引论:我们为您整理了1篇风力发电论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
风力发电论文:风力发电场建设中的安全管理论文
1风电场情况简介
风力发电场是将自然界的风能转化为电能的场所,风力发电场通常建设在有丰富风力资源的场地上,在我国主要分布在新疆、甘肃、内蒙及山东、江苏等地区。风电场通常具有地理位置偏、自然条件差、占地面积大、技术领域宽等特点。通常风电场由风机工程、集电线路、升压站、送电线路、对端变电站扩建几大部分组成。一座5万千瓦的风力发电场.占地面积约10~20km,通常由约加座风力发电机组组成,需要建设20-30公里的集电线路,占地50亩左右的升压站,和长达几十公里的送电线路及负责线路接入的对端变电站扩建工程组成[1]。在这漫长的施工作业面上,多只队伍同时开展工作,点多面广,安全问题矛盾凸现。对于工程的安全管理组织来讲,一个施工项目是一个重大危险源,只有对各分项工程的的危险源进行辨识,在危险源辨识的基础上建立事故紧急救援体系,进行有效的应急管理,才能真正的达到“安全及时,预防为主”和“防患于未然”的目的。
2风力发电场的危险源辨识
风力发电场的建设周期通常为8-10个月,在这期间,由于风电场建设施工作业面长,劳动力密集的特点,通常将建设过程分为基础施工、设备安装、网络组织及电气调试三个阶段,每个阶段有不同的施工特点,针对不同阶段的施工特点,进行分阶段的危险源辨识,有针对性的准备应急预案,从而进行更加科学、有效的安全管理。
2.1基础施工阶段
在基础实施阶段,各单元项目主要以基础面施工为主,在风机.丁程、集送电线路、升压站、对端扩建均开始础开挖、钢筋绑扎,砼浇筑的工作。本阶段的特点是虽然作业面大,但是工作性质比较一致,特点突出,易于进行同质化管理。在本阶段,主要危险源为各型基础开挖过程中的土石方坍塌;钢筋绑扎中的金属切割、焊接及各种施工电器设备的安全保护;基础砼施工中模板与支撑、物料提升、脚手架失稳造成倒塌意外;以及施工工程车辆运行、维修、装配中造成的意外伤害。
2.2设备安装阶段
在设备的安装阶段,由于个作业面的工作差异性开始显露出来。在风机工程作业面上,风机塔筒、机舱、轮毂、叶片、箱变开始吊装,大型吊装机械的起重危害,搬运过程中的高空坠落、包括大吨位吊车的拆装、现场移动意外成为主要的危险源;在升压站及对端扩建现场,支构架开始组立,辅助设施开始建设,在高空作业中因防护措施不到位、人员未配系安全绳造成的人员踏空、滑到、失稳等意外,人员受到垂直作业面交叉作业中坠落物体的打击,还有施工中模板与支撑、物料提升、脚手架失稳造成坍塌意外是本阶段的主要危险源;在集送电线路上,铁塔开始组立,杆塔组立过程中的起重、登高、物料堆放引起的意外伤害和杆塔组件的金属切割、打孔及各种施工电器的安伞保护成为主要的危险源。
2.3网络组织及电气调试阶段
在本阶段,各单元工程开始组网连接,设立清晰的施工分界点,合理的安排分界点施工工序及人员是防止因为施工分界点不明晰而造成意外责任伤害的主要手段。在集送电线路工程上,放线过程中的走向、工艺不良、拖放导线造成机械伤害,人员高空作业时安全带、安全帽的使用,安全防护设施的不到位引起高空坠物伤害成为主要危险源。升压站的辅助设施开始装修,辅助设备安装中的电气、起重危险也不能轻视。
3安全生产形势下的风力发电场管理
截至2009年底,总装机容量的风力发电能力将达到2580万千瓦,风力发电机投入使用21581台,仅在2009年新装机容量达到1380万千瓦,新安装的单位10129台。风力发电的公司水平保持了良好的安全形势。但是,我们应该清醒地认识到风力发电的生产管理水平和对风电快速发展的客观存在的安全需要之间仍有差距主要表现在以下几个方面:
(一)风电安全生产管理制度不健全,没有形成风电设备的主要特点和中国风电材料设备网
虽然各级风电企业出台新系统,新举措,安全管理和一个清晰的概念逐步改善很多,但建立风电场,现有的系统和系统的迅速发展现状很难实现平衡。特别是成立时间较短的风电场,人才和管理经验的缺乏,一些规则和条例欠缺,由于受火电,水管理管理系统影响,风力发电深入的检讨和改进的实际程度不够没有形成既符合风电实际又有风电特色的较完善的安全生产管理体系。
(二)多样性的管理模式,效果并不明显,需要创新体制
许多企业已投入运行在风电场风电管理和在风电场中的数量控制模型进行探索,管理和控制模式的多样化已经形成。风电场控制模型虽然使用,具体的模式,要结合风电场实际情况并根据风电场的规模风场实际情况的基础上电压等级,风电场的工作名额,分配给团队的整体素质,地方财政收入水平的大小风电场控制的管理水平和专业技能来综合考虑。
(三)风力发电和专业管理标准和管理措施不健全
虽然风电快速发展,但外地经验有限,综合治理,风力发电控制人员的积累水平不是很高,仍处于起步阶段。定期的工作标准,安全管理流程,管理规范,发展的深度和广度需要进一步加强生产系统。如风力发电“两票”格式,工作票规格,技术监督和管理水平,重大危险源评价标准,定期对职位的工作标准,管理标准,为项目转移到生产验收标准生产等等都需要完善。
(四)电网结构薄弱,安全管理不稳定性增加
国家已制定了风电发展规划的总体规划,确定了七个千万千瓦级风电基地,实现资源的优化配置远距离输电在更大范围和更深层次的风电发展的下一阶段和建设的方向。然而,电网规划周期比风电建设项目规划建设周期长,区域电网结构薄弱,是很难在短时间内提高,创造了电力峰谷在某些方面的情况差异较大。为整体网络安全的考虑,提高设备运行的稳定性,减少生产现场的不安全,在电网电力,水,火电输出低谷时段按到低限度的调整有关规定,系统高峰负荷空缺仍然存在,需要调整到其他系统的稳定性将受到影响而关闭。
4风电场安全生产管理工作重点
4.1预防
在应急管理中预防主要指通过安全管理和安全技术等手段,防止事故的发生或通过预先采取的预防措施,达到降低或减缓事故影响或后果的严重程度。在风电场的建设过程中,对各单元施工单位人员的安全教育是预防事故发生的主要手段之一,将安全教育贯穿到整个电厂的建设周期上来,针对不同的施工阶段,针对不同的施工队伍,结合各阶段对危险源的识别和季节特点,采用宣传资料,宣传片,安全问答,集中授课等多种形式对电厂建设人员进行学习教育,增强施工人员的施工中及恶劣气候条件下的自我保护能力。完善安全工器具的配备,对安全工器具配备不到位的单位进行处罚,对于配备安全工器具不使用或不能正确使用的人员进行教育、警告及处罚[4]。由于风电场作业面大,作业点多的特点,在所有作业点均须设置遮拦、警示牌和明显标志。加强野外施工点的安全巡视,在野外施工面上尽可能减少夜间施工,如必须夜间施工的作业面必需进行备案,要保障充足照明并由安全员进行全程监控。
4.2应急准备
应急准备是应急管理过程中的一个极为关键的过程,他是针对可能发生的事故,为迅速有效的开展应急行动而预先所做的各种准备。在安委会的基础上成立事故应急领导小组,建立事故应急指挥体制,针对不同工作阶段的危险源特点制定事故应急预案。在风电场的建设工地,由于工地地广人稀,作业战线长的特点,应急准备中的通信和交通保障成为能否真正实现事故应急预案的关键点。在现场,应建立多套通信系统同时运行的模式,通常采用GSM、CDMA、固话、专用无线电台四套通信系统同时使用,互为备用的模式,设立专用的应急响应固定电话,公布电话号码;安全员配备GSM/CDMA双模手机与对讲机,各工队负责人采用手机,对讲机互为备用模式,建立较为的通信保障。在交通保障方面,采用专用保障车辆和工地所有施工统一指挥的互备模式[5]。专用保障车辆配备专用司机,不得因其他原因擅自调动;将所有工程车辆首先覆盖在上述的通信系统之下,以便于在应急情况下的调度和应付可能出现的交通接力。有了通信和交通的保障.并对预先制定事故应急预案进行演练,在演习基础上完善预案,做好应急准备的各项工作。
4.3响应和恢复
应急响应是在事故发生后立即采取应急与救援行动,实施已经过演练的事故应急预案。并在事故发生后的马上将事故的影响区域恢复到安全的状态,并逐步恢复到正常状态。在风电场的建设中,由于工作面点多线长,通常在事故发生后首先对现场进行封闭,充分研究事故原因并制定相应对策后再开封现场,充分保障安全的情况下恢复施工。
5结论
在我国大步迈向现代化的今天,大规模的工程建设在各条战线上如火如荼地展开,与此同时,工程安全问题也被国家高度重视,国务院确定2009年为“安全生产年”,并将安全生产月的主题定为“关爱生命,安全发展”。文章叙述结合了作者本人在风电场建设中安全管理中的一点积累,希望能为千万同行提供点滴参考,共同为“以人为本,安全及时”的安全大厦添砖加瓦。
风力发电论文:风力发电环境保护论文
1风场道路施工
风电场的道路承载着风机大型设备运输之用,宽一般在6-8米,长度几十公里,无疑是对山区环境破坏最严重的一个项目,特别是植被的破坏和水土流失。一般形成1厘米表土腐殖质层需要200-400年时间,因此地表土是难以再生的宝贵资源。在道路修筑前召开专题会,制定具体施工措施,确定剥离厚度,保存和防护方案,回填方案。风场道路表土剥离量大且距离远,易采用“大分散”存放方式。再就是加大对施工队伍环保制度的宣传,增强参建队伍环境保护意识,加大刚性要求。开工时首先把地表土剥离,用推土机推至合适的存放地点,为减少表土运输费用,道路修筑过程中每隔一段选一个表土存放点,道路修筑过后,用机械把道路边坡夯实,再用存放的地表土覆盖,覆土时应适当压实,增加与边坡粘合力,避免顺坡向下滑移。一场雨水过后,地表土中遗留的种子就会发芽,春笋般的长满道路边坡,这样既保护了环境,又减少了水土流失,避免了工程建设对生态环境的破坏,关键是施工过程加强监督,加大对施工队伍的约束机制。
2集电线路施工
35kV集电线路是风场风机至升压站的电力传输线路,铁塔数量在几十到上百之间,分布在整个风电场,表土剥离易采用“小集中”存放方式。一基铁塔基础开挖面一般在十几个平方,且大多在山坡上,如措施不当施工时基坑开挖的地表土会随坡流放,对环境的破坏比较严重。所以施工前一定做好充足准备工作,购置塑料彩条布或薄膜,施工时把剥离的地表土存放在基础旁边的塑料薄膜上,做好防止流失的保护措施。等基础回填合格后,把地表土覆盖在上面压实,除露出的基础柱头外,铁塔下面生长出绿色的植物,这样保护了环境减少水土流失,铁塔和小草相映生辉,关键是加强验收,确保地表土的剥离、存放、覆盖落实到位。
3风机平台施工
风机平台是风机设备的吊装场地,一般在40*50米左右。以50MW风电场为例,单机容量1500kW的风电机组要33台,单机容量2000kW的风电机组要25台,由于风电机组数量多,占地面积大,分布广,对植被的破坏较严重。山区的地表土一般不足20厘米,很是珍贵,所以风机平台平整时首先确定平台几何尺寸,用推土机把地表土小心剥离,存放在机位旁边的合适位置,以免影响风机吊装,风机基础回填合格,风机吊装完成后,把存放的地表土覆盖在风机平台,恢复植被,保护环境避免水土流失,让绿色的小草托起银色的风机,关键是加强对施工队伍的过程监管,避免地表熟土和生土混放。
4结束语
在我国大力开发风电,使之成为我国电力工业的一个方面军,不仅是能源开发的需要也是环境保护的需要。风力发电对环境的正面影响是不言而喻的。它不仅可以保护我们人类赖以生存的环境,也可以保护我们土地免受过渡开发的灾难。最可贵的是风电环境的负面影响非常有限。这可以使我们人类与自然界友好相处,真正实现可持续发展。但也不要顾此失彼,在发展风电的同时一定要保护好我们的生存环境,这是每个公民义不容辞的义务和责任,特别是我们的风电建设者们,不要因眼前的利益而忽视环境的保护,要严格遵守国家的法律法规,履行建设项目“环保三同时”制度,借用一句旅游用语送给山区风电建设者们,“风电投运后什么也别留下,只留下绿色”。
作者:姚振华 单位:华电国际项目管理有限公司
风力发电论文:风力发电机组控制系统论文
1风力发电机组控制系统的构成分析
在风力发电机组中,其控制系统关系着机组是否能够安全稳定的运行。控制系统可以分为本体系统与电控系统,也叫做总体控制。其中,本体系统又可以分成空气动力学系统、发电机系统以及变流系统和其附属结构;电控系统是由各种不同类型的模块组成的,分为变桨控制、偏航控制以及变流控制等等。与此同时,本体系统和电控系统之间已经实现信号的转换,比如空气动力系统里,桨距主要受变桨控制系统控制,这样做能够发挥风能转化的效率,同时也能使得功率平稳。由于风电机组的标准不同,其控制系统也是不一样的。根据功率可以将发电机组分定桨距和变桨距发电机组以及变速型机组三种。其控制技术也是由原来的定桨距恒速恒频控制向变桨距恒速恒频发展,而后再发展到变桨距变速恒频技术。
2对定桨距风力发电机组的控制分析
在定桨距风力发电机组里,主要运用的是定桨距风力机与双速异步发电机,所采用的控制系统是恒速恒频技术。运用这种技术,确保了机组运行的安全和稳定。定桨距恒速恒频技术主要应用了软并网技术、偏航技术以及空气动力刹车技术等等。发电机与电网之间有晶闸管,晶闸管的开度对于冲击电流有很大的影响。使用恒速恒频技术对晶闸管的开度进行调控,进而来对并网瞬间产生的电流进行限制。风力发电机组控制系统的相关分析文/江康贵蒲上哲在风力发电中,发电机组的控制技术是确保机组正常运转的关键。风力发电机组的控制系统是一个综合性较强的系统,因此,加强对控制系统的研究分析,对于确保机组安全稳定运行至关重要。本文拟对机组中的几种控制系统进行分析。摘要此外,利用这种技术,经过传感、检测等能够实现自动偏航以及自动解缆的功效。在定桨距风力发电机组中,桨叶的节角距是固定不变的,如果风速比额定的风速要大很多时,那么桨叶本身的自动失速就会失去效能,不能让输出的功率更加的平稳。
3对变桨距风力发电机组的控制系统分析
变桨距风力发电机组所使用的电机是可以调节滑差的绕线式异步发电机,风力机使用的是变桨距风力机。和定桨距风力发电机组相比较,变桨距风力发电机组有更大的优势,主要表现在输出功率更加的平稳,此外,还有在额定点上有着非常高的风能利用系数,同时还有非常好启动性能以及非常好的制动性。变桨距风力发电机组的控制系统主要使用了转速控制器1和2,以及功率控制器。为了能够较大限度的将由风速引发的功率波动降低,机组还应用了转子电流控制技术。这种技术可以对转子的电阻进行调节,从而确保转子电流对恒定电流的给定值进行有效的跟踪,进而保障输出功率的稳定。在发电机并入电网以前,发电机的转速信号控制着系统的节距值大小,发电机的转速有控制器1控制,变桨距系统会依据给定的速度参考值,对节距角进行调整,从而让风轮拥有比较大的启动转矩。在并网以后,发电机组主要由控制器2和功率控制进行管控。与此同时,要把发电机组的转差调整到1%,节距的大小应根据实际的风速进行调整。在风速比额定值高的时候,伴随着风力的不断加大,风力机逐渐的吸收更多的风能,发电机的转速也将变快。对于转速的调节,主要通过改变节距来进行。随着桨距角的改变,发电机输出的功率就会维持在一个稳定的值上,不会出现大的波动。某个时段的风速不稳定,一会上升一会下降。上升的时候,输出功率也随之上升,转子电流给定值相应的改变,从而使得转子电流控制器工作,将转子回路的电阻改变,提升发电机转差率,那么发电机的转速会逐渐上升。此时,风力又开始降低,在功率控制的作用下,发电机的转速也随着下降。这样,在风速上升和下降的过程中,发电机的输出功率基本上没有出现变化,这样就维持了功率的稳定,确保了发电机安全稳定的运行。
4对变速风力发电机组的分析
与恒速恒频技术相比,使用变速恒频技术,能够在风速较低的情况下,叶尖速比能够一直处于的状态,从而获得较大的风能。如果风速比较大,使用风轮转速的变化,对部分能量进行调节,进而增加传动系统的韧性,确保输出功率的稳定性。变速风力发电机组的总体控制可以分为三个区:恒定、转速恒定以及功率恒定。在恒定区,随着风速的变化,发电机的转速也出现了变化。受功率—转速曲线的影响,发电机的转速达到一定的值后就保持不变,然后进入转速恒定区。在这个区里,转速控制对发电机的转速进行控制,确保转速不变。当风力进一步增大,功率也增大,达到极限后,功率进入恒定区。变速风力发电机组的控制系统主要就是变速恒频技术。双馈异步发电机在绕线转子异步发电机的转子上装有三相对称的绕组,同时,三相对称交流电又与这三线绕组接通,从而产生了一个旋转磁场,这个磁场的转速和交流电的频率以及电机的极对数的关系非常密切,我们可以通过下面的公式来看:在这个公式中,n2代表的是绕组被接入频率是f2的交流电之后所产生的旋转磁场相对于转子本身的旋转速度,p代表的是极对数。从上面的公式中,我们可以得知,只要频率发生改变,既可以使得转速发生变化;如果通入转子的交流电的相序发生变化,那么磁场的旋转方向就会发生变化。我们可以假设n1是电网频率为50Hz的时候发电机的转速,n是发电机的转速,因此,只要是n±n2=n1,那么异步电机的定子绕组感应电动势的频率就不会发生改变,始终维持在50Hz。
5结语
综上所述,当前风力发电已经越来越引起人们的关注了。风力发电机组中,控制系统对于维持机组的未定具有非常重要的作用。本文主要分析了三种控制系统:定桨距风力发电控制系统、变桨距风力发电控制系统以及变速恒频控制系统,这三种控制系统随着风速的变化能够实现对输出功率的调整,使其保持平稳的状态,进而维持了风力发电机组的安全稳定。
作者:江康贵蒲上哲单位:汕头市众业达电器设备有限公司
风力发电论文:风力发电机组振动优化设计论文
1风电机组振动特性研究分析
风电机组中发生共振的现象时有发生,为了避免机组发生较大振动,需对塔筒以及整个风力发电机轴系进行共振裕度分析。塔筒为细长结构,可采用梁模型进行简化处理得到塔筒的1、2阶弯曲频率。轴系计算中,重点关心了机组的1、2阶扭转自振频率。风力发电机组的激振源较多,主要有转频、电网频率以及叶片通过频率,振动特性分析较为复杂。通过机组工作转速与固有频率的CAMPBELL分析以及机组的共振裕度分析表,从而可得出结论,该机组动力特性良好。塔筒为细长梁模型,一阶弯曲固有频率一般介于1倍工作转频至3倍工作转频之间,因此塔筒的频率必须首先保障避免共振。同时发电机部件由于激振来源较多,主要来自转频、电网以及叶片通过频率等,振动特性分析较为复杂。对于机组振动特性的分析,可以通过机组CAMPBELL分析.
2强度优化设计
为提高风电产品的市场竞争力,机组在保障性能的基础上,要具备成本优势以及开发效率优势。基于以上目的,优化设计的方向和目标大致分为以下几个方面。
2.1以降低重量为目标的多参数强度优化设计
降低重量主要是要通过减小产品的尺寸来实现。在保障产品的刚强度各项性能指标满足要求的前提下进行,即优化之后进行。许用应力值:σ≤[σ]疲劳损伤因子:D≤1,D<0.5(焊缝)
2.2基于工艺成本控制的多目标强度优化设计
对于产品某些加工部位的表面光洁度可进行优化设计,对产品成型工艺可进行降本优化改进。例如,在保障疲劳性的前提下,由原来的表面光洁度2.5μm增至12.5μm,显然降低了加工的难度,节约了加工成本。同样,由原来的锻造成型改为铸造成型,同样可降低机组的制造成本,并满足批量产生的需求。在工艺优化设计中,同样需保障结构的抗疲劳性能,需满足以下疲劳性能指标:疲劳损伤因子:D<1,D<0.5(焊缝位置)。
2.3整体提高产品性能的全新优化设计
上述2种优化方式与方法,参数的调整系统性不强。借助计算软件的先进优化算法,例如遗传算法等,可以对结构的重量、疲劳性等进行系统的优化分析。
2.4基于软件设计开发平台,自主编程定制优化
设计流程,缩短开发周期为了能够满足批量产品的设计需求,在大量分析计算经验积累的基础上,对于某些特定问题,借助软件的设计开发平台,开发全参数的强度分析设计软件。
3风电机组中几类特殊难点问题
3.1螺栓连接强度分析计算
风机和发电机部件中,螺栓连接及焊缝连接是最常用的2种连接方式。对于此类问题的静强度与疲劳强度分析,考核标准以欧洲的标准体系British、GermanorDNV或美国的ASME标准为主。对于塔筒分段的链接螺栓,有学者提出了采用分段线性模拟螺栓在不同阶段受力的方法,该方法简单易行。对于塔筒与主机架、主机架与发电机主轴、轮毂与发电机等部位的连接螺栓,由于载荷较为复杂,采用上述经验公式已不能满足要求,需要借助FEA分析方法。结合载荷谱,通过计算最终得到螺栓的疲劳损伤值。
3.2焊缝连接强度分析计算
关于焊缝疲劳问题,国际焊接协会IIW-2003、欧洲标准Eurocode3part1.9、英国标准BS7608、挪威船级社DNV的相关规范,以及美国机械工程协会ASME规范,均给出了相应的计算方法。东方电机一般采用国际焊接协会中的热点应力法来分析焊缝疲劳。首先,在FEA分析模型中建立热点应力的参考点,单位载荷作用下,得到2个参考应力点的应力分量,然后通过外推公式,最终得到热点位置的应力分量。通过查找和选取相应的疲劳等级DC,计算之后得到焊缝损伤。若损伤因子D<0.5,可满足抗疲劳的要求。
3.3传动链疲劳分析难点
传动链的疲劳问题较为复杂。主轴轴承的装配,使得载荷在该位置的传递出现了较大的非线性因素耦合效应,主要来自于3个方面:
(1)轴承轴向及径向紧量装配。
(2)轴承内部滚子与滚道的接触。
(3)螺栓预紧作用的非线性效应。这使得FEA模拟仿真结果具有较大的不确定性,成功解决此类问题的难点在于模拟滚子与滚道的接触应力传递。
4结语
风电机组的研发设计虽然借助于较为完备的标准体系,但对于工程中出现的复杂多样的事故及问题,有时却没有标准可供参考。所以,风电机组的整机分析、机电耦合振动分析、风流场与复合材料耦合振动响应分析、机组应力及位移响应分析、机组疲劳断裂损伤的深入研究等,均有待更为深入的研究逐步解决。此外,产品优化设计也是一个多因素集成的工作,往往需将设计工艺制造难度、材料成本、电磁性能、通风散热性能、强度振动性能、软件计算性能等诸多因素予以综合考虑,才能创造性价比高、具有市场竞争力的产品。
作者:李源 陈昌林 谭恢村 单位:东方电气东方电机有限公司
风力发电论文:风力发电产业发展论文
一、辽宁省风力发电产业发展中存在的问题
持续几年的飞速发展之后辽宁风电行业总装机容量已位居全国前列。过快的发展也致使一些问题逐渐暴露出来。
(一)风电产业建设规划不完善,“弃风限电”现象较为严重近年来,由于风电开发高度集中于“三北”地区(东北、华北和西北),风电建设规划不完善、能源管理不到位,辽宁本地电量消纳空间有限,电网外送能力又不足等原因,风电的并网难及市场消纳问题开始凸显。“弃风限电”现象比较严重。据国家能源局统计数据显示,2012年辽宁省风电利用小时数为1732小时,风电运行限电比例达到10%以上。从业界经验看,1900小时为盈亏平衡点,所以情况仍然很严峻。2012辽宁用电负荷只增长了1%,而电源装机却呈现加速度增长。由于辽宁处于中国电网的末梢,电网的输电能力不足,造成一些风电企业发出了电送不出电。此外,一些风电企业相应的配套设施管理制度不完善,也是造成风电并网难的原因之一。
(二)风电产业投资主体单一,投资回报率低于社会投资平均水平目前,辽宁省风电投资以大型发电企业为主,其他投资较少。导致这种局面的原因与我国的风电发展战略有关。过去一段时间里,我国一直鼓励大规模的风电开发项目,只有资金实力雄厚的大型发电企业才具备项目需要的投资数额,其他投资主体很难与之抗衡。目前,我国现有的能源管理体系已经不适应风电等新能源发电技术的技术特性,缺乏新能源和电力系统顶层设计,风电发展与电网发展的协调性、电力系统运行灵活性有待进一步提高。有些电力企业由于盲目投资,导致的负债率提高。以投资金额计算,2013年,我国风电新增投资量较2012年减少约140亿人民币。风电产业的利润水平连续下降,投资回报率低于社会投资平均水平,风电开发商积极性严重受挫。
(三)风电设备制造缺乏自主核心技术,相关企业生产水平不高由于国家大力发展风电的导向,加之财政政策的支持,导致辽宁风电设备制造企业数量增加,其中许多企业规模过小,并不具备风电设备制造能力。这种“跟风”造成严重的人员的资金浪费,对辽宁风电产业的持续健康发展形成不利影响,亟待相关部门对其进行行业管理和规范。辽宁省是中国制造业龙头大省,具有较强的风电设备研发、制造能力。但对于风电设备制造的核心技术,目前还处于引进消化阶段,如风电机组中控制系统和并网等关键技术设备还需要从国外引进,成套设备的国产化程度不高,并网技术更是缺少自主知识产权,这将是制约辽宁风电产业发展的一个技术瓶颈。
(四)风电专业人才紧缺,制约风电产业发展风电人才包括风资源评估人员、研发人员、工程师、制造企业工人、运维人员等。目前国内开设风电专业的大学尚在少数,每年培养的风电人才也难以满足企业需求。特别是一些技术性强专业技术人才极度缺乏。目前辽宁风电企业的员工,多数是来自其火电企业或他行业,缺乏风电专业基础知识。专业水平差,一旦风机运行出现故障,一般技术人员很难做出故障诊断,更难有妥善处理办法,这直接影响风力机运行状态,甚至使用寿命。同时,不够专业化的现场人员不大具备发现风机运行过程中问题能力,无法及时地反馈风机运行问题,这影响了对风机设备的技术消化和改进。
二、对辽宁风力发电产业发展的对策建议
针对辽宁风电产业发展中出现的风电建设规划不完善、本地电量消纳空间有限、弃风限电严重;风电产业投资主体单一;风电的关键设备及核心技术受限于国外;技术研发和管理人才匮乏等问题,提出几点建议。
(一)抓住技术创新这一产业发展的关键,加快适应风电电网及其运行体系建设技术创新是产业发展的关键。未来风电产业将朝着海上风电、风车大型化、风力发电设备制造技术日臻完善等趋势发展。“十二五”科学和技术发展规划提出,风电重点是发展5兆瓦以上风电机组整机及关键部件设计、陆上大型风电场和海上风电场设计及运营、核心装备部件制造、并网、电网调度和运维管理等关键技术,形成从风况分析到风电机组、风电场、风电并网技术的系统布局。解决辽宁风电“弃风限电”现象,可从加快海上风电开发、增强本地消纳能力、加快外送通道建设等新技术应用入手。辽宁省海上风能资源储量丰富,但海上风电开发还基本处于空白。海上风电具有风速高、静风期少,全负荷小时数多、环境影响小,靠近经济发达地区,距离电力负荷中心近,风电并网和消纳容易等优点。因此加快海上风电相关技术和设备的研发,是解决资源中心与负荷中心分布不均衡,弃风限电严重的好办法。探索风电清洁供暖,也可以作为促进辽宁风电本地消纳手段之一。风电清洁供暖的基本模式是采用蓄热电锅炉替代燃煤锅炉制热,电锅炉在夜间电网负荷低谷段用电制热并将多余的热蓄起来。蓄热电锅炉原则上白天不用电,利用夜间蓄存的热能满足白天供热需要。这样可以增加电网负荷低谷段用电量,从而为风电并网运行提供负荷空间,增加风电在当地电网消纳的比例。除了积极推动风电本地消纳之外,加快外送通道即特高压输电的建设,将东北风电市场扩大到“三华”市场也是解决辽宁电网负荷压力的有效途径。
(二)放宽投资主体限制,鼓励各种投资主体参与风电开发根据国外经验,在分布式风力发电项目建设上应注重拓宽投资渠道,加大对民营资本投资的吸引,鼓励全民参与是促进分布式风力发电快速发展的主要途径。要达到拓宽投资渠道目标,应采取以下两项措施:一是降低分布式风力发电项目的初始投资,使风力发电成本下降,风电价格大幅降低,具备与火电竞争的能力;二是建立健全风电投资管理的法律法规,使投资主体能够清楚的计算出投资收益,增强投资者的投资信心。应在建立多层次资本市场的战略前提下,鼓励各种投资主体参与风电开发,鼓励成立部级的风电开发担保公司,完善产业贷款担保模式,加大对风电行业参与和支持力度。建立完善的风电行业金融服务体系。建议各级金融机构,根据分布式风力发电行业的特点,成立风电开发担保公司,完善风电产业开发贷款担保模式,分散和化解风电项目的投资风险。
(三)依托中国装备制造业优势,强化风电自主创新能力辽宁是中国装备制造业基地,具有风电成套设备制造的先天优势。辽宁风电制造企业应该把握住机会,发挥自身优势,通过引进消化吸收国外先进风电技术,不断提高风电核心技术的自主研发能力,提高设备的国产化水平。抓住机遇,使辽宁省成为国内风电设备制造的龙头,将辽宁风电设备制造产业辐射全国,乃至世界。当然,辽宁的风电企业也应该保持清醒的头脑,由于国家对于发展清洁能源的各项政策支持,导致这一领域热度过高,竞争加剧,资金变得非常分散。盲目跟风,单纯跟随政策导向,缺乏核心竞争力,就有可能在这个朝阳产业里,把自己推向过剩的企业。拥有核心技术,是辽宁省风电企业发展的硬道理。当前,世界风电装备制造企业发展的已经呈现出国际化、大型化和一体化趋势,全球十个较大的风电设备制造商占据了全球市场份额的96%,排名前4的风电设备制造商已经控制了全球75%的市场份额。与国外企业相比,我国企业的生产成本具有比较优势,而且还有一些可发挥的优势,例如,因为中国国土广阔,各地气候差异较大,可根据不同气候、风力情况量身订做,研制出适合不同风电场用户要求的装备;对于大型化风电设备,国内运输具有运输成本低的优势;进口设备的维护成本相当昂贵,而国内企业则具有提供快速、便利的售后服务和低廉的维修成本优势。
(四)加大人才培养力度是做强辽宁风电事业的根本人力资源是一个产业发展的基础。为应对风电人才的紧缺局面,辽宁省已有一些高校开设了风电专业,如沈阳工程学院,已经于2008年开始招收风能技术与动力专业的学生,为风电企业培养急需的应用型技术人才。辽宁省应大范围地进行风电各层次的人才的培养和培训,特别是一线技术人员,他们是支撑风电产业的基础。在国家层面上,也应给与相关院校必要的政策和资金支持,加大对风电专业学科建设的支持力度,培养出能满足不同层次需求的风电专业人才。风电专业作为一个工科专业,具有很强的实践性,在人才培养上,要注重产学研相结合、加大校企合作的力度。企业应积极参与人才培养方案的制定工作,为高校提供更多的实践基地,共同培养出更多符合企业需要的高素质的应用型人才。这是一条人才培养的捷径。风电企业也应重视和加强对内部人员的在职培训和进修,有计划的举办技术培训班,对企业现有员工进行定向培养。“人才是立足之本,兴业之基”。培养我们自己的高端风电人才,是风电产业提升核心竞争力的根本途径。风电产业的根本竞争是人才的竞争,人才竞争是风电产业领域竞争中最为本质的内容。
作者:尹健单位:沈阳工程学院管理学院
风力发电论文:风力发电场通信系统论文
1风力发电场通信系统设计要遵循的基本原则
首先,在进行风力发电场通信系统的系统设计过程之中,要严格按照电力系统设计的基本原则完成风力发电场内部各种基本设计,并在完成风力发电场的基本设计的过程之后,再进行相应的风力发电场通信系统设计;其次,在进行风力发电场通信系统设计的过程之中,要充分的分析风力发电场在通信系统之中扮演的角色,并根据相应的电信业务的计算,对风力发电场的通信规模进行设计,并对风力发电场的通信容量进行设计,规划好风力发电场通信系统;然后,在进行风力发电场通信系统设计的过程之中,要充分的考虑到如何进行区域通信网络共享,帮助风力发电场充分的利用到区域的通信资源;,在进行风力发电场的电力通信建设方案的设计和技术方案的规划的过程之中,要充分考虑到风力发电场的实际通信需求,与此同时,还要充分考虑到风力发电场的远期发展的情况,提出可行的通信设计方案(一般情况下至少要设计出两套较为合理的方案),在进行设备的选型和购买,完成风力发电场的电力通信建设过程。
2风力发电场通信系统设计方案
2.1风力发电场通信系统光纤通信设计方案。风力发电场通信系统光纤通信设计的过程之中,要根据风力发电场的实际施工环境进行对光缆类型的选择。例如,在进行风力发电场电力通信系统的架设光缆的选择的过程之中,如果在线路架下方有地线就需要选择OPGW光缆,如果在线路架下方没有地线,则需要选取ADSS光缆。在进行电力通信系统的光缆数量的确定的过程之中,要根据电力通信系统的传输长度以及针对电力通信系统的线路保护的原则来进行选择。例如,如果电力通信系统的线路长度如果是在六十千米之下,还需要对电力通信系统之中对两个相互独立的传输通道进行保护,就需要为电力通信系统建立两条光缆。如果如果电力通信系统的线路长度如果是在六十千米以上,只需要对电力通信系统之中的一条传输通道进行保护,就只需要架设一条光缆。在进行风力发电场通信系统光纤的配置的设计过程之中,也要针对实际的情况进行对风力发电场通信系统光纤的配置进行设计。例如,如果进行电力通信系统的线路保护过程之中涉及到了两个光纤的通行通道的,就需要使用两个2Mbit/s的光纤专用通道来进行设计。如果进行电力通信系统的线路保护过程之中只涉及到了一个光纤的通行通道的,就只需要使用一个2Mbit/s的光纤专用通道来进行设计。与此同时,在进行完光缆的设计过程之中,后续的设备选型要满足光纤选择的需求。
2.2风力发电场通信系统载波通信设计方案。在进行风力发电场通信系统线路的设计过程之中,要充分考虑到线路的实际高频保护问题,具体的来说,目前的高压线路主要有500千伏、220千伏、110千伏、35千伏这几种,这就需要针对不同的电压数值进行风力发电场通信系统载波通信设计,并专门规划好相应的载波通道。在载波通道的开通过程之中,要充分的考虑到风力发电场的内部的载波现状,保障所选取的载波频率的筛选不会干扰的风力发电场通信系统载波通信的正常运行,与此同时,还要求所选的载波机的型号和风力发电场通信系统的设备选型保持一致。
2.3风力发电场场内通信系统设计。所谓风力发电场场内通信系统设计,主要满足的是风力发电场内部的各个用来发电的风力发电机机组与风力发电场的升压站监控主机之间的通信连接系统的功能的发挥。在进行设计的过程之中,要满足以下几个方面的设计原则:首先,要保障风力发电场的升压站监控主机可以有效的对用来发电的风力发电机机组进行控制,还需要使用光缆将风力发电机机组和升压站监控主机有效的连接在一起,保障升压站监控主机对风力发电机机组的实时监控;其次,进行设计的连接用来发电的风力发电机机组与风力发电场的升压站监控主机之间的光缆要满足相应的通信频率和载波频率的要求;然后,为了保障信息传输的性,还要求架设相应的通信支路,并杜绝这些通信支路之间的相互干扰;再者,风电场内通信光缆的埋设方式应当采用直埋敷设的埋设方式,当风力发电场内部的架空线路走向与风力发电场的通信电缆的走向相同的时候,就可以有效的利用风力发电场内部的架空线路同杆架设的架设方式,以便于有效的减少电缆沟的施工,与此同时,电缆一般情况下要选用铠装电缆;,要保障好通信设备的接地操作,保障通信过程的安全运行。
3结束语
综上所述,在进行风力发电场通信系统设计的过程之中,首先要分清设计的两个系统,并根据风力发电场的实际情况,进行相关设计方案的选择,保障风力发电场通信系统的正常有效运行。
作者:陈枣儿桂知进单位:甘肃建筑职业技术学院
风力发电论文:风力发电工程项目管理论文
1风力发电工程项目管理中存在的问题
1.1前期开发阶段项目的评估具有一定的局限性
在风力发电工程项目中,风力资源的随机性比较强,受到风力资源的随机性、项目初期的电价水平、风电机组的类型不确定等多方面的影响,导致风电项目的前期开发过程中的项目评估具有一定的局限性,比如对短期观测资料的评估具有一定的偏差、对接入系统的方案评价有缺陷等,都会导致对风电项目的可行性、投资、风险和收益等多方面的判断出现误差,最终影响风电项目的有效决策。
1.2对风电项目的可行性的研究与项目建设脱节
很多企业在对项目的可行性进行研究时,由于项目核准费用存在限制、基础资料不完整、设计单位的经验不足等原因,导致对风电项目的可行性的研究出现了一定的偏差,从而对后续的施工控制带来影响。比如在风电项目的设计过程中缺少相应的统筹规划、对风电项目的方案优化不够等,都是对项目可行性研究不足的重要表现。
1.3风电并网对风电项目的开发具有一定的制约作用
当前,风电项目的发展规划设计超前于电网的设计和规划,风电并网是当前的一个重要发展趋势,但是为风电的规模开发带来了一定程度的阻碍。当前我国呈现出这样一种现象,即风资源比较充足的地区电力资源不足,电网比较薄弱。已经开始投入运行的一些风电项目在电网调度方面受到了很大的影响,因此发电量受到限制,制约了风电的发展,对风电开发行业的发展也带来了严重的影响。
2加强风力发电工程项目管理的策略
2.1加强对风电项目开发阶段的管理控制
风力发电项目的前期开发工作对于项目的后续开展具有十分重要的意义。加强前期开发的控制,可以从以下几个方面着手。及时,重视风电项目的选址以及风能资源的评估。在风电项目开发的初期,要对全国以及区域的风能资源进行了解和评估,对风能资源的等级进行评定,为风电项目的布局奠定坚实的基础。同时要选择的咨询公司,对各种风能的检测结果进行分析,提出对风电项目的开发规模以及场址选取进行优化的策略。第二,对风电场的电价水平以及上网条件进行落实。在风电项目开发的过程中,要对风电项目所在地的电网现状以及规划进行了解,对区域的风电电价水平进行掌握,结合实际情况,对风电项目的开发计划进行调整。第三,对国内主流风电机组进行相应的调研工作。在风电项目开发过程中,要根据企业的风电项目规划,对风电设备的生产企业进行调研,对风机市场的供应情况、企业项目的布局、风能资源的特点进行了解。在风电项目的可行性研究阶段,也要对风电机组的型号选择以及采购工作进行相应的指导,在当前很多风电项目中,投资数的80%都是用于风电机的采购,因此开发企业在选择风电设备的过程中要对各种设备进行甄别和比较,减少投资风险。在采购设备的过程中,不仅要考虑到价格,还要考虑到风机厂家的技术、经济实力、服务能力等,尽量选择与大型企业进行合作,与综合实力较强的企业签订长期合作协议。第四,对风电项目的初步投资估算进行评价。在风电项目的初期评价过程中,要根据行业内的相关规定、地方工程材料的价格等,对风机的初步投资进行估算,从而对风电项目进行相应的经济评价,考察风电项目的盈利情况,对项目的投资估算情况进行评价,从而确定项目投资是否符合相应的风电项目的实际情况。
2.2加强风电项目的可行性研究
加强风电项目的可行性研究是对项目进行科学评价、规避风险的重要环节。在进行项目的可行性研究时,需要对项目的进度以及费用进行相应的协调,在此基础上进行相应的研究工作。对项目的可行性进行研究,包括几个方面的内容。及时,可以通过招标的方式确定设计咨询单位,采用公开招标或者谈判的方式,对投标的单位进行相应的资格审查,从而加强风电项目实施过程中的质量保障。第二,在合同中对工作的范围、质量以及进度等方面的验收工作要进行的界定。在签订合同时,一般采用的是建设部颁布的相关合同作为范本,与中标人进行相应的谈判工作。对工作范围进行确定时要按照相应的项目规划的容量以及整体性进行确定,列出在不同阶段的工作内容的范围。对于工程项目的进度和报价的管理,应该要通过对投标书中的各种技术方案、人员组织机构、质量保障措施等管理,加强项目的进度和成本控制。签订相关和合同之后要由相应的技术人员或者管理人员启动项目,对项目中的各种问题进行落实。比如对地形进行测量、对风能资源进行评估、对征地费用进行研究等。
2.3风电并网条件对项目开发的制约性问题的解决
风电并网对于风电项目的开发具有一定的制约,为了解决这一问题,在国家层面上,相应部门可以提出调整战略,进行百万千瓦级、千万千瓦级风电基地的建设,在风能资源比较丰富的地区加强其电网条件的满足,建立相应的风电发展规划体制、电网配套工程等。为风电项目的开发提供必要的支持。
3结束语
随着我国经济的快速发展,对电能的需求越来越大,加上环境保护要求越来越高,风电项目受到的重视程度越来越高。当前风电项目的管理过程中还存在一些问题,比如可行性研究不够、前期的评估工作不足等,为了不断提高风电项目管理水平,需要采取相应的措施进行应对,加强风电项目的深入发展。
作者:宋金涛单位:中国水电十四局大理分公司
风力发电论文:风力发电设备管理论文
1现如今风力发电设备管理指标
目前,我国的风力发电设备在管理方面还没有形成相对比较完善的体系,在实际的运行中,主要是依据相关的发电设备的评价和规则来进行制定。其中存在的指标类型有很多,包括可利用率、运行系数以及利用系数等等。具体来说主要表现在以下几个方面:
1.1风电机组运行状态
要想对风电机组的运行状况进行深入了解,需要对其运行的实际状态进行分析。
1.2风电设备管理指标
1.2.1单台风电机组可利用率。具体来说,在风电机组可利用率的计算中,要严格按照科学的计算公式来进行,如下所示:单台风电机组的可利用率=可用小时数/统计期间小时数×从这一公式中可以看出,单台风电机组的可利用率和可用的时间以及统计期间的时间和经过维修之后的使用寿命之间存在着密切的联系。只有相关的数据进行掌握,然后通过精密地计算,才能够实现风电机组运行的安全性和性。另外,在对其进行检修和维护的过程中,需要对相关的故障问题进行分析,因为,故障问题的出现会直接影响到风电设备的可用效率,进而对管理指标的建立产生严重的影响。
1.2.2单台机组运行系数。单台机组的运行系数主要是在固定的周期范围内,机组的运行状态和所用时间之间的关系。在对这一参数进行计算的过程中,需要充分考虑到电网系统的整体状态,同时还应该将不通风速作用下的电网系统运行状态考虑到其中。和单台机组的可利用率相比,单台机组的运行系数可以反应机组调度情况。
1.2.3单台机组利用系数。这一参数就是指单台机组的发电量在经过折合之后运行的时间,这一系数可以对设备的运行强度进行反应。同时,机组的磨损情况也可以通过这一参数来进行预测。可见,在对风电企业的发电设备进行管理和控制的过程中,对电台机组的利用系数进行计算和预算具有较大的实际作用。
1.2.4单台机组的处理系数。这一系数和单台机组的可以利用率相对,更能够对机组的运行效率和实际的产能情况进行反应。另外,还可以根据风速和风量的大小来进行具体的区别。由于单台机组的的处理系数涉及到机组运行中产生的其他不同的系数,所以具有较大的复杂性。需要工作人员对这一问题加强重视,同时根据已有的系数和运行情况来对不符合机组运行的部分进行细致得调节和改进。充分应用单台机组的处理系数,提升设备管理指标体系的科学性。
1.2.5单台机组非计划停运有关指标。具体来说,从单台机组的分计划停运方面可以看出,主要涉及到的参数类型主要有以下几种:单台机组非计划停运系数、停运效率、发生率等等。从这些参数中可以看出计划停运和非计划停运的具体状态,从而对发电设备管理指标体系的建立提供重要的依据。
2对现行风力发电设备管理指标的改进及分析
2.1完善风力发电设备管理指标的价值化评价
现行风力发电设备管理指标重实物形态、轻价值形态评价。因此,应该由原来单一的为保障完成生产任务转向为实现企业总的经营目标,由原来以技术指标为主的考核内容转向为技术与经济相结合的考核内容。设备资产保值增值率的计算应考虑设备实际完好率对于期末设备总净值的影响。设备利润率指标数值越大,说明单位设备资金额取得的经济效果越明显,它是企业设备管理工作在保障与推动有效生产情况下对企业经济效益所起综合作用的具体体现。
2.2功效系数法在风力发电设备管理指标体系中的应用
设备管理水平的提升就是寻求平衡点。可以对多指标进行加权综合评判,按照相互矛盾指标的重要程度加权,评价其综合指标值。也可以寻求相互矛盾指标各自的点来评价。
2.2.1评价指标的无量纲处理。首先通过数学变换对设备管理各项评价指标进行无量纲处理。这样做的目的是将各项评价指标的实际值分别转化为可以同度量的设备管理指标分数。只有这样才能把多个异量纲的评价指标综合成一个总评价值。
2.2.2按各评价指标分数及其对应的权重,应用加权几何平均法计算出设备管理指标体系综合分数,然后依据档次标准,对企业设备管理工作作出整体评价。
2.3其他设备管理指标的有益补充
设备现场管理考核指标。反映设备生产现场的维护水平,包括反映生产现场6S活动开展和水平的指标,以及6S活动过程中发现的“6源”问题的解决情况。设备维修管理指标。例如,设备维修成本指标:备件资金周转率、维修费用占生产成本比;设备维修质量指标:设备大修返修率、维修计划的率、带缺陷运行机组比率等。
3结束语
目前风电行业竞争激烈,要保障企业持续稳定的发展,除拥有大量的储备项目、精简的财务制度和科学的管理方法外,更重要的是要提高发电设备的现代化管理水平。其中,以管理指标为主要内容的定量管理是比较有效的手段,以期达到科学、合理和公平的目的。
作者:王欣单位:大唐(赤峰)新能源有限公司
风力发电论文:风力发电商业化研究论文
1风力发电的兴起
1973年的石油危机之前,风力发电技术仍处于科学研究阶段,主要在高校和科研单位开发研究,政府从技术储备的角度提供少量科研费。1973年以后,风力发电作为能源多样化措施之一,列入能源规划,一些国家对风力发电以工业化试点应用给予政策扶持,以减税、抵税和价格补贴等经济手段给予激励,推进了风力发电工业化的发展。进入90年代,风力发电技术日趋成熟,风场规模式建设;另一方面全球环境保护严重恶化,发达国家开始征收能源和碳税,环保对常规发电提出新的、严格的要求。情况变化缩短了风力发电与常规发电价格竞争的差距,风力发电正进入商业化发展的前夜。
近年,世界风力发电如雨后春笋,逐年以二位数速度迅猛增长,截至1998年,全球装机9689MW。装机容量前10名的国家是:德国2874MW、美国1890MW、丹麦1400MW、印度968MW、西班牙834MW、荷兰364MW、英国331MW、中国223MW、意大利180MW和瑞典174MW。
我国风力发电起步于80年代末,集中在沿海和新疆、内蒙风能带。1986~1994年试点,1994年新疆达坂城2号风场首次突破装机10MW(当年全国装机25MW),4年后,全国装机223MW,增长9倍,占全球风力发电装机的2.3%。
2各国政府的激励政策
2.1美国
a)1978年通过“公共事业管理法”规定电力公司必须收购独立发电系统电力,以“可避免成本”作为上网电价的基础,对包括风力发电等可再生能源的投资实行抵税政策,即风力发电投资总额15%可以从当年联邦所得税中抵扣(通常投资抵税为10%,由此风力发电投资抵税率为25%),同时,其形成的固定资产免交财产税。在此基础上,加利福尼亚州能源委出台“第4号特殊条款”,要求电力公司以当时天然气发电电价趋势作为“可避免成本”计入上网电价,签订10年不变购电合同(每千瓦时11~13美分)。这段时间加利福尼亚州风力发电发展迅猛,出现该州风力发电占全国风力发电的80%,1986年取消优惠政策,发展速度立即下降。
b)1992年颁布“能源法”,政府从鼓励装机转到鼓励多发电,由投资抵税变为发电量抵税,每千瓦时风力发电量抵税1.5美分,从投产之日起享受10年。
c)1996年美国能源部“888号指令”,发电、输电和供电分离,鼓励竞争。
d)美国能源部围绕2002年风电电价降到2.5美分/kWh、2005年风力发电设备世界市场占有率25%、2010年装机10GW等目标,拔专款支持科研和制造单位进行科学研究。
e)推行“绿色电价”,即居民自愿以高出正常电价10%的费用,使用可再生能源的电量。
2.2德国
1990年议会批准“电力供应法案”,规定电力公司必须让可再生能源上网,全部收购,以当地售电价90%作上网价,与常规发电成本的差价由当地电网承担。政府对风力发电投资进行直接补贴,450~2000kW的机组,每千瓦补贴120美元;对风力发电开发商提供优惠的低息贷款;扶持风力发电设备制造业,规定制造商在发展中开发风力发电,最多可获得装备出口价格70%的出口信贷补贴。
在政府激励政策推动下,1995年德国投产风力发电495MW,1996年364MW,跃居世界之首。但是,实施风力发电差价由当地电网承担的政策,引发一些电力公司上诉到联邦议会。
2.3印度
a)设立非常规能源部,管理可再生能源的发展,为可再生能源项目提供低息贷款和项目融资。
b)政府提供10%~15%装备投资补贴,将风力发电的投资计入其它经营产业的成本,用抵扣所得税补贴开发商。5年免税。整机进口关税税率25%,散件进口为零税率。有些邦还减免销售税。
c)电力电量转移和电量贮存政策:开发商可以在任何电网使用自己风机发出的电力电量。电力公司只收2%手续费。风机发出电量贮存使用长达8个月。开发商也可以通过电网卖给第三方。
d)为风力发电及其他可再生能源提供联网方便。
e)设低保护价,一般为每千瓦时5.8~7.4美分。
印度扶持政策是在严重缺电的情况下形成的。1995年印度风力发电投产430MW,1996年投产251MW,是发展中国家风力发电发展最快的国家。
2.4中国
起步晚,发展快,但扶持风力发电尚未形成统一规范的政策。
a)政府积极组织国外政府和金融机构的优惠贷款;可再生能源发电项目的贷款,在一定条件下给予2%贴息;风力发电项目在还款期内,实行“还本付息+合理利润”电价,高出电网平均电价的部分由电网分摊;还本付息期结束后,按电网平均电价确定。
b)1998年实行大型风力发电设备免进口关税,发电环节增值税暂为6%。
c)地方对征地及电力部门在联网上给予优惠。
世界各国扶持力度各异,进程不一,见图1。
3影响中国风电商业化的因素
当前,风力发电商业化的突出问题是:单位造价偏高(国内“双加”工程9800~10500元/kW),风资源特点决定设备年利用小时仅2500~3400h,再加上其它原因,使上网电价偏高。影响上网电价有以下几个主要因素。
3.1工程费用
以某一实施中的工程为例,各项工程的费用所占百分比为:机组61.1%,塔架6.4%,土地3.0%,勘测设计1.8%,风场配套24.0%,输电工程3.2%。其中机组占极大的比例,如果降低其成本,能大幅度减少工程造价。
3.2资金渠道
风力发电成本中85%取决于建设工程费用。工程投资中除了法定资本金外,大部分由各种信贷解决,贷款条件(利率、还款期和手续费等)对项目财务评价影响很大。外国政府优惠贷款,还款期长,利率较优惠;国际金融贷款,中长期,利率较优惠;国家政策性贷款,在满足一定条件下贴息2%;商业银行贷款,还款期短,利率高。
目前,政府对风力发电没有投资补贴,优惠资金渠道不多,如果政府不采取扶待政策,恐怕风力发电建设资金渠道会较长时间影响风力发电的规模发展。
3.3税收
1998年起免征大型风机进口关税,这对风力发电建设是很大的扶持。(在未免征之前,关税率24.02%,提高整个工程造价15%)。
发电环节增值税:风力发电成本电价本来就高,又没有进项税扣减,不论征收6%或17%,都会使上网电价按比例上升。
对于所得税,可再生能源项目目前没有任何优惠,不论对经营者收益或上网电价核算都有很大的影响。
3.4投资合理收益率
以审议中的一个项目为例:总装机15MW,外国政府优惠贷款占66%,资本金20%,国内配套贷款14%,计算如表1。收益率越高,上网电价越高。
3.5业主(开发商)的经营管理水平
开发经营者对项目全过程的管理水平,不仅影响项目的成败,而且直接影响到风力发电能否顺利进入市场竞争。
4商业化势在必然
人们环保意识的增强,各国政府支持可再生能源的政策出台,为风力发电的发展创造了有利环境。特别是风力发电技术经过30年实践日趋成熟,设备的工业化可以提供性能、价格逐步下降的大型风电设备,显示出风力发电参与电力市场竞争能力大大提高。
以美国为例,80年代初风电上网电价40美分,90年代中降到5美分,见图2。1996年美国各州平均售电价水平4~12美分。其中,4美分2个州,4~5美分4个州,5~6美分12个州,风力发电装机最多的加利福尼亚州平均售电价为9.8美分。
美国风电场建设可以做到每千瓦造价1000美元,上网电价5美分。荷兰、丹麦每千瓦造价1000~1200美元,上网电价5.5美分。我国目前每千瓦造价大体是1200美元,可上网电价高达12美分。
综上所述,我国风力发电进入商业化是必然的,问题是如何妥善解决与商业化相关的因素。
5结论
风力发电是清洁可再生能源,蕴存量巨大,具有实际开发利用价值。中国水电资源370GW,风能资源有250GW。广东省水电资源6.6GW,沿海风能可开发量(H=40m)8.41GW。也就是说,风能与水能总量旗鼓相当。大量风能开发不可能靠某个部门或行业的财政补贴就能解决,商业化不仅是市场的要求,也是风力发电发展的自身需要。所以,风力发电商业化是必由之路,可行之路。
商业化关系到市场各方面,需要政府、业主(开发商)、电力部门和用户一起支持和配合,共同努力方能见效。
6建议
政府、业主(开发商)、电力部门和用户各施其责,或称之为“四合一”方案。
6.1政府
制定可再生能源的财政扶持法规、政策性银行优惠条款等激励政策、税收减免或抵税规定,政策上支持风力发电技术开发和设备国产化。
6.2业主(开发商)
精心选点,规模开发,优化设计,降低造价;争取优惠信贷,减轻还本付息成本;加强管理,保障设备运行率高,降低运行成本;自我约束,获取合理的投资收益率。
6.3电力部门
保障风力发电上网收购,按规定保障风力发电上网电价,电网合理消化风电差价,联网工程建设给予支持。
6.4用户
接受合理分摊再生能源的差价,自愿支持再生能源的发展,购买再生能源的“绿色电价”电量。
风力发电论文:风力发电机组齿轮箱研究论文
及时节概述
风力发电机组中的齿轮箱是一个重要的机械部件,其主要功用是将风轮在风力作用下所产生的动力传递给发电机并使其得到相应的转速。通常风轮的转速很低,远达不到发电机发电所要求的转速,必须通过齿轮箱齿轮副的增速作用来实现,故也将齿轮箱称之为增速箱。根据机组的总体布置要求,有时将与风轮轮毂直接相连的传动轴(俗称大轴)与齿轮箱合为一体,也有将大轴与齿轮箱分别布置,其间利用涨紧套装置或联轴节连接的结构。为了增加机组的制动能力,常常在齿轮箱的输入端或输出端设置刹车装置,配合叶尖制动(定浆距风轮)或变浆距制动装置共同对机组传动系统进行联合制动。
由于机组安装在高山、荒野、海滩、海岛等风口处,受无规律的变向变负荷的风力作用以及强阵风的冲击,常年经受酷暑严寒和极端温差的影响,加之所处自然环境交通不便,齿轮箱安装在塔顶的狭小空间内,一旦出现故障,修复非常困难,故对其性和使用寿命都提出了比一般机械高得多的要求。例如对构件材料的要求,除了常规状态下机械性能外,还应该具有低温状态下抗冷脆性等特性;应保障齿轮箱平稳工作,防止振动和冲击;保障充分的润滑条件,等等。对冬夏温差巨大的地区,要配置合适的加热和冷却装置。还要设置监控点,对运转和润滑状态进行遥控。
不同形式的风力发电机组有不一样的要求,齿轮箱的布置形式以及结构也因此而异。在风电界水平轴风力发电机组用固定平行轴齿轮传动和行星齿轮传动最为常见。
如前所述,风力发电受自然条件的影响,一些特殊气象状况的出现,皆可能导致风电机组发生故障,而狭小的机舱不可能像在地面那样具有牢固的机座基础,整个传动系的动力匹配和扭转振动的因素总是集中反映在某个薄弱环节上,大量的实践证明,这个环节常常是机组中的齿轮箱。因此,加强对齿轮箱的研究,重视对其进行维护保养的工作显得尤为重要。第二节设计要求设计必须保障在满足性和预期寿命的前提下,使结构简化并且重量最轻。通常应采用CAD优化设计,排定传动方案,选用合理的设计参数,选择稳定的构件和具有良好力学特性以及在环境极端温差下仍然保持稳定的材料,等等。
一、设计载荷
齿轮箱作为传递动力的部件,在运行期间同时承受动、静载荷。其动载荷部分取决于风轮、发电机的特性和传动轴、联轴器的质量、刚度、阻尼值以及发电机的外部工作条件。
风力发电机组载荷谱是齿轮箱设计计算的基础。载荷谱可通过实测得到,也可以按照JB/T10300标准计算确定。当按照实测载荷谱计算时,齿轮箱使用系数KA=1。当无法得到载荷谱时,对于三叶片风力发电机组取KA=1.3。
二、设计要求
风力发电机组增速箱的设计参数,除另有规定外,常常采用优化设计的方法,即利用计算机的分析计算,在满足各种限制条件下求得设计方案。
(一)效率
齿轮箱的效率可通过功率损失计算或在试验中实测得到。功率损失主要包括齿轮啮合、轴承摩擦、润滑油飞溅和搅拌损失、风阻损失、其它机件阻尼等。齿轮的效率在不同工况下是不一致的。
风力发电齿轮箱的专业标准要求齿轮箱的机械效率应大于97%,是指在标准条件下应达到的指标。
(二)噪声级
风力发电增速箱的噪声标准为85dB(A)左右。噪声主要来自各传动件,故应采取相应降低噪声的措施:
1.适当提高齿轮精度,进行齿形修缘,增加啮合重合度;
2.提高轴和轴承的刚度;
3.合理布置轴系和轮系传动,避免发生共振;
4.安装时采取必要的减振措施,将齿轮箱的机械振动控制在GB/T8543规定的C级之内。
(三)性
按照假定寿命最少20年的要求,视载荷谱所列载荷分布情况进行疲劳分析,对齿轮箱整机及其零件的设计极限状态和使用极限状态进行极限强度分析、疲劳分析、稳定性和变形极限分析、动力学分析等。分析方法除一般推荐的设计计算方法外,可采用模拟主机运行条件下进行零部件试验的方法。
在方案设计之初必须进行性分析,而在施工设计完成后再次进行详细的性分析计算,其中包括精心选取性好的结构和对重要的零部件以及整机进行性估算。第三节齿轮箱的构造一、齿轮箱的类型与特点
风力发电机组齿轮箱的种类很多,按照传统类型可分为圆柱齿轮增速箱、行星增速箱以及它们互相组合起来的齿轮箱;按照传动的级数可分为单级和多级齿轮箱;按照转动的布置形式又可分为展开式、分流式和同轴式以及混合式等等。常用齿轮箱形式及其特点和应用见表.20.1-1。
(表20.1-1风力发电齿轮箱的主要类型和特点)。
二、齿轮箱图例
(各种齿轮箱图例如图20.1~20.7所示)。
第四节齿轮箱的主要零部件箱体结构
箱体是齿轮箱的重要部件,它承受来自风轮的作用力和齿轮传动时产生的反力,必须具有足够的刚性去承受力和力矩的作用,防止变形,保障传动质量。箱体的设计应按照风电机组动力传动的布局安排、加工和装配条件、便于检查和维护等要求来进行。应注意轴承支承和机座支承的不同方向的反力及其相对值,选取合适的支承结构和壁厚,增设必要的加强筋。筋的位置须与引起箱体变形的作用力的方向相一致。
箱体的应力情况十分复杂且分布不匀,只有采用现代计算方法,如有限元、断裂力学等方法辅以摸拟实际工况的光弹实验,才能较为地计算出应力分布的状况。利用计算机辅助设计,可以获得与实际应力十分接近的结果。
采用铸铁箱体可发挥其减振性,易于切削加工等特点,适于批量生产。常用的材料有球墨铸铁和其他高强度铸铁。用铝合金或其他轻合金制造的箱体,可使其重量较铸铁轻20%~30%,但从另一角度考虑,轻合金铸造箱体,降低重量的效果并不显著。这是因为轻合金铸件的弹性摸量较小,为了提高刚性,设计时常须加大箱体受力部分的横截面积,在轴承座处加装钢制轴承座套,相应部位的尺寸和重量都要加大。目前除了较小的风电机组尚用铝合金箱体外,大型风力发电齿轮箱应用轻铝合金铸件箱体已不多见。
单件、小批生产时,常采用焊接或焊接与铸造相结合的箱体。为减小机械加工过程和使用中的变形,防止出现裂纹,无论是铸造或是焊接箱体均应进行退火、时效处理,以消除内应力。
为了便于装配和定期检查齿轮的啮合情况,在箱体上应设有观察窗。机座旁一般设有连体吊钩,供起吊整台齿轮箱用。
箱体支座的凸缘应具有足够的刚性,尤其是作为支承座的耳孔和摇臂支座孔的结构,其支承刚度要作仔细的核算。为了减小齿轮箱传到机舱机座的振动,齿轮箱可安装在弹性减振器上。最简单的弹性减振器是用高强度橡胶和钢垫做成的弹性支座块,合理使用也能取得较好的结果。
箱盖上还应设有透气罩、油标或油位指示器。在相应部位设有注油器和放油孔。放油孔周围应留有足够的放油空间。采用强制润滑和冷却的齿轮箱,在箱体的合适部位设置进出油口和相关的液压件的安装位置。齿轮和轴的结构
风力发电机组运转环境非常恶劣,受力情况复杂,要求所用的材料除了要满足机械强度条件外,还应满足极端温差条件下所具有的材料特性,如抗低温冷脆性、冷热温差影响下的尺寸稳定性等等。对齿轮和轴类零件而言,由于其传递动力的作用而要求极为严格的选材和结构设计,一般情况下不推荐采用装配式拼装结构或焊接结构,齿轮毛坯只要在锻造条件允许的范围内,都采用轮辐轮缘整体锻件的形式。当齿轮顶圆直径在2倍轴径以下时,由于齿轮与轴之间的连接所限,常制成轴齿轮的形式。
为了提高承载能力,齿轮、轴一般都采用合金钢制造。外齿轮推荐采用20CrMnMo、15CrNi6、17Cr2Ni2A、20CrNi2MoA、17CrNiMo6、17Cr2Ni2MoA等材料。内齿圈和轴类零件推荐采用42CrMoA、34Cr2Ni2MoA等材料。采用锻造方法制取毛坯,可获得良好的锻造组织纤维和相应的力学特征。合理的预热处理以及中间和最终热处理工艺,保障了材料的综合机械性能达到设计要求。
齿轮箱内用作主传动的齿轮精度,外齿轮不低于5级GB/T10095,内齿轮不低于6级GB/T10095。通常采用最终热处理的方法是渗碳淬火,齿表面硬度达到HRC60+/-2,具有良好的抗磨损接触强度,轮齿心部则具有相对较低的硬度和较好的韧性,能提高抗弯曲强度,而通常对齿部的最终加工是采用磨齿工艺。
加工人字齿的时候,如是整体结构,半人字齿轮之间应有退刀槽;如是拼装人字齿轮,则分别将两半齿轮按普通圆柱齿轮加工,用工装将两者对齿,再通过过盈配合套装在轴上。
齿轮加工中,规定好加工的工艺基准非常重要。轴齿轮加工时,常用顶尖顶紧两轴端中心孔安装在机床上。圆柱齿轮则利用其内孔和一个端面作为工艺基准,用夹具或通过校准在机床上定位。
在一对齿轮副中,小齿轮的齿宽比大齿轮略大一些,这主要是为了补偿轴向尺寸变动和便于安装。为减小轴偏斜和传动中弹性变形引起载荷不均匀的影响,应在齿形加工时对轮齿作修形处理。
齿轮与轴的联接
平键联接常用于具有过盈配合的齿轮或联轴器与轴的联接。
花键联接通常这种联接是没有过盈的,因而被联接零件需要轴向固定。花键联接承载能力高,对中性好,但制造成本高,需用专用刀具加工。
过盈配合联接过盈配合联接能使轴和齿轮(或联轴节)具有好的对中性,特别是在经常出现冲击载荷情况下,这种联接能地工作,在风力发电齿轮箱中得到广泛的应用。利用零件间的过盈配合形成的联接,其配合表面为圆柱面或圆锥面(锥度可取1:30~1:8)。圆锥面过盈联接多用于载荷较大,需多次装拆的场合。
胀紧套联接利用轴、孔与锥形弹性套之间接触面上产生的摩擦力来传递动力,是一种无键联接方式,定心性好,装拆方便,承载能力高,能沿周向和轴向调节轴与轮毂的相对位置,且具有安全保护作用。国家标准GB5867-86对其所推荐的四种胀紧套的结构形式和基本尺寸作了详细的规定。
齿轮箱中的轴按其主动和被动关系可分为主动轴、从动轴和中间轴。首级主动轴和末级从动轴的外伸部分用于安装半联轴器,与风轮轮毂或电机传动轴相连。为了提高性和减小外形尺寸,有时将半联轴器(法兰)与轴制成一体。
轴上各个配合部分的轴颈需要进行磨削加工。为了减少应力集中,对轴上台肩处的过渡圆角、花键向较大轴径过渡部分,均应作必要的处理,例如抛光,以提高轴的疲劳强度。在过盈配合处,为减少轮毂边缘的应力集中,压合处的轴径应比相邻部分轴径加大5%,或在轮毂上开出卸荷槽。装在轴上的零件,轴向固定应,工作载荷应尽可能用轴上的止推轴肩来承受,相反方向的固定则可利用螺帽或其他紧固件。为防止螺纹松动,可利用止动垫圈、双螺帽垫圈、锁止螺钉或串联铁丝等。有时为了节省空间,简化结构,也可以用弹簧挡圈代替螺帽和止动垫圈,但不能用于轴向负荷过大的地方。
轴的材料采用碳纲和合金纲。如40、45、50、40Cr、50Cr、42CrMoA等,常用的热处理方法为进行调质,而在重要部位作淬火处理。要求较高时可采用20CrMnTi、20CrMo、20MnCr5、17CrNi5、16CrNi等品质低碳合金纲,进行渗碳淬火处理,获取较高的表面硬度和心部较高的韧性。
滚动轴承
齿轮箱的支承中,大量应用滚动轴承,其特点是静摩擦力矩和动摩擦力矩都很小,即使载荷和速度在很宽范围内变化时也如此。滚动轴承的安装和使用都很方便,但是,当轴的转速接近极限转速时,轴承的承载能力和寿命急剧下件下降,高速工作时的噪音和振动比较大。齿轮传动时轴和轴承的变形会引起齿轮和轴承内外圈轴线的偏斜,使轮齿上载荷分布不均匀,会降低传动件的承载能力。由于载荷不均匀性而使轮齿经常发生断齿的现象,在许多情况下又是由于轴承的质量和其他因素,如剧烈的过载而引起的。选用轴承时,不仅要根据载荷的性质,还应根据部件的结构要求来确定。相关技术标准,如DIN281,或者轴承制造商的的样本,都有整套的计算程序和方法可供参考。
计算的使用寿命应不小于13万小时。在安装、润滑、维护都正常的情况下,轴承运转过程中,由于套圈与滚动体的接触表面经受交变负荷的反复作用而产生疲劳剥落。疲劳剥落若发生在寿命期限之外,则属于滚动轴承的正常损坏。因此,一般所说的轴承寿命指的是轴承的疲劳寿命。一批轴承的疲劳寿命总是分散的,但总是服从一定的统计规律,因而轴承寿命总是与损坏概率或性相联系。第五节齿轮箱的使用及其维护在风力发电机组中,齿轮箱是重要的部件之一,必须正确使用和维护,以延长使用寿命。
齿轮箱主动轴与叶片轮毂的连接必须紧固。输出轴若直接与电机联接时,应采用合适的联轴器,好是弹性联轴器,并串接起保护作用的安全装置。齿轮箱轴线与相联接部分的轴线应保障同心,其误差不得大于所选用联轴器的允许值。
齿轮箱安装后用人工盘动应灵活,无卡滞现象,齿面接触斑点应达到技术条件的要求。按照说明书的要求加注规定的机油达到油标刻度线,并在正式使用之前空载运转,此时可以利用电机带动齿轮箱,经检查齿轮箱运转平稳,无冲击振动和异常噪音,润滑情况良好,且各处密封和结合面不漏油,才能与机组一起投入试运转。
加载试验应分阶段进行,分别以额定载荷的25%、50%、75%、加载,每一阶段运转以平衡油温为主,一般不得小于2小时,较高油温不得超过80゜C,其不同轴承间的温差不得高于15゜C。
齿轮箱的润滑
齿轮箱的润滑十分重要,良好的润滑能够对齿轮和轴承起到足够的保护作用。为此,必须高度重视齿轮箱的润滑问题,严格按照规范保持润滑系统长期处于状态。齿轮箱常采用飞溅润滑或强制润滑,一般以强制润滑为多见。因此,配备的润滑系统尤为重要。电动齿轮泵从油箱将油液经滤油器输送到齿轮箱的润滑管路,对各部分的齿轮和传动件进行润滑,管路上装有各种监控装置,确保齿轮箱在运转当中不会出现断油。
在齿轮箱运转前先启动润滑油泵,待各个润滑点都得到润滑后,间隔一段时间方可启动齿轮箱。当环境温度较低时,例如小于10゜C,须先接通电热器加机油,达到预定温度后才投入运行。若油温高于设定温度,如65゜C时,机组控制系统将使润滑油进入系统的冷却管路,经冷却器冷却降温后再进入齿轮箱。管路中还装有压力控制器和油位控制器,以监控润滑油的正常供应。如发生故障。监控系统将立即发出报警信号,使操作者能迅速判定故障并加以排除。
对润滑油的要求应考虑:1)减小摩擦和磨损,具有高的承载能力,防止胶合;2)吸收冲击和振动;3)防止疲劳点蚀;4)冷却,防锈,抗腐蚀。不同类型的传动有不同的要求。风力发电齿轮箱属于闭式齿轮传动类型,其主要的失效形式是胶合与点蚀,故在选择润滑油时,重点是保障有足够的油膜厚度和边界膜强度。因为在较大的温差下工作,要求粘度指数相对较高。为提高齿轮的承载能力和抗冲击能力,适当地添加一些极压添加剂也有必要,但添加剂有一些副作用,在选择时必须慎重。齿轮箱制造厂一般根据自己的经验或实验研究推荐各种不同的润滑油,例如MOBIL632,MOBIL630或L-CKC320,L-CKC220GB5903-95齿轮油就是根据齿面接触应力和使用环境条件选用的。
在齿轮箱运行期间,要定期检查运行状况,看看运转是否平稳;有无振动或异常噪音;各处连接和管路有无渗漏,接头有无松动;油温是否正常。定期更换润滑油,及时次换油应在首次投入运行500小时后进行,以后的换油周期为每运行5,000-10,000小时。在运行过程中也要注意箱体内油质的变化情况,定期取样化验,若油质发生变化,氧化生成物过多并超过一定比例时,就应及时更换。
齿轮箱应每半年检修一次,备件应按照正规图纸制造,更换新备件后的齿轮箱,其齿轮啮合情况应符合技术条件的规定,并经过试运转与负荷试验后再正式使用。第六节齿轮箱常见故障及预防措施齿轮箱的常见故障有齿轮损伤、轴承损坏、断轴和渗漏油、油温高等。
一、齿轮损伤
齿轮损伤的影响因素很多,包括选材、设计计算、加工、热处理、安装调试、润滑和使用维护等。常见的齿轮损伤有齿面损伤和轮齿折断两类。
(一)轮齿折断(断齿)
断齿常由细微裂纹逐步扩展而成。根据裂纹扩展的情况和断齿原因,断齿可分为过载折断(包括冲击折断)、疲劳折断以及随机断裂等。
过载折断总是由于作用在轮齿上的应力超过其极限应力,导致裂纹迅速扩展,常见的原因有突然冲击超载、轴承损坏、轴弯曲或较大硬物挤入啮合区等。断齿断口有呈放射状花样的裂纹扩展区,有时断口处有平整的塑性变形,断口副常可拼合。仔细检查可看到材质的缺陷,齿面精度太差,轮齿根部未作精细处理等。在设计中应采取必要的措施,充分考虑预防过载因素。安装时防止箱体变形,防止硬质异物进入箱体内等等。
疲劳折断发生的根本原因是轮齿在过高的交变应力重复作用下,从危险截面(如齿根)的疲劳源起始的疲劳裂纹不断扩展,使轮齿剩余截面上的应力超过其极限应力,造成瞬时折断。在疲劳折断的发源处,是贝状纹扩展的出发点并向外辐射。产生的原因是设计载荷估计不足,材料选用不当,齿轮精度过低,热处理裂纹,磨削烧伤,齿根应力集中等等。故在设计时要充分考虑传动的动载荷谱,挑选齿轮参数,正确选用材料和齿轮精度,充分保障加工精度消除应力集中集中因素等等。
随机断裂的原因通常是材料缺陷,点蚀、剥落或其他应力集中造成的局部应力过大,或较大的硬质异物落入啮合区引起。
(二)齿面疲劳
齿面疲劳是在过大的接触剪应力和应力循环次数作用下,轮齿表面或其表层下面产生疲劳裂纹并进一步扩展而造成的齿面损伤,其表现形式有早期点蚀、破坏性点蚀、齿面剥落、和表面压碎等。特别是破坏性点蚀,常在齿轮啮合线部位出现,并且不断扩展,使齿面严重损伤,磨损加大,最终导致断齿失效。正确进行齿轮强度设计,选择好材质,保障热处理质量,选择合适的精度配合,提高安装精度,改善润滑条件等,是解决齿面疲劳的根本措施。
(三)胶合
胶合是相啮合齿面在啮合处的边界膜受到破坏,导致接触齿面金属融焊而撕落齿面上的金属的现象,很可能是由于润滑条件不好或有干涉引起,适当改善润滑条件和及时排除干涉起因,调整传动件的参数,清除局部载荷集中,可减轻或消除胶合现象。二、轴承损坏
轴承是齿轮箱中最为重要的零件,其失效常常会引起齿轮箱灾难性的破坏。轴承在运转过程中,套圈与滚动体表面之间经受交变负荷的反复作用,由于安装、润滑、维护等方面的原因,而产生点蚀、裂纹、表面剥落等缺陷,使轴承失效,从而使齿轮副和箱体产生损坏。据统计,在影响轴承失效的众多因素中,属于安装方面的原因占16%,属于污染方面的原因也占16%,而属于润滑和疲劳方面的原因各占34%。使用中70%以上的轴承达不到预定寿命。因而,重视轴承的设计选型,充分保障润滑条件,按照规范进行安装调试,加强对轴承运转的监控是非常必要的。通常在齿轮箱上设置了轴承温控报警点,对轴承异常高温现象进行监控,同一箱体上不同轴承之间的温差一般也不超过15゜C,要随时随地检查润滑油的变化,发现异常立即停机处理。三、断轴
断轴也是齿轮箱常见的重大故障之一。究其原因是轴在制造中没有消除应力集中因素,在过载或交变应力的作用下,超出了材料的疲劳极限所致。因而对轴上易产生的应力集中因素要给予高度重视,特别是在不同轴径过渡区要有圆滑的圆弧连接,此处的光洁度要求较高,也不允许有切削刀具刃尖的痕迹。设计时,轴的强度应足够,轴上的键槽、花键等结构也不能过分降低轴的强度。保障相关零件的刚度,防止轴的变形,也是提高轴的性的相应措施。四、油温高
齿轮箱油温较高不应超过80゜C,不同轴承间的温差不得超过15゜C。一般的齿轮箱都设置有冷却器和加热器,当油温底于10゜C时,加热器会自动对油池进行加热;当油温高于65゜C时,油路会自动进入冷却器管路,经冷却降温后再进入润滑油路。如齿轮箱出现异常高温现象,则要仔细观察,判断发生故障的原因。首先要检查润滑油供应是否充分,特别是在各主要润滑点处,必须要有足够的油液润滑和冷却。再次要检查各传动零部件有无卡滞现象。还要检查机组的振动情况,前后连接有否松动等等。
风力发电论文:风力发电厂环境管理论文
摘要:根据邓小平同志三步走的发展战略,到2050年我国的人均国民生产总值必须达到4000USD/人·年,才能达到中等发达国家的水平。据预测2050年我国人口将达到15亿~16亿。届时我国GNP将达到6万亿USD。在我国大力发展风电,使之成为我国电力工业的一个方面军,不仅是能源开发的需要,也是环境保护的需要。风力机对环境的正面影响是不言而喻的。它不仅可以保护我们人类赖以生存的大气减少污染。也可以保护我们的土地免受过度开发的灾难。最可贵的是风电的环境的负面影响非常有限。这可以使我们人类与自然界友好相处。在地球上真正实现可持续发展的目标。
关键词:风电能源开发环境保护
1、风力发电对中国经济发展的必要性
根据邓小平同志三步走的发展战略,到2050年我国的人均国民生产总值必须达到4000USD/人·年,才能达到中等发达国家的水平。据预测2050年我国人口将达到15亿~16亿。届时我国GNP将达到6万亿USD。根据世界各国经济发展的经验,要达到这一水平,人均年占有电量约为6000kwh。人均发电装机容量为1kw。全国总装机容量为15亿千瓦。15亿千瓦的装机容量的构成如表1示。
在我国的能源构成中,虽然煤的储存量最多,足够我们开采使用数百年之久。但由于环境的问题,交通运输的问题,到2050年9亿千瓦的火电(主要是煤电)容量已是开发利用的极限。由表1知2亿千瓦的水电和2亿千瓦的核电也一样达到了开发利用的极限,所以1亿千瓦的可再生能源就构成了我国能源发展的重要组成部分。而且是最有潜力的部分。
2、风电对环境的正面影响
由于风能是一种不消耗矿物燃料的可再能源。风电的使用,相当于节省相同数量电能所需的矿物燃料。其对环境的明显正面影响为:
2.1减少向大气排放粉尘,CO2、NOx、SOx。
我们以煤电为例,根据我国当前最普遍使用的30万千瓦蒸汽轮发电机组的现状。每发1万kwh的电,消耗约4吨标准煤;向大气排放粉尘约0.5吨;CO2约10吨;NOx约0.05吨;SOx约0.08t。
到2050年若风电的发电量占全国所需电量的5%,即约4000亿kwh,风电的装机容量约为1.5亿千瓦(风电的容量系数小,相当于煤电的装机容量0.7亿千瓦),则每年可节省约1.6亿吨标准煤,可减少向大气排放粉尘约2000万吨;CO2约4亿吨;NOx约200万吨;SOx约320万吨。
2.2减少因开发一次能源如煤、石油、天然气,所造成的环崐问题。一次能源的开采除了在砂漠地区外,通常要毁坏森林,良田和原有的各种植被。而海上油田的开采往往给海洋生态带来不可恢复的破坏。
2.3与同样是可再生能源的水电相比较,风电没有水电所存在的问题。[1]
淤积问题
拦河水库必须保持设计库容,而随地质条件不同,有的水库“淤积”发生较快,这就会降低工程的发电回收效益。较好的地区的水库寿命可达50年,但它不可能“无限期”的继续运行。
鱼类生存问题
修建水库可以增加鱼类繁殖的潜力,但是也由于截断了鱼类的回游通道而破坏了一部分鱼类及其它生态物种的生存。
移民问题
用于这个问题的可量化参数是单位发电千瓦对应的移民数量。只是移民已绝无可能返回他们原先的土地。渔民搬迁比农民困难,而农民的搬迁则比城镇工作的居民困难。
物种多样化问题
这一术语指的是工程建设地区的物种数目。生态系统的脆弱性将使物种的多样性(动植物种类数)受到更大的威胁。雨林带较之草地脆弱,草地则较之大草原脆弱。而所有这些地带的生态系统全部很脆弱。这就是说,如果环境急剧改变,就导致雨林带更多的物种遭到灭绝。这里需要提出的问题是:有没有用以弥补的可替代土地。或者说这项工程有没有替代选择方式?一般说来,选择的可能性终归存在。只不过需要人们假以时日,并由此而带来资金的滞留。
土地的“损失”或占用
这里指的是原先用于农业或其它增加国民生产总值的土地,而现在不得不为此而另觅土地。在这里应当将这些原先用地的单产经济价值与工程有效寿命期间用于发电工程占地的平均单产效益进行比较。
产生温室气体(CHC)问题
来自生物质,有机物分解,产生的CHC,&127;不应超过等量可燃气体燃烧生成的量值。可以估计出腐败的生物质产生的CO2和CH4量。
水质问题
可控制使生物腐坏的杂草,而使水质达到标准要求。有机物腐败可能产生磷和汞元素,它们将污染或降低整个河水的水质。
3、风电对环境的负面影响
3.1噪声
风力机的噪声主要来源于发电机,齿轮箱和浆叶切割空气产生的噪声,当前风力机的噪声水平随着工艺水平的提高而有较大的改善,如国产200kw风力机的噪水平如表2示。
3.2视觉影响
国外有些环保工作者对在田园风景的地区建造风力机持反对意见,认为是对田园风光的破坏,是一种视觉污染,但最近有些研究表明在美景如画的田园风光中点缀几台外观美丽的风力机将起到画龙点睛的作用,使美丽田园风光增添一些现代风味。尤其是计算机技术的发展,可以在安装风力机前,用PHOTOSHOP等软件制作成逼真的图片,供人们选择。可以选择好的视觉影响。
3.3对鸟类生活的影响
由于风力机随着容量的增加其扫掠面积和高度都跟着增加。当风力机安装在鸟类飞行的通道上,产生鸟类在飞行过程中撞上运行的桨叶而命丧黄泉。尤其当风力机安装在鸟类活动频繁的地区。实际上这种情况也曾见于报道。最近有研究认为鸟类撞上风力机而死亡的事件从总体上来说是很稀少的,这还因为鸟类是有智力的动物,当事件发生后,其它鸟类会得到警告,避开运行中的风力机。作者甚至于见过有鸟类在正常运行的风力机机舱上建筑鸟巢,与风力机和平共处相安无事。
3.4其它方面的负面影响
建设风电厂需要占用土地来建筑风力机基础及道路,将风电输送到用电中需要架设输电线路等等。这些都是风电对环境的负面影响,虽然这些影响可以随着技术的发展而减少。但人们必须考虑这些问题,使人类的经济活动建立在可持续发展的概念上。
4、结束语
由以上分析可知,在我国大力发展风电,使之成为我国电力工业的一个方面军,不仅是能源开发的需要,也是环境保护的需要。风力机对环境的正面影响是不言而喻的。它不仅可以保护我们人类赖以生存的大气减少污染。也可以保护我们的土地免受过度开发的灾难。最可贵的是风电的环境的负面影响非常有限。这可以使我们人类与自然界友好相处。在地球上真正实现可持续发展的目标。
风力发电论文:风力发电商业分析论文
1风力发电的兴起
1973年的石油危机之前,风力发电技术仍处于科学研究阶段,主要在高校和科研单位开发研究,政府从技术储备的角度提供少量科研费。1973年以后,风力发电作为能源多样化措施之一,列入能源规划,一些国家对风力发电以工业化试点应用给予政策扶持,以减税、抵税和价格补贴等经济手段给予激励,推进了风力发电工业化的发展。进入90年代,风力发电技术日趋成熟,风场规模式建设;另一方面全球环境保护严重恶化,发达国家开始征收能源和碳税,环保对常规发电提出新的、严格的要求。情况变化缩短了风力发电与常规发电价格竞争的差距,风力发电正进入商业化发展的前夜。
近年,世界风力发电如雨后春笋,逐年以二位数速度迅猛增长,截至1998年,全球装机9689MW。装机容量前10名的国家是:德国2874MW、美国1890MW、丹麦1400MW、印度968MW、西班牙834MW、荷兰364MW、英国331MW、中国223MW、意大利180MW和瑞典174MW。
我国风力发电起步于80年代末,集中在沿海和新疆、内蒙风能带。1986~1994年试点,1994年新疆达坂城2号风场首次突破装机10MW(当年全国装机25MW),4年后,全国装机223MW,增长9倍,占全球风力发电装机的2.3%。
2各国政府的激励政策
2.1美国
a)1978年通过“公共事业管理法”规定电力公司必须收购独立发电系统电力,以“可避免成本”作为上网电价的基础,对包括风力发电等可再生能源的投资实行抵税政策,即风力发电投资总额15%可以从当年联邦所得税中抵扣(通常投资抵税为10%,由此风力发电投资抵税率为25%),同时,其形成的固定资产免交财产税。在此基础上,加利福尼亚州能源委出台“第4号特殊条款”,要求电力公司以当时天然气发电电价趋势作为“可避免成本”计入上网电价,签订10年不变购电合同(每千瓦时11~13美分)。这段时间加利福尼亚州风力发电发展迅猛,出现该州风力发电占全国风力发电的80%,1986年取消优惠政策,发展速度立即下降。
b)1992年颁布“能源法”,政府从鼓励装机转到鼓励多发电,由投资抵税变为发电量抵税,每千瓦时风力发电量抵税1.5美分,从投产之日起享受10年。
c)1996年美国能源部“888号指令”,发电、输电和供电分离,鼓励竞争。
d)美国能源部围绕2002年风电电价降到2.5美分/kWh、2005年风力发电设备世界市场占有率25%、2010年装机10GW等目标,拔专款支持科研和制造单位进行科学研究。
e)推行“绿色电价”,即居民自愿以高出正常电价10%的费用,使用可再生能源的电量。
2.2德国
1990年议会批准“电力供应法案”,规定电力公司必须让可再生能源上网,全部收购,以当地售电价90%作上网价,与常规发电成本的差价由当地电网承担。政府对风力发电投资进行直接补贴,450~2000kW的机组,每千瓦补贴120美元;对风力发电开发商提供优惠的低息贷款;扶持风力发电设备制造业,规定制造商在发展中开发风力发电,最多可获得装备出口价格70%的出口信贷补贴。
在政府激励政策推动下,1995年德国投产风力发电495MW,1996年364MW,跃居世界之首。但是,实施风力发电差价由当地电网承担的政策,引发一些电力公司上诉到联邦议会。
2.3印度
a)设立非常规能源部,管理可再生能源的发展,为可再生能源项目提供低息贷款和项目融资。
b)政府提供10%~15%装备投资补贴,将风力发电的投资计入其它经营产业的成本,用抵扣所得税补贴开发商。5年免税。整机进口关税税率25%,散件进口为零税率。有些邦还减免销售税。
c)电力电量转移和电量贮存政策:开发商可以在任何电网使用自己风机发出的电力电量。电力公司只收2%手续费。风机发出电量贮存使用长达8个月。开发商也可以通过电网卖给第三方。
d)为风力发电及其他可再生能源提供联网方便。
e)设低保护价,一般为每千瓦时5.8~7.4美分。
印度扶持政策是在严重缺电的情况下形成的。1995年印度风力发电投产430MW,1996年投产251MW,是发展中国家风力发电发展最快的国家。
2.4中国
起步晚,发展快,但扶持风力发电尚未形成统一规范的政策。
a)政府积极组织国外政府和金融机构的优惠贷款;可再生能源发电项目的贷款,在一定条件下给予2%贴息;风力发电项目在还款期内,实行“还本付息+合理利润”电价,高出电网平均电价的部分由电网分摊;还本付息期结束后,按电网平均电价确定。
b)1998年实行大型风力发电设备免进口关税,发电环节增值税暂为6%。
c)地方对征地及电力部门在联网上给予优惠。
世界各国扶持力度各异,进程不一,
3影响中国风电商业化的因素
当前,风力发电商业化的突出问题是:单位造价偏高(国内“双加”工程9800~10500元/kW),风资源特点决定设备年利用小时仅2500~3400h,再加上其它原因,使上网电价偏高。影响上网电价有以下几个主要因素。
3.1工程费用
以某一实施中的工程为例,各项工程的费用所占百分比为:机组61.1%,塔架6.4%,土地3.0%,勘测设计1.8%,风场配套24.0%,输电工程3.2%。其中机组占极大的比例,如果降低其成本,能大幅度减少工程造价。
3.2资金渠道
风力发电成本中85%取决于建设工程费用。工程投资中除了法定资本金外,大部分由各种信贷解决,贷款条件(利率、还款期和手续费等)对项目财务评价影响很大。外国政府优惠贷款,还款期长,利率较优惠;国际金融贷款,中长期,利率较优惠;国家政策性贷款,在满足一定条件下贴息2%;商业银行贷款,还款期短,利率高。
目前,政府对风力发电没有投资补贴,优惠资金渠道不多,如果政府不采取扶待政策,恐怕风力发电建设资金渠道会较长时间影响风力发电的规模发展。
3.3税收
1998年起免征大型风机进口关税,这对风力发电建设是很大的扶持。(在未免征之前,关税率24.02%,提高整个工程造价15%)。
发电环节增值税:风力发电成本电价本来就高,又没有进项税扣减,不论征收6%或17%,都会使上网电价按比例上升。
对于所得税,可再生能源项目目前没有任何优惠,不论对经营者收益或上网电价核算都有很大的影响。
3.4投资合理收益率
以审议中的一个项目为例:总装机15MW,外国政府优惠贷款占66%,资本金20%,国内配套贷款14%,计算如表1。收益率越高,上网电价越高。
3.5业主(开发商)的经营管理水平
开发经营者对项目全过程的管理水平,不仅影响项目的成败,而且直接影响到风力发电能否顺利进入市场竞争。
4商业化势在必然
人们环保意识的增强,各国政府支持可再生能源的政策出台,为风力发电的发展创造了有利环境。特别是风力发电技术经过30年实践日趋成熟,设备的工业化可以提供性能、价格逐步下降的大型风电设备,显示出风力发电参与电力市场竞争能力大大提高。
以美国为例,80年代初风电上网电价40美分,90年代中降到5美分,见图2。1996年美国各州平均售电价水平4~12美分。其中,4美分2个州,4~5美分4个州,5~6美分12个州,风力发电装机最多的加利福尼亚州平均售电价为9.8美分。
美国风电场建设可以做到每千瓦造价1000美元,上网电价5美分。荷兰、丹麦每千瓦造价1000~1200美元,上网电价5.5美分。我国目前每千瓦造价大体是1200美元,可上网电价高达12美分。
综上所述,我国风力发电进入商业化是必然的,问题是如何妥善解决与商业化相关的因素。
5结论
风力发电是清洁可再生能源,蕴存量巨大,具有实际开发利用价值。中国水电资源370GW,风能资源有250GW。广东省水电资源6.6GW,沿海风能可开发量(H=40m)8.41GW。也就是说,风能与水能总量旗鼓相当。大量风能开发不可能靠某个部门或行业的财政补贴就能解决,商业化不仅是市场的要求,也是风力发电发展的自身需要。所以,风力发电商业化是必由之路,可行之路。
商业化关系到市场各方面,需要政府、业主(开发商)、电力部门和用户一起支持和配合,共同努力方能见效。
6建议
政府、业主(开发商)、电力部门和用户各施其责,或称之为“四合一”方案。
6.1政府
制定可再生能源的财政扶持法规、政策性银行优惠条款等激励政策、税收减免或抵税规定,政策上支持风力发电技术开发和设备国产化。
6.2业主(开发商)
精心选点,规模开发,优化设计,降低造价;争取优惠信贷,减轻还本付息成本;加强管理,保障设备运行率高,降低运行成本;自我约束,获取合理的投资收益率。
6.3电力部门
保障风力发电上网收购,按规定保障风力发电上网电价,电网合理消化风电差价,联网工程建设给予支持。
6.4用户
接受合理分摊再生能源的差价,自愿支持再生能源的发展,购买再生能源的“绿色电价”电量。
风力发电论文:风力发电机并网应用论文
论文关键字:风能发电机电能
论文摘要:风能是一种清洁,安全,可再生的绿色能源,利用风能对环境无污染,对生态无破坏,环保效益和生态效益良好,对于人类社会可持续发展具有重要意义。进入20世纪70年代,在世界范围内爆发的能源危机告诫人们,要生存就要寻找开发新能源,此后各国政府纷纷制定能源政策支持新能源的开发利用。现今调整能源结构、减少温室气体排放、缓解环境污染、加强能源安全已成为国内外关注的热点。国家对可再生能源的利用,特别是风能开发利用给予了高度重视。
近年来,世界风力发电事业蓬勃发展,截至2006年年底,全世界风力发电装机容量已达7422万千瓦,预计到2010年全世界风力发电装机容量将达到149.5吉瓦。
我国风能资源丰富。据中国气象科学研究院的初步测算,我国陆地10m高度处可开发储量为2.53亿kW,海上可开发储量为7.5亿kW,总计约10亿kW,风能利用潜力巨大。2005年以来我国每年的风电新增装机容量连年翻番,2005年装机容量126万KW,2006年装机容量260万KW,2007年装机容量590万KW,至2008年底风电装机容量已超过1000万KW。国家规划,到2020年中国风电装机规模将达3000万kW。在国家政策和资源优势的推动下,中国风能开发利用取得了长足进步。
风力发电在并网时由于冲击电流的存在,会对电网电压产生影响。由于风力发电是一种间歇性能源,风电场的功率输出具有很强的随机性,所以为了保障风电并网以后系统运行的性,需要额外安排一定容量的旋转备用以响应风电场的随机波动。各种形式的风力发电机组运行时对无功功率的需求不同,依靠电容补偿来解决无功功率平衡问题,发电机的无功功率与出力有关,由此也影响电网的电压。
大型风力发电机组的投入运行,使大规模风力发电场的建设成为可能,风电事业正逐步向产业化迈进。在某些地方,风力发电已经在电网中占有了相当的比重,它的运行状况直接关系到整个电网的安全性和性。为了更加安全、充分的利用风力资源,迫切需要深入研究大规模风电场并网运行的相关技术问题,是保障并入大规模风电场后电力系统仍然可以正常稳定运行的重要前提。
国内外研究现状
过去很长一段时期以来,由于结构简单、运行,风力发电系统主要采用恒速恒频发电方式,但采用恒速恒频方式的风力发电机组发电效率较低,而且机械承受的应力较大,相应的装置成本较高。近年来,随着大规模电力电子技术的日趋成熟,同时为实现不同风速下实现较大风能捕获从而高效发电,国内外正在采用变速恒频发电方式,变速恒频发电方式可以大范围内调节运行转速,来适应因风速变化而引起的风力机功率的变化,可以较大限度的吸收风能,因而效率较高;控制系统采取的控制手段可以较好的调节系统的有功功率、无功功率,但控制系统较为复杂;低风速下风机转速相应下降,从而大大降低了系统的机械应力和装置成本,近年来变速恒频风力发电机组成了大容量风力发电设备的主要选择方向。
恒速恒频风力发电机组的并网包括同步发电机的并网和异步发电机的并网。同步发电机在重载情况下并网,若不进行有效的控制,常会发生严重的无功振荡和失步,对系统造成严重的影响。用于风力发电的同步发电机与电网并联运行时,常采用自动准同步并网和自同步并网方式。前者由于风速的不确定性,通过该方法并网比较困难;后者的并网操作相对简单,使并网在短时间内完成,但要克服合闸时有冲击电流的缺点。异步风力发电机控制装置简单,而且并网后不会产生振荡和失步,运行比较稳定。然而,异步发电机直接并网时会产生发电机额定电流5-7倍的冲击电流,不仅对电网造成冲击而且影响机组寿命;另外异步发电机本身不发无功功率,需要进行无功补偿。[
变速恒频风力发电系统有多种,例如同步发电机交/直/交系统的并网运行和双馈发电机系统的并网运行。在变速恒频风力发电的众多种方案中,具优势的方案是采用双馈感应发电机的并网型交流励磁变速恒频风力发电机组。
同步发电机交/直/交系统并网运行时,由于采用频率变换装置进行输出控制,因此并网时没有电流冲击,对系统几乎没有影响。由于同步发电机组工作频率与电网频率是彼此独立的,风轮及发电机的转速可以变化,不必担心发生同步发电机直接并网运行可能出现的失步问题。在风电系统中使用阻抗匹配和功率跟踪反馈来调节输出负荷,可使风力发电机组按效率运行,向电网输送更多的电能。
双馈发电机系统并网运行时,风力机起动后带动发电机至接近同步转速时电网,并网时基本上无电流冲击。风力发电机的转速可随风负载的变化及时做出相应的调整,产生较大的电能输出。而且通过调节双馈发电机励磁电流的频率、幅值和相位,可以保障发电机在变速运行的情况下发出恒定频率的电力,并可以调节无功功率和有功功率。
交流励磁变速恒频风力发电系统中,发电机和电网之间是一种柔性连接,尤其对无刷双馈电机而言,对发电机转子侧交流励磁电流的调节与控制,就可在变速运行的任何转速下满足并网条件,实现变速恒频无冲击电流的高效并网。其励磁绕组与电网间的双向变频器功率,仅为发电机系统的一小部分功率。可以预见,在未来几年内,无刷双馈电机在变速恒频发电系统中将会获得广泛的应用,对全国的风力发电等机电产品的更新换代起推动作用,产生显著的经济和社会效益。
研究(设计)内容
对主要风力发电机组类型进行对比研究,不同机型的发电机原理、结构、运行特性和对电力系统的影响不尽相同,有必要进行研究。
对风力发电机组并网方式进行比较分析研究,主要是同步发电机的并网方式和异步发电机的并网方式进行比较分析,并对目前主流的变速恒频风力发电机组中的双馈感应发电机进行重点探讨。
电压水平是电力系统稳定运行的重要指标,研究了风力发电并网运行后电力系统的电压特性。
从风电场接入地区的中枢点电压水平、风电系统负荷的轻重、风电场的无功补偿容量大小等各个方面分析探讨影响风电机组较大注入功率的各种因素。
综合分析几种常用风力发电机的并网控制技术,分析比较它们各自应用于风力发电上的优缺点。并提出风力发电技术今后的发展趋势。