的产品,并且供应商和合作伙伴对企业的整体的性能和贡献优于垂直集成的企业。
4企业管理模块分组细化设计
企业管理模块是为完成卫星通信企业所进行的任何商业运行所必须的基本的业务过程,我们将卫星运营企业管理划分为若干功能部分,主要包括企业发展规划,品牌管理、市场调研和广告,财务和资产管理,人力资源管理、利益相关者和外部关系管理,企业质量管理、流程、IT规划和架构,知识管理和党群纪检管理,如图5所示。
5卫星通信业务基本框架的系统集成
卫星通信业务基本框架通过自顶向下和分层分级分解方法,描述了整个卫星通信业务运行过程,涵盖了卫星通信企业的完整业务链,包括卫星基础设施、运营服务、卫星建造商、卫星应用供应商和合作伙伴等部分,形成了一个多方位的卫星通信业务框架模型,如图6所示。同时,我们可通过分层分级分解方法,根据任务需要,对卫星通信业务基础框架模型各个过程开展更进一步细化和发展,形成更为详细的卫星通信业务基本框架第二层级视图,如图7所示。此外,在基础框架的一、二级视图基础上,我们可以进一步细化和描述业务关键环节,很简便的绘制出各关键环节的直观流程图。综合以上研究成果,我们认为,卫星通信业务基本框架提供了一个企业内部整体活动图景的多方位描述,可结合运用钱学森综合集成思想,以基本框架为指导,利用信息网络技术,以人机集合的方式,开展卫星通信业务的运营管理平台建设、企业知识共享库建设、流程重组、机构优化调整等现实工作,助力企业实现运营管理的流程化和智能化,进一步提高运营效益和服务水平。本文所建立的卫星通信业务基本框架强调以客户为中心,面向外部客户提供业务交付。可为卫星通信企业的高层决策者提供了一个便利的评估工具,可以用于评估、指导整个企业的业务活动,使得企业中的所有组织都能够识别企业职责范围内的重要生产管理过程;为卫星通信运营服务的规范标准化、流程化、高效化服务提供思路;并能够以一种低成本高效率的方式实现企业自动化,增强服务提供商的企业管理能力,为企业提质增效打下坚实的基础。卫星通信业务基本框架的主要优点和功能还体现在:一是在战略方面体现了对卫星和其他软硬件基础设施资源的全生命周期管理和一体化管理的理念。二是在运营方面体现了面向客户关系管理、对客户提供端到端的快速的服务交付和营销理念。三是在企业管理流程方面明确标识了企业管理流程,把企业管理流程和运营、战略作为一个整体,以便企业中的每个人都能够确定其关键流程,从而使整个企业在流程框架中高效运行。
6结束语
搭建卫星通信业务基本框架是一个复杂而涉及面广的课题,本文立足研究卫星运营内在运行本质,以客户为中心,对卫星通信业务基本框架进行了系统集成。一是突出强调业务驱动和以客户为中心,将运营与服务模块和战略与基础设施模块分别从水平和垂直两个不同维度上进行分组细化,对组织管理模块不分维度进行分组细化设计;二是通过分层分级分解方法,对各个过程开展进一步细化和发展,进而综合集成构建起一个涵盖完整业务链的、多方位的业务框架模型,为进一步加强精细化管理、提高管理效率、提升运营效益提供了参考依据,为卫星通信业务理论发展、调整优化和智能系统开发奠定了基础。
作者:徐平 闫钊 钱曦 杨宁 朱霁 夏月辉 单位:中国卫通集团有限公司
卫星通信论文:地震应急卫星通信论文
1设备状态
在小站无法正常入网的情况下,首先可通过检查小站设备的状态指示灯来排查故障。在IDU前面板上有2个LED状态指示灯,分别是Operation(运行)灯和Diagnostics(诊断)灯。FPS(电源模块)上有2个状态指示灯,分别是FPSStatus电源模块指示灯和RFTStatus功放指示灯(常江,2009)。根据设备状态指示灯的显示,在系统运行过程中可能发生的故障快速诊断方法如下。(1)故障一:IDU前面板诊断灯为绿色闪烁时,Telnet到IDU查看esToNoRef/db/10的数值,如该数值为“0”,则表明小站没有接收到主站的信号,可按以下步骤进行故障排除:①检查FPS工作是否正常,如果FPS上的两个指示灯都是常绿状态,表明FPS工作正常;如果FPS两个指示灯不是常绿状态,表明FPS存在故障。②检查设备接收线缆连接情况,查看IDU和ODU之间、ODU和LNB之间的连线是否松动,如果连线接头没有松动,可以将两根连线互换位置;如此时状态仍然没有改变,则需调整天线,检查天线对星情况。在线缆连接和对星都正常的情况下,esToNoRef/db/10的数值应该大于92,此时表明站点接收主站信号正常。(2)故障二:IDU前面板Diagnostics灯绿色常亮,Operation灯红灯闪烁时,Telnet到IDU查看esToNoOwn/db/10的值,如该值为“0”或小于92,则表明小站接收到主站的信号,但没有发射出信号或发射出的信号很小,信道误码率很高,可按照以下步骤进行故障排除:①Telent到IDU查看RTT值是否正确(RTT值可通过将站点当地经纬度输入lineupmanager软件计算得出),如果是RTT值错误导致IDU没有发射信号,则需要修改RTT值。②检查功放的状态信息,如无法读取到状态信息则表明功放故障。③调整天线位置,检查天线对星情况,检查接收发射电缆接头是否有松动的情况,esToNoRef/db/10的数值应大于92。④若进行了上述检查和调整过程后,esToNoOwn/db/10的数值仍然低于92,可尝试通过降低中频发射衰减,从而提高信号强度。(3)故障三:IDU开机后前面板Diagnostics黄灯常亮,Operation灯不亮,此时需重启IDU,如诊断灯仍维持黄灯常亮超过2分钟,表明设备进入到诊断状态,设备的某些参数配置不合理,需要重新配置参数,并上传配置文件。(4)故障四:IDU开机后前面板Diagnostics红灯常亮,Operation灯不亮,此时需重启IDU,如仍维持红灯常亮超过2分钟,表明设备损坏。
2链路层故障
2.1卫星链路原因
除了以上几种情况会造成小站IDU状态灯异常之外,卫星链路不通畅也会造成这种现象的发生(常江,2009)。在排除以上可能的故障原因后,如果设备状态灯仍为异常,则需要查看该小站(主要针对移动小站来说)所处位置卫星转发器的信号值(G/T和EIRP),并通过链路计算结果来比对现有设备是否满足当地通信条件。亚洲四号卫星Ku波段转发器EIRP覆盖图及G/T覆盖图详见图3和图4。以青海便携卫星站为例。青海便携站到达玉树地震现场后,在确认便携站与青海应急卫星固定站的通信参数配置正确、设备无硬件故障的情况下,发现无法建立正常的卫星通信链路。此时根据亚洲卫星公司反馈的信号覆盖结果,查明移动站所在位置的卫星信号非常弱。在系统日常模式中采用的应急通信信道配置方案,不适合该地区进行卫星通信。为确保在该地区能正常进行地震应急卫星通信,需重新进行卫星链路设计。根据卫星链路计算结果得知,卫星转发器性能是决定当地通信是否通畅的重要因素,当现有的卫星通信设备无法满足正常的卫星通信条件的情况下,应根据链路计算结果选择合适的设备以保障通信。
2.2路由层原因
正常情况下,两个或多个小站入网后,可以通过卫星链路进行互联互通,且小站与小站之间都是通过动态路由的方式进行通信(牟春燕,2003;张宏科,2000)。但在系统运行过程中发现,部分小站入网后无法与其他小站正常通信,或是小站入网后等待很长时间才能建立通信链路,这类现象都是由于系统采用动态路由的通信方式所造成的。举例来说,广东局移动站与广东局固定站进行通信,正常情况下应该通过广东局移动站,经过卫星链路,直接传输给广东局固定站,但由于动态路由等问题,导致路由变为从广东局移动站到江苏局固定站,再从江苏局固定站通过地面线路到达广东局固定站,如图5所示。根据以上分析,将所需通信的站点之间配置静态路由来解决此类问题。即将每个省的固定站和移动站以及中心站之间加静态路由即可。若地震现场的移动站需要跟其他省局固定站或移动站通信,可临时增加所需的静态路由,以满足业务需求。
作者:李杰飞 杨乐 谭颖 单位:中国地震台网中心
卫星通信论文:全球卫星通信发展论文
一、全球卫星通信运营情况
1、消费对卫星服务业的增长贡献较大。卫星直播(DBS/DTH)在卫星服务业中的比重高达80%,接近卫星通信消费总收入的95%。高清电视(HDTV)发展较快有两个原因:一是高清用户越来越多,二是卫星电视和有线电视运营商分销渠道的大力推动。高清电视快速发展,促进了转发器租赁收入的增加,加大了卫星电视消费,同时带动了地面设备采购。
2、2004—2012年的8年间,卫星通信消费市场比重增加最多,年均增长5.9个百分点;2012年卫星宽带通信增长最快,为25个百分点。虽然市场主要在美国,但代表着行业发展的新趋势。
3、2004—2012年的8年间,卫星直播增长最快,广播和电视年均增长分别为10.3和6.5个百分点。
4、卫星转发器租赁(转发协议)增长最慢,2004—2012年的8年间年均仅0.8个百分点,比重减少也最多,为4.5百分点,这也许是很多国家将卫星托管或合并给国际或洲际公司组织的原因所在。
5、全球卫星运营业发展很快,但区域差别仍较大,卫星转发器服务也不平衡。例如,美国每30万人有一个转发器,在欧洲是万人一个,而在亚洲,是600万人一个。近几年,后发国家发展较快,排名有所提前,但前四位的排名变化不大,营业收入仍占64%,可用转发器占60%,商业C波段和KU波段转发器容量占61%。前四名分别是国际通信卫星组织(Intelsat)、欧盟SES全球卫星通信公司、法国的欧洲通信卫星公司(Eutelsat)、加拿大电信卫星公司(Telesat)。
二、全球卫星电视用户市场分析
截止到2012年底,全球电视用户至少有11.72亿,家庭普及率53%,数字化率43%、付费用户率66%;卫星电视覆盖97个国家和地区;卫星直播用户(含政府付费)至少有2.88亿,用户率25%左右,少于有线电视。全球卫星电视直播市场大体可分为四个区域,亚太地区欧洲地区,美洲地区,中东和非洲地区。整个美洲是全球最成熟的市场,高清率较高,全球近60%的HDTV频道服务于美洲。欧洲是传统市场,高清率低于美国,卫星宽带有待发展。亚太地区是蓬勃发展的新兴市场,亚太地区日本技术上暂时经验丰富,中国发展速度惊人,按照卫星转发器收入计算,中国卫通从名不见经传一跃排名第13位。全球卫星电视直播市场较大的是亚太地区,用户至少8500万,其中中国用户5430万、印度880万、韩国660万,日本天空用户超500万。但是,中国人口世界及时,占全球人口的19%多,家庭众多,卫星直播家庭普及率还很低。第二是欧洲地区,用户至少有8256万,卫视用户率34%。德国1807万、英国1205万、法国约500万。第三是中东和非洲,大部分属于免费,用户有6177万,卫星电视渗透率为67%。在海湾国家,用户大多是通过双天线或双高频头接收卫星信号。第四是美洲,付费用户占大部,用户至少有5845万,其中美国3403.4万,南美加美国外的北美有2100万。近年来,全球卫星电视直播市场呈现跨越式发展态势,亚太地区迅速崛起,成为耀眼的新秀。尤其是2006年以来,亚太卫视用户快速增加,成为全球较大的市场。2010年,全球新增近2500个卫星付费电视频道,其中超过四成来自亚太市场。由于亚太地区经济发展水平落后于欧美,卫星电视运营商多采用低价战略,迅速占领市场、扩展用户,以求后期获得利润。如印度卫星电视收费标准为每月5美元或更低,这促使数量迅速攀升,直追美国。中国“村通”工程定位于公益平台,免费接收。这些措施,成就了亚太卫星电视市场迅速发展。但是,亚洲卫星电视运营商还不能用更多的资本促进市场成熟,暂时还难与欧美匹敌。
三、卫星通信广播发展的趋势
1、拥有固定通信卫星国家(地区)在减少。
2005年有固定通信卫星公司的国家和地区有33个,现不到30个。近些年,美国和欧洲的一些卫星公司先后托管或合并于国际或洲际卫星公司组织,如美国泛美卫星和回声卫星公司(故据2012年固定通信卫星排行榜合并列出);欧洲国家多参与欧洲SES全球卫星公司,有荷兰的新天空卫星公司、挪威的电信卫星广播公司、瑞典的天狼星公司、土耳其欧亚卫星公司等。拥有自己卫星公司的国家和地区减少的主要原因,可能是发射和运营固定卫星成本,与收入相比,投入和产出比不高。
2、地面和空间运营结合的模式有扩展的趋势。
卫星通信运营商可分为三类:及时类是以卫星空间段为主的运营商,如国际通信卫星组织(IntelSat)、欧盟SES全球通信卫星公司等。第二类是空间和地域段结合的运营商,如美国DirecTV公司等。由于地面运营比空间运营经济效益高很多,第三类是以地面运营为主的公司,如康卡斯特(Comcast)有线通讯公司。以上三类公司的业务收入各相差一个等级。2012年收入,空间运营较大的国际通信卫星组织为26.99亿美元,空间和地面结合运营的DirecTV公司是前者的11倍,达297亿美元。有线电视运营为主的康卡斯特公司,世界2000强排56位,营业收入626亿美元,是第二类的2.11倍。所以,后发展国家和地区,主要采取租用卫星,重点发展地面业务。
3、天地网络不断融合。
即卫星通信与有线电视、宽带互联网、移动互联网等四业融合。目前,有线电视、宽带互联网、移动互联网在数字媒体、信息服务行业已经占主流地位,其主要原因是地面网络天然具有互动性和社交功能,而卫星通信则以单向广播见长。但是,它们之间具有明显的互补性。这为它们的相互融合提供了基础。毕竟,卫星通信、有线电视、宽带互联网、移动互联网都属于信息服务业,相互融合是共同的发展趋势,全网络、全终端、全内容是共同的发展战略。
4、新技术广泛运用。
卫星通信业是典型的技术密集性行业,技术进步是卫星通信行业发展的主要推动力量。如直播技术、Ka频段多点波束、卫星移动通信技术等。此外,地面移动通信的成果也在不断被卫星通信所应用。卫星通信与地面移动通信都属于无线通信,使用相近的频段。在很多情况下,卫星移动通信与地面移动通信需要相互补充使用,以实现无缝覆盖,这决定了它们可以共享很多技术,如空中接口、多址接入等。目前,卫星移动通信采用了所有的地面移动通信多址技术,如FDMA、TDMA、CDMA、SDMA。例如,基于第二代GSM系统(TDMA)的GMR-1标准已被Thuraya采用,GRM-2则被ACeS和Inmarsat-4采用。
作者:夏冰 单位:中国卫星通信集团有限公司