引论:我们为您整理了1篇数学建模论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
数学建模论文:如何撰写数学建模论文
【编者按】:精品学习网论文频道为您提供各类论文范文参考,以及论文写作指导和格式排版要求,解决您在论文写作中的难题。
本文小编将以章节的形式为您展开数学建模论文格式的详细描述,并会陆续更新数学建模论文的经典范文,精品学习网论文频道期待您的关注。
当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文。撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的。事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题。
首先要明确撰写论文的目的。数学建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个的、系统的小结,使有关的技术人员(竞赛时的阅卷人员)读了之后,相信模型假设的合理性,理解在建立模型过程中所用数学方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。当然,一篇好的论文是以作者所建立的数学模型的科学性为前提的。其次,要注意论文的条理性。
下面就论文的各部分应当注意的地方具体地来做一些分析。
(一) 问题提出和假设的合理性
在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉。列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题。历届数学建模竞赛的试题可以看作是情景说明的范例。
对情景的说明,不可能也不必要提供问题的每个细节。由此而来建立数学模型还是不够的,还要补充一些假设,模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣。所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。这部分内容就应该在论文的“问题的假设”部分中体现。由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面:
(1)论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解。
(2)所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考。
(3)假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发做出合乎常识的假设;或者由观察所给数据的图像,得到变量的函数形式;也可以参考其他资料由类 推得到。对于后者应指出参考文献的相关内容。
(二) 模型的建立
在做出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,顺利地建立方程式或归纳为其他形式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨;引用现成定理时,要先验证满足定理的条件。论文中用到的各种数学符号,必须在及时次出现时加以说明。总之,要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据。
(三)模型的计算与分析
把实际问题归结为一定的数学问题后,就要求解或进行分析。在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序(通常以附录形式给出)。还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果。基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论。
有些模型(例如非线性微分方程)需要作稳定性或其他定性分析。这时应该指出所依据的数学理论,并在推理或计算的基础上得出明确的结论。
在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来。结论使用时要注意的问题,可以用助记的形式列出。定理和命题必须写清结论成立的条件。
(四) 模型的讨论
对所作的数学模型,可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化。或可以根据实际情况,改变文章一开始所作的某些假设,指出由此数学模型的变化。还可以用不同的数值方法进行计算,并比较所得的结果。有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。
通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。
除正文外,论文和竞赛答卷都要求写出摘要。我们不要忽视摘要的写作。因为它会给读者和评卷人及时印象。摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意。
语言是构成论文的基本元素。数学建模论文的语言与其他科学论文的语言一样,要求达意、干练。不要把一句句子写得太长,使人不甚卒读。语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句。在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态。
,论文的书写和附图也都很重要。附图中的图形应有明确的说明,字迹力求端正。
点击返回:
数学建模论文格式及写作方法 (目录)
数学建模论文:高职数学建模项目教学法论文
一、高职数学建模项目教学的意义
(一)缩短课时,让学生能迅速掌握知识
高职院校高等数学课时普遍较本科院校少。项目教学法不仅解决了课时少的难题,更提高了学生的学习兴趣与效率,让学生在完成项目的过程中积极、主动、轻松地掌握知识。当然,课时的减少,并不代表教师的工作量减少。任务的选取、布置、指导和评价都对教师提出了更高的要求。
(二)拓展学生的知识面,掌握数学建模方法
因为项目任务往往是跨学科、跨专业的。学生在项目的完成过程中自然拓宽了知识面,当然更主要的是掌握了数学建模的方法,这种方法正是教师“授之以渔”中的“渔”。
(三)在实践中培养综合职业能力
由于从项目的计划、实施、完成及评价均由学生自主完成,对学生的综合能力培养提出了更高的要求。学生在项目的完成中要真正地走入社会,学会收集资料,学会调研,学会与人沟通,学会团结与分工合作,在实践中锻炼自己。
二、高职数学建模项目教学的实施对象
由于数学建模教学面对的是全院学生。学生的水平参差不齐。本着因材施教的教学基本原则,大部分学院数学建模的教学均采取分层教学模式,一般分为基础普及层、能力提高层和拔尖层。针对基础普及层的学生,一般教师会通过启发式教学法和案例教学法,在高等数学课堂教学中融入简单数学建模案例,让学生初步体会数学建模的思想。如在函数最值应用中可引入易拉罐形状的化设计问题、绿地喷浇设施的节水设想和竞争性产品生产中的利润较大化等模型;在常微分方程中引入人口问题、刑事侦查中死亡时间的鉴定和名画伪造案的侦破问题等模型;在线性代数中引入矩阵密码、投入产出等模型;在概率统计中引入考试成绩的标准分、保险问题、风险分析等模型,使学生从各类建模问题中逐步领悟到数学建模的广泛应用,从而激发学生对数学建模的兴趣。针对能力提高层和拔尖层的学生一般采用实验教学法与项目教学法,可通过开设选修课《数学建模与数学实验》和数学建模培训班的形式进行。另外,针对这类学生,一般院校还会积极组织他们参加各类数学建模竞赛,申报省大学生科研项目等。事实证明,经历过数学建模锤炼后的学生,自主学习、科研能力、实践能力、自信心等都明显增强,而且大部分同学都会进入本科院校继续学习深造。
三、高职数学建模项目教学的实施过程
(一)项目选取
首先,教师根据课程特点和学生认知水平,设计相应的项目任务并下达给学生。项目可分为初等模型、微分方程模型、预测类模型、图论模型、规划类模型、评价类模型、概率类模型和多元统计分析这八类,每一类设计不同专业领域的项目。学生可根据自身专业和兴趣选择不同的任务,也可根据实际自选任务。项目任务的设计要具有示范性、覆盖性、实用性、综合性和可行性。
(二)项目分析
为使项目活动顺利开展,教师可将与任务相关的数学概念或内容呈现出来,供学生参考。指导学生将任务细化,明确任务目标。对于一些较复杂的项目,可以指导学生将其阶段化,分为若干子项目加以完成。
(三)制定计划
学生根据任务目标,制定实施计划,具体到时间与人员分工,在制定计划时可兼顾学生自身特点,如计算机专业的学生可以以程序的编写和运行为主。
(四)自主学习
知识的理解和运用、软件的学习和使用、算法的编写与运行等,这些具体细节都需要学生自主地去学习和探究。
(五)完成任务
根据实施计划,分阶段、分步骤、分工合作完成数据的收集与整理、模型的建立与求解以及论文的写作。
(六)评价、修改与推广
在这一环节,主要以学生代表展示成果的方式进行,对已建立的模型进行讲解与分析,对已完成的任务开展自评和互评,由教师总评。学生再根据教师和学生的意见对模型进行修改与推广。
四、高职数学建模项目教学的评价体系
(一)过程性评价
主要指项目进行过程中学生的全方面表现,主要包括八个方面:1.认真,自主学习能力强;2.有创新性,敢于挑战;3.团结友好,善与人沟通;4.考虑问题;5.数学基础厚实;6.编程能力强;7.写作能力强;8.有领导才能。评价结果综合学生自评、学生互评和教师评价三方面。这样的评价方式,不仅要求学生们对自己能力的了解以及相互之间相互了解,更需要教师对每个学生的了解,要求教师与学生的零距离接触,充分发挥教师的指导性作用。
(二)终结性评价
主要指对最终成果的评价,以数模论文假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主。
五、高职数学建模项目教学案例
下面以图论模型的项目教学为例说明具体实施过程。图论是用点和边来描述事物和事物之间的关系,是对实际问题的一种抽象,能够把纷杂的信息变得有序、直观、清晰。自然界和人类社会中的大量事物以及事物之间的关系,常可用图形来描述。例如,物质结构、电气网络、城市规划、交通运输、信息传输、工作调配、事物关系等等都可以用点和线连起来所组成的图形来模拟并转化为图论的问题,再结合图论算法,计算机编程,从而解决实际问题。本教学单元从图论的实际应用中选取“物流线路与管网设计”这两个典型应用作为项目任务导入。
项目1:(物流线路问题)物流运输作为重要的物流网络优化问题,其方案的设计直接影响企业的运输成本和运输时间等。请以实际城区主干线为例,构建图论模型,利用图论算法,给出城区主干线上的结点间最短路径,并通过构建欧拉回路,给出巡回运输路径。相关知识:无向连通图,一笔画问题,欧拉回路,历遍性最短路,较大流,Dijkstra、Floyd、Edmonds、Fleury等算法。教师活动:布置任务,提供必要的知识和软件指导,协助组员分工,引导学生顺利完成任务。学生活动:明确任务目标,根据自身特点组队,制定实施计划并分工合作,完成任务。(1)基本知识与软件的学习阶段;(2)数据的收集与整理阶段;(3)城区主干线图论模型的构建;(4)利用Dijkstra和Floyd算法计算出结点间最短路径;(5)利用Edmonds和Fleury求最小权理想匹配和欧拉巡回。项目推广:车载导航仪、中心选址问题、灾情巡视路线等。
六、结束语
实践表明,项目教学法作为一种突破传统教学理念的高效的教学方法,它在强调学生知识及经验的基础上,让学生在合作研究的道路上迅速前进,引导学生努力在实践中发现新知识,掌握新内容,提高学生数学理论水平和实操技能,突出学生本位思想,注重创新与实践能力的培养,让高职学生学到有价值的数学知识,为学生以后的发展奠定扎实的基础。
作者:潘敏 刘志林 单位:泰州职业技术学院基础部
数学建模论文:大学数学建模思想论文
摘要:数学建模的基本思想是将一个实际应用问题转化为数学问题,通过合理假设建立数学模型,并寻找适当方法求解问题。将该思想引入大学数学教学过程中,可改善传统教学中一味注入式的教学方式,有效地激发学生的学习兴趣,增强学生对学习的主观能动性,进一步培养学生解决问题的能力,从而达到培养创新型人才的教育目标。
关键词:数学建模;大学数学;学习兴趣
大学数学是大学本科阶段必修的重要的基础理论课程,对于非数学专业来说,大学数学主要是指高等数学、线性代数和概率论三门课程,当然也包括其他一些工程数学如复变函数、数学物理方程以及计算方法等。长期以来,大学数学的教学一直面临着内容多、负担重、枯燥泛味、学生积极性较低等问题。如今我国的高等教育已变成大众化教育,高校生源质量明显下降,大学生学习的自觉性、积极性以及努力程度等均在下降,这在一般的本科院校中尤为突出。这也使得大学数学的不及格率急剧上升,有的专业有些班级的不及格率高达50%,20-30%的不及格率更是普遍,补考重修的大军可谓浩浩荡荡,有的甚至毕业了还要回校补考高等数学。教师也是叫苦不迭,一次又一次出题改卷录分数,工作量一下子就增大不少。很多学生表示自己不是不想学,是没兴趣学,觉得学了又没什么用,而学习过程又是枯燥的,于是便不想学了。偶然看到一位工科学生学习数学的感言:数学像是一个无底洞,小学时老师给了我一盏煤油灯,领着我进去;中学时煤油灯换成了一盏桐油灯,老师赶着我自己摸索进去;上了大学,我怀抱着工程师、设计师的梦想,满以为可以领略到数学的用武之地,然而老师告诉我,你现在学的还是基础,要用没到时候呢;每天似音乐符的积分号充塞我的头脑,我没能谱写好美妙动听的交响曲,却渐渐变成了老油条,梦想就此也远去了。这虽然只是大学生的只言片语,但从中也能窥视到当代大学生的内心世界。他们渴望学好数学,将数学应用到专业技术中,使他们成为专业技术能手。但是大学数学的教学不能满足他们的愿望,使得他们在学习的过程中逐渐失去了学习数学的兴趣,失去了动力和信心。因此,培养大学生学习数学的兴趣至关重要。
一、兴趣在大学数学学习中所起的作用
孔子曰“:知之者不如好之者,好之者不如乐之者”。兴趣可以让人从平淡中发现瑰丽,从困顿中崛起。强烈的兴趣往往可以像聚焦镜一样,将人们的注意力专注于所爱好的事物,吸引人们反复揣摩、钻研和思考,像一盏指明灯引导人们寻找自己的航向。没有兴趣,就会失去动力。只有学生对数学发生浓厚的兴趣,他才会积极主动地去学习它、钻研它并且应用它。只有这样,师生的教学活动才会轻松、愉快,并能够保障良好的教学质量。学习过程中,一旦有了兴趣,很多学生就能够发挥主动性,乐于去思考问题,喜欢提出问题,进而去探究问题的解决方法,也就有了数学思维,有利于培养学生的创新能力。学生是教学过程的主体,只有主体发挥自身主观能动性,教学活动才能有效地完成,教学质量才会提高。现在的大学生多是独生子女,家庭生活条件较优越,个性大都特立独行,缺乏自我约束能力,一遇到挫折就会退缩,做事但凭着自己的喜好和兴趣。对自己感兴趣的事情执着追求,但是不感兴趣的东西,哪怕家长老师天天追着说很重要,他也不会理睬。有些学生及时学期高等数学不及格,问其原因,答曰:不感兴趣,逼着我学也没用。做思想工作的时候,甚至还有学生说:不感兴趣,老师你别管我。然后依旧我行我素,其他数学课程的学习也可想而知。任凭辅导员、任课教师以及家长苦口婆心,学生本身没有兴趣,说什么也是无用。学生学习数学的兴趣的激发和培养离不开教师的引导,尤其是在大学数学学习上。很多学生对大学数学的作用认识不清,觉得学来无用,何必费力去学。此外,大学数学中复杂枯燥的符号运算、繁琐的公式推导、一些概念的高度抽象性以及证明过程的严密逻辑性也令学生对大学数学望而生畏,从而影响了学习的兴趣。这也给广大的大学数学教师带来了严峻的考验及挑战,如何在教学过程中激发和培养学生学习数学的兴趣,如何让学生对大学数学有一个正确的认识,使之能够主动去学,乐于去学,并能够乐在其中,这值得好好思考和探究。
二、数学建模可激发大学生学习数学的兴趣
现今,数学建模竞赛风靡全球高校,数学建模的作用已被大家所认同,特别是对培养学生学习数学的兴趣起到重要作用。很多高校的数学教学也逐渐引入数学建模思想进行教学改革创新,激发学生学习数学的兴趣,培养学生自主解决问题的能力以及创新能力[1-3]。数学建模是用数学语言来描述和解决实际问题的过程,将实际问题抽象成为数学问题,并应用合理的数学方法进行求解,进而转化为对现实问题的求解、诠释和预测等[4,5]。在数学建模培训过程中,发现有的学生为了解决一个问题,可以抱着数学类参考书津津有味地看上大半天也不会走神。但是,对比高等数学课堂,哪怕是最认真的学生,偶尔还是会走神,不是还会有厌烦的情绪。探究其原因,无非还是一个兴趣问题。建模过程,针对一般是实际问题,学生对这个问题感兴趣,就会有探究到底的心理,进而就有原动力去寻找解决问题的思路和方法。而课堂学习,大多因为课时原因,教师无法在有限的时间里去详细介绍每一个知识点的实际应用背景。更确切的说很难与学生所学专业结合,给出数学概念的实际应用背景以及概念的来由,这必将导致课堂教学枯燥乏味,学生自然没有欲望去学,更不愿主动去学。在课堂教学中,如果能够充分结合数学建模的思想,将其融入课堂,给枯燥乏味的数学公式、推理过程赋予生命般的活力,特别是能够结合学生专业背景进行教学,必定能够激发学生的学习数学的兴趣,进而主动探究知识,教师也能够避免传统教学中一味注入式“概念———定理———证明———例题———作业———考试”的教学方式。学生能够从学习中寻找乐趣,获得成就感,教师也能够在教学中与学生共同成长进步。数学建模不仅仅培养学生综合应用数学知识及方法分析、解决问题的能力,也培养了学生的团队协作能力、交流能力以及语言和文字表达能力,同时也培养了学生的竞争意识。建模时,学生会对实际问题感兴趣,当把问题抽象成数学模型时,会有一定的成就感,而成就感会引发更浓的兴趣,使得学生在学习过程中能够充分享受乐趣,自信心也得到加强。
三、数学建模融入教学中的改革思路
数学建模犹如一道数学知识通向实际问题的桥梁,使学生的数学知识与应用能力能够有效的结合起来。学生参与数学建模活动,感受数学的生命力和魅力,从而激发他们学习数学的兴趣,有助于其创新能力的培养。为了将数学建模的思想融入大学数学教学,这里给出几点改革思路:
(一)大学数学课程每部分内容中安排相关的数学建模教学内容
相关的数学建模教学内容可以是案例式,也可以是实际问题,要充分考虑学生专业背景。教师课前把问题告知学生,课上通过启发和组织学生讨论,引导学生将所学知识运用到解决问题中。例如教学利用积分求不规则物体的体积或质量时,可以在课前给出具体物件(可以根据不同专业来选择具体物件),让学生课后自己去寻找解决办法。教学时可先组织讨论学生想出解决办法,活跃课堂气氛的同时能够激发学生学习兴趣。
(二)数学建模教学内容引入大学数学教材
目前大部分教材基本上以概念、定理、推证、例题、习题的逻辑顺序出现,给出的应用背景多数限于物理应用,同样缺乏活力和生命力。很多学生往往在预习时,看教材的应用背景时就已经对学习这部分内容失去兴趣,有了这样的心理暗示,课堂上教师很难将其注意力吸引住。所以,大学数学的教材编写上,必须重视内容的更新和拓展,引入一些建模实例,通过实例激发学习兴趣,进而增强学生对数学重要性的认识。
(三)根据学生实际情况,分层次进行教学活动
数学基础课程一般都是大班级授课,教学过程中教师不可能监控到每个学生的学习状态。通过数学建模活动,可以有效地考查学生的学习状态,有助于区分学生的学习层次,教师才能真正做到有的放矢,帮助学生发掘自身潜力,培养学生学习成就感,激发学生学习兴趣。
四、结束语
将数学建模思想融入大学数学教学中,给从事数学课程教学的教师带来了新的挑战。尽管面临较大的压力,但如果能够积极发挥自身作用进行改革,在教学过程中逐渐融入数学建模思想,必定会使得我们的大学数学教学工作做得更好,学生更有兴趣学习数学。
作者:韦慧 单位:安徽理工大学数学系
数学建模论文:分析教学数学建模论文
1将数学建模思想融入数学分析教学的意义
在过去常规的数学分析教学课程只要以公式推导、定理证明为主要教学内容,却对数学分析的应用思想以及融合贯通少有讲授。这就导致学生们虽熟练掌握这门课程的理论知识,但是学生们将掌握的知识应用于实际问题的解决过程中却存在效果不满意,或无法学以致用。因此学生会形成数学的掌握仅仅是为了考试而学习,无现实意义等错误思想。若在数学分析的教学过程中融合数学建模方式进行教学,利用数学建模思想来熏陶学生,通过通过将数学的意义思想完整的进行介绍,将数学概念与公式的实际源头与应用情况进行宣教,使学生充分了解数学与实际生活之间存在的密切关系。首先,通过利用数学建模思想融入数学分析的教学课程中可有效促进学生数学的行使效果。适当配合数学模型方式糅合数学分析的理论知识与实际方法,可帮助学生迅速理解数学分析的内容概念,掌握理论知识与实践能力。其次,利用数学建模思想促进学生的数学学习兴趣,以改善在教学过程中因理论性复杂、定义生涩难懂导致学生学习积极性不高以及枯燥乏味等数学教学问题。因此,在数学分析的教学中融合数学建模教学方式具有巨大的应用价值。
2数学建模思想在概念教学中的渗透
按照大范围来讲,数学分析的内容中包含了函数、导数、积分等数学概念,这类概念均属于实际事物数量表现或空间形式概括而来的数学模型。在数学教学过程我们可以根据概念的具体事物原型或平时生活中易见到的事物进行引用,让学生了解到理论上的概念性知识不仅仅存在与课本中,更与日常生活中具有紧密的关系。对此,老师在教学相关概念知识时,好联系实际,创造合适的学习环境,为学生在学习过程中通过适当的观察、想象、研究、验证等方式来主导学生的教学活动。例如微积分教学中,刚开始感觉其较为抽象笼统,不过仔细观察其形成过程会发现其实具有较多的基础原型,通过旋转体体积、曲边梯形面积等具体问题紧密联系,应用微元法求解即可得出积分这个较为抽象的概念。通过适当的取材,建立概念模型,引导学生对教学的积极兴趣,可比简单的利用数学符号来描述抽象概念要具体生动得多。
3数学建模思想在定理证明中的渗透
在数学分析课程中存在较多的定理,而怎样在教学过程中让学生熟练掌握带来并应用则成为目前数学分析教学中较为困难的。其实在书本中大部分定理是有着具体的意义,不过在通过笼统的刻印组书本中后导致定理创造者实际想法无法清晰表现在其中,致使学生在接受定理教学中感到茫然。对此,在定理教学过程老师应结合该定理知识的源指出处以及历史渊源,从而促进学生的求知欲取进一步了解该定理的意义与作用。同时应用建模思想将定理作为模型的一类,利用前期设计的特定问题引导学生逐步发现定理定论,通过这种方式让学生在吸收定理知识的过程中体验到研究探索发现的重要性,为学生树立的创新观念。
4数学建模思想在课题中的渗透
数学分析教学中需要讲解大量课题,通过对具有代表性的课题进行讲解以达到促进应用知识解题的能力并巩固。但是在过去传统的课题讲解中,与应用相关的问题教学较少,仅有的少部分也是条件满足解答肯定的情况,这不利于学生创新性思维培养。因此,在课题讲解中尽量选取以具体应用的问题作为例题,设置相应的问题来引导学生发现其中存在的错误,并结合自身知识来解决其错误,通过建立模型的方式来进一步巩固自身知识。
5数学建模思想在考试命题中的渗透
目前数学分析的教学考试中试题的设置普遍以书本课题为主,又或者直接将某些例题设置成选择或填空的答题方式,却缺少开放型的试题或考察学生是否掌握数学知识应用解决实际问题的试题。可能目前这种考试设题方式对老师的阅卷提供了便利,但是往往也造成部分学生在课本考试中分数较高,但在解决实际具体问题往往存在不足,对学生思维中形成了为考试而学习,忽略了对数学概念的理解,导致具体问题解决能力不足。对此,可利用数学建模思维去设置一部分开放型试题,利于学生在解题过程中将所学的数学建模方式应用与具体中,以此来观察学生的数学素质以及知识水平并适当修改教学方案。又或者通过命题论文的方式来了解学生综合水平,学生通过将自身所学知识进行适当的总结,探讨自身学习体会,来加强学生对相关知识的进一步理解,深化了数学建模思想的渗透。
6结语
在数学分析教学的各方面融入数学建模思想,可更好的培养学生学习积极性,掌握数学分析的相关知识,树立数学应用的创新观念与能力,在教学过程中确保知识的严谨性,注重数学分析的实用性,以保障教学质量的稳步发展。
作者:陈彬 单位:南京大学数学系
数学建模论文:教学策略数学建模论文
1数学建模的概念
数学建模不仅可以让学生能够运用所学数学知识解释生活难题,而且可以通过实际生活的案例来提高学生接受数学学习的兴趣,从而提高数学教学效果.因此,数学建模教学应被大力推广.
2高中数学建模教学出现的问题
目前许多高中数学课本中将有关数学建模的内容都分散于各个教学单元中,使其内容失去了连贯性,学生不能灵活运用数学知识,大大降低了数学建模教学的优势和目的.另外许多高中生在学习数学建模的过程中存在或多或少的障碍.高中生由于地区或者其他原因,对于现实问题的洞察能力和数据的处理能力均有限,导致数学建模教学不能顺利地进行.另外,许多教师对于建模的教育理念存在偏差,不重视数学建模,因此,教学效果也就可想而知.
3加强高中数学建模教学的对策
1)重视各章前问题教学
高中数学课本在每章前面均有一个关于本章教学内容的实际问题,而通过重视各章前问题教学,可以引发学生对于数学建模的兴趣,从而使得学生明白数学建模教学的意义.例如,某公园有个大型摩天轮,该摩天轮可以吊起78个客舱,一次能运载350个乘客.坐该摩天轮从开始到需要耗时30min,转速为5m•min-1.问,乘客乘坐该摩天轮时,从摩天轮的低点开始计时,他所处的高度h与所坐的时间t的关系,并用数学模型解释.这个章前问题就是典型的运用数学模型来解决生活中的问题,因此,高中数学教学应加强章前问题教学,培养学生重视数学建模的意识.
2)加强数学开放题教学
高中数学教师可以通过加强数学开放题的教学提高数学建模教学效果.因为数学开放题可以锻炼学生开放性思维和创造性思维.开放题可以接近生活中的现实问题,例如,随着科技的发展和能源的消耗过剩,现今市场上出现3种汽车类型,一是传统的以汽油为原料的汽车,二是以蓄电池为动力的车,三是用天然气作为原料的汽车.通过对这3种类型的车使用原料成本进行分析比较,并建立数学模型,分析汽油价格的变化对这3种车所占市场份额的影响.这种开放性的试题,没有具体的答案,只要学生所建的数学模型能够将问题说得通,都算是成功的数学建模.
3)注重案例式教学
注重案例式教学是值得教师学习的提高教学效果最有效的方法.通过分析典型的数学案例理解建模的优势,提高数学建模的教学效率.例如,甲、乙2人相约到某地相遇,该地距离出发点为20km,他们约定一个人跑步,而另外一个人步行,当跑步者到达某个地方后改为步行,接着步行的人换成跑步,再步行,如此反复转换,已知跑步的速度是10km•h-1,步行的速度是5km•h-1,问至少花多少时间2人都可以到达目的地.这种相遇问题在数学教学中应该经常见到,这是一种典型的案例题,通过典型案例的数学建模教学,不仅可以让学生对问题更加印象深刻,而且可以使得学生更容易接受数学建模教学的方式,从而提高数学建模教学的效果.
4)加强高中数学建模的师资力量
鉴于高中数学建模教学的优势,各高中应加强数学建模教师的师资力量,加强对数学建模教师的培训,要让教师加深数学建模教学的意识,理解数学建模的实质,同时注意提高自身的专业知识和教学的水平,有效带领学生参加数学建模活动.高中数学建模教学提升了学生解决实际生活的能力和创新思维的能力,因此,为了能够顺利开展数学建模教学,高中数学教师应运用多种教学方法激发学生的学习兴趣,同时,教师还应提高自身的数学建模理论和思维,钻研如何将数学知识应用于解决生活中的难题.
作者:李振友 单位:山东省邹城市实验中学
数学建模论文:高职院校学生数学建模论文
一、注重培养学生对事物的认识能力
(1)培养同学对复杂现象的洞察力。
数学建模中所涉及的大多数问题一般具有一定复杂性。要对具体问题建立数学模型,反映问题的实质,就需要抓住问题的本质,建立各种因素的内在联系,并通过数学工具表达出来。例如,在公交车调度问题(2001年B题)中,需要照顾乘客和公交公司双方面的利益,这是一个多目标规划问题,大部分参赛队都把题目中的调度要求“候车时间不超过10分钟,车辆满载率在50%至120%之间”作为硬约束条件,而从出题人、评卷专家和实际情况来看,这些要求都可以放宽,只要抓住问题的本质,转化成单目标规划问题,并给出如何确定调度方案,以及判断方案的优劣的标准,就是一份不错的答案。培养同学对复杂现象的洞察力的有效方法除了经验的传授外,更重要是通过练习,让同学们在实践中主动培养对复杂现象的洞察力。包括研讨班,课堂讨论等方式。
(2)培养同学抽象的分析能力。
在数学建模的实践中,能否取得的成功,关键是要有将实际问题抽象成数学模型的能力。而这一能力的获得也是需要通过大量的实践,使同学们在数学模型的实践中提高抽象的分析能力。在DVD在线租赁方案设计(2005B题)中,要确定商家至少要购买多少光盘,还要使得顾客满意度较大,而这两个问题是互相矛盾的。这就要求参赛者必须先确定一个量,在此基础上求出最少购买量或较大满意度。另外,如果每一位顾客都只能从自己事先预定订的光盘中租借,又要按题目要求“每次皆三盘”,则问题本身可能无解。事实上,在建立了整数规划模型以后,即使去掉上述及时个约束条件,由于目标函数是“使得顾客满意度较大”,在模型的计算过程中也会尽可能考虑到这一约束,因为很显然,从没有预订的光盘中租借是不可能使满意度较大的。
(3)培养建立模型的想象力。
深入事物本质,寻找其内在联系不仅需要逻辑思维,更需要形象思维,而形象思维通过形象概括来能动地反应事物的本质。美国心理学家Vinacke特别提出了想象力对思维,特别对问题解决的作用,因而想象力构成对问题研究的实在要素,是成功的关键。在数学建模中培养学生的想象力是参加整个数学建模活动的重要环节。也是同学们在建立数学模型中发挥主观能动性,体验探索的乐趣,从中体会创新带来的收获。
二、注重培养学生综合运用知识的能力
注重培养学生综合运用所学的知识在数学建模竞赛实践也是十分重要的,包括以下三个主要环节。
(1)综合运用物理学,力学,工程和经济社会学中的相关知识,原理和方法对现实世界的特定对象所提出的实际问题,研究分析其内在机理,寻找反映事物本质的内在规律,并综合运用数学工具加以描述和刻画,即建立与原型问题对应的数学模型。
(2)综合运用计算机技术和数学方法对已建立的数学模型应用数学软件编程进行数值计算,实现模型求解,并以此来对模型进行检验。
(3)运用已检验的数学模型回答所提出的实际问题对所研究的特定对象进行结构分析,预测等等。
三、注重培养学生的科研能力
学生参与数学模型的活动,运用数学工具分析和解决实际问题是提高数学教学的有效手段。对一个数学模型中所提出的原型问题,怎样引导学生一步一步地接近问题的本质,寻找恰当的方法,从最原始工作开始,分析问题,查阅资料,提出各种方案,发现数学模型的不足和问题,从模型到数据,再从数据到模型,在不断地反复过程中,使学生体验到探索问题,运用知识进行研究的整个过程,这对学生未来的发展都是极有益的,以数学模型的教学为平台,对学生进行科研的基本训练,也是数学模型能力培养的重要方面。
四、结语
综上所述,学生参与数学模型活动的意义是广泛的,如果教师在整个活动中有意识地在上述各个方面对学生的能力加以培养,与高校的高等数学教学有机的结合,就能使我们在教学手段上有所创新,使整个高等数学教学更加有效。
作者:吴晓云 赛闹尔再 张慧玲 单位:巴音郭楞职业技术学院
数学建模论文:数学教改研究数学建模论文
一、数学建模融入数学课程是高职数学课改的有效切入点
近年来,随着全国大学生数学建模竞赛的深入开展,数学建模教学和竞赛培训在全国高职院校如雨后春笋般蓬勃兴起,并且有力的推动了高等数学课程教学改革。同时,许多院校的实践经验证明,在学时有限的情况下把数学建模的思想方法渗透到高等数学课程中来是高职数学课改的有效途径。
1数学建模融入数学课程能够培养和提高学生的学习兴趣
学习兴趣对学生的学习效果有着决定性的作用,只有让学生培养对数学的学习兴趣,才能从根本上解决高职数学教学中存在的问题。数学建模是一个将实际问题用数学的语言、方法,去近似刻画、建立相应模型并加以解决的过程。数学建模的过程符合学生认知问题、处理问题、反思问题的全过程,能极大提高学生的学习主动性和数学的趣味性,学生能够从实践中体会到数学的作用,从而增加对数学学习的兴趣。
2数学建模思想融入数学课程能够加快高职学校素质教育的步伐
高等职业教育的培养目标是培养高素质技能型人才。要求既要能动脑又要能动手。因此高职教育的培养目标决定了数学教学应该以培养技能型人才为目的,理论知识服务于实际应用。高职学生毕业后将成为国家各行业的生力军,如果他们能够运用已有的数学知识与方法不断革新工艺、改进方法、提高效率、增强产品竞争力,必将会为我国的建设与发展做出巨大贡献。清华大学姜启源教授曾说:相对于本科院校而言,以培养技能型、应用型人才为目标的高职院校,将数学建模作为数学教学的重要组成部分,更有其必要性和可行性。
3数学建模思想融入数学课程能够提升学生各方面的能力
学生在学习过程中,通过对数学建模这种科学的前沿的教学方式的反复实践,能够有效地提高自己的各方面能力。由于建模对计算机的应用较多,所以能够加强学生对计算机功能的掌握,数学建模需要将数学与其他知识相结合,需要极大的信息量和知识面,计算机能有效的扩大学生的知识面,使得学生能够更科学的进行数学建模;同时,数学建模能培养学生的团队意识和协作能力,学生也能通过建模来找到自己在团队的合适位置。
二、数学建模教学实践及学生创新能力的提高
近年来,我院在把数学建模的思想方法融入高等数学课程方面进行了深入的探索与实践,许多教学与实践相结合的教学方法与手段以及新颖的教学内容正逐步进入高等数学课堂,对提高学生学习数学、应用数学的积极性,提高学生分析问题、解决问题的能力起到了非常大的作用。
1融入数学建模思想精心设计教学内容
按照“知识导入、案例展开、由浅入深、拓展思考”的思路精心设计课堂教学内容。由贴近生活.与实际联系密切的趣味问题导入,在教学中创设问题情境,发散学生的思维,吸引学生积极动脑,主动地参与学习。同时鼓励学生用已有的知识和经验去推理、观察、比较、分析、综合、概括、归纳等寻求解决问题的方法,实现快乐学习的理念。在建模案例的挑选上,尽量从问题背景简单,容易入手的题目开始,让学生了解建模的一般过程,然后再由浅入深。每个案例之后设置拓展思考,培养探索精神,通过典型案例分析基本知识讲解触类旁通举一反三,归纳总结掌握一类问题的处理方法的过程,达到应用数学能力的提升。实施情景案例、项目驱动、任务导向教学,在建立实际问题的模型过程中,穿插介绍必要的理论知识点,让学生带着问题学知识,并在实践中运用知识、提升能力,理论教学与实践教学相互渗透。
2灵活多样的教学方法与现代教学手段相结合
在数学建模教学中主要采用案例驱动教学法,以基础案例引入相关知识,解决问题过程中介绍相应建模方法及软件使用技能,有效的提高学生的学习兴趣。同时,在案例分析时教师与学生互换角色交流分析思路,角色互换法使学生在角色体验中既能加深对建模方法的理解,又能提高相应的逻辑思维与表达能力。另外,采用项目研究过程法,学生自行组队,通过项目申报、研究、解题汇报并提交论文等环节,培养学生的创新与动手能力。在教学手段方面,充分运用多媒体教学设备,如电子课件、数学软件演示、计算机辅助教学、案例视频材料等,充分展示丰富的教学内容,化抽象为直观,化复杂计算为简单程序求解。有效利用网络资源,建立师生之间密切联系,为学生自主学习提供便利条件,提高学习效率。
3形成“课内、课外”互动的良好氛围,“教学、实践、竞赛”一体化的有效机制
根据高职院校数学课时较少学生基础较差的特点,设计课内课外互动的教学模式,课内教学环节系统培养学生建模思想方法,课外环节为学生创建进行建模实践的平台,两种教学模式结合实现综合能力的提高。融“教、学、做”为一体,理论与实践教学相互渗透。以建模课程推动建模竞赛,以建模竞赛带动校园数学文化,实现学生综合素养的提高。2010年以来,《数学建模与数学试验》作为公共选修课程,面向全院所有专业学生开设,每学期的选修人数均在200人以上,大大拓宽了学生的知识面,提高了学生数学建模的能力。由数学建模爱好者组成的院数学建模协会,以“基于学术、用于生活”为主要目标,以“导师指点、同学互促”为活动形式,着力培养学生创新精神和创新能力。活跃校园文化气息,促进学生发展。
4数学实验室初具规模,数学问题软件解决
为培养学生的创新能力,加强实践性教学,学院创建了数学建模实验室。数学建模实验室有32台计算机,实验室面积100余平方米,投入经费约20余万元。每台机器都安装了与数学建模有关的Matlab、Lingo、SPSS等软件,供学生上机实践。另外,学院创新实验室和大型多媒体教室可供数学建模培训和选修课上课使用。高等数学课程中每学期专门拿出18个实验学时,学习利用Matlab等数学软件解决数学问题,学生学习数学积极性大大提高。
5数学建模成绩与学生创新能力稳步提高
数学建模教学方面的探索反过来又推动数学课程内容和课程体系改革,为培养动手能力强、创新型人才做出贡献。高职数学课程改革,使学生掌握课程的基本概念、基本理论和基本方法,并能够逐步运用所学知识去分析和解决实际问题,并结合上机试验等实践环节,培养学生用计算机软件解决问题的能力,激发学生对数学建模的兴趣,近年来与数学课程相关的多项教改项目得以立项,《高职数学系列课程》被评为为学院精品课程群。近三年,学生学习数学的兴趣逐渐高涨,课堂教学效率提高,选修课人数多,效果好,建模协会活动丰富多彩,学生的数学素养明显提高,成功申请十余项专利。2013年4月莱芜职业技术学院数学建模协会被评为山东省大学生科技社团。2014年10月由部分老师和学生共同参与制作多媒体课件《基于数学建模的MATLAB入门及在四杆机构中的应用》,在教育部课件大赛中获全国二等奖。虽然起步较晚,自从2010年我院首次参加全国大学生数模竞赛以来,累计培训数模爱好者在800人以上,组织校内数学建模竞赛4次,经过校内选拔,每年派出4至5队参加全国大学生数学建模竞赛,累计报名21队,共获得国家二等奖1项,山东赛区一等奖10项,二等奖5项,三等奖2项,成功参赛奖3项,获奖率,获奖成绩逐年稳步提高。竞赛成绩充分展现了我院学生的专业技能素质和教师的教学成果,培养了学生的团队意识,提高了学生的创新能力和分析、解决问题的能力,提高了学生的综合素质,调动了广大学生学习知识、掌握技能的积极性,使学生对数学课程产生了浓厚兴趣,培养了良好的学风。
作者:韩登利 单位:莱芜职业技术学院机电工程系
数学建模论文:数学建模概率论数理统计论文
一、将数学建模的基本思想融入到概率论以及数学统计的教学课堂上
1.教学课堂中注重实例的讲解
概率论以及数学统计这门课程具有较强的实践性,因此,在教学课程上,教师需要在教学的基本内容中加入更多的实例教学,帮助学生理解这门学科的基本知识点,加深学生对基本理论的记忆。例如:在讲概率学中最基本的加法公式时,加入数学建模的基本思想,利用俗语“三个臭皮匠”的相关内容作为教学实例。俗语中有三个臭皮匠的想法能够比的上一个诸葛亮,意思就是说多个人共同合作的效果比较大,可以将这种实际中的问题引入到数学概率论的教学中,从科学的概率论中证明这种想法是否正确。首先需要根据具体的问题建立相应的数学模型,想要证明三个臭皮匠能否胜过诸葛亮,这个问题主要是讨论多个人与一个人在解决问题的能力上是否存在较大的差别,在概率论中计算解决问题的概率。用c表示问题中诸葛亮解决问题的能力,ai表示其中(ii=1,2,3)个臭皮匠解决问题的能力,每一个臭皮匠单独解决问题存在的概率是P(a1)=0.45,P(a2)=0.6,P(a3)=0.45,诸葛亮解决问题存在的概率是P(c)=0.9,事件b表示顺利解决问题,那么诸葛亮顺利解决问题的概率P(b)=P(c)=0.9,三个臭皮匠能够顺利解决问题的概率是P(b)=P(a1)+P(a2)+P(a3)。按照概率论中的基本加法公式得P(b)=P(a1+a2+a3)=P(a1)+P(a2)+P(a3)-P(a1a2)-P(a2a3)-P(a1a3)+P(a1a2a3)解得P(b)=0.901。因此,得出结论三个臭皮匠顺利解决问题存在的概率大于90%,这种概率大于诸葛亮独自顺利解决问题的概率,提出的问题被证实。在解决这一问题过程中,大部分学生都能够在数学建模找到学习的乐趣,在轻松的课堂氛围中学到了基本的概率学知识。这种教学方式更贴近学生的生活,有效的提高了学生学习概率论以及数学统计这一课程的兴趣,培养学生积极主动的学习。
2.课设数学教学的实验课
一般情况下,数学的实验课程都需要结合数学建模的基本思想,将各种数学软件作为教学的平台,模拟相应的实验环境。随着科学技术的不断发展,计算机软件应用到教学中已经越来越普遍,一般概率论以及数学统计中的计算都可以利用先进的计算机软件进行计算。教学中经常使用的教学软件有SPSS以及MABTE等,对于一些数据量非常大的教学案例,比如数据模拟技术等问题,都能够利用各种软件进行的处理。在数学实验的教学课程中,学生能够真实的体会到数学建模的整个过程,提高学生的实际应用能力,促进学生自发的主动探索概率论以及数学统计的相关知识内容。通过专业软件的学习和应用,增强学生实际动手以及解决问题的能力。
3.利用新的教学方法
传统数学说教式的教学方法并不能取得较高的教学效果,这种传统的教学也已经无法满足现代教学的基本要求。在概率论以及数学统计的教学中融入数学建模的基本思想并采用新的教学方法,能够有效的提高课堂教学效果。将讲述教学与课堂讨论相互结合,在讲述基本概念时穿插各种讨论的环节,能够激发学生主动思考。启发式教学法,通过已经掌握的知识对新的知识内容进行启发,引导学生发现问题解决问题,自觉探索新的知识。案例教学法,实践教学证明,这也是在概率论中融入数学建模基本思想最有效的教学方法。在学习新的知识概念时,首先引入适当的教学案例,并且,案例的选择要新颖具有针对性,从浅到深,教学的内容从具体到抽象,对学生起到良好的启发作用。学生在学习的过程中改变了以往被动学习的状态,开始主动探索,案例的教学贴近学生的生活学生更容易接受。这种教学方法加深了学生对概率论相关知识的理解,发散思维,并利用概率论以及数学统计的基本内容解决现实中的实际问题,激发了学生的学习兴趣,同时提高了学生解决实际问题的综合能力。在运用各种新的教学方法时,应该更加注重学生的参与性,只有参与到教学活动中,才能够真正理解知识的内涵。
4.有效的学习方式
对于概率论以及数学统计的相关内容在教学的过程中不能只是照本宣科,而数学建模的基本思想并没有固定不变的模式,需要多种技能的相互结合,综合利用。在实际的教学中,教师不应该一味的参照课本的内容进行教学,而是引导学生学会走出课本自主解决现实中的各种问题,鼓励学生查阅相关的资料背景,提高学生自主学习的能力。在教学前,教师首先补充一些启发式的数学知识,传授教学中新的观念以及新的学习方法,拓展学生的知识面。在进行课后的习题练习时,教师需要适当的引入一部分条件并不充分的问题,改变以往课后训练的模式,注重培养学生自己动手,自己思考,在得到基本数据后,建立数学模型的能力。还可以在教学中加入专题讨论的内容,鼓励学生能够勇敢的表达自己的想法和见解,促进学生之间的讨论和交流。改变以往教师传授知识,学生被动接受的学习方式,学会自主学习,自主探究,勇于提出自己的看法并通过理论知识的学习验证自己的想法。有效的学习方式能够调动学生学习的积极性,加深对知识的理解。
5.将数学建模的基本思想融入课后习题中
课后作业的练习是巩固课堂所学知识的重要环节,也是教学内容中不可忽视的过程。概率论统计课程内容具有较强的实用性,针对这一特点,在教学中组织学生更多的参与各种社会实践活动,重在实际应用所学的知识。对于课后习题的布置,可以将数学建模的思想融入其中,并让这种思想真正的解决现实中的各种问题,在实践中学会应用,不仅能够巩固课堂学到的理论知识,还能够提高学生的实践能力。例如:课后的习题可以布置为测量男女同学的身高,并用概率统计学的相关知识分析身高存在的各种差异,或者是分析中午不同时间段食堂的拥挤程度,根据实际情况提出解决方案,或者是分析某种水果具体的销售情况与季节变化存在的内在关系等。在解决课后习题时,学生可以进行分组,利用团队的合作共同完成作业的任务,通过实践活动完成训练。在学生完成作业的过程中,不仅领会到了数学建模的基本思想,还能够将概率统计的相关知识应用到实际的问题中,并通过科学的统计和分析解决实际问题,培养了学生自主探究以及实际操作的综合能力。
二、总结
综上所述,将数学建模的基本思想融入到概率统计教学中,有效的提高了学生学习数学的兴趣,有利于培养学生利用所学的课本知识解决现实问题的能力。随着信息时代的不断发展,随机想象的相关理论知识逐渐被广泛应用,概率论以及数学统计课程的学习也变得越来越实用,在概率统计中加入数学建模的基本思想,让学生充分体会到概率统计具有的实用性,并加深对基本概念的理解和记忆。随着教学内容的不断改革,这种教学方式也在实践中不断的完善,将概率统计的教学内容与实际生活相互联系,培养学生解决问题的能力。
作者:都琳单位:西北工业大学
数学建模论文:数学建模能力培养论文
一高职院校学生应具备的基本就业能力
随着高职教育改革的不断深化,高职院校毕业生的就业能力和竞争力有所提高,就业状况不断改善,但毕业生就业形势仍然十分严峻。这固然有节节攀升的毕业生数、毕业生自身就业观念、供需结构失衡等方面的问题,但毕业生综合素质不够高、就业能力不够强等方面的问题依然突出。就业能力是指学生在校期间通过知识学习和综合素质开发而获得的能够实现就业理想,满足社会需要,保持工作及晋升和继续发展的内在素质和才能,是一种与职业相关的综合能力。“职业素养”、“专业知识与技能”、“学习能力”、“实践能力”、“社会适应能力”、“创新能力”、“与人交往能力”、“规划与应聘能力”等,是高职院校学生应具备的基本就业能力。对于高职院校毕业生,用人单位更看重其“专业技能”、“实际操作能力”、“学习能力”、“敬业精神”“、沟通协调能力”、“创新能力”等方面的能力素质。而“学习能力”、“运用知识解决问题能力”、“沟通协调能力”、“创新能力”这些基本就业能力是高职院校学生比较欠缺的素质。
二数学建模对培养学生就业能力的作用
笔者在指导学生参加全国大学生数学建模竞赛的过程中,体会到数学建模活动对高职院校的学生的综合素质和就业能力的提升起着十分重要的作用,有利于高职教育人才培养目标的实现。
1提升学生自主学习的能力
数学建模竞赛赛题所涉及的知识面较广,甚至有许多是学生未曾涉及过的领域(如,2012年赛题中的C题:“脑卒中发病环境因素分析及干预”与医学领域有关),学生仅凭已有的知识是难以甚至不能完成竞赛,这就要求学生不仅需要复习好已经学过的知识,还必须积极、主动去学习新知识,扩大知识面,如,数学软件的使用、论文写作方法、不包括在高职人才培养方案中的一些数学内容(如数值计算等)、查找相关文献资料并从大量文献中吸取所需知识的技巧等知识,学生都须通过自主学习的途径来掌握。这个过程有助于学生自主学习能力的提升。
2提升学生运用知识解决问题的能力
数学建模是一个将错综复杂的实际问题简化、抽象为合理的数学结构的过程。在建模过程中,就是要针对生产或生活中的实际问题,通过观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,结合数学及其他专业知识的理论和方法去分析、建立起反映实际问题的数量关系。这个过程就是运用所学的数学知识和其他专业知识的过程。数学建模竞赛题涉及的数据量往往大且复杂,求解、运算过程十分繁琐,手工计算很难甚至无法得到结果,需要使用计算机来辅助解决问题,例如,常使用MATLAB等数学软件进行模型初建、模型合理性分析、模型改进等;使用SPSS等数理统计类软件,完成数据处理、图形变换和问题求解等工作,这是个运用计算机知识的过程。可见,数学建模能培养学生运用数学及其他专业知识、计算机知识等解决实际问题的能力,有利于拓宽学生的就业技能。
3提升学生分析问题和创造性解决问题的能力
培养创新能力数学建模赛题来自于实际问题之中,有极强的实际应用背景,而对竞赛选手完成的答卷(论文)的评价一般没有标准答案,评价时主要是看对问题所做假设的合理性、建模的创造性、结论的正确性和文字表述的清晰程度,评审者更青睐有独特创意的论文。这就要求参赛学生充分发挥想像力、创造力,在通过分析、讨论,迅速洞察问题的实质和特征之后,做出合理的假设,并综合运用数学知识和其他相关知识,创造性地确定或建立数学模型。可见,数学建模过程是个提升学生的分析问题能力,创造性解决问题的能力的过程,具有培养学生创新能力的作用。
4提升学生的团结协作能力
数学建模竞赛不同于一般竞赛,单独一个队员是无法完成竞赛的,必须通过团队三队员共同的努力,才能在72个小时内完成论文,交上答卷。这要求在竞赛的过程中,需要根据队员的特点,进行分工合作,发挥各自的长处,发挥团队的整体综合实力。在团队中,由有较强组织协调能力的队员来负责协调三人的关系,安排工作流程和工作任务;由有较强写作能力的队员来保障写出较流畅的论文;由有较强计算机应用能力的队员来使用数学软件,负责建立、检验数学模型;竞赛过程中,队员间必须精诚团结、相互配合、集体攻关,才能在竞赛中取胜。因此,数学建模竞赛过程是个提升学生团结协作能力、培养学生的团队精神的过程,这对培养学生适应社会的能力起到积极的作用。
三高职数学建模课程教学改革的思考毋庸置疑
数学建模活动对高职院校的学生的学习能力、运用知识分析和解决实际问题的能力、创新能力、沟通协调能力等就业能力的培养,起着由其他活动所不可替代的重要的作用,对高职教育人才培养目标的实现起着积极的作用。正因如此,全国大学生数学建模竞赛自设立大专组以来,数学建模活动受到越来越多的高职院校的重视,高职院校的数学建模教学与研究不断深入。但笔者了解到,数学建模课的教学在许多高职院校并未得到广泛开展,数学建模教学大都还仅限在对参加数学建模竞赛的这部分学生中进行,只在赛前集中培训,还停留在为竞赛而进行教学培训的层面,忽略了大多数的学生,大多数学生的潜能没有得到挖掘。笔者认为,高职院校应力争改变这一囧态,重视数学建模竞赛活动及数学建模课的教学,扩大数学建模的受益面。高职院校应以数学建模竞赛为契机,以提高全体学生的数学素质与能力作为出发点,以实现人才培养目标为目的,推进数学建模活动与教学改革,将数学建模与数学实验课程以选修或必修课的方式纳入人才培养方案,建设健全的课程计划与教学体系,在尽可能大的范围开展数学建模课的教学和数学建模活动,让尽可能多的学生受益,使广大学生的综合素质、基本就业能力得到提升。
作者:王华单位:江西工业职业技术学院
数学建模论文:数学建模空气污染论文
1浅谈空气污染监测
1.1浅谈空气污染监测的重要意义随着人类社会的不断发展,人们的生活水平不断提高。但是,人类文明的高速发展也带来了众多的弊病,其中最严重的就是对自然环境的破坏。人类对于自然环境的破坏主要集中在对森林、水源、空气上,而其中对人们的生活影响较大、影响面最广的,就要属对空气的破坏。现在的环境空气的质量与人们的生活密切相关,人们的工作、生活、学习都与空气的好坏密切相关。因此,人们需要对身边的空气质量有一个直观的了解。从另一方面讲,随着经济的不断发展,人类对环境的污染越来越严重,人们的环保意识也在不断地增强,都希望目前的生活环境能够得到改善。因此,相关部门有责任、有义务加强空气环境监测工作,为民众提供及时、的空气质量报告,以便于人们对日常生活进行调整,便于相关环部门作出正确地决策。只有做到以上几点,人们的生活环境才会从根本上得到提升。因此。从环境对人工作、生活、学习的影响来看,开展高效、及时的空气污染监测工作是十分必要的。
1.2浅谈现阶段空气污染监测现状我国的空气监测起步较晚,但是发展速度很快,相关部门根据实际情况制定了众多的措施,并取得了良好的成效。环境监测是环境保护的基础性工作,它具有涉及面广、专业性强和投资大等特点。为了能够提高全国空气监测工作的质量于效率,国内环境部门将已经在全国组织监测网络。除此之外,国家也制订了统一的监测原则,在各地方设立了环境监测站,充分发挥了各方面的技术人才的优势,同时引进众多先进设备,大幅提高了我国空气监测的工作的质量。我国的空气质量监测人员应用了科学合理地监测与测试数据的技术,使我国的空气质量监测水平不断提高,逐渐的在世界占据经验丰富地位。在我国广大空气质量监测人员的不断努力的基础上,国家仍在不断地完善环境保护法律,促进我国环境监测工作进一步地展开与加强。现在空气环境监测工作主要是运用各种方法连续或者间断地测定环境空气中污染物的性质、浓度进行分析,并评价空气环境质量的过程。现在国内监测环境主要分为环境空气污染源监测、环境空气质量监测、特定目的应急监测等三种。经过近20年的发展,我国的空气质量监测体系逐渐完备,整体环境监测工作并无漏洞。但是仍然在一些细节工作存在问题,这需要我国的空气质量监测人员不断总结经验,并根据实际工作情况作出合理的调整,争取较大程度的提高我国空气质量监测工作的质量。
1.3加强空气污染监测的办法空气污染监测工作与人们的日常工作、学习息息相关,做好空气污染监测工作才能制定出更为有效地保护环境方案,因此,如何提高我国空气污染监测质量就显得极为重要。为了能够提高污染监测质量,监测人员首先需要对有关空气质量的法规、技术标准、污染测定方法及对测定仪器有着足够的了解。其次,监测人员要规范空气监测手段,在进行监测时一定要秉着科学的态度进行监测工作,确保监测数据和信息的及时、、。另外,空气质量监测人员要掌握进行空气污染建模的步骤,只有科学的空气污染建模,才能使污染检测更加科学、高效。影响空气污染监测的因素有很多,这需要监测人员有着足够的监测工作经验,并在工作中能够积极学习的污染监测案例,总结经验,尽可能的提高监测工作的质量。
2浅谈空气污染建模
2.1进行空气污染建模的意义科学、合理的布点建模工作可以大大地提高空气质量监测工作的效率,得到的监测的数据也会更加,能够更加真实地反映大气的污染状况。进行空气污染建模工作的重点就是合理选择空气污染监测点,它直接影响到监测结果的代表性和精度,合理的检测地点可以减少监测工作的工作量,也可以提高所得数据的精准度。因此,合理的进行空气质量监测、科学的选择检测地点是监测质量保障的重要环节。
2.2进行空气污染建模的注意事项
2.2.1明确监测的目的,在空气污染监测体系中,包括城市环境空气质量的监测和污染源对环境影响的监测,目标不同,它们的监测目的是不同的。这需要城市环境空气质量的监测,主要是为了调查环境空气中污染物的时空分布规律以及对敏感体的暴露情况,进行污染对环境影响的监测,主要是为了掌握污染源的变化趋势以及排放污染物的规律。
2.2.2确定污染源的状况,不同的污染源的建模方法不尽相同,因此,在进行分布建模之前,需要相对调查范围内及附近范围污染源的分布、排出量等因素进行综合的调查及分析,确保空气污染建模工作能够顺利进行。
2.3空气质量监测点的选择合理的进行空气质量检测点的选择是科学的进行空气污染建模的重中之重,进行空气质量检测点的选择主要考虑以下两个方面:其一是监测点的代表性,其二是检测点的数量。从代表性来讲,由于每个监测点所代表的作用是不同的,每一个监测点都有特殊的作用如是代表一定的功能区,代表污染源的影响、代表区域环境背景等,因此,进行监测点的选择要综合考虑当地的空气污染源、污染度、地形地势、监测任务的周期等众多问题。从检测点的数目来讲,如果监测任务是暂时性的,同时需要得到精度较高的监测数据,就需要增大样点的布设范围,对于需要布设众多监测点的情况下,可以选择各种布点方法,例如规格网格法、扇形布点法等。对于长期的定点监测,则不能够设立过多的监测点,这将需要花费大量的资金,因此需要采用按人口和功能区布点法。以上所述的两点因素对监测工作后期的布点建模有较大的影响,还有一些次要因素如地形特征,风力情况等也会对检测工作造成影响,。因此在监测工作中监测人员必须考虑全部因素,才能形成有代表性的布点建模,更好地完成空气污染监测工作。
3结论
空气质量监测的重要性不言而喻,空气质量监测工作在我国的起步较晚,但是在众多科研工作者的共同努力之下,我国的空气监测水平正以前所未有的速度发展,并已经在国际上占有一定的地位。进行空气质量监测是进行空气质量保护工作的重中之重,这也对相关从业人员提出了更高的要求。希望广大的空气质量监测工作人员能够夯实基础,在监测工作中总结经验,积极学习成功的监测案例,努力提高监测工作的水平,为提高我国空气污染监测水平做出贡献。
作者:周浩单位:黑龙江省森林工业总局环境监测站
数学建模论文:数学建模思想概率统计论文
一、教学内容中融入应用题目,从根本上体现数学建模的思想
“概率统计”是一门具有实践性与理论性的重要学科,在不断发展的过程中已经成为数学科目不可或缺的组成部分,并且对此起到重要的作用。在根据课程的相关特点中,利用现代科学进行审视与组织,从而使数学概率统计中融入新鲜元素,在教学内容上引入有趣的应用题目,并且要对科学方法以及相关技术、概率统计知识进行联系。学生在运用“概率统计”知识的基础上们能够建立数学模式,对“概率统计”的知识也会产生兴趣爱好。除此之外,还能促进学生学习习惯的改变,变被动为主动,从根本上提高学习效率。将数学建模的思想积极融入到数学概率统计之中,能够在不打破传统知识的同时,应用案例进行解决。通常情况下,学习通过对案例的学习,能够亲自体验在使用概率统计知识进行数学建模的整个过程,从而加深对概率统计知识的认知与理解,促进学生的学习兴趣与学习习惯。从另一个角度而言,学生在努力学习数学概率知识的同时,能够真正做到“学以致用”,由于数学概率统计是一门重要且复杂的课程,在不影响到教学大纲的情况下利用多种手段进行教学,可以增强学生数学建模的基本能力,从根本上体现数学建模的思想。
二、教学方法得以改进,促进开放式学习方式的形成
(一)改变传统教学模式,探索新型教育方式通过实践证明,传统的教学模式与方式无法适应社会的需要,不能满足现代化的教学要求,因此无法在传统教育模式中取得满意的教学效果。通过将数学建模融入到数学概率统计之中,可以在传统的教学模式中融入新鲜元素,并且结合相关案例,采用启发式教学模式进行教学,实现由浅入深、由难到易,使学生掌握数学概率统计的基本概念以及相关方法,从而对数学学习产生兴趣,变被动学习为主动学习,从根本上加深学生对数学概率统计知识与建模思想的认识与理解。
(二)改变传统学习方式,建立开放型学习形式在数学概率统计的教学内容上,认可教师不可以按照传统的教学模式作为基本模式,不能按照教科书进行照本宣科。众所周知,数学建模是没有固定模式的,在进行数学建模时,要积极利用各种方式、各种技巧,因此,教师在对学生传授相关知识的同时,要积极引导学生如何学习,如何正确的使用建模技巧,并且要让学生对问题发生的背景以及过程进行探索,从根本上提高学生的自主创新能力。除此之外,在对习题进行处理时,学生也不能局限于比较充分的问题上,要不断引用条件不充分的问题进行研究,并且要自己动手对材料、信息,对数据进行分析,建模,并且还要对较为抽象的问题进行具体化,从而增强自身对学习的兴趣与能力。此外,教师要不断开展讨论课,让学生积极发表自己的建议,对问题的见解进行回答,加强与同学之间的交流与学习,从而使学生在开放型学习环境中不断成长。
三、改善教材中的理论学习,加强实践学习
在学生的实践活动之中,为了能够使学生对知识有所了解,那么教材僬侥设计有关学生训练的习题。一般而言,数学概率统计中的教材在教学内容的处理上过于理论化,对习题的次序与搭配却不符合学生的基本特点,甚至有部分教材在设计的习题中难度过高,从而导致学生在学习中遇到困难,对数学概率统计与数学建模失去兴趣。从实际角度而言,数学概率统计作为数学教材,习题是非常重要的,大量的习题可以锻炼学习的逻辑性与思维型,因此,在对数学教材进行编写时要按照由浅入深的基本原则,对练习题进行分门别类的编写,从而满足不同层次与不同对象的基本需求。在现有的数学概率统计习题之中,还需增加比较有趣、与生活有关的系统,并且该类习题要对数学建模的思想进行体现。与此同时,在教材中还应该添加应用性强的概率案件与统计案件,比如像数据的统计、数据的拟合等,让学生能够学会数学建模,在丰富学生课余知识的同时,也在一定程度上提高了学生的应用能力。
四、结语
数学概率统计作为一门实用性较强的学科,在数理统计的题目中,很多学生为了获取良好的成绩,从而对内容死记硬背,这种情况会导致学生的学习兴趣得到下降,无法从根本上促进学生的创新能力与应用能力。与此同时,在数学概率统计中融入数学建模思想,使数学概率的学习具备实践性与理论性。除此之外,在数学概率理论中融入建模思想与建模案例,在一定程度上促进概率统计课程的创新性改革,从根本上促进其发展。
作者:吴玉杰单位:宝鸡文理学院
数学建模论文:数学建模用于生物医学论文
1数学建模的过程
1.1模型准备
首先要了解实际背景,寻找内在规律,形成一个比较清晰的轮廓,提出问题。
1.2模型假设
在明确目的、掌握资料的基础上,抓住问题的本质,舍弃次要因素,对实际问题做出合理的简化假设。
1.3模型建立
在所作的假设条件下,用适当的数学方法去刻画变量之间的关系,得出一个数学结构,即数学模型。原则上,在能够达到预期效果的基础上,选择的数学方法应越简单越好。
1.4模型求解
建模后要对模型进行分析、求解,求解会涉及图解、定理证明及解方程等不同数学方法,有时还需用计算机求数值解。
1.5模型分析、检验、应用模型的结果
应当能解释已存的现象,处理方法应该是的决策和控制方案,所以,对模型的解需要进行分析检验。把求得的数学结果返回到实际问题中去,检验其合理性。如果理论结果符合实际情况,那么就可以用它来指导实践,否则需再重新提出假设、建模、求解,直到模型结果与实际相符,才能进行实际应用。总之,数学建模是一项富有创造性的工作,不可能用一些条条框框的规则规定的十分死板,只要是能够做到兼顾、能抓住问题的本质、最终检验结果合理,都是一个好的数学模型。
2数学建模在生物医学中的应用
2.1DNA序列分类模型
DNA分子是遗传信息存储的基本单位,许多生命科学中的重大问题都依赖于对这种特殊分子的深入了解。因此,关于DNA分子结构与功能的问题,成为二十一世纪最重大的课题之一。DNA序列分类问题是研究DNA分子结构的基础,它常用的方法是聚类分析法。聚类分析是使用数据建模简化数据的一种方法,它将数据分成不同的类或者簇,同一个簇中的数据有很大的同质性,而不同的簇中的数据有很大的相异性。在对DNA序列进行分类时,需首先引入样品变量,比如说单个碱基的丰度、两碱基丰度之比等;然后计算出每条DNA序列的样品变量值,存入到向量中;根据相似度度量原理,计算出所有序列两两之间的Lance与Williams距离,依据距离的远近进行分类。对于模型的好坏,可选取已知分类的DNA序列进行检验,若按照该模型做出的分类与已知分类相符,则模型可取,反之则需调试样本变量,直到取得满意的结果为止。
2.2传染病模型
为了能定量的研究传染病的传播规律,人们建立了各种类型的模型来预测、控制疾病的发生发展,比如说,SI模型(适用于患病后难以治愈)、SIS模型(适用于患病者治愈后不具有免疫力)、SIR模型(适用于患病者治愈后具有终身免疫力)、SIRS模型(适用于患病者治愈后具有暂时免疫力)等。这里以SIR模型为例来做具体地说明。假设不考虑人口的出生、死亡、流动等因素,设总人口始终保持一个常数N,记t时刻的易感染者、已感染者和已恢复者的人数分别为S(t)、i(t)和r(t),则可建立下面的三房室模型:
2.3疗效评价模型
对于同一种疾病,医生根据其经验的不同往往会制定出不同的治疗方案,而每种方案的经济成本不同并且会产生不同程度的副作用,因此合理评价其疗效就有着重要的意义。目前常用的疗效评价模型有多元非线性回归模型、模糊评价模型、灰色关联度模型以及BP神经网络模型等。不论哪种模型都需要先确定评价参数,所谓评价参数指的是以什么来衡量疗效,如在艾滋病疗效评价中,可采用CD4的浓度、HIV的浓度或是CD4与HIV浓度的比值来衡量疗效的好坏。而选取模型时,只要它能把样品的综合疗效客观真实的体现出来,都是有效的。
3结束语
数学建模在生物医学领域的研究中起着重要的作用,特别是较高层次的医学科研往往有赖于合理的数学模型的建立,因此要培养高水平的医学科研人员就必须要加强数学建模在高等医学院校教学中的地位。而就目前来说,高等医学院校对数学教学的重视程度还远远不够,不管是数学教学的内容方面还是课程体系的设置方面都亟待改革。
作者:毛悦悦 崔红新 单位:河南中医学院数学物理学学科
数学建模论文:建模教学下数学建模论文
1明确概念,了解内涵
我们所说的数学模型指的是用精准的数学语言去模拟和描述实际生活中的空间形式、数量关系等,其主要特点就是运用数学语言将客观现象或者事物的特点、主要关系表述出来,使之成为一种具体的数学结构。例如,小学数学问题中“5棵白菜与2棵白菜堆起来是多少棵”、“5只羊与2只羊加在一起是多少只”这样问“一共有多少”的问题有很多,如果每次都一遍遍数太麻烦,于是运用加法数学模型可以解决很多的类似问题。同时,当许多相同的数加在一起时,则可以运用乘法数学模型。又如,“小芳家的储藏室长16分米、宽12分米,如果使用边长为整分米数的正方形瓷砖来铺设储藏室地面(使用瓷砖都是整块的),边长为多少分米的瓷砖合适?其较大边长是几分米?”当小学生面对这样的问题时,也可以运用数学模型来解决。在小学数学建模教学过程中,不少人认为建模是学者、专家的事情,作为小学生来说只能运用模型或者找一个生活原型来加深对数学模型的认识和理解,而无法做到创建数学模型。然而笔者不这么认为,其原因主要有:及时,小学生也有创建数学模型的可能与机会;第二,一旦学生面临实际问题时,可能会出现没有现成的模型来套用的情况,因此学生自己必须通过探索研究,找到适合的数学模型,从而解决问题。此外,在小学数学建模的教学过程中,还需要依据不同阶段的学生特点,对其提出不同的要求,具体来说主要分为以下几个阶段:及时,学生以具体形象的思维主,此时较难掌握建模的方法,因此教师必须逐步培养其建模思维,逐步让学生运用数学知识来解决生活中的实际问题;第二,学生从具体形象思维向抽象逻辑思维过渡,此时教师应让学生充分感受到数学建模的过程,并逐步掌握建模要领,提升其运用建模知识解决实际问题的能力。
2体现过程,循序渐进
及时,准备模型,丰富问题情境,激活已有经验。众所周知,模型的建立离不开具体的现实情境,因此只有对问题的情境有了充分的认识,才能有效建模。因此,作为教师必须要善于开发学生丰富问题背景的能力,充分利用身边的生活素材来创建与实际生活相符的生活情境,从而为创建模型提供丰富的体验。比如在《确定起跑线》一课的教学过程中,某教室先播放了400米赛跑的片段,一一展示了跑道的整体状况、运动员起跑瞬间、比赛过程及的冲刺等情况。看完之后,学生会产生许多疑问:为什么运动员不在同一起跑线上?为什么跑弯道时,内道运动员能够超过外道运动员?然后学生就会提取相关的信息,比如:跑道是有弯道和直道两部分组成,有着相同的终点,外道比内道长,因此起跑线也就不同。此时教师需要做的就是用课件对学生的这些问题及答案一一予以证实。这种运用生活中熟悉的事物充分引入课堂教学内容中,以情境的方式展示给学生的方式,对激活学生现有的生活经验有着较大的帮助,学生有了丰富的背景作依赖,就能更好的解决本课的数学模型问题,即“相邻起跑线的距离差=直径差×π”。
第二,假设模型,把握本质特征,提出合理假设。在小学数学建模的教学过程中,可依据建模的目的及建模对象的特征来观察、分析、抽象、概括实际的数学问题,并用的数学语言来提出合理的假设,这一点很关键。此外,这一过程中还要求学生能够善于分别问题的主次方面,为建模提供正确的方向。
第三,建构模型,合理选择策略,亲历建模过程。在数学建模过程中,策略选择十分利则会对建模过程产生直接的影响。要知道,合适的策略能够帮助学生精准抓住问题的实质,因此作为教师而言,应立足与学生的认知特征和认知起点,充分让学生亲历运用合适策略进行建模的整个过程。
第四,应用模型,回归实际问题,拓展模型应用。大家都知道,建模的目的就是为了更好地对社会现象及自然现象进行描述,为此,建立数学模型的终极目的还是要回归实际问题,从而更好的认识自然,改造自然。此外,在数学建模过程中还应将模型有效的还原成具体或者直观的数学现实,并教会学生利用建模过程中所运用的策略和方法来解决其他问题,只有这样数学建模教学才能走得更远。
3针对学情,把准目标
及时,正确处理数学知识与小学生认知水平的关系。小学阶段,学生的逻辑思维与感性经验有着较为密切的联系,有着明显的形象性。因此,需要密切联系生活实际进行数学建模教学,同时还要符合小学生的心理发展规律及认知特征,并逐步向小学生渗透建模的思想,培养其建模能力。
第二,正确定位建模的教学定位。对此,我们必须认识到,学生在学习数学建模方法的过程是一个不断深化、不断积累的过程。作为教师,应在教学实践中充分结合数学知识,反复对建模方法加以渗透,并帮助学生正确理解题意、解决问题,让学生充分感受建模过程的重要意义。
第三,正确处理建模教学的两面性。具体来说,主要表现为以下两点:一是形象、直观、简洁的一面,其对学生理解、掌握及运用相关的数学知识解决问题有着积极的作用;二是固定、模式化的一面又极大的限制了学生的思维。因此,在数学建模教学过程中,作为教师应时刻注意把握好形象、直观、简洁的一面,尽可能避免解决问题的模式化、固定化。
作者:邵莹单位:赤峰实验小学
数学建模论文:数学教学下数学建模论文
1.数学建模思想的意义
数学建模是指用数学符号将要求从定量角度进行研究分析的实际问题以公式的形式表述出来,再通过进一步计算得到相关结果,用该结果解决实际问题,即通过建立数学模型和求解的整个过程。数学建模是符合学生认知发展过程的,在数学建模中,学生通过对具体的假设、研究,对问题进行深入思考,最终得到结论,再根据实际情况应用到具体问题中。整个过程经历了提出问题、试探问题、提出猜想假设、验证问题及得出结论,整个过程符合学生认知发展的规律。数学建模思想的应用有助于帮助学生提高对数学的重视程度,调动学生学习的主动性,让学生的创造力得到更大的发挥。数学建模的应用对提高教师的教学水平也有所帮助,能够帮助教师更好地对学生进行教学,由此扩大教师在学生中的影响力。教学建模的思想应用还有利于提高学生参加竞赛的综合能力,吸引更多学生参加此类竞赛活动。
2.建模思想对能力的培养
数学建模思想很多是由实际问题的一般思维进行转变才能成为抽象的数学问题的,这要求对数学建模要抓住重点,从具体问题中抽象出问题的本质。因此,建模思想对于培养学生将具体问题经过抽象和简化用数学语言表达的能力具有重要的意义。在高职数学教学中,有很多的数学模型,这些数学模型为帮助学生解决实际问题提供了便利的方法,同时也为创建新的数学模型提供了基础依据。数学建模是将数学理论知识和实际应用联系起来的重要纽带,能够帮助学生不断探索数学中的奥妙,以此提高学生对数学的学习兴趣,提高学生实际应用数学的能力和解决实际问题的能力。运用数学建模解决实际问题的过程中,要根据已知条件的变化,灵活运用新方法和新途径促进学生综合运用能力和创新思维的发展。
3.数学建模在高职数学教学中的应用
3.1利用教学内容渗透数学建模思想在数学教学中,教师要根据教材的情况和学生的实际情况,将两者相联系,让学生能够运用数学建模思想寻找解决问题的办法,解决实际问题。在教学中,教师要向学生灌输数学建模思想,利用具体模型设置和假设情景,把数学知识和实际生活相联系,帮助学生更好地理解数学实际内容,提高知识应用能力。比如在高职数学对定积分概念进行教学时,就可以通过介绍曲边梯形的面积求法,让学生学会分割、求和、取极限的定积分模型思想,然后再进行思考,求物体的体积、质量等。如果学生发现解决这些问题的数学模型的思想基本相同,就会不断拓展新思路解决其他问题。运用这种方式,能够加深学生对概念的理解,拓展学习思维,强化教学效果。在学习定理公式的时候,也可以引进数学建模思想,通过提出问题、假设问题,要求学生计算求值,再根据值的正负情况求出方程式的根,根据根值与区间的关系,引导学生想出零点定理的概念总结。
3.2利用实际问题渗透教学建模思想教师在数学建模教学或布置作业时,要与实际的生活相联系,让学生在实际问题的解决中学会运用建模思想。比如在问题的设置上,可以利用身边熟悉的事物进行提问,让学生从熟悉的环境中找到合适的解决方法。这不仅能够帮助学生更好地理解知识概念,还与学生以后的工作有着紧密的联系。通过在实际问题中渗透教学建模思想,让学生掌握基本的理论知识,提高知识应用能力。此外,教师在课外作业的布置上也要运用数学建模思想解决实际的问题,让学生能够有效利用所学的数学知识分析解决生活中的问题,从而提高知识应用能力,培养出学生的创新思维,提高高职数学建模教学的效率。
3.3提高数学建模思想在教材编写中的应用目前高职数学的教材基本都是按照本科教材进行编排的,重视理论而忽视了应用。高职学生大多数对理论的兴趣不大,对实际应用能够产生一定的兴趣,并较好地进行掌握。所以编写出一本适合高职培养的目标教材是十分重要的,既能满足高职数学建模思想的可持续发展要求,又能充分满足学生的要求,实现高职的培养目标。在高职数学教材的编写上,要重视学生的实际水平,不但要让学生能够学到相应的知识,还要为以后的学习打好基础,培养学生的创造力和进一步深造的能力。教师要把数学建模思想方法运用到教材中,让学生带着问题学习,把讲授的知识点和数学建模思想有机结合,提高学生掌握实际问题的能力,彻底让学生摆脱数学乏味论的问题,能够对所学内容学以致用。
4.提高高职数学教学数学建模思想的方式
4.1教师要重视引导高职教师需要认识到讲授知识并不是教学的终极目标,更主要的是培养学生的应用和创新能力。其教学目的应当是通过科学的数学思维方式培养学生分析问题、解决问题的能力,提高他们自主学习的意识。高职学生的整体知识水平并不是很高,对于很多问题都不能深入地进行思考,遇到难题也没有继续深入研究的动力,缺乏自主创新的意识和独立思考的能力。所以教师需要重视引导的作用,引导学生的思维向更广阔的方向发展,让学生能够用数学思维看待周围的事物,仔细观察、分析各种事物之间的联系和存在的数学模型,并且能够通过数学语言描述事物间的联系,进而用求知的方式解决事物间的实际问题。教师的引导对于学生而言有启迪作用,能够激发学生的求知欲,对数学问题产生兴趣,在实际教学中是一种重要的教学手段。
4.2重视合作的力量教师除了积极引导学生进行数学建模思想外,还要让学生学会用合作的方式提升自己的思维水平。合作可以利用整体的功能弥补一个人思维的狭隘面,解决思考单一问题,促进学生多方面、多角度地思考问题。合作让学生能够尽快找到合适的角色,通过互帮互助的方式共同提高,加快问题的解决。在合作中,学生能够利用自己熟悉擅长的环节帮助提高整体的成绩和思维水平,切实加强团队的整体水平和综合素质。团体合作还能让每个学生都参与进去,都有展示和锻炼自己的机会,从而增强自信心,提高学习能力,培养良好的沟通能力,促进学生之间的团结合作,帮助提高学生的交往能力。重视合作的力量,能够帮助学生发现自己的特长和特点,增强信心,提高自我探索精神,同时合作中产生的竞争也能激发学生对数学问题进行深入探究。
4.3重视数学建模过程数学建模的最终目标并不是解决了什么样的问题、获得了什么样的结论,而是在建模过程中学生能够通过自己的努力,不断进行实践和自我否定,最终找到解决具体问题的有效方式。数学建模过程也是一个学习的过程和一个不断提升自我的过程,所以教师要重视数学建模的过程,让学生感受到实践过程的魅力,根据学生的基本状况和不同的特点,综合利用学生的特长和优点提高他们解决实际问题的能力,让学生感受到数学的意义,体会到发现数学的乐趣,养成良好的学习习惯和思维习惯。教师通过引导学生,也要让学生重视数学建模的过程,从数学建模中发现学习的乐趣,产生学好数学的信心和动力,并且通过不断深造发展,能够在数学建模中发挥自己的才能,展现出自己擅长的一面,在建模和交流中获得感受和启发。
5结语
高职院校开设数学建模课程是具有一定意义的,要将建模思想应用到数学教学中,教师就必须适应当前的教学环境,由传统的传授模式转变为创造性地传输方式。教师要不断提高自我教学水平,不断充实自己,用正确的方式引导学生进行学习、实践。教学中只有通过不断创新,根据教学的实际情况提高学生的数学知识应用能力,这样才能不断提高学习效率,帮助学生为以后的学习和工作打下坚实的基础。
作者:贺丹单位:江阴中等专业学校
数学建模论文:数学建模与创新人才培养研究论文
摘要:数学建模不仅能培养学生的数学能力,而且有利于提高学生的创新能力;有利于培养学生应用计算机的能力;有利于培养学生的实践能力和综合素质。本文对在培养技术应用型本科人才的高等学校开展数学建模的重要性和具体措施作了一些探讨。
关键词:数学建模技术本科创新能力
近几年来,越来越多的新建本科院校将自己的发展目标定位于开展应用型本科教育、培养应用型本科人才,我们称这类普通高校为应用型本科院校。在我国高教法中对本科教育的学业标准有明确的规定:“应当使学生比较系统地掌握本专业必需的基础理论、基础知识,掌握本专业必需的基本技能、方法及相关知识,具有从事本专业实际工作和研究工作的初步能力。”从这一规定看,我国工科专业培养的其实都是应用型人才,但从培养目标的内涵上说,可分为三类:
一为工程研究型人才。主要由研究型和教学研究型高校培养,其培养目标是:培养能够将发现的一般自然规律转换为应用成果的桥梁性人才。
二为技术应用型人才。主要由教学型地方本科院校培养,其培养目标是:能在生产及时线解决实际问题、保障产品质量和性能,属于使研究开发的成果转化为产品的人才。定位为技术工程师。
三为技能应用型人才。主要由高职类院校培养。其特点为:突出应用性、实践性,有较强的操作技能和解决实际问题的能力。
上海电机学院是2004年9月经上海市人民政府批准,在原上海电机技术高等专科学校的基础上建立的以实施本科教育为主的全日制普通高等院校。其定位在培养技术应用型本科人才的教学型院校。技术应用型本科人才学习数学的目的在于应用数学。这就要求他们在学习数学的同时,不断提高应用数学的意识、兴趣和能力。数学建模是数学知识和应用能力共同提高的结合点;是启迪创新意识和创新思维、锻炼创新能力、培养技术应用型本科人才的一条重要途径。
1数学建模的发展历程
近几十年来,数学迅速向自然科学和社会科学的各个领域渗透,在工程技术、经济建设及金融管理等各方面发挥着越来越重要的作用,并在很多情况下起着举足轻重,甚至决定性的影响。数学与计算机技术相结合,已经形成了一种普遍的,可以实现的关键技术——数学技术,并已成为当代高新技术的一个重要组成部分。用数学方法解决各类问题或实施数学技术,首先要求将所考虑的问题数学化,即通过对复杂的实际问题进行分析,发现其中可以用数学语言来描述的关系或规律,将之构建成一个数学问题,再利用计算机进行解决,这就是数学建模。数学建模日益显示其关键的作用,并已成为现代应用数学的一个重要领域。
为培养大学生的数学建模能力,国外较早地经常举办大学生数学建模竞赛。1989年我国大学生开始参加美国大学生数学建模竞赛(MCM),从1992年开始,教育部高教司和中国工业与应用数学学会每年主办一次全国大学生数学建模竞赛,至今已经举办了16届,参赛队伍每年都不断增长,在竞赛过程中,大学生的聪明才智和创造得到了充分的发挥,提交了不少出色的答卷,涌现了一批的参赛队伍,同时,有力地促进了高等院校的数学教学改革,充分显示了数学建模竞赛活动的强大生命力。举办大学数模竞赛,已造成一种氛围,推动了培养大学生数学建模能力的工作。
2数学建模在创新技术应用型本科人才培养中的意义
数学建模是对人的数学知识,实际知识的拥有量和灵活运用程度,逻辑推理能力,直觉、想象和洞察能力,计算机使用能力等的检验,最能反映出创新精神。“科学技术是及时生产力”。每年的工科大学毕业生是科技战线的生力军,他们要出科技成果,并且“千方百计促进科技成果在生产实践中得到广泛应用”,“加速科技成果转化”,数学建模能力对他们是必不可少的。
数学建模是对传统教育的一个挑战,它强调怎样利用先进的计算机工具来解决数学问题。学生参加数学模型的研究,参加全国大学生建模竞赛,是将以前的“做练习”改为现在的“做问题”,将生活变成数学,将问题实际解决。数学建模是对学生创新精神的培养,是学生时代的及时次科研训练,是一个向实际负责的任务书,是对学生适应社会、服务于社会的锻炼与挑战。基于以上的重要性,许多高校对学生的数学建模能力越来越重视,我校也不例外。
3提高我校学生数学建模能力的具体措施
为了提高我校学生的数学建模能力,我们可在高等数学的教学中溶入数学建模,并开设创新系列课程:数学建模系列课程。系列课程中除设置了数学建模理论课外,还设置数学建模实验课、数学建模集训和数学建模竞赛等任选课。公务员之家
(1)在高等数学教学中,融入数学建模:高等数学是工科大学本科学生的一门必修课程,也是学习其它技术基础课和专业课的必要基础课程,无论学生和教师都非常重视这门课程的教学。从工科应用型本科人才培养的各专业教学序列上讲,高等数学处于龙头地位,它不但对后续课程产生影响,更对学生的思维习惯和学习方法产生深刻、持久的影响,因此,有着其它课程所不可替代的作用。但是现在的高等数学教材,多数只注重理论和计算,对应用性不够重视,即使有个别的应用也是限于较少的物理方面的简单应用。很多高年级大学生和已毕业的大学生都有这样的认识:高等数学很重要,但很枯燥,学了半天除了知道能在物理上应用外,不知道还能有什么用,但又不得不学。学生学习高等数学的目的不明确、缺少自觉学习的动力。归于一点,就是学生不知道学了高等数学有什么用。在今后的学习和工作中高等数学到底有什么作用呢?学生很茫然,但高等数学又是非常重要的课程。因此,很多学生都是怀着不得不学的态度来学习高等数学的,缺乏自觉学习的动力。这就要求我们数学教师进行课程内容和教学方法的大胆改革,让学生明白高等数学除了在物理上应用以外,还有很多用处,可以说我们的生活中、工作中无时无刻充满着数学,只是你没有认识它,不知道该怎样用它。由于数学建模中的例子来源于社会和生活中的实际问题,会使学生感到数学无处不在,数学思想无所不能。让学生切实领悟到高等数学课程与实际问题以及专业课学习的紧密联系。在额定课时内,在保障完成教学大纲内容讲授前提下,教师根据各专业的特点和需要,有目的的挑选、设计和重点细致的讲解与所学专业相关的数学模型,如电气专业的学生,对引力、流量、环流量、通量与散度、梯度场应是重点,机械类专业应偏重在变力沿直线作功、转动惯量、付里叶级数上。这样就会使学生既获得了数学建模的基本训练,又调动学生应用数学知识解决实际问题的热情,激发学生学习高等数学的兴趣。
(2)在全校开设数学建模公选课:继本科生高等数学、工程数学之后,为了进一步提高学生运用数学知识解决实际问题,培育和训练综合能力在全校开设数学建模公选课。通过具体实例引入使学生掌握数学建模基本思想、基本方法、基本类型。学会进行科学研究的一般过程,并能进入一个实际操作的状态。通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生双向翻译能力,数学推导计算和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。
(3)在全校开设数学建模实验公选课,加强数学建模实验课教学,提高学生的建模能力和科学计算能力:数学建模实验是将数学方法和计算机知识结合起来,用于解决实际生活中存在问题的一门方法实验课;是继本科生在掌握了高等数学、工程数学、数学建模理论部分等基本数学理论和基本建模方法后,使用主流数学软件,通过较其它流行语言更为方便的计算机编程求解众多领域数学建模问题的计算机实践课。通过数学建模实验课的学习,可使学生将所学的数学知识和其它专业知识很好地应用到解决实际问题中去,强调利用计算机及各种资料解决实际问题动手能力的培养,增加受益面。为学生所学专业服务,给课程设计、毕业论文提供强有力的方法论指导,提高学生的综合素质。
(4)开设数学建模集训课:在数学建模理论、数学实验课结束后,开设数学建模集训课。针对数学建模竞赛从数学模型理论到计算机能力都有不同程度提高的要求,根据学生掌握的知识层次、深度,补充相关知识。通过数学模型有关知识、方法的学习和数学模型应用实例的介绍,培养学生应用数学解决实际问题的综合能力,参加一年一次的全国大学生数学建模竞赛。
近年来的研究表明提高大学生的数学建模能力是一个需要长期努力、集体参与的系统工程。作为高等学校的数学教育工作者,我们需要针对当前大学生数学建模能力的培养存在的问题进行认真研究、深入探析。随着上海电机学院技术应用型本科人才培养专业建设和教学改革而不断在实践中积累经验、深入发展、及时充实新内容,将进一步提高我校学生的数学建模能力。
数学建模论文:高中数学建模教学设想论文
论文关键词:数学建模数学应用意识数学建模教学
论文摘要:为增强学生应用数学的意识,切实培养学生解决实际问题的能力,分析了高中数学建模的必要性,并通过对高中学生数学建模能力的调查分析,发现学生数学应用及数学建模方面存在的问题,并针对问题提出了关于高中进行数学建模教学的几点意见。
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自进入21世纪的知识经济时代以来,数学科学的地位发生了巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理论与方法的不断扩充使得数学已成为当代高科技的一个重要组成部分,数学已成为一种能够普遍实施的技术。培养学生应用数学的意识和能力也成为数学教学的一个重要方面。
目前国际数学界普遍赞同通过开展数学建模活动和在数学教学中推广使用现代化技术来推动数学教育改革。美国、德国、日本等发达国家普遍都十分重视数学建模教学,把数学建模活动从大学生向中学生转移是近年国际数学教育发展的一种趋势。“我国的数学教育在很长一段时间内对于数学与实际、数学与其它学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。”我国普通高中新的数学教学大纲中也明确提出要切实培养学生解决实际问题的能力,要求增强应用数学的意识,能初步运用数学模型解决实际问题。这些要求不仅符合数学本身发展的需要,也是社会发展的需要。因此我们的数学教学不仅要使学生知道许多重要的数学概念、方法和结论,而且要提高学生的思维能力,培养学生自觉地运用数学知识去处理和解决日常生活中所遇到的问题,从而形成良好的思维品质。而数学建模通过"从实际情境中抽象出数学问题,求解数学模型,回到现实中进行检验,必要时修改模型使之更切合实际"这一过程,促使学生围绕实际问题查阅资料、收集信息、整理加工、获取新知识,从而拓宽了学生的知识面和能力。数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一,是改善学生学习方式的突破口。因此有计划地开展数学建模活动,将有效地培养学生的能力,提高学生的综合素质。
数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多学生认为:"数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性";"数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对于学习数学的重要性理解得更为深刻"。数学建模能培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。由此,在高中数学教学中渗透数学建模知识是很有必要的。公务员之家
那么当前我国高中学生的数学建模意识和建模能力如何呢?下面是节自有关人士对某次竞赛中的一道建模题目学生的作答情况所作的抽样调查。题目内容如下:
某市教育局组织了一项竞赛,聘请了来自不同学校的数名教师做评委组成评判组。本次竞赛制定四条评分规则,内容如下:
(1)评委对本校选手不打分。
(2)每位评委对每位参赛选手(除本校选手外)都必须打分,且所打分数不相同。
(3)评委打分方法为:倒数及时名记1分,倒数第二名记2分,依次类推。
(4)比赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分较高者为及时名,依次类推。
本次比赛中,选手甲所在学校有一名评委,这位评委将不参加对选手甲的评分,其他选手所在学校无人担任评委。
(Ⅰ)公布评分规则后,其他选手觉得这种评分规则对甲更有利,请问这种看法是否有道理?(请说明理由)
(Ⅱ)能否给这次比赛制定更公平的评分规则?若能,请你给出一个更公平的评分规则,并说明理由。
本题是一道开放性很强的好题,给学生留有很大的发挥空间,不少学生都有精彩的表现,例如关于评分规则的修正,就有下列几种方案:
方案1:将选手甲所在学校评委的评分方法改为倒数及时名记1+分,倒数第二名记2+,…依次类推;(评分标准)
方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;
方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;
然而也有不少学生为空白,究其原因可能除了时间因素,学生对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。同时,一些学生由于不能正确理解规则(3),得出选手甲的平均得分为,其他选手的平均得分为,从而得出错误结论.不少学生出现“甲所在学校的评委会故意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。有些学生在正确理解题意的基础上,提出了“规则对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手较高分(n分),所以甲得较高分的概率比其他选手高;相当于甲所在学校的评委把较高分给了甲;甲少拿一个分数,若少拿低分,则有利;若少拿较高分,则不利;等等。以上各种想法都有道理,遗憾的是大部分学生仅仅停留在这些感性认识和文字说明上,没能进一步引进数学模型和数学符号去进行理性的分析。如何衡量规则的公平性是本题的关键,也是建模的原则。很少有学生能够明确提出这个原则,有些学生在第2问评分规则的修正中,提出“将甲所在学校的评委从评判组中剔除掉”,这种办法违背实际的要求。有些学生被生活中一些现象误导,提出“去掉较高分和低分”的评分规则修正方法,而不去从数学的角度分析和研究。
通过对这道高中数学知识应用竞赛题解答情况的分析,我们了解到学生数学建模意识和建模能力的现状不容乐观。学生在数学应用能力上存在的一些问题:(1)数学阅读能力差,误解题意。(2)数学建模方法需要提高。(3)数学应用意识不尽人意数学建模意识很有待加强。新课程标准给数学建模提出了更高的要求,也为中学数学建模的发展提供了很好的契机,相信随着新课程的实施,我们高中生的数学建模意识和建模能力会有大的提高!
那么高中的数学建模教学应如何进行呢?数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。不同于传统的教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。
(一)在教学中传授学生初步的数学建模知识。
中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。
例如在学习了二次函数的最值问题后,通过下面的应用题让学生懂得如何用数学建模的方法来解决实际问题。例:客房的定价问题。一个星级旅馆有150个客房,经过一段时间的经营实践,旅馆经理得到了一些数据:每间客房定价为160元时,住房率为55%,每间客房定价为140元时,住房率为65%,
每间客房定价为120元时,住房率为75%,每间客房定价为100元时,住房率为85%。欲使旅馆每天收入较高,每间客房应如何定价?
[简化假设]
(1)每间客房较高定价为160元;
(2)设随着房价的下降,住房率呈线性增长;
(3)设旅馆每间客房定价相等。
[建立模型]
设y表示旅馆24小时的总收入,与160元相比每间客房降低的房价为x元。由假设(2)可得,每降价1元,住房率就增加。因此由可知于是问题转化为:当时,y的较大值是多少?
[求解模型]
利用二次函数求最值可得到当x=25即住房定价为135元时,y取较大值13668.75(元),
[讨论与验证]
(1)容易验证此收入在各种已知定价对应的收入中是较大的。如果为了便于管理,定价为140元也是可以的,因为此时它与较高收入只差18.75元。
(2)如果定价为180元,住房率应为45%,相应的收入只有12150元,因此假设(1)是合理的。
(二)培养学生的数学应用意识,增强数学建模意识。
首先,学生的应用意识体现在以下两个方面:一是面对实际问题,能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,学习者在学习的过程中能够认识到数学是有用的。二是认识到现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用:生活中处处有数学,数学就在他的身边。其次,关于如何培养学生的应用意识:在数学教学和对学生数学学习的指导中,介绍知识的来龙去脉时多与实际生活相联系。例如,日常生活中存在着“不同形式的等量关系和不等量关系”以及“变量间的函数对应关系”、“变相间的非确切的相关关系”、“事物发生的可预测性,可能性大小”等,这些正是数学中引入“方程”、“不等式”、“函数”“变量间的线性相关”、“概率”的实际背景。另外锻炼学生学会运用数学语言描述周围世界出现的数学现象。数学是一种“世界通用语言”它能够、清楚、间接地刻画和描述日常生活中的许多现象。应让学生养成运用数学语言进行交流的习惯。例如,当学生乘坐出租车时,他应能意识到付费与行驶时间或路程之间具有一定的函数关系。鼓励学生运用数学建模解决实际问题。首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,当然这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。通过教师的潜移默化,经常渗透数学建模意识,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。
(三)在教学中注意联系相关学科加以运用
在数学建模教学中应该重视选用数学与物理、化学、生物、美学等知识相结合的跨学科问题和大量与日常生活相联系(如投资买卖、银行储蓄、测量、乘车、运动等方面)的数学问题,从其它学科中选择应用题,通过构建模型,培养学生应用数学工具解决该学科难题的能力。例如,高中生物学科以描述性的语言为主,有的学生往往以为学好生物学是与数学没有关系的。他们尚未树立理科意识,缺乏理科思维。比如:他们不会用数学上的排列与组合来分析减数分裂过程配子的基因组成;也不会用数学上的概率的相加、相乘原理来解决一些遗传病机率的计算等等。这些需要教师在平时相应的课堂内容教学中引导学生进行数学建模。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。又例如教了正弦函数后,可引导学生用模型函数写出物理中振动图象或交流图象的数学表达式。
,为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。中学教师只有通过对数学建模的系统学习和研究,才能地的把握数学建模问题的深度和难度,更好地推动中学数学建模教学的发展。