引论:我们为您整理了1篇智能汽车论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
智能汽车论文:人工智能汽车制造论文
1人工智能在汽车制造业中的应用
概述制造业是国家的经济命脉,而汽车制造又是战略性支柱产业,它包括了整车、各种零配件厂等生产商,也包括了各地经销企业和销售企业。近年来,我国汽车行业面临着前所未有的挑战,原材料、生产、物流成本上涨、利润下降,以及国际经济形势的影响。因此,汽车企业可以运用具有智能分析功能的商务智能系统,通过分析历史数据快捷、及时地输出各类报告,预测未来的客户需求和销售趋势,在宏观上为企业管理人员提供决策依据。计算机人工智能技术发展到了今天,已经开始使用庞大的知识库来有效地取代人类器官或机构的记忆方法,近些年来很多的专家决策系统在考虑一定规则的基础上对人类的诊断和经验上的分析都能够做出很好的判断,甚至处于主导地位。这个系统可以很好地利用知识库,并从中挖掘出我们想要的问题答案、成功地寻找到其中的关联性,并提取相应的模式等。而实际上,这样的专家系统已经在很多领域都有了非常不错的应用,帮助很多企业在很短的时间内就做出相应的生产计划、调度计划、运输计划等,非常有效率,而且可以大大地增加收益,并很好地控制企业的人力成本。我国工业机器人是从20世纪80年代开始起步。经过二十年余年的努力已经形成了一些具有竞争力的工业机器人研究机构和企业。先后研发出弧焊、点焊、装配、搬运、注塑、冲压、喷漆等工业机器人。近几年,我国工业机器人及含工业机器人的自动化生产线相关产品的年产销额已突破十亿元。目前国内市场年需求量在3000台左右,年销售额在20亿元以上。统计数据显示中国市场上工业机器人总共拥有量近万台,占全球总量的0.56%,其中国产工业机器人行业内规模比较大的前三家工业机器人企业,行业集中度占30%左右。其余都是从日本、美国、瑞典、德国、意大利等20多个国家引进的。国产工业机器人目前主要以国内市场应用为主,年出口量为100台左右,年出口额为0.2亿以上。多年来我国汽车零部件生产一直是手工焊、专机焊占据焊接生产的主导地位、劳动强度大、作业环境恶劣、焊接质量不易保障,而且生产的柔性也很差,无法适应现代汽车生产的需要。
1.1搬运机器人在汽车制造业中应用
汽车桥箱类零件具有精度高、加工工序多、形状复杂、重量重的特点。为提高其加工精度及生产效率,各重型汽车生产厂家纷纷采用数控加工中心来加工此类零部件。而在使用数控加工中心加工工件时,要求工件在工作台上具有非常高的定位精度,且需要保障每次上料的一致性。由于人工上料此类的工件具有劳动强度高、上料精度不好控制等缺点现在正逐步被工业机器人或专机进行上下料所取代。工业机器人具有重复定位精度高、性高、生产柔性化、自动化程度高等、突出的优势,与人工相比,能够大幅度提高生产效率和产品质量,与专机相比具有可实现生产的柔性化、投资规模小等特点。机器人智能化自动搬运系统作为减速器壳体加工的重要生产环节,虽然已经在国内重型汽车厂内取得成功的应用,但依然尚未普及。在国家经济建设飞速发展的进程中,重型载重汽车的生产能力及生产力水平亟待有一个质的飞跃,而工业机器人即是提升生产力水平的强力推进器。
1.2焊接机器人在汽车制造业中的应用
汽车行业的发展水平,代表了一个国家的综合技术水平,汽车工业的发展将会带动其他行业的发展。各厂商为了在日渐激烈的竞争中立于不败之地,必须率先实现焊接自动化。因此,今后除了如汽车、摩托车这样的大批量生产行业。一些产品多样化的企业,为了提高焊接质量,也将会考虑使用焊接机器人,如钢结构等行业,与此同时,对焊接机器人的要求也必然会逐步提高,如说对焊道的自动跟踪系统的需求会逐步加大等。作为焊接机器人和焊接机的专业生产厂家,OTC公司将继续为提高中国的高速、高效、自动化焊机做出自己的贡献。对于在汽车工业中的点焊应用来说,目前已广泛采用电驱动的伺服焊枪。日本丰田公司已决定将这种技术作为标准来装备其日本国内和海外的所有点焊机器人。
1.3装配机器人在汽车制造业中的应用
在国内外各大汽车公司装配生产线上被广泛采用的装配机器人。一方面使汽车装配自动化水平大大提高,目前,国外某些大批量生产的轿车的装配自动化程度已达50%~65%。另一方面,有效地减轻了工人的劳动强度,提高了装配质量并明显地提高了生产率。在汽车整车装配中,机器人不仅用于挡风玻璃的密封济涂覆、安装和车轮备胎、仪表盘总成、后悬梁、车门、蓄电池等部件的安装。
1.4喷涂机器人在汽车制造业中的应用
喷涂机器人在汽车制造业中可喷涂形态复杂的汽车工件而且生产效率和很高。多用于汽车车体的喷涂作业,如喷漆、喷釉等。除了上述机器人以外,汽车制造业中应用的机器人还有用于特殊加工的激光加工机器人用于部件形状测量、装配检查和产品缺陷检查的检测机器人,抑制尘埃粒子大小及数量的水切割机器人和净化机器人等。
2人工智能在汽车制造业中的进展分析
随着中国汽车工业的迅猛发展,机器人在先进汽车制造中的重要性也越来越凸显。机器人的产品应用广泛,覆盖焊接、物料搬运、装配、喷涂、精加工、拾料、包装、货盘堆垛、机械管理等领域。在汽车行业的应用主要分为以下五大部分。车身系统中,采用虚拟仿真等手段,主要针对车身覆盖件不断开发出新的标准化、模块化解决方案,动力总成系统中,提供了涵盖汽车传动系统核心部件,发动机、变速箱和传动轴的全套装配测试系统。在冲压自动化系统方面从卷材与堆垛到零件的码垛,从提供控制系统到企业ERP,从设计到生产支持与效率优化,拥有的工程能力,涂装自动化系统方面,以高柔性高精度的喷涂机器人来帮助客户提升涂装质量,减少生产废料,而在焊接自动化系统中,机器人比较典型的应用是电阻点焊、电弧焊,其近期一代机器人配套提供一系列高度人性化的软件工具。汽车工业的较大特点是产量大,生产节拍快,产品一致化程度高。消费者对汽车质量要求越来越高,是促使机器人应用越来越普遍的一个重要原因。机器人本身只是集装箱里的一个货物,随机器人的设备功能越来越精细,客户的思维在这时候逐渐走向成熟,在采购时不再单单考虑某生产工位的瓶颈,而更多地考虑到长期战略因素,如维护成本加入的高低,长期投资回报是否划算,服务涵盖地域是否广泛,响应是否及时,全球技术支持能力有多强,中期后期不同阶段解决问题的能力有多大等等。这时,产品本身的价格和意义相对弱化而长期的价值越发凸显。
3结束语
人类智能主要包括三个方面——“感知能力”、“思维能力”和“行为能力”。而人工智能是指由人类利用人脑特有的智力表现制造出来的“机器”所表现出来的智能。人工智能主要包括“感知能力”、“思维能力”和“行为能力”。人工智能在汽车制造工业方面的应用体现在问题求解,逻辑推理,自然语言理解,自动程序设计,专家系统等方面,这些方面就体现了自动化的特征,表达了一个共同的主题,即提高机械人类意识能力,强化控制自动化,因此人工智能在汽车制造领域将会大有作为。
作者:韩旭萍单位:陕西职业技术学院
智能汽车论文:多元智能理论汽车英语课程设计论文
21世纪是创新的时代,随着经济全球化步伐的加快,英语课程在指导思想、教学目标、教学内容、练习、实践、操作方法和手段的选择等方面都必须不断推陈出新。我国为了实现工业化和现代化的目标,对汽车技术应用型人才的需要更趋多样化。而良好的外语沟通能力已成为汽车人才的需要具备能力。汽车英语课程设计是各类学校重点关注的课程,如何把知识和能力结合的更好,是体现其创造力和竞争力的重要表现。因此,本文把多元智能理论引入汽车英语课程设计,为探讨其可行性及策略开辟新的视角,提供新的思路和方法。
一、多元智能理论
多元智能理论(MultipleIntelligencesTheory)由美国哈佛大学发展心理学家、教育学家霍华德•加德纳教授于1983年在《智能的结构》一文中提出后,在世界范围内引发了教育的“革命性”变革。我国于20世纪90年代引进多元智能理论,国内有专家认为,多元智能理论无疑是我们长期以来一直在努力推崇的“素质教育的好全释”;还有人指出:多元智能理论与建构主义理论一道,构成了我国新课程改革的强大理论支撑。多元智能理论指出人类内涵的能力至少有八种:包括语文智能;音乐智能;逻辑—数学智能;空间智能;肢体—运作智能;人际智能;自省智能;自然观察智能。加德纳认为,相对于过去的一元智力理论,多元智能理论能够更地描绘和评价人类的智力能力。加德纳还指出,人类智能还包含有次级智能和多种次级构成要素。
二、基于多元智能理论的汽车英语课程设计
(一)汽车英语课程设计的基本条件
Posner(1994)认为,课程设计的基本条件包括:了解学生的需求、兴趣、能力、知识水平等例如:学生需要什么、需要的原因、已有的能力、待补的能力、已有的基础或条件,缺乏什么等等。熟悉课程情况例如,有能力识别和解释该课程的基本概念和技能,和细致的有关知识,目前这个课程的开设情况等。擅长听说读写译五项必备能力,具有丰富教学经验,而不是简单的拼凑、复制、模仿依据以上课程设计的基本条件,做好高职英语课程设计就要求教师进行问卷调查或访谈学生已经完成的课程标准或已经具备的语言知识,要求通过参考有关著作、论文、同类课程、教材等,与同行交流,收集积累案例或经验等等。
(二)汽车英语课程设计的标准
根据Furey提出的标准,高职英语课程设计必须把握下列标准:
1.是否有足够的理论依据英语课程设计必须基于什么样的科学理论基础,是否遵照其本身的科学性和社会性?
2.是否适合学生目标在从事高职英语教学中,教师要因材施教。不但熟悉、掌握学生的自身学习情况、学习兴趣,也注重培养学生的实际效果性。
3.是否具有成功实施的可能性和效果的可评性在从事高职英语教学中,教师要不断自评课程设计的真实效果。
(三)汽车英语课程设计的内容
汽车英语课程设计的内容取决于授课的理念。针对英语语言,如果认为语言是符号系统,课程设计就由语音、词汇、语法、句型构成,强调语言形式的正确性;如果视语言为交际工具,课程设计要考虑的是交际的人,交际发生的条件、交际的目的等。英语课程设计关注的不仅是语言形式的正确性,还有社交的适当性。在教学研究过程中,在多元智能理论的指导下,根据调研结果对课程教学内容进行逐步更新,教材从最初的纯英文阅读形式的到单独开发学生的专业英语阅读能力,从听、说、读、写等能力的平行拓展,汽车专业英语校本教材内容新颖,图文并茂,根据主题确定教学内容、重点及难点,融专业英语听、说、读、写训练于一体,重点突出,实用性强,有利于开发学生的多元英语语言智能,改善课堂教学氛围,提高教学效果。
三、多元智能理论下汽车英语课程设计需注意的问题
首先,汽车英语以提高口语交际能力为本位,突出应用性本课程在对汽车企业英语应用能力需求深入调研的基础上,按确定工作任务模块、同时突出语言技能的要求制订教学大纲和授课计划,明确了教学应达到的知识标准和技能标准。其次,课程体系整合突出性、逻辑性、典型性和实用性本课程以国际汽车行业近期的知识体系为基础,以市场为导向,将传统汽车英语课程的以训练专业英语阅读能力为主体的教学内容,整合成为汽车构成的4大部分分别为发动机、底盘、车身、电气设备以及发动机的两大机构五大系统和底盘的传动系统、行驶系统、转向系统和制动系统等各个任务模块以系统的知识主题构成课程内容体系。,教学手段优化,突出多元英语智能培养在教学实践中,注重将互动教学、角色扮演、案例教学、多媒体听力、课件加视频等教学手段相结合,增加学生的学习兴趣,提高其用英语分析和理解专业知识的能力和用英语进行专业领域的交际能力,并结合具体课程内容指导学生进行延伸性思考,以增强学生的创新能力,促进学生多元智能的发展。
总结
多元智能理论可以说是治疗教学中片面性的一剂特效药,也是寻求教学策略的一个突破口。它对于激发课堂活力、激活学生智能起着举足轻重的作用,为广大教师改革教学方法、创新教学途径、提高教学质量指明了方向。在汽车英语课程设计方面,还将继续改进整体规划,加强课程结构分析和学习领域设计,优化教材内容、形式和课程考核方式,丰富教学情境设计与课堂教学活动,将专业英语教学改革推向一个新的阶段,提高学生多元英语智能培养的实效性。
作者:宋敏 单位:长春汽车工业高等专科学校公共教学部外语教培室
智能汽车论文:电子技术实现汽车智能舒适论文
编者按:本文主要从电子技术在现代汽车中的应用;电子技术在现代汽车中的发展趋势;结束语进行论述。其中,主要包括:随着微电子技术的不断发展,车辆中的电子自动化程度越来越高、汽车电子技术主要包括硬件和软件方面的内容、把汽车电子产品归纳为两类、在发动机上的应用、现代汽车发动机的基本功能没有根本变化、喷油泵在同一时间射出所有燃油、在底盘上的应用、自动变速器主要由液力变矩器和行星齿轮变速器组成、通用、福特、丰田等等大厂商采用的自动变速器电子控制系统、整车控制技术、集中综合控制、目前汽车电子技术向集中综合控制方向发展、网络化、汽车上的电子电器装置数量急剧增多等,具体请详见。
[摘要]电子技术在现代汽车上应用越来越广泛,电子技术的应用对于改进汽车性能、提高行驶安全、降低污染、节约能源有着非常重要的作用。文章就现代汽车电子技术的应用、发展趋势及应用前景进行了综述。
[关键词]电子技术微处理器电子控制装置汽车传感器
随着微电子技术的不断发展,车辆中的电子自动化程度越来越高。可以说,机械技术构成了现代车辆的筋骨,电子技术则构成了现代车辆的神经中枢。汽车电子化的程度被看作是衡量现代汽车水平的重要标志,是用来开发新车型,改进汽车性能最重要的技术措施。增加汽车电子设备的数量、促进汽车电子化是汽车制造商夺取未来汽车市场的重要的有效手段。
汽车电子技术主要包括硬件和软件方面的内容:硬件包括微处理器及其接口、执行部件、传感器等;软件主要是以汇编语言及其他高级语言编制的各种数据采集、计算判断、报警、程控、优化控制、监控、自诊断系统等程序。
特别是微处理器的出现给汽车的电子自动化程度带来了革命性的变化,车辆上微处理器的使用数量激增,电子装置在整个汽车制造成本中所占的比例越来越大。例如,一些豪华轿车上,使用单片微型计算机的数量已经达到50个左右,电子产品占到整车成本的50%以上,微处理机将更广泛地应用于汽车安全、环保、发动机、传动系统、速度控制和故障诊断中,目前电子技术的应用几乎已经深入到汽车所有的系统。
一、电子技术在现代汽车中的应用
按照对汽车行驶性能作用的影响划分,可以把汽车电子产品归纳为两类:一类是汽车电子控制装置,汽车电子控制装置要和车上机械系统进行配合使用,即所谓“机电结合”的汽车电子装置;它们包括发动机、底盘、车身电子控制。例如电子燃油喷射系统、制动防抱死控制、防滑控制、牵引力控制、电子控制悬架、电子控制自动变速器、电子动力转向等,另一类是车载汽车电子装置,车载汽车电子装置是在汽车环境下能够独立使用的电子装置,它和汽车本身的性能并无直接关系。它们包括汽车信息系统(行车电脑)、导航系统、汽车音响及电视娱乐系统、车载通信系统、上网设备等。
1.在发动机上的应用
现代汽车发动机的基本功能没有根本变化,但引入了大量的电子控制装置,极大地改进了车辆的排放性能、燃油经济性和耐用性。发动机电子控制系统包括很多电子控制装置,电子燃油喷射和点火装置是其重要组成部分,除此外,还有自适应控制装置、智能控制装置及自诊断操作装置等。
现代汽车上,电子控制燃油喷射装置,因其优越的性能,已得到普及。这种新型燃油喷射装置可以自动保障发动机始终工作在状态;电子点火装置(ElectronicSparkAdvance,ESA)由计算机、传感器及其接口、执行机构等部分构成。该装置可根据传感器送来的发动机各种参数进行运算、判断,然后进行点火时刻调节。在输出一定功率的条件下较大限度地节约燃油和净化空气。
各公司相继研制成功了多种新技术,并且投入了使用,取得了很好的效果。例如,由RobertBosch公司制造的计算机控制系统使用嵌入式微处理器技术实时监测发动机运转情况,确保喷射燃油量恰到好处,使燃油喷射量刚好满足要求,对清洁这些发动机大有帮助。
特别是电控直接喷射和共轨燃油系统两项技术的突破,催生了具有优良性能的新型柴油机的出现。这些新型柴油机电控、加速性良好、气味不浓也不产生烟尘、行程大并且耐用。
在通常的柴油机中,喷油泵在同一时间射出所有燃油,其结果就是产生柴油机标志性的乓乓的敲击声。在直接喷射时,燃料射入之前先有一小部分先行射入,这样当燃料射入时产生的敲击声会变得柔和。与此同时也可以降低燃烧温度,减少NOx(氮氧化物)的排放量。
共轨燃油系统的作用则在于它可以更好地控制燃油数量和喷射定时。共轨系统有一个高压泵,当喷油嘴开启时,高压使燃油产生很好的薄雾使得燃烧更加充分,同时还减少了尾气排放。
现代汽车的各种性能(燃油经济性、排放、驾驶性能和功率等)越来越好,而使这一切成为现实的正是电子技术与计算机辅助设计的结合。
2.在底盘上的应用
底盘电子控制系统包括很多电子控制装置,电子控制自动变速器(Electronic-C0ntrolledAutomaticTransmission,ECAT)是其重要组成部分。现在许多轿车的自动变速器是电子控制的,电子控制也就是微处理器控制。
自动变速器主要由液力变矩器和行星齿轮变速器组成,微处理器根据传感器输入信号和开关信号,通过电磁阀控制换档和变矩器锁止这两个工作过程,达到自动变档的控制精度。发动机曲轴与变矩器涡轮之间通过离合器接合的装置也称为变矩器锁止,其作用是减轻变矩器涡轮与叶轮之间的打滑现象,改善燃油经济性。ECAT优点是加速性能好、灵敏度高、能地反映车辆行驶负荷和道路条件等。
自动变速器的电子控制装置是由信号输入系统、计算系统和控制信号输出系统这三部分组成。信号输入系统有:变速器输入速度传感器、变速器输出速度传感器、发动机冷却温度传感器、节气门位置传感器、发动机曲轴转速传感器、润滑油温度传感器、歧管压力开关、制动开关等信号。这些信号反馈到ECU(在通用汽车上称为PCM-动力传动控制组件),在ECU进行计算然后输出控制信号,通过换档电磁阀、离合器电磁阀等控制换档和锁止动作。微处理器接到传感器反馈信号后,根据程序计算的结果发出控制信号接通变矩器的离合器电磁阀电源,驱使电磁阀启动,使离合器接合;如果切断离合器电磁阀电源则离合器分离。ECU是根据汽车行驶状态来操纵电磁阀通电开关开启或关闭的。当汽车速度比较慢或停止时,ECU不启动电磁阀,当汽车速度达到一定值时,ECU就会启动电磁阀使离合器接合。微处理器接到传感器反馈信号后,根据汽车车速、发动机转速及工作温度、节气门位置、歧管真空度、选档位置等输入信号参数选择换档。ECU根据即时变速杆的位置,对照参数计算选择的档位位置,发出控制信号驱动换档电磁阀,令变速器换档。
通用、福特、丰田等等大厂商采用的自动变速器电子控制系统,根据与其连接的变速器和发动机的不同型号而不同,每个系统中的元件和系统的工作过程也随着不同的变速器而有所变化,但其基本的工作方式及基本部件还是一样的。
除此外,还有电子稳定智能控制装置(ElectronicStabilitvPro-gram,ESP)、电控悬架操作装置等。ESP将多种功能整合在一起,并在此基础上进行了扩展。与其他牵引力控制系统比较,电子稳定控制程序不但控制汽车驱动轮,而且可控制从动轮。通过安装在车辆上的轮速传感器、侧向加速度传感器和横摆角速度传感器,电子稳定控制程序能对车辆的状态进行实时监控,当感应到轮胎与地面失去附着力,车辆存在侧滑危险时,电子稳定控制程序会快速而有选择地对需要制动的车轮实施独立操作或降低发动机输出,以使车辆行驶方向尽可能保持与驾驶员的预期相一致,从而提升车辆在各种工况下的方向稳定性及可控性。
目前电控悬架,汽车的悬架系统一般是弹簧刚度和减振器阻尼特性不能改变的被动悬架,它不能根据使用工况和路面输入的变化进行控制和调整,故难以满足平顺性和操纵稳定性的更高要求5近年来,随着电控和随动液压技术的发展,弹簧刚度和减振器阻尼特性参数可调的电控主动和半主动悬架,在汽车上逐步得到应用和发展。
3.整车控制技术
整车控制技术包括车身电子控制、驾驶电子控制等系统。汽车车身电子控制技术所涉及的内容很多,主要包括对汽车照明灯和转向信号灯的电子控制、对电动座椅、电动门窗、电动门锁、自动雨刮等的电子控制以及多媒体系统等。目的是保障视野性、方便性、舒适性、娱乐性、通信功能等。目前车身电控技术呈现如下的发展趋势:进一步满足用户个性化的需求;先进的驾驶和乘坐信息系统,如车辆遥控检测、智能型防盗、乘座适应性控制、42V电子系统、环保设计系统等等。
传统的机械和液力驾驶控制系统由于结构的原因(间隙、运动惯量等),从控制指令发出到指令执行会有一定的延迟,这在极限情况下是不能允许的。电控驾驶控制系统是没有机械和液力后备系统的,电控驾驶控制系统主要由三部分组成:控制系统、执行系统、通讯系统。控制系统的功能是根据驾驶员的意图和车辆行驶状况,对执行器给出执行的设定值。执行系统的功能是在控制系统的控制下,完成具体的执行动作(转向、制动等)。驾驶电子控制技术在现代汽车中,已大量使用,取代传统的机械和液力驾驶控制系统是必然趋势。
4.主被动安全系统
汽车的操纵稳定性和安全性是衡量汽车性能的重要指标。电子控制技术的引入为汽车的稳定性和安全性提供了保障。
提高汽车的操纵稳定性,过去一直局限于通过改进轮胎、悬架、转向与传动系的性能来实现。随着计算机、传感器和执行机构的迅速发展,研发了各种显著改善操纵稳定性和安全性的电子控制系统如防抱死制动系统(Anti-LockBrakingSystem,简称ABS)、牵引力控制系统(TractionControlSystem,简称TCS,也称ASR)、四轮转向系统(4WS)、车辆动力学控制系统(VehicleDynamicControl,简称VDC,也称VSC、ESP)。其中,VDC是在ABS和TCS的基础上,增加转向行驶时横摆运动的角速度传感器,通过ECU控制各个车轮的驱动力和制动力,确保汽车行驶的横向稳定性,防止转向时车辆被推离弯道或从弯道甩出。
轮胎压力检测系统(TirePressureM0nit0ringSystem,简称TPMS)是在每一个轮眙上安装高灵敏度的传感器,在行车状态下实时监视轮胎的各种数据,通过无线方式发射到接收器,并在显示器上显示各种数据,任何原因(如铁针扎入轮胎、气门芯漏气)等导致的轮胎漏气、温度升高,系统都会自动报警,从而确保行驶中的安全,延长轮胎的使用寿命。
为了保障行车安全,安全气囊和座椅安全带控制系统是必不可少的。安全气囊的合理触发以及座椅安全带的及时束紧,需要安全系统对行驶状况的及时监测和判断。安全气囊和座椅安全带控制系统将采用越来越多的先进电子传感器、控制芯片以及电子控制装置。
二、电子技术在现代汽车中的发展趋势
随着高性能传感器、微处理器的研制成功以及网络、总线技术的完善,汽车电子技术将向集中综合控制和网络化方向发展。
1.集中综合控制
目前汽车电子技术向集中综合控制方向发展。例如,将发动机管理系统和自动变速器控制系统,集成为动力传动系统的综合控制(PCM);将制动防抱死控制系统(ABS)、牵引力控制系统(TCS)和驱动防滑控制系统(ASR)综合在一起进行制动控制;通过中央底盘控制器,将制动、悬架、转向、动力传动等控制系统通过总线进行连接。控制器通过复杂的控制运算,对各子系统进行协调,将车辆行驶性能控制到水平,形成一体化底盘控制系统(UCC)。汽车的机械结构还将发生重大的变化,汽车的各种操纵系统向电子化和电动化发展,实现“线操控”。用导线代替原来的机械传动机构,例如“导线制动”、“导线转向”、“电子油门”等。
随着汽车电子装置越来越多,消耗的电能正在大幅度地增加。现有的12伏动力电源,已满足不了汽车上所有电气系统的需要,汽车12伏供电系统需向42伏转化。今后将采用集成起动机-发电机42伏供电系统,发电机较大输出功率将会由目前的1千瓦提高到8千瓦左右,发电效率将会达到80%以上。42伏汽车电气系统新标准的实施,将会使汽车电器零部件的设计和结构发生重大的变革,机械式的继电器、熔丝式保护电路将被淘汰。
2.网络化
汽车上的电子电器装置数量急剧增多,为了减少连接导线的数量和重量,网络、总线技术十分重要。集中综合控制要求有一个庞大而复杂的信息交换与控制系统,车用计算机的容量要求更大,计算速度要求更高。采用高速数据传输网络日益显得必要。光导纤维可为此传输网络提供传输介质,以解决电子控制系统防电磁干扰的问题。通讯线将各种汽车电子装置连接成为一个网络,通过数据总线发送和接收信息。电子装置除了独立完成各自的控制功能外,还可以为其他控制装置提供数据服务。由于使用了网络化的设计,简化了布线,减少了电气节点的数量和导线的用量,使装配工作更为简化,同时也增加了信息传送的性。通过数据总线可以访问任何一个电子控制装置,读取故障码对其进行故障诊断,使整车维修工作变得更为简单。
三、结束语
汽车电子技术的应用将使汽车更加智能化和舒适。智能汽车装备有多种传感器,能够充分感知驾车者和乘客的状况,交通设施和周边环境的信息,判断乘员是否处于状态,车辆和人是否会发生危险,并及时采取对应措施。今天,社会进入了信息网络时代,汽车已不仅仅是一种代步工具,人们已可以在汽车上收听广播,打电话,上互联网,处理工作。随着数字技术的进步,具有信息处理、通讯、导航、防盗、语言识别、图像显示和娱乐等功能的车载计算机多媒体系统的开发,汽车也将步入多媒体时代。可以预见到的将来,汽车装置自动导航和辅助驾驶系统,驾驶员可把行车的目的地输入到汽车电脑中,汽车就会沿着行车路线行驶到达目的地。人们可以通过语言识别系统操纵着车内的各种设施,一边驾驶着汽车,一边欣赏着音乐电视,还可上网预定饭桌、机票等。
智能汽车论文:汽车智能管理系统中现代电子技术的应用论文
[论文关键词]汽车电子技术汽车智能管理系统智能化集成传感器多通道传输技术
[论文摘要]汽车是当前重要的交通工具,汽车的发明和汽车相关技术的发展极大地改变了人们的出行方式,加快了商品和人员的流通。
随着汽车工业与电子工业的不断发展,在现代汽车上,电子技术的应用越来越广泛,汽车电子化的程度也越来越高。汽车技术与电子技术相结合催生出汽车电子技术概念。电子技术在现代汽车工业中的广泛应用加快了电子汽车的发展趋势,推动了汽车功能的多元化和便捷化。
一、汽车电子技术
现代电子技术与汽车工业的结合促成了电子汽车概念的诞生和实现,概括地来说当前的汽车电子技术主要包括:智能化集成传感器:提供用于模拟和处理的信号,而且还能对信号作坊大处理。同时,他还能自动进行时漂、温漂和非线性的自动校正,具有较强的抵抗外部电磁干扰的能力,保障传感器信号的质量不受影响;嵌入式微处理机已广泛地应用与安全、环保、发动机、传动系、速度控制和故障诊断中。软件技术:随着汽车电子技术应用的增加,对有关控制软件的需求也相应增加,并可能要求进一步计算机联网。因此,要求使用多种语言,并开发出通用的高水平软件,以满足多种硬件的要求。轿车上多通道传输网络将大大地依赖于软件;多通道传输技术,多通道传输技术的采用,对电子控制集成化的实现是十分必要和有效的。采用这种技术后,使各个数据线成为一个网络,以便分享汽车中心计算机的信息。汽车车载电子网络:汽车电子设备发展的一个重要趋势是大量使用微处理机来改善汽车的性能。随着电控器件在汽车上越来越多的应用,车载电子设备间的数据通信变得越来越重要。为了进一步提高行使的经济性,温度及车速等信息必须在不同控制单元间交换。由此,以分布式控制系统为基础构造汽车车载电子网络系统是很有必要的。集成化技术:汽车电子技术的一个发展趋向是功能集成化,从而实现更经济、更有效以及可诊断的数据中心。光导纤维:汽车电子技术的进步,已使各系统控制走向集中,形成整车控制系统。这一系统除了中心电脑外,甚至包括多达23个微处理器及大量传感器和执行部件,组成一个庞大而复杂的信息交换与控制系统等。
二、国内汽车电子技术发展
电子技术在汽车工业中的应用加快了汽车技术的升级和突破,自20世纪80年代以来,汽车工业的长足发展,也是以电子技术(特别是计算机、集成电路技术)为动力而实现的。采用电子技术是解决汽车所面临的诸多技术问题的方案。因此一国电子产业的发展水平及其在汽车工业领域的应用情况决定了其在未来轨迹汽车行业竞争中的地位和影响力。目前,国产汽车的电子技术应用多数还处于初级阶段。只有少数厂家,主要集中在一些中外合资和国内较为先进的汽车生产厂家,开始将电子控制装置应用在汽车工业中。国内现在采用的电子装置主要包括发动机的燃油喷射、电子点火控制、汽车安全性方面的安全气囊,ABS等领域,而且多数为直接引进国外产品组装,国内科研院所目前有关汽车电子技术应用的研究也主要集中在发动机控制、电控悬架、ABS系统等几个方面,在汽车的电子网络化技术、GPRS导航及智能交通系统的研究等方面与国外还有一定差距。
三、现代电子技术促进汽车智能管理的发展
随着经济的快速发展和人民群众对汽车工业要求的逐步提高,当前的电子技术在汽车工业领域里得到了很好较快较好的应用。汽车智能管理系统就是这一应用的重要体现。车辆智能管理仪(以下简称管理仪)硬件构成主要由CPU,数据存储器扩展电路、IC卡接口电路、GPS接收电路、光电隔离的输入、输出电路、数码相机控制电路、指示灯、蜂鸣器及电源部分组成。采用GPS接收机接收卫星的信号,经过计算后可得出车辆所处的经纬度、行驶速度、行驶方向等参数。管理仪还能够采集与司机操作有关的数据,如刹车、远光灯、近光灯、左右转向灯、喇叭、雾灯、制动气压、车门开关等参数。管理仪根据预先设定的时间间隔和特殊事件的触发,将有关数据保存入IC(IntelligentCard)卡中。根据这些数据,车辆管理部门就可以对车辆的历史运行状况进行检查、管理,以确定车辆是否按照规定的要求运行。管理仪还能够对最近15次停车前,每次停车前50秒的所有信息进行详细记录,GPS数据的采集速度受GPS系统的限制,每秒钟记录1次,其他参数每隔0.2秒记录一次。管理仪还具有数码照相机的控制接口,可以根据外部触发信号,对车内的情景拍照。
汽车工业是高科技工业,汽车性能的每一步提升都伴随着新技术、新工艺的运用。电子技术是21世纪推动经济发展和社会变革的重要技术之一,电子技术的发展及其在汽车工业领域的广泛应用将有效提升汽车工业的发展水平。
智能汽车论文:智能传感器汽车电子分析论文
现代汽车电子从所应用的电子元器件到车内电子系统的架构均已进入了一个有本质性提高的新阶段。其中最有代表性的核心器件之一就是智能传感器。
一、汽车电子操控和安全系统谈起
近几年来我国汽车工业增长迅速,发展势头很猛。因此评论界出现了一些专家的预测:汽车工业有可能超过IT产业,成为中国国民经济最重要的支柱产业之一。其实,汽车工业的增长必将包含与汽车产业相关的IT产业的增长。例如,虽然目前在我国一汽的产品中电子产品和技术的价值含量只占10%—15%左右,但国外汽车中电子产品和技术的价值含量平均约为22%,中、品质轿车中汽车电子已占30%以上,而且这个比例还在、不断地快速增长,预期很快将达到50%。
电子信息技术已经成为新一代汽车发展方向的主导因素,汽车(机动车)的动力性能、操控性能、安全性能和舒适性能等各个方面的改进和提高,都将依赖于机械系统及结构和电子产品、信息技术间的结合。汽车工程界专家指出:电子技术的发展已使汽车产品的概念发生了深刻的变化。这也是最近电子信息产业界对汽车电子空前关注的原因之一。但是,必须指出的是,除了一些车内音响、视频装备,车用通信、导航系统,以及车载办公系统、网络系统等车内电子设备的本质改变较少外,现代汽车电子从所应用的电子元器件(包括传感器、执行器、微电路等)到车内电子系统的架构均已进入了一个有本质性提高的新阶段。其中最有代表性的核心器件之一就是智能传感器(智能执行器、智能变送器)。
实际上,汽车电子已经经历了几个发展阶段:从分立电子元器件搭建的电路监测控制,经过了电子元器件或组件加微处理器构筑的各自独立的、专用的、半自动和自动的操控系统,现在已经进入了采用高速总线(目前至少有5种以上总线已开发使用),统一交换汽车运行中的各种电子装备和系统的数据,实现综合、智能调控的新阶段。新的汽车电子系统由各个电子控制单元(ECU)组成,可以独立操控,同时又能协调到整体运行的状态。例如为使发动机处于工作状态,就需要从吸入汽缸的空气流量、进气压力的测定开始,再根据水温、空气温度等工作环境参数计算出基本喷油量,同时还要通过节气门位置传感器检测节气门的开度,确定发动机的工况,进而控制,调整喷油量,还需要通过曲轴的角速度传感器监测曲轴转角和发动机转速,最终计算出并发出点火时机的指令。这个发动机燃油喷射系统和点火综合控制系统还可以与废气排放的监控系统和起动系统等组合,构筑成可使汽车发动机功率和扭矩较大化,而同时燃油消耗和废气排放低化的智能系统。
还可以举一个安全驾驶方面的例子,出于平稳、安全驾驶的需要,仅只针对四个轮子的操控上,除了应用大量压力传感器并普遍安装了刹车防抱死装置(ABS)外,许多轿车,包括国产车,已增设了电子动力分配系统(EBD),ABS+EBD可以较大限度的保障雨雪天气驾驶时的稳定性。现在,国内外的一些汽车进一步加装了紧急刹车辅助系统(EBA),该系统在发生紧急情况时,自动检测驾驶者踩制动踏板时的速度和力度,并判断紧急制动的力度是否足够,如果需要,就会自动增大制动力。EBA的自控动作必须在极短时间(例如百万分之一秒级)内完成。这个系统能使200km/h高速行驶车辆的制动滑行距离缩短极其宝贵的20多米。针对车轮的还有分别监测各个车轮相对于车速的转速,进而为每个车轮平衡分配动力,保障在恶劣路面条件下各轮间具有良好的均衡抓地能力的“电子牵引力控制”(ETC)系统等。
从以上列举的两个例子可以清楚看到,汽车发展对汽车电子的一些基本要求:
1.电子操控系统的动作必须快速、正确、。传感器(+调理电路)+微处理器,然后再通过微处理器(+功率放大电路)+执行器的技术途径已经不再能满足现代汽车的要求,需要通过硬件集成、直接交换数据和简化电路,并提高智能化程度来确保控制单元动作的正确性、性和适时性。
2.现在几乎所有的汽车的机械结构部件都已受电子装置控制,但汽车车体内的空间有限,构件系统的空间更是极其有限。理想的情况当然是,电子控制单元应与受控制部件紧密结合,形成一个整体。因此器件和电路的微型化、集成化是不可回避的道路。
3.电子控制单元必须具有足够的智能化程度。以安全气囊为例,它在关键时刻必须要能及时、正确地瞬时打开,但在极大多数时间内气囊是处在待命状态,因此安全气囊的ECU必须具有自检、自维护能力,不断确认气囊系统的可正常运作的性,确保动作的“万无一失”。
4.汽车的各种功能部件都有各自的运动、操控特性,并且,对电子产品而言,大多处于非常恶劣的运行环境中,而且各不相同。诸如工作状态时的高温,静止待命时的低温,高浓度的油蒸汽和活性(毒性)气体,以及高速运动和高强度的冲击和振动等。因此,电子元器件和电路必须要有高稳定、抗环境和自适应、自补偿调整的能力。
5.与上述要求同样重要,甚至有时是关键性的条件是,汽车电子控制单元用的电子元器件、模块必须要能大规模工业生产,并能将成本降低到可接受的程度。一些微传感器和智能传感器就是这方面的典范。例如智能加速度传感器,它不仅能较好地满足现代汽车的各项需要,而且因为可以在集成电路标准硅工艺线上批量生产,生产成本较低(几美元至十几或几十美元),所以在汽车工业中找到了自己较大的应用市场,反过来也有力地促进了汽车工业的电子信息化。
二、智能传感器:微传感器与集成电路融合的新一代电子器件
微传感器、智能传感器是近几年才开始迅速发展起来的新兴技术。在我国的报刊杂志上目前所使用的技术名称还比较含混,仍然笼统地称之为传感器,或者含糊地归纳为汽车半导体器件,也有将智能传感器(或智能执行器、智能变送器)与微系统、MEMS等都归入了MEMS(微机电系统)名称下的。这里介绍当前一些欧美专著中常用的技术名词的定义和技术内涵。
首先必须说明的是,在绝大多数情况下,本文大小标题及全文中所说的传感器其实是泛指了三大类器件:将非电学输入参量转换成电磁学信号输出的传感器;将电学信号转换成非电学参量输出的执行器;以及既能用作传感器又能用作执行器,其中较多的是将一种电磁学参量形式转变成另一种电磁学参量形态输出的变送器。就是说,关于微传感器、智能传感器的技术特性可以扩大类推到微执行器、微变送器-传感器(或执行器、或变送器)的物理尺度中至少有一个物理尺寸等于或小于亚毫米量级的。微传感器不是传统传感器简单的物理缩小的产物,而是基于半导体工艺技术的新一代器件:应用新的工作机制和物化效应,采用与标准半导体工艺兼容的材料,用微细加工技术制备的。因此有时也称为硅传感器。可以用类似的定义和技术特征类推描述微执行器和微变送器。
它由两块芯片组成,一是具有自检测能力的加速度计单元(微加速度传感器),另一块则是微传感器与微处理器(MCU)间的接口电路和MCU。这是一种较早期(1996年前后)的,但已相当实用的器件,可用于汽车的自动制动和悬挂系统中,并且因微加速度计具有自检能力,还可用于安全气囊。从此例中可以清楚看到,微传感器的优势不仅是体积的缩小,更在于能方便地与集成电路组合和规模生产。应该指的是,采用这种两片的解决方案可以缩短设计周期、降低开发前期小批量试产的成本。但对实际应用和市场来说,单芯片的解决方案显然更可取,生产成本更低,应用价值更高。
智能传感器(SmartSensor)、智能执行器和智能变送器-微传感器(或微执行器,或微变送器)和它的部分或全部处理器件、处理电路集成在一个芯片上的器件(例如上述的微加速度计的单芯片解决方案)。因此智能传感器具有一定的仿生能力,如模糊逻辑运算、主动鉴别环境,自动调整和补偿适应环境的能力,自诊断、自维护等。显然,出于规模生产和降低生产成本的要求,智能传感器的设计思想、材料选择和生产工艺必须要尽可能地和集成电路的标准硅平面工艺一致。可以在正常工艺流程的投片前,或流程中,或工艺完成后增加一些特殊需要的工序,但也不应太多。
在一个封装中,把一只微机械压力传感器与模拟用户接口、8位模-数转换器(SAR)、微处理器(摩托罗拉69HC08)、存储器和串行接口(SPI)等集成在一个芯片上。其前端的硅压力传感器是采用体硅微细加工技术制作的。制备硅压力传感器的工序既可安排在集成CMOS电路工艺流程之前,亦可在后。这种智能压力传感器的技术和市场都已成熟,已广泛用于汽车(机动车)所需的各式各样的压力测量和控制单元中,诸如各种气压计、喷嘴前集流腔压力、废气排气管、燃油、轮胎、液压传动装置等。智能压力传感器的应用很广,不局限于汽车工业。目前,生产智能压力传感器的厂商已不少,市售商品的品种也很多,已经出现激烈的竞争。结果是智能压力传感器体积越来越小,随之控制单元所需的外围接插件和分立元件越来越少,但功能和性能却越来越强,而且生产成本降低很快(现在约为几美元一只)。
顺便需要说说的是,在一些中文资料中,尤其是一些产品宣传性材料中,笼统地将SmartSensor(或device)和Intelligentsensor(或device)都称之为智能传感器,但在欧美文献中是有所差别的。西方专家和公众通常认为,Smart(智能型)传感器比Intelligent(知识型)的智慧层次和能力更高。当然,知识型的内涵也在不断进化,但那些只能简单响应环境变化,作一些相应补偿、调整工作状态的,特别是不需要集成处理器的器件,其知识等级太低,一般不应归入智能器件范畴。
相信大多数读者能经常接触到的,最贴近生活的智能传感器可能要算是用于摄像头、数码相机、摄像机、手机摄像中的CCD图像传感器了。这是一种非智能型传感器莫属的情况,因为CCD阵列中每个硅单元由光转换成的电信号极弱,必须直接和及时移位寄存、并处理转换成标准的图像格式信号。还有更复杂一些的,在中、品质长焦距(IOX)光学放大数码相机和摄像机上装备的电子和光学防抖系统,特别是高端产品中的真正光学防抖系统。它的核心是双轴向或3轴向的微加速度计或微陀螺仪,通过它监测机身的抖动,并换算成镜头的各轴向位移量,进而驱动镜头中可变角度透镜的移动,使光学系统的折射光路保持稳定。
微系统(Microsystem)和MEMS(微机电系统)-由微传感器、微电子学电路(信号处理、控制电路、通信接品等)和微执行器构成一个三级级联系统、集成在一个芯片上的器件称之为微系统。如果其中拥有机械联动或机械执行机构等微机械部件的器械则称之为MEMS。
MEMS芯片的左侧给出的是制备MEMS芯片需要的基本工艺技术。它的右侧则为主要应用领域列举。很明显,MEMS的好解决方案也是选用与硅工艺兼容的材料及物理效应、设计理念和工艺流程,也即采用常规标准的CMOS工艺与二维、三维微细加工技术相结合的方法,其中也包括微机械结构件的制作。
微传感器合乎逻辑的发展延伸是智能传感器,智能传感器自然延伸则是微系统和MEMS,MEMS的进一步发展则是能够自主接收、分辨外界信号和指令,进而能独立、正确动作的微机械(Micromachines)。现在,开发成功、并已有商业产品的MEMS品种已不少,涵盖图4所示的各大领域。其中包括全光光通信和全光计算机的关键部件之一的二维、三维MEMS光开关。
通过控制芯片上的微反射镜阵列,实现光输入/输出的交叉互联。这是目前全光交换技术的成熟的方案。市场上可买到的MEMS光开关已达1296路,开关转换时间约为20ms。
微机械(也称为纳米机械)则尚处于开发试验阶段,但已有许多很重要的实验室产品涌现,如著名的纳米电机、微昆虫、微直升机和潜水艇等。技术产业界普遍认为,它们的开发成功和投入实际应用将对工业技术和生活质量产生深远的影响。
智能汽车论文:智能传感器汽车电子管理论文
现代汽车电子从所应用的电子元器件到车内电子系统的架构均已进入了一个有本质性提高的新阶段。其中最有代表性的核心器件之一就是智能传感器。
一、汽车电子操控和安全系统谈起
近几年来我国汽车工业增长迅速,发展势头很猛。因此评论界出现了一些专家的预测:汽车工业有可能超过IT产业,成为中国国民经济最重要的支柱产业之一。其实,汽车工业的增长必将包含与汽车产业相关的IT产业的增长。例如,虽然目前在我国一汽的产品中电子产品和技术的价值含量只占10%—15%左右,但国外汽车中电子产品和技术的价值含量平均约为22%,中、品质轿车中汽车电子已占30%以上,而且这个比例还在、不断地快速增长,预期很快将达到50%。
电子信息技术已经成为新一代汽车发展方向的主导因素,汽车(机动车)的动力性能、操控性能、安全性能和舒适性能等各个方面的改进和提高,都将依赖于机械系统及结构和电子产品、信息技术间的结合。汽车工程界专家指出:电子技术的发展已使汽车产品的概念发生了深刻的变化。这也是最近电子信息产业界对汽车电子空前关注的原因之一。但是,必须指出的是,除了一些车内音响、视频装备,车用通信、导航系统,以及车载办公系统、网络系统等车内电子设备的本质改变较少外,现代汽车电子从所应用的电子元器件(包括传感器、执行器、微电路等)到车内电子系统的架构均已进入了一个有本质性提高的新阶段。其中最有代表性的核心器件之一就是智能传感器(智能执行器、智能变送器)。
实际上,汽车电子已经经历了几个发展阶段:从分立电子元器件搭建的电路监测控制,经过了电子元器件或组件加微处理器构筑的各自独立的、专用的、半自动和自动的操控系统,现在已经进入了采用高速总线(目前至少有5种以上总线已开发使用),统一交换汽车运行中的各种电子装备和系统的数据,实现综合、智能调控的新阶段。新的汽车电子系统由各个电子控制单元(ECU)组成,可以独立操控,同时又能协调到整体运行的状态。例如为使发动机处于工作状态,就需要从吸入汽缸的空气流量、进气压力的测定开始,再根据水温、空气温度等工作环境参数计算出基本喷油量,同时还要通过节气门位置传感器检测节气门的开度,确定发动机的工况,进而控制,调整喷油量,还需要通过曲轴的角速度传感器监测曲轴转角和发动机转速,最终计算出并发出点火时机的指令。这个发动机燃油喷射系统和点火综合控制系统还可以与废气排放的监控系统和起动系统等组合,构筑成可使汽车发动机功率和扭矩较大化,而同时燃油消耗和废气排放低化的智能系统。
还可以举一个安全驾驶方面的例子,出于平稳、安全驾驶的需要,仅只针对四个轮子的操控上,除了应用大量压力传感器并普遍安装了刹车防抱死装置(ABS)外,许多轿车,包括国产车,已增设了电子动力分配系统(EBD),ABS+EBD可以较大限度的保障雨雪天气驾驶时的稳定性。现在,国内外的一些汽车进一步加装了紧急刹车辅助系统(EBA),该系统在发生紧急情况时,自动检测驾驶者踩制动踏板时的速度和力度,并判断紧急制动的力度是否足够,如果需要,就会自动增大制动力。EBA的自控动作必须在极短时间(例如百万分之一秒级)内完成。这个系统能使200km/h高速行驶车辆的制动滑行距离缩短极其宝贵的20多米。针对车轮的还有分别监测各个车轮相对于车速的转速,进而为每个车轮平衡分配动力,保障在恶劣路面条件下各轮间具有良好的均衡抓地能力的“电子牵引力控制”(ETC)系统等。
从以上列举的两个例子可以清楚看到,汽车发展对汽车电子的一些基本要求:
1.电子操控系统的动作必须快速、正确、。传感器(+调理电路)+微处理器,然后再通过微处理器(+功率放大电路)+执行器的技术途径已经不再能满足现代汽车的要求,需要通过硬件集成、直接交换数据和简化电路,并提高智能化程度来确保控制单元动作的正确性、性和适时性。
2.现在几乎所有的汽车的机械结构部件都已受电子装置控制,但汽车车体内的空间有限,构件系统的空间更是极其有限。理想的情况当然是,电子控制单元应与受控制部件紧密结合,形成一个整体。因此器件和电路的微型化、集成化是不可回避的道路。
3.电子控制单元必须具有足够的智能化程度。以安全气囊为例,它在关键时刻必须要能及时、正确地瞬时打开,但在极大多数时间内气囊是处在待命状态,因此安全气囊的ECU必须具有自检、自维护能力,不断确认气囊系统的可正常运作的性,确保动作的“万无一失”。
4.汽车的各种功能部件都有各自的运动、操控特性,并且,对电子产品而言,大多处于非常恶劣的运行环境中,而且各不相同。诸如工作状态时的高温,静止待命时的低温,高浓度的油蒸汽和活性(毒性)气体,以及高速运动和高强度的冲击和振动等。因此,电子元器件和电路必须要有高稳定、抗环境和自适应、自补偿调整的能力。
5.与上述要求同样重要,甚至有时是关键性的条件是,汽车电子控制单元用的电子元器件、模块必须要能大规模工业生产,并能将成本降低到可接受的程度。一些微传感器和智能传感器就是这方面的典范。例如智能加速度传感器,它不仅能较好地满足现代汽车的各项需要,而且因为可以在集成电路标准硅工艺线上批量生产,生产成本较低(几美元至十几或几十美元),所以在汽车工业中找到了自己较大的应用市场,反过来也有力地促进了汽车工业的电子信息化。
二、智能传感器:微传感器与集成电路融合的新一代电子器件
微传感器、智能传感器是近几年才开始迅速发展起来的新兴技术。在我国的报刊杂志上目前所使用的技术名称还比较含混,仍然笼统地称之为传感器,或者含糊地归纳为汽车半导体器件,也有将智能传感器(或智能执行器、智能变送器)与微系统、MEMS等都归入了MEMS(微机电系统)名称下的。这里介绍当前一些欧美专著中常用的技术名词的定义和技术内涵。
首先必须说明的是,在绝大多数情况下,本文大小标题及全文中所说的传感器其实是泛指了三大类器件:将非电学输入参量转换成电磁学信号输出的传感器;将电学信号转换成非电学参量输出的执行器;以及既能用作传感器又能用作执行器,其中较多的是将一种电磁学参量形式转变成另一种电磁学参量形态输出的变送器。就是说,关于微传感器、智能传感器的技术特性可以扩大类推到微执行器、微变送器-传感器(或执行器、或变送器)的物理尺度中至少有一个物理尺寸等于或小于亚毫米量级的。微传感器不是传统传感器简单的物理缩小的产物,而是基于半导体工艺技术的新一代器件:应用新的工作机制和物化效应,采用与标准半导体工艺兼容的材料,用微细加工技术制备的。因此有时也称为硅传感器。可以用类似的定义和技术特征类推描述微执行器和微变送器。
它由两块芯片组成,一是具有自检测能力的加速度计单元(微加速度传感器),另一块则是微传感器与微处理器(MCU)间的接口电路和MCU。这是一种较早期(1996年前后)的,但已相当实用的器件,可用于汽车的自动制动和悬挂系统中,并且因微加速度计具有自检能力,还可用于安全气囊。从此例中可以清楚看到,微传感器的优势不仅是体积的缩小,更在于能方便地与集成电路组合和规模生产。应该指的是,采用这种两片的解决方案可以缩短设计周期、降低开发前期小批量试产的成本。但对实际应用和市场来说,单芯片的解决方案显然更可取,生产成本更低,应用价值更高。
智能传感器(SmartSensor)、智能执行器和智能变送器-微传感器(或微执行器,或微变送器)和它的部分或全部处理器件、处理电路集成在一个芯片上的器件(例如上述的微加速度计的单芯片解决方案)。因此智能传感器具有一定的仿生能力,如模糊逻辑运算、主动鉴别环境,自动调整和补偿适应环境的能力,自诊断、自维护等。显然,出于规模生产和降低生产成本的要求,智能传感器的设计思想、材料选择和生产工艺必须要尽可能地和集成电路的标准硅平面工艺一致。可以在正常工艺流程的投片前,或流程中,或工艺完成后增加一些特殊需要的工序,但也不应太多。
在一个封装中,把一只微机械压力传感器与模拟用户接口、8位模-数转换器(SAR)、微处理器(摩托罗拉69HC08)、存储器和串行接口(SPI)等集成在一个芯片上。其前端的硅压力传感器是采用体硅微细加工技术制作的。制备硅压力传感器的工序既可安排在集成CMOS电路工艺流程之前,亦可在后。这种智能压力传感器的技术和市场都已成熟,已广泛用于汽车(机动车)所需的各式各样的压力测量和控制单元中,诸如各种气压计、喷嘴前集流腔压力、废气排气管、燃油、轮胎、液压传动装置等。智能压力传感器的应用很广,不局限于汽车工业。目前,生产智能压力传感器的厂商已不少,市售商品的品种也很多,已经出现激烈的竞争。结果是智能压力传感器体积越来越小,随之控制单元所需的外围接插件和分立元件越来越少,但功能和性能却越来越强,而且生产成本降低很快(现在约为几美元一只)。
顺便需要说说的是,在一些中文资料中,尤其是一些产品宣传性材料中,笼统地将SmartSensor(或device)和Intelligentsensor(或device)都称之为智能传感器,但在欧美文献中是有所差别的。西方专家和公众通常认为,Smart(智能型)传感器比Intelligent(知识型)的智慧层次和能力更高。当然,知识型的内涵也在不断进化,但那些只能简单响应环境变化,作一些相应补偿、调整工作状态的,特别是不需要集成处理器的器件,其知识等级太低,一般不应归入智能器件范畴。
相信大多数读者能经常接触到的,最贴近生活的智能传感器可能要算是用于摄像头、数码相机、摄像机、手机摄像中的CCD图像传感器了。这是一种非智能型传感器莫属的情况,因为CCD阵列中每个硅单元由光转换成的电信号极弱,必须直接和及时移位寄存、并处理转换成标准的图像格式信号。还有更复杂一些的,在中、品质长焦距(IOX)光学放大数码相机和摄像机上装备的电子和光学防抖系统,特别是高端产品中的真正光学防抖系统。它的核心是双轴向或3轴向的微加速度计或微陀螺仪,通过它监测机身的抖动,并换算成镜头的各轴向位移量,进而驱动镜头中可变角度透镜的移动,使光学系统的折射光路保持稳定。
微系统(Microsystem)和MEMS(微机电系统)-由微传感器、微电子学电路(信号处理、控制电路、通信接品等)和微执行器构成一个三级级联系统、集成在一个芯片上的器件称之为微系统。如果其中拥有机械联动或机械执行机构等微机械部件的器械则称之为MEMS。
MEMS芯片的左侧给出的是制备MEMS芯片需要的基本工艺技术。它的右侧则为主要应用领域列举。很明显,MEMS的好解决方案也是选用与硅工艺兼容的材料及物理效应、设计理念和工艺流程,也即采用常规标准的CMOS工艺与二维、三维微细加工技术相结合的方法,其中也包括微机械结构件的制作。
微传感器合乎逻辑的发展延伸是智能传感器,智能传感器自然延伸则是微系统和MEMS,MEMS的进一步发展则是能够自主接收、分辨外界信号和指令,进而能独立、正确动作的微机械(Micromachines)。现在,开发成功、并已有商业产品的MEMS品种已不少,涵盖图4所示的各大领域。其中包括全光光通信和全光计算机的关键部件之一的二维、三维MEMS光开关。
通过控制芯片上的微反射镜阵列,实现光输入/输出的交叉互联。这是目前全光交换技术的成熟的方案。市场上可买到的MEMS光开关已达1296路,开关转换时间约为20ms。
微机械(也称为纳米机械)则尚处于开发试验阶段,但已有许多很重要的实验室产品涌现,如著名的纳米电机、微昆虫、微直升机和潜水艇等。技术产业界普遍认为,它们的开发成功和投入实际应用将对工业技术和生活质量产生深远的影响。
智能汽车论文:汽车换档智能辅助决策系统的设计
摘要:根据发动机工作特性及汽车换档特性,利用单片机技术设计了汽车换档智能决策辅助系统,该系统能够根据实时获得的车辆运行状态帮助驾驶员正确地换档,从而使车辆以状态运行,更好地发挥汽车的经济性和动力性。 关键词:换档规律 燃料经济性 单片机 智能决策
在不降低汽车动力性的条件下改善燃料经济性是汽车研究的一个主要方面,经济性换档规律能够保障发动机工作在经济性工作区,减少汽车的燃油消耗量,提高整车的燃油经济性1~2。对于手动换档的汽车,如果在其行驶过程中实时地将发动机的工作线和换档时的发动机工作点清晰地显示出来,同时根据该车的换档规律给出换档提示,就可以使驾驶员了解车辆行驶中发动机的工作状况从而进行正确操作,也有利于驾驶员改正不良的操作习惯并纠正错误操作,以充分发挥汽车的经济性和动力性。本文根据汽车的发动机特性、换档特性及车载电子设备的设计要求,利用单片机实现了嵌入式汽车智能换档辅助决策系统。
1 系统设计原理
1.1 发动机工作线计算
发动机工作线包括发动机动力性工作线和经济性工作线。
1.1.1 发动机动力性工作线的计算
发动机动力性工作点为发动机的等功率曲线与发动机扭矩曲线的切点,也就是扭矩曲线上功率较大的点。
发动机功率为:Pe=Mene/9549
发动机扭矩为:M=a+bn+cn+dn,其中系数a、b、c、d可以由实验数据拟合得到。
根据发动机动力性工作点的定义,构造目标函数:
Pe=Mene/9549=an+bn+cn+dn/9549
发动机转速范围为:n≤n≤n
图2 油耗特性曲线 图3 Fcon1下的经济性换档点
此为条件极值问题,即在给定的发动机转速范围内求目标函数的极大值点,然后根据发动机功率公式计算出发动机扭矩,这样就可以求出发动机动力性工作点(ne,Me)。
依次可以求出一系列油门开度下发动机动力性工作点,将这些工作点用曲线连接起来即得到发动机动力性工作线。
1.1.2 发动机经济性工作线的计算
发动机的扭矩曲线为Me=f(ne)
发动机的油耗曲线为Qt=g(ne)
根据发动机的扭矩曲线和油耗曲线可以得到发动机负荷特性曲线。由发动机的负荷特性曲线可以得到发动机的等油耗曲线。发动机经济性工作点即为等油耗曲线与等功率曲线的切点。用求解发动机动力性工作点的方法可以求得发动机经济性工作点,从而得到发动机经济性工作线。
1.2 汽车换档规律的计算
汽车换档规律分为动力性换档规律和经济性换档规律。
1.2.1 汽车动力性换档规律的计算
在汽车驱动力图上,动力性换档点为同一油门开度下相邻两档的驱动力曲线的交点。图1所示为相邻两档的动力性换档点。求出这些换档点后,将其转换到油门开度a和车速va坐标图上,并把这些点连成曲线,就得到该相邻两档的动力性换档规律升档曲线。给出一定的降档速差,就可求出动力性换档规律的降档曲线,这样就求出了动力性换档规律。
1.2.2 汽车经济性换档规律的计算
在相邻两档不同节气门开度下的牵引力特性图上,按等牵引力条件,设定克服道路阻力F的牵引力为某一常数Fcon1,根据其和相邻两档不同节气门开度下的牵引力特性曲线的交点,可求出对应节气门开度下的车速;根据相应档位下的汽车燃油消耗Q和车速va之间的关系(如图2所示)可求出相应车速下该档位与节气门开度下的油耗Q;再根据不同牵引力曲线的交点可求出相邻两档的不同油耗点,其连线为相邻两档的油耗线,其油耗线的交点为Fcon1下的相邻两档低油耗换档点,如图3所示。同理可以求出不同牵引力常数Fconi下的相邻两档的低油耗换档点,其换档点的连线为相邻两档的经济性换档线。用此方法可得到其它相邻两档的经济性换档线。
2 系统设计
2.1 系统的硬件设计
系统的硬件设计如图4所示。CPU采用Atmel 89C55WD单片机,它具有20K的ROM和256Byte的RAM。
由于该系统需要存储车辆的各相关参数、发动机特性等数据,因此需要大量的存储空间。为了满足这一要求,同时使该系统适合在其它车型上扩展,采用了静态数据存储器28F256 Flash。它具有32K的存储空间,可以存储车辆的基本参数以及发动机特性等数据,可以满足要求。
LCD(液晶显示器)采用的是top-view公司的型号为STN3224-II的显示仪。其分辨率是320×240,制式为STN,支持256色,自带控制器。它的特点是接口简单、编程控制容易。
A/D转换器采用MAX1092,为十位模/数转换器。当MAX1092的HBEN脚为低电平时读低8位,当其为高电平时读高两位。
传感器有节气门传感器、车速传感器、发动机转速传感器等。节气门位置传感器安装在节气门轴的尾端,采用滑线变阻器的型式,节气门关闭时,传感器输出电压为0V;节气门打开时,输出电压为5V;当节气门不断开大时,其输出电压随之线性增加。对发动机转速和车速的测量采用霍尔传感器,传感器输出的脉冲信号经处理后作为外部中断信号输入到单片机,同时配合定时器的中断服务,就可以由软件计算出发动机转速和车速。
2.2 系统的软件设计
系统软件根据功能可分为:程序初始化模块、初始数据的处理模块、信息采集和处理模块、显示模块,这四个模块的功能是相互独立的,但模块之间又有数据传输的部分,具体传输的数据可以由系统软件主程序流程看出。图5所示为系统的主程序流程图。
图5 换档决策子程序流程图
程序初始化模块包括硬件的驱动和数据的输入。硬件驱动指直接驱动各种硬件资源,主要包括单片机资源和液晶显示器。数据的输入主要有汽车相关参数以及发动机的实验数据。
初始数据的处理模块主要功能是根据初始数据计算汽车的发动机工作线和换档规律。
信息的采集和处理模块主要功能是从传感器采集数据并对数据进行处理,然后计算发动机的工作点、当前档位并判断换档情况。图6所示为判断车辆换档子程序的流程图。
显示模块的功能是将上面计算得到的车辆数据实时地显示在LCD上。
以Santana2000轿车及其发动机试验数据为依据进行了试验。试验结果证明该系统能够在车辆行驶过程中正确、实时地显示车辆的发动机工作状态、车辆的档位、油门开度,并能够根据输入的换档规律实时判断升档、降档还是保持当前档位行驶。该系统对驾驶员正确操作车辆具有指导作用。
智能汽车论文:对智能传感器与汽车电子的分析
摘要:现代汽车电子从所应用的电子元器件到车内电子系统的架构均已进入了一个有本质性提高的新阶段。其中最有代表性的核心器件之一就是智能传感器。
关键词:智能传感器
1 汽车电子操控和安全系统谈起
近几年来我国汽车工业增长迅速,发展势头很猛。因此评论界出现了一些专家的预测:汽车工业有可能超过IT产业,成为中国国民经济最重要的支柱产业之一。其实,汽车工业的增长必将包含与汽车产业相关的IT 产业的增长。例如,虽然目前在我国一汽的产品中电子产品和技术的价值含量只占10%—15%左右,但国外汽车中电子产品和技术的价值含量平均约为22%,中、品质轿车中汽车电子已占30%以上,而且这个比例还在不断地快速增长,预期很快将达到50%。
电子信息技术已经成为新一代汽车发展方向的主导因素,汽车(机动车)的动力性能、操控性能、安全性能和舒适性能等各个方面的改进和提高,都将依赖于机械系统及结构和电子产品、信息技术间的结合。汽车工程界专家指出:电子技术的发展已使汽车产品的概念发生了深刻的变化。这也是最近电子信息产业界对汽车电子空前关注的原因之一。但是,必须指出的是,除了一些车内音响、视频装备,车用通信、导航系统,以及车载办公系统、网络系统等车内电子设备的本质改变较少外,现代汽车电子从所应用的电子元器件(包括传感器、执行器、微电路等)到车内电子系统的架构均已进入了一个有本质性提高的新阶段。其中最有代表性的核心器件之一就是智能传感器(智能执行器、智能变送器)。
实际上,汽车电子已经经历了几个发展阶段:从分立电子元器件搭建的电路监测控制,经过了电子元器件或组件加微处理器构筑的各自独立的、专用的、半自动和自动的操控系统,现在已经进入了采用高速总线(目前至少有5种以上总线已开发使用),统一交换汽车运行中的各种电子装备和系统的数据,实现综合、智能调控的新阶段。新的汽车电子系统由各个电子控制单元(ECU)组成,可以独立操控,同时又能协调到整体运行的状态。
还可以举一个安全驾驶方面的例子,出于平稳、安全驾驶的需要,仅只针对四个轮子的操控上,除了应用大量压力传感器并普遍安装了刹车防抱死装置(ABS)外,许多轿车,包括国产车,已增设了电子动力分配系统(EBD),ABS+EBD可以较大限度的保障雨雪天气驾驶时的稳定性。现在,国内外的一些汽车进一步加装了紧急刹车辅助系统(EBA),该系统在发生紧急情况时,自动检测驾驶者踩制动踏板时的速度和力度,并判断紧急制动的力度是否足够,如果需要,就会自动增大制动力。EBA的自控动作必须在极短时间(例如百万分之一秒级)内完成。这个系统能使200km/h高速行驶车辆的制动滑行距离缩短极其宝贵的20多米。针对车轮的还有分别监测各个车轮相对于车速的转速,进而为每个车轮平衡分配动力,保障在恶劣路面条件下各轮间具有良好的均衡抓地能力的“电子牵引力控制”(ETC)系统等。
从以上列举的两个例子可以清楚看到,汽车发展对汽车电子的一些基本要求:
1.1 电子操控系统的动作必须快速、正确、。传感器(+调理电路)+微处理器,然后再通过微处理器(+功率放大电路)+执行器的技术途径已经不再能满足现代汽车的要求,需要通过硬件集成、直接交换数据和简化电路,并提高智能化程度来确保控制单元动作的正确性、性和适时性。
1.2 现在几乎所有的汽车的机械结构部件都已受电子装置控制,但汽车车体内的空间有限,构件系统的空间更是极其有限。理想的情况当然是,电子控制单元应与受控制部件紧密结合,形成一个整体。因此器件和电路的微型化、集成化是不可回避的道路。
1.3 电子控制单元必须具有足够的智能化程度。以安全气囊为例,它在关键时刻必须要能及时、正确地瞬时打开,但在极大多数时间内气囊是处在待命状态,因此安全气囊的ECU 必须具有自检、自维护能力,不断确认气囊系统的可正常运作的性,确保动作的“万无一失”。
1.4 汽车的各种功能部件都有各自的运动、操控特性,并且,对电子产品而言,大多处于非常恶劣的运行环境中,而且各不相同。诸如工作状态时的高温,静止待命时的低温,高浓度的油蒸汽和活性(毒性)气体,以及高速运动和高强度的冲击和振动等。因此,电子元器件和电路必须要有高稳定、抗环境和自适应、自补偿调整的能力。
1.5 与上述要求同样重要,甚至有时是关键性的条件是,汽车电子控制单元用的电子元器件、模块必须要能大规模工业生产,并能将成本降低到可接受的程度。一些微传感器和智能传感器就是这方面的典范。例如智能加速度传感器,它不仅能较好地满足现代汽车的各项需要,而且因为可以在集成电路标准硅工艺线上批量生产,生产成本较低(几美元至十几或几十美元),所以在汽车工业中找到了自己较大的应用市场,反过来也有力地促进了汽车工业的电子信息化。
2 智能传感器:微传感器与集成电路融合的新一代电子器件
微传感器、智能传感器是近几年才开始迅速发展起来的新兴技术。在我国的报刊杂志上目前所使用的技术名称还比较含混,仍然笼统地称之为传感器,或者含糊地归纳为汽车半导体器件,也有将智能传感器(或智能执行器、智能变送器)与微系统、MEMS等都归入了MEMS (微机电系统)名称下的。这里介绍当前一些欧美专着中常用的技术名词的定义和技术内涵。
首先必须说明的是,在绝大多数情况下,本文大小标题及全文中所说的传感器其实是泛指了三大类器件:将非电学输入参量转换成电磁学信号输出的传感器;将电学信号转换成非电学参量输出的执行器;以及既能用作传感器又能用作执行器,其中较多的是将一种电磁学参量形式转变成另一种电磁学参量形态输出的变送器。就是说,关于微传感器、智能传感器的技术特性可以扩大类推到微执行器、微变送器-传感器(或执行器、或变送器)的物理尺度中至少有一个物理尺寸等于或小于亚毫米量级的。微传感器不是传统传感器简单的物理缩小的产物,而是基于半导体工艺技术的新一代器件:应用新的工作机制和物化效应,采用与标准半导体工艺兼容的材料,用微细加工技术制备的。因此有时也称为硅传感器。可以用类似的定义和技术特征类推描述微执行器和微变送器。
它由两块芯片组成,一是具有自检测能力的加速度计单元(微加速度传感器),另一块则是微传感器与微处理器(MCU)间的接口电路和MCU。这是一种较早期(1996年前后)的,但已相当实用的器件,可用于汽车的自动制动和悬挂系统中,并且因微加速度计具有自检能力,还可用于安全气囊。从此例中可以清楚看到,微传感器的优势不仅是体积的缩小,更在于能方便地与集成电路组合和规模生产。应该指出的是,采用这种两片的解决方案可以缩短设计周期、降低开发前期小批量试产的成本。但对实际应用和市场来说,单芯片的解决方案显然更可取,生产成本更低,应用价值更高。
智能传感器(Smart Sensor)、智能执行器和智能变送器-微传感器(或微执行器,或微变送器)和它的部分或全部处理器件、处理电路集成在一个芯片上的器件(例如上述的微加速度计的单芯片解决方案)。因此智能传感器具有一定的仿生能力,如模糊逻辑运算、主动鉴别环境,自动调整和补偿适应环境的能力, 自诊断、自维护等。显然,出于规模生产和降低生产成本的要求,智能传感器的设计思想、材料选择和生产工艺必须要尽可能地和集成电路的标准硅平面工艺一致。可以在正常工艺流程的投片前,或流程中,或工艺完成后增加一些特殊需要的工序,但也不应太多。
在一个封装中,把一只微机械压力传感器与模拟用户接口、8位模-数转换器(SAR)、微处理器(摩托罗拉69HC08)、存储器和串行接口 (SPI)等集成在一个芯片上。其前端的硅压力传感器是采用体硅微细加工技术制作的。制备硅压力传感器的工序既可安排在集成 CMOS 电路工艺流程之前,亦可在后。这种智能压力传感器的技术和市场都已成熟,已广泛用于汽车(机动车)所需的各式各样的压力测量和控制单元中,诸如各种气压计、喷嘴前集流腔压力、废气排气管、燃油、轮胎、液压传动装置等。智能压力传感器的应用很广,不局限于汽车工业。目前,生产智能压力传感器的厂商已不少,市售商品的品种也很多,已经出现激烈的竞争。结果是智能压力传感器体积越来越小,随之控制单元所需的外围接插件和分立元件越来越少,但功能和性能却越来越强,而且生产成本降低很快。
顺便需要说说的是,在一些中文资料中,尤其是一些产品宣传性材料中,笼统地将Smart Sensor(或device)和Intelligent sensor(或device)都称之为智能传感器,但在欧美文献中是有所差别的。西方专家和公众通常认为,Smart(智能型)传感器比Intelligent(知识型)的智慧层次和能力更高。当然,知识型的内涵也在不断进化,但那些只能简单响应环境变化,作一些相应补偿、调整工作状态的,特别是不需要集成处理器的器件,其知识等级太低,一般不应归入智能器件范畴。
相信大多数读者能经常接触到的,最贴近生活的智能传感器可能要算是用于摄像头、数码相机、摄像机、手机摄像中的CCD图像传感器了。这是一种非智能型传感器莫属的情况,因为CCD 阵列中每个硅单元由光转换成的电信号极弱,必须直接和及时移位寄存、并处理转换成标准的图像格式信号。还有更复杂一些的,在中、品质长焦距(IOX)光学放大数码相机和摄像机上装备的电子和光学防抖系统,特别是高端产品中的真正光学防抖系统。它的核心是双轴向或3轴向的微加速度计或微陀螺仪,通过它监测机身的抖动,并换算成镜头的各轴向位移量,进而驱动镜头中可变角度透镜的移动,使光学系统的折射光路保持稳定。
微系统(Microsystem)和MEMS(微机电系统)-由微传感器、微电子学电路(信号处理、控制电路、通信接品等)和微执行器构成一个三级级联系统、集成在一个芯片上的器件称之为微系统。如果其中拥有机械联动或机械执行机构等微机械部件的器械则称之为MEMS。
MEMS芯片的左侧给出的是制备MEMS芯片需要的基本工艺技术。它的右侧则为主要应用领域列举。很明显,MEMS 的好解决方案也是选用与硅工艺兼容的材料及物理效应、设计理念和工艺流程,也即采用常规标准的CMOS 工艺与二维、三维微细加工技术相结合的方法,其中也包括微机械结构件的制作。
微传感器合乎逻辑的发展延伸是智能传感器,智能传感器自然延伸则是微系统和MEMS,MEMS 的进一步发展则是能够自主接收、分辨外界信号和指令,进而能独立、正确动作的微机械(Micromachines)。现在,开发成功、并已有商业产品的MEMS品种已不少,涵盖各大领域。其中包括全光光通信和全光计算机的关键部件之一的二维、三维MEMS光开关。
通过控制芯片上的微反射镜阵列,实现光输入/输出的交叉互联。这是目前全光交换技术的成熟的方案。市场上可买到的MEMS光开关已达1296路,开关转换时间约为20ms。
微机械(也称为纳米机械)则尚处于开发试验阶段,但已有许多很重要的实验室产品涌现,如着名的纳米电机、微昆虫、微直升机和潜水艇等。技术产业界普,!遍认为,它们的开发成功和投入实际应用将对工业技术和生活质量产生深远的影响
智能汽车论文:关于智能传感器与汽车电子的分析
摘要: 现代 汽车 电子 从所应用的电子元器件到车内电子系统的架构均已进入了一个有本质性提高的新阶段。其中最有代表性的核心器件之一就是智能传感器。
关键词:智能传感器
1 汽车电子操控和安全系统谈起
近几年来我国汽车 工业 增长迅速, 发展 势头很猛。因此评论界出现了一些专家的预测:汽车工业有可能超过it产业,成为
它由两块芯片组成,一是具有自检测能力的加速度计单元(微加速度传感器),另一块则是微传感器与微处理器(mcu)间的接口电路和mcu。这是一种较早期(1996年前后)的,但已相当实用的器件,可用于汽车的自动制动和悬挂系统中,并且因微加速度计具有自检能力,还可用于安全气囊。从此例中可以清楚看到,微传感器的优势不仅是体积的缩小,更在于能方便地与集成电路组合和规模生产。应该指出的是,采用这种两片的解决方案可以缩短设计周期、降低开发前期小批量试产的成本。但对实际应用和市场来说,单芯片的解决方案显然更可取,生产成本更低,应用价值更高。
智能传感器(smart sensor)、智能执行器和智能变送器-微传感器(或微执行器,或微变送器)和它的部分或全部处理器件、处理电路集成在一个芯片上的器件(例如上述的微加速度计的单芯片解决方案)。因此智能传感器具有一定的仿生能力,如模糊逻辑运算、主动鉴别环境,自动调整和补偿适应环境的能力,自诊断、自维护等。显然,出于规模生产和降低生产成本的要求,智能传感器的设计思想、材料选择和生产工艺必须要尽可能地和集成电路的标准硅平面工艺一致。可以在正常工艺流程的投片前,或流程中,或工艺完成后增加一些特殊需要的工序,但也不应太多。
在一个封装中,把一只微机械压力传感器与模拟用户接口、8位模-数转换器(sar)、微处理器(摩托罗拉69hc08)、存储器和串行接口 (spi)等集成在一个芯片上。其前端的硅压力传感器是采用体硅微细加工技术制作的。制备硅压力传感器的工序既可安排在集成 cmos 电路工艺流程之前,亦可在后。这种智能压力传感器的技术和市场都已成熟,已广泛用于汽车(机动车)所需的各式各样的压力测量和控制单元中,诸如各种气压计、喷嘴前集流腔压力、废气排气管、燃油、轮胎、液压传动装置等。智能压力传感器的应用很广,不局限于汽车 工业 。目前,生产智能压力传感器的厂商已不少,市售商品的品种也很多,已经出现激烈的竞争。结果是智能压力传感器体积越来越小,随之控制单元所需的外围接插件和分立元件越来越少,但功能和性能却越来越强,而且生产成本降低很快。
顺便需要说说的是,在一些中文资料中,尤其是一些产品宣传性材料中,笼统地将smart sensor(或device)和intelligent sensor(或device)都称之为智能传感器,但在欧美 文献 中是有所差别的。西方专家和公众通常认为,smart(智能型)传感器比intelligent(知识型)的智慧层次和能力更高。当然,知识型的内涵也在不断进化,但那些只能简单响应环境变化,作一些相应补偿、调整工作状态的,特别是不需要集成处理器的器件,其知识等级太低,一般不应归入智能器件范畴。
相信大多数读者能经常接触到的,最贴近生活的智能传感器可能要算是用于摄像头、数码相机、摄像机、手机摄像中的ccd图像传感器了。这是一种非智能型传感器莫属的情况,因为ccd 阵列中每个硅单元由光转换成的电信号极弱,必须直接和及时移位寄存、并处理转换成标准的图像格式信号。还有更复杂一些的,在中、品质长焦距(iox)光学放大数码相机和摄像机上装备的 电子 和光学防抖系统,特别是高端产品中的真正光学防抖系统。它的核心是双轴向或3轴向的微加速度计或微陀螺仪,通过它监测机身的抖动,并换算成镜头的各轴向位移量,进而驱动镜头中可变角度透镜的移动,使光学系统的折射光路保持稳定。
微系统(microsystem)和mems(微机电系统)-由微传感器、微电子学电路(信号处理、控制电路、通信接品等)和微执行器构成一个三级级联系统、集成在一个芯片上的器件称之为微系统。如果其中拥有机械联动或机械执行机构等微机械部件的器械则称之为mems。
mems芯片的左侧给出的是制备mems芯片需要的基本工艺技术。它的右侧则为主要应用领域列举。很明显,mems 的好解决方案也是选用与硅工艺兼容的材料及物理效应、设计理念和工艺流程,也即采用常规标准的cmos 工艺与二维、三维微细加工技术相结合的方法,其中也包括微机械结构件的制作。
微传感器合乎逻辑的 发展 延伸是智能传感器,智能传感器 自然 延伸则是微系统和mems,mems 的进一步发展则是能够自主接收、分辨外界信号和指令,进而能独立、正确动作的微机械(micromachines)。现在,开发成功、并已有商业产品的mems品种已不少,涵盖各大领域。其中包括全光光通信和全光 计算 机的关键部件之一的二维、三维mems光开关。
通过控制芯片上的微反射镜阵列,实现光输入/输出的交叉互联。这是目前全光交换技术的成熟的方案。市场上可买到的mems光开关已达1296路,开关转换时间约为20ms。
微机械(也称为纳米机械)则尚处于开发试验阶段,但已有许多很重要的实验室产品涌现,如著名的纳米电机、微昆虫、微直升机和潜水艇等。技术产业界普遍认为,它们的开发成功和投入实际应用将对工业技术和生活质量产生深远的影响。
智能汽车论文:论现代电子技术在汽车智能管理系统中的应用研究
[论文关键词]汽车电子技术 汽车智能管理系统 智能化集成传感器 多通道传输技术
[论文摘要]汽车是当前重要的交通工具,汽车的发明和汽车相关技术的发展极大地改变了人们的出行方式,加快了商品和人员的流通。
随着汽车工业与电子工业的不断发展,在现代汽车上,电子技术的应用越来越广泛,汽车电子化的程度也越来越高。汽车技术与电子技术相结合催生出汽车电子技术概念。电子技术在现代汽车工业中的广泛应用加快了电子汽车的发展趋势,推动了汽车功能的多元化和便捷化。
一、汽车电子技术
现代电子技术与汽车工业的结合促成了电子汽车概念的诞生和实现,概括地来说当前的汽车电子技术主要包括:智能化集成传感器:提供用于模拟和处理的信号,而且还能对信号作坊大处理。同时,他还能自动进行时漂、温漂和非线性的自动校正,具有较强的抵抗外部电磁干扰的能力,保障传感器信号的质量不受影响;嵌入式微处理机已广泛地应用与安全、环保、发动机、传动系、速度控制和故障诊断中。软件技术:随着汽车电子技术应用的增加,对有关控制软件的需求也相应增加,并可能要求进一步计算机联网。因此,要求使用多种语言,并开发出通用的高水平软件,以满足多种硬件的要求。轿车上多通道传输网络将大大地依赖于软件;多通道传输技术,多通道传输技术的采用,对电子控制集成化的实现是十分必要和有效的。采用这种技术后,使各个数据线成为一个网络,以便分享汽车中心计算机的信息。汽车车载电子网络:汽车电子设备发展的一个重要趋势是大量使用微处理机来改善汽车的性能。随着电控器件在汽车上越来越多的应用,车载电子设备间的数据通信变得越来越重要。为了进一步提高行使的经济性,温度及车速等信息必须在不同控制单元间交换。由此,以分布式控制系统为基础构造汽车车载电子网络系统是很有必要的。集成化技术:汽车电子技术的一个发展趋向是功能集成化,从而实现更经济、更有效以及可诊断的数据中心。光导纤维:汽车电子技术的进步,已使各系统控制走向集中,形成整车控制系统。这一系统除了中心电脑外,甚至包括多达23个微处理器及大量传感器和执行部件,组成一个庞大而复杂的信息交换与控制系统等。
二、国内汽车电子技术发展
电子技术在汽车工业中的应用加快了汽车技术的升级和突破,自20世纪80年代以来,汽车工业的长足发展,也是以电子技术(特别是计算机、集成电路技术)为动力而实现的。采用电子技术是解决汽车所面临的诸多技术问题的方案。因此一国电子产业的发展水平及其在汽车工业领域的应用情况决定了其在未来轨迹汽车行业竞争中的地位和影响力。目前,国产汽车的电子技术应用多数还处于初级阶段。只有少数厂家,主要集中在一些中外合资和国内较为先进的汽车生产厂家,开始将电子控制装置应用在汽车工业中。国内现在采用的电子装置主要包括发动机的燃油喷射、电子点火控制、汽车安全性方面的安全气囊,abs等领域,而且多数为直接引进国外产品组装,国内科研院所目前有关汽车电子技术应用的研究也主要集中在发动机控制、电控悬架、abs系统等几个方面,在汽车的电子网络化技术、gprs导航及智能交通系统的研究等方面与国外还有一定差距。
三、现代电子技术促进汽车智能管理的发展
随着经济的快速发展和人民群众对汽车工业要求的逐步提高,当前的电子技术在汽车工业领域里得到了很好较快较好的应用。汽车智能管理系统就是这一应用的重要体现。车辆智能管理仪(以下简称管理仪)硬件构成主要由cpu,数据存储器扩展电路、ic卡接口电路、gps接收电路、光电隔离的输入、输出电路、数码相机控制电路、指示灯、蜂鸣器及电源部分组成。采用gps接收机接收卫星的信号,经过计算后可得出车辆所处的经纬度、行驶速度、行驶方向等参数。管理仪还能够采集与司机操作有关的数据,如刹车、远光灯、近光灯、左右转向灯、喇叭、雾灯、制动气压、车门开关等参数。管理仪根据预先设定的时间间隔和特殊事件的触发,将有关数据保存入ic(intelligent card)卡中。根据这些数据,车辆管理部门就可以对车辆的历史运行状况进行检查、管理,以确定车辆是否按照规定的要求运行。管理仪还能够对最近15次停车前,每次停车前50秒的所有信息进行详细记录,gps数据的采集速度受gps系统的限制,每秒钟记录1次,其他参数每隔0.2秒记录一次。管理仪还具有数码照相机的控制接口,可以根据外部触发信号,对车内的情景拍照。
汽车工业是高科技工业,汽车性能的每一步提升都伴随着新技术、新工艺的运用。电子技术是21世纪推动经济发展和社会变革的重要技术之一,电子技术的发展及其在汽车工业领域的广泛应用将有效提升汽车工业的发展水平。
智能汽车论文:智能汽车设计摄像头研究
摘要:
智能汽车作为当今科技时代下的新兴产物,集中运用了计算机、现代传感、信息融合、自动控制、人工智能及通讯等现代科学技术,是未来汽车发展的重要方向。本文详细介绍了基于摄像头传感器的智能竞速汽车控制器的设计方案,分别介绍了智能车的硬件组成、路径的检测识别方法和智能车的控制策略。利用摄像头传感器采集、识别道路信息,规划路径,采用PID控制算法控制电机和舵机实现自动控制。
关键词:
摄像头;智能汽车;设计方案
本设计是基于MK60DN512ZVLL10单片机开发实现的,该系统采用摄像头采集、识别道路两旁或者中央的引导线,在此基础上利用合理闭环的算法控制智能车运动,从而实现智能车快速稳定的寻迹行驶。
1智能车整体结构的选型与设计
1.1图像传感器的选择
图像传感器,即数字摄像头。目前市场主流的两种摄像头传感器:以金属氧化物半导体元件为感光材料的CMOS摄像头和以电荷耦合元件为感光材料的CCD摄像头。综合两种摄像头解析度、灵敏度、成本、功耗比、模块电路、体积、重量,CMOS摄像头可以满足于4米/秒速度以下智能车行驶,并且CMOS摄像头功耗低,工作电压只需3.3V-7V,可以由智能车稳压后得到,稳定经济,所以选择CMOS摄像头中的OV7725摄像头。
1.2起跑线检测传感器选择
起跑用的是发车灯塔控制方式,发车灯塔不仅发出起跑信号,而且发出终点信号。我们使用基于使用HS0038B传感器的基础电路作为接收灯塔光信号一个基础电路,OUT口接MK60的C5。
1.3速度检测传感器选择
一个完整的控制系统是闭环控制的,所以需要测速装置,用以精准反映智能车实时速度。我们采用了由欧姆龙公司研制的一款200线的小型编码器。
1.4车模选型
本次设计采用由飞思卡尔半导体公司赞助的G768型车模,即为竞赛中的C车模。
2智能车硬件电路设计
2.1硬件设计方案
本设计方案采用模块化方式完成总设计,模块化设计使思路清晰,在使用出现错误时容易修理。
2.2电路设计方案
本次设计将智能车系统电路分成两个主要部分,以MK60N512ZVLQ10为核心的控制电路和以电源为核心的驱动电路。考虑到MK60最小系统电路板比较大,所以将整个系统电路分为两块规则PCB板(主控板和驱动板)。
2.3控制电路
以MK60为核心的单片机系统的硬件电路设计主要包括以下几个部分:电源电路、时钟电路、JTAG接口、复位电路。
2.4驱动电路
因为本次比赛摄像头组使用的电机是RS-380SH直流电机,小车驱动芯片决定选用集成的高电流半桥电机驱动应用BTN7971B,它的输出电流足以带动电机转动并且较稳定。
2.5电源模块
比赛使用飞思卡尔专用电池,2000mAh的镍镉电池1块,标准电压7.2V。
3智能车软件算法设计
3.1软件控制整体设计
本次设计所用的软件调试工具支持C语言和汇编语言混合编程的IAREmbeddedWorkbench软件,由于C语言操作简单,可修改和移植性强,所以本次软件设计大部分程序都使用C语言编写,只有在某些地方加入了汇编语句。
3.2主程序结构
在系统初始化方面,我们所用到的底层硬件资源进行初始化和上层模块初始化。在方案选择及参数设定上,我们在主板上设置了一组四位的拨码开关和三个按键结合OLED显示屏实现的方案和参数的可调,以在比赛时对车作适当地调整。在图像获取上,对于Ov7725数字摄像头,使用场中断加高速DMA传输的方式来获取图像。图像处理则采用黑线提取和中心线提取。
3.3控制算法
控制算法是智能车的灵魂,为了使小车能以稳定的速度通过跑道,的速度控制是关键,采用速度闭环控制方案。
4智能车开发与调试
4.1软件开发环境
系统编译下载是在IARIDE开发环境下完成的,EmbeddedWorkbenchforARM是IARSystems公司为ARM单片机开发的一个集成开发环境,这一开发环境使用方便、入门容易和代码简明紧凑。此外,由于在IAR软件中进行编写,调用,修正函数比较复杂繁琐,所以使用了Sourceinsight3软件进行辅助编写小车程序。
4.2硬件开发环境
本次毕业设计所用的硬件开发平台为著名硬件开发公司Altium公司的AltiumDesigner10,这已开发环境在板级设计特性、软设计特性、数据管理特性、通用特性都较有优势。
4.3软件调试
软件调试主要包括:程序在线仿真调试,上位机调试。在线调试主要使用的是IAR中的调试器IARC-SPY。上位机调试主要是通过蓝牙模块将智能车运行过程中的状态和SD卡采集的图像及时地反馈到PC机上。
4.4现场调试
现场的调试包括摄像头调焦以及固定、PID参数整定、速度控制算法的参数整定、智能车运行状态等方面的调试。
5结语
在此次设计中,通过不断不断尝试,不断整改,发现问题,整改问题,最终达到我们预期的设计目标。在算法方面,首次采用闭环系统控制智能车,采用改进PID控制算法,对智能车速度及方向进行调整,使智能车较之前的开环状态更加稳定,最终完成了智能车的制作,实现了摄像头采集识别,闭环控制等的功能。
作者:吴伟鸿 单位:嘉兴学院机电工程学院
智能汽车论文:智能自动化技术在汽车工程的应用
摘要:在人工智能及自动控制这些学科的基础上,新兴起一个交叉学科,那就是智能控制。将智能自动化技术应用于汽车工程上,可以推动汽车工业的快速发展,同时控制理论也得到发展。汽车在市场经济中处于重要地位,随着人们生活水平的不断提高,人们对于交通工具的要求也越来越高。作为交通工具的汽车,不仅要具有交通性和安全性,同时还要具有人性化和舒适性。所以,不仅要研制出智能车锁,同时还要研制出一些智能门窗和智能刹车。
关键词:智能控制;汽车工程;自动化技术
将智能控制技术应用于汽车工程上,可以有效调整汽车后视镜的位置,同时我们还可以运用模糊控制的方法,提升汽车的整体性能。通过智能自动化技术,操作人员可以对实践经验和直观感觉进行形式化描述,同时还可以进行条理化表达。
一、智能控制基本知识及智能控制系统概述
智能控制也可以称为自动控制,其中还融合了人工智能和运筹学两个方面的专业知识,可以算是三个学科的结合物。这种观点有以下含义,它指出了智能控制产生的背景或条件,即人工智能理论与技术的发展及其向控制领域的渗透,我们需要将智能控制拓展到每一个领域。在拓展的过程中我们要运用大量的定量优化方法,对每一个目标的优化都要实行线性规划。同时还必须将智能控制维持在一定的范围之内,智能控制本身就融合了理论和技术两个方面。智能控制简单来说也可以算是一种信息反馈,智能控制具有许多基本的要素,比如智能反馈、智能决策和智能信息。信息虽然不是一种具体的物质,也不是虚无缥缈的能量,但是在智能控制中占据着非常重要的地位。在某种意义上来说信息是知识的载体,可以更好地将信息所包含的内容进行科学化的传达。当我们对智能进行固定化的阐述时,我们就会对智能的载体有一个较为模糊的认识,不利于我们了解智能化。在识别信息特征后,我们可以非常便捷地获得一些智能信息,根据自身对于信息的一些需求,我们可以对智能信息进行一些微处理和加工。在对信息进行微处理和加工的过程中,我们就会逐渐消除信息所带来的一些不确定的因素。为了更好地控制信息,我们可以将反馈设置为智能信息中最重要的环节。反馈在智能自动化技术的应用过程中是非常重要的,它可以更加便捷地反馈信息,不同的汽车工程会具有不同的系统控制特点,通过不同的特点我们可以对信息进行独特的反馈和负反馈。反馈和负反馈可以较好地阐述智能信息,同时我们还可以根据自身发展的特点去调整负反馈的强弱,智能信息在某种程度上来说具有仿人的特点,所以才称为智能反馈信息自动化技术。智能决策也是智能控制决策,这种决策在定量的限制上非常薄弱,为了使整套自动化技术更加完整,可以将定性综合集成应用到其中。这样可以使智能自动化技术更好地模仿人脑的决策,在作决策的过程中同时也提高了智能技术。
二、智能监测技术在车辆设备中的其他应用
1.汽车驻车智能刹车系统将智能监测技术应用于车辆设备中,可以更好地对汽车驻车智能刹车系统进行研究,同时在汽车上可以安装许多的自动变速箱,目的是方便初学驾驶者学习,这样就会减少换挡的操作,同时还不需要在上坡的过程中进行停车和刹车。但是在整体的驾驶过程中,自动变速箱对于汽油的使用量比较大。高污染、高消耗已经满足不了现代的绿色消费需求,所以市场需求已经逐渐转向于手动变速汽车。将智能自动化技术应用于汽车工程上,可以扩展刹车的功能,实现上坡停车制动的自动化。2.汽车后视镜位置的智能控制位置随动控制也可以称为位置全服控制,为了更好地对汽车后视镜的位置进行智能控制,我们可以将信号和反馈信号进行两类规划。首先我们要对后视镜的位置进行模拟控制,引入数字位置控制系统。在微处理和加工信息的过程中,我们就会逐渐消除信息所带来的一些不确定的因素,同时也要将位置控制拓展到每一个领域。在人们所熟悉的办公自动化中,也应用了大量的智能自动化技术,比如说复印机、磁盘的磁头位置控制,这些都运用了数控机床定位控制。
三、结语
随着科学技术的不断进步,智能控制技术已经拓展到了各个领域,同时已经形成了产业化的发展方向。智能仪表、机械制造、汽车工业和石油化工,都广泛应用智能自动化技术。模糊控制也是智能自动化技术中的一种,在汽车工程中也得到了广泛的应用,模糊控制可以多方位监控控制的对象。在汽车工程发展的过程中,我们需要对每一个控制领域进行数学模型描述,这样才可以改进制造工艺。为了减少智能自动化技术中存在的偏差,我们需要多方位监测非线性和不确定系统,同时还要提高模糊控制技术的质量。
作者:贾东升 单位:德州科技职业学院
智能汽车论文:无线电传输技术对汽车智能仪表的应用
摘要:汽车制造商将无线电传输技术在汽车智能仪表设计中应用,不仅能够达到满足广大汽车消费者对汽车仪表外观的要求,还能够有效的节约汽车仪表系统制作成本。这样的技术应用已经逐渐的被汽车工业所广泛应用,将无线电传输技术应用到汽车智能仪表设计中,已经成为了我国汽车产业未来的必要发展趋势。本文将对无线电传输技术在汽车智能仪表设计应用,做出简要分析,旨在于更好的提高汽车系统应用效益,为汽车产业带来良好的经济效益。
关键词:无线电;传输技术;汽车技能仪表;设计应用
汽车制造商应采取全新的设计理念,将无线电传输技术应用到汽车智能仪表中,全新设计理念的智能仪表,不仅在外观上有显著的改善,在应用中也有良好的效果,必定成为汽车产业的重要发展方向。
1无线传输技术的汽车智能仪表功能设计
在传统的汽车仪表设计中,汽车仪表多数采用机械式仪表,机械式仪表不仅链接复杂,对汽车仪表的美观也有一定的影响,所以,汽车产业生在逐步的将无线传输技术,应用到汽车智能仪表功能设计中。汽车智能仪表是通过液晶屏的显示方式,将发动机转速、档位、行驶车速、水温、油量等重要的信息集合在一起,通过液晶显示屏显示出来。这样的设计理念不仅改变了传统仪表的复杂性,并且智能仪表能够有效的节省空间,具有较强的使用价值。在汽车智能仪表的实际应用中,无线传输技术的智能仪表,由两个模块组成分别是:“发射机仪表”和“接收机仪表”。在发射机仪表和接收机仪表的使用原理中,发射机仪表是安装在汽车上的,而接收机仪表则是安装在汽车的方向盘上,发射机仪表通过接收发动机发出的信息,然后传输到接收机仪表中,再通过液晶显示屏显示出来。另外,通过无线电传输技术的智能仪表,想要代替传统的有线传输,还需要安装一个较小的控制系统,这个无线传输的操作系统由无线传输射频芯片、数字仪表等其他电子元件组成。控制系统的安装首先要将一个最小的控制系统安装在汽车上,来作为控制系统的接收端,再通过无线发射频芯片输送到发送端,这样的无线系统设计能够成功的代替,传统机械仪表中的有线传输。将无线传输系统有效的应用到汽车智能仪表中,从根本上改变了传统的机械操作系统,对改造汽车仪表美观感有极好的效果。
2智能仪表数据采集设计
在无线传输智能仪表系统操作中,智能仪表数据采集是一项比较重要的环节,无线传输智能仪表采集系统包括,上位机、无线网络、智能仪表和其他传感器。其中上位机的主要作用是,在系统中采集语言编写控制程序,并且通过系统中的模块利用无线网络传输到智能仪表。这样的无线传输系统能够更加的将汽车发动机的转速、档位、水温、油量等重要信息,的采集并且显示在液晶显示屏中,能够有效的提升汽车仪表的视觉感。另外,在智能仪表数据采集中,还有一项较为重要的部分,就是应用标准的无线数据通信设备,只有无线数据通信设备达到标准,才能够更加的传输有效数据,并且具有着良好的抗干扰能力。
3智能仪表软件模块设计
在无线传输智能仪表的应用中,除了过硬的硬件系统以外,性能良好的软件系统也有着同样重要的作用。无线传输智能仪表的软件设计采用语言编写程序,具有调试方便、运用灵活等优势,软件系统采用模块化的思想对软件系统进行连接,模块化的软件思想对于软件程序的调试有非常大的作用。汽车无线智能仪表软件系统中的主模块程序在软件系统中发挥着重要的作用,主模块的主要作用是对软件系统中的子模块进行调度,让各子模块能够充分的体现其自身的实际功能,所以,主模块在软件系统中起到的操作性是尤为重要的。另外,在无线传输智能仪表软系统中,总线通讯模块的作用也是不容小觑的,总线通讯模块的主要作用是对汽车数据采集点与汽车仪表之间的传输作用。其主要将汽车的行驶里程,对液晶显示模块进行传输,并通过液晶显示器实时显示,对整个系统的运行有着重要的作用。其次,在汽车无线智能仪表软件中,还包括脉冲信号采集模块,脉冲信号采集模块的主要作用是对汽车的档位、行驶车速、油量、水温等重要信息的采集和计算,并通过总线模块传送到汽车智能仪表系统中,并且及时的通过液晶显示屏显示。
4结束语
综上所述,对于无线传输系统操控下的智能仪表,还有着高精度、高、高适应、低消耗等优势。智能仪表用过的操作系统,不仅提高了仪表盘的程度,还有效的降低了汽车仪表的制造成本,是一项值得汽车产业应用的操作系统。所以,将无线电传输技术在汽车智能仪表设计应用,对汽车产业的发展有着重要的作用。
作者:盛吉照 单位:保定长安客车制造有限公司
智能汽车论文:汽车自动变速系统智能控制方法
摘要:随着科技的不断发展,汽车已成为我们日常生活中重要的交通工具,怎样改进、优化汽车已成为我们共同关注的话题,也是人们对汽车行业提出的要求。汽车自动变速系统智能控制便是现代汽车发展中重要的技术之一,自动变速智能控制系统是汽车智能化的标志。将智能控制技术与汽车的自动变速控制系统相结合是提高汽车控制性和灵活性的重要举措。笔者针对汽车自动变速系统智能控制技术进行了相应的研究。
关键词:自动变速;智能控制;人工控制
引言
在近几年来,信息技术快速发展,信心技术的发展带动了自动化的发展,自动化应用在各个领域,尤其是汽车上有许多系统已经能够实现自动化。人工控制的自动化相较于传统控制方法具有逻辑清晰、策略灵活、工作精准、反应快捷等优点,人工控制智能化的优势是传统方法所不能比拟的。因此,自动控制领域的许多专家学者把模拟人类大脑运作的智能化控制看做自己不断研究的目标。
一、汽车自动变速系统智能控制的研究现状
就目前的发展状况来看,汽车自动变速器主要有电控液力机械式自动变速器AT、连续可变传动比自动变速器CVT和电控机械式自动变速器AMT三种类型。自微型计算机从上世纪80年代开始发展以来,许多自动变速器开始尝试着使用微机控制,从而减小传统控制中出现的误差,提高控制性能。微机技术的发展不仅仅推动了自动化的发挥,同时还影响了传统手动变速器的发展。我国是吉林大学汽车工程学院最早对电控机械式自动变速器进行研究的单位,该学院于1985年着手于电控机械式自动变速器AMT的研究,在1989年的时候,该学院成功将电控机械式自动变速器AMT应用于汽车上,并进行了相应的实验,从而获得了初步的研究成果。在此之后,逐渐开始出现研究汽车智能化控制的公司,如1991年重庆欧翔汽车电子有限公司开始着手于电控机械式自动变速器AMT的研究,并于1998年在国产红旗轿车上进行了成功的试验。此时的国外,电控机械式自动变速器AMT经过多年的研究后已经能够正式进入使用阶段,如德国生产的BMW-M3和瑞典生产的SAAB轿车等。
二、智能控制相关理论
1、智能控制的基本概念
虽然智能化控制技术成为许多专家学者研究的重点,但是智能控制技术至今没有一个统一的概念,也没有一个确切的系统描述,本文展示了大多数学者认可的关于智能控制的基本概念:(1)智能控制具有一定的适用范围,其使用对象应是一个不确定模型,且控制较为复杂;(2)智能控制是模拟人类大脑运转的,必须具备人类的环境感知能力、学习能力、适应能力、联想能力及记忆能力等,同时应该具有计算机严密的逻辑思维能力和推理能力,能够对复杂困难的任务进行分析、组织和协调;(3)智能控制不是一门与其他知识无关的学科,它恰恰是一种可以应用在多方面、多领域的学科,是可以促进各类学科相互交流的交叉学科。
2、智能控制的体系结构
智能控制不是理论上的空谈,它是技术与理论相结合的应用型技术,是能够直接作用在实际对象上的实用型技术。在本文的研究中,给出了智能控制技术体系结构的结构图,如下所示:智能控制技术体系并不只是上图中那么简单,它是一个具有发展潜力的技术体系,随着知识和技术的不断更新,新的智能控制技术会不断涌现,智能控制技术体系结构也将会不断壮大。
三、智能控制中存在的问题
1、控制系统的稳定性
在智能控制技术发展的过程中遇到了许多的问题,其中稳定性分析是智能控制技术发展中遇到的一个难题,也是众多专家学者较为关注的问题之一。在一个工程系统中,稳定性是其最基本、最重要的一个要求,稳定性不达标会严重影响工程体系的质量。对于稳定性的分析,人们习惯采用Lyapunov直接分析法来分析,直接分析法对建立数学模型不是非常依赖,其关键在于找到系统中客观存在的一个标量函数V(x,t),但是往往寻找标量函数是非常困难的。在智能控制系统中,被控制的对象非常复杂,一般不能够对其进行建模,且多为非线性、参数多变的,要分析出其稳定性是非常困难的。但是在人工控制的过程中,控制着可以将系统输出额度不稳定性特征进行收集,并做出相应的预测判断,采取有效措施将可能出现的不稳定性扼杀在摇篮里,以此来保障系统的稳定性。
2、学习控制的收敛性
在学习控制系统的过程中,其收敛性是影响学习控制的主要因素,在学习算法不收敛的情况下,学习控制几乎不可能达到预期的目标。如下图所示:将学习控制的过程作图为三维的坐标,其中k轴为学习轴,下图即为时间轴连续与学习轴离散的综合过程,每次发生离散事件必是沿时间控制,由此,据收敛性可得,在最终一次沿时间轴连续即一次离散事件中都有e(t)=0,t∈[0,T]。
四、本文所研究智能控制的方法
所有智能化控制的出发点都是模拟人类控制的某种行为,每种智能化控制都具有自己的特色。所以,在实际使用智能化控制中,模拟人类的哪些控制特征是根据被控制对象的特点、属性及控制目标和要求来制定的。笔者希望能够将汽车变速系统与智能化控制更好的相结合,为车辆自动变速的研究提供帮助,以促进AMT车辆的变速自动控制的发展,使其具有更高的性能,使人们能够更加满意。不同于实验,汽车在实际行驶过程中会遇到各种各样的环境,而汽车自动变速系统依赖于外界的环境和汽车本身的状态,所以,在实际操作中要根据汽车运行的具体条件对控制性能进行不同的改进。五、结语随着现代电子技术的不断发展,汽车上使用的电子技术越来越多,自动化变速技术也受到了广泛的重视,将汽车变速系统与自动化智能控制相结合符合时展的需要,符合人们对汽车发展的要求。对电控机械式自动变速器AMT进行研究不仅能够促进自动化控制技术的发展,还能够促进我国汽车行业的发展,有效提高汽车的性能、实用性和汽车的使用价值。由此可见,研究汽车自动化变速系统智能控制系统对于新时代汽车行业发展的必要性。
作者:童玉正 单位:安徽蚌埠铁龙汽车维修有限公司
智能汽车论文:谈汽车整车智能考核系统设计
1汽车整车智能考核系统通信模式
汽车整车智能考核系统中PC与智能主控板之间通过USR-WIFI232模块进行WIFI网络通信,智能主控板与USR-WIFI232模块通过RS-232通讯,智能主控板中多块电路板采用TWI总线通信,TWI总线通信最多可连接128个设备。汽车整车智能考核系统通信框图如图1所示。
2汽车整车智能考核系统硬件设计
汽车整车智能考核系统硬件部分由电源模块、RS-232通信接口、AD基准电压模块、故障设置模块、电压采集模块、电阻测量模块和TWI通信接口模块组成,汽车整车智能考核系统硬件框图如图2所示。(1)电源模块电源模块采用LM2576稳压电路,输入电压12V,输出电压5V,输出电流3A,电源输入较高电压为40V。电源模块电路图如图3所示。(2)RS-232通信接口模块用单片机和PC机通过串口进行通信,尽管单片机有串行通信的功能,但单片机提供的信号电平和RS-232的标准不一样,单片机逻辑电平:逻辑1为5V、逻辑0为0V,而RS-232逻辑电平:逻辑1为-3V~-15V、逻辑0为+3V~+15V。因此需要通过MAX232芯片进行电平转换。MAX232芯片电平转换电路图如图4所示。(3)AD基准电压模块为保障AD采集电压的稳定性,需提供一个稳定独立的基准电压源,从而保障AD采集电压的性,智能主控板中采用TL431并联稳压集成电路提供稳定的5V基准电压。TL431基准电压电路图如图5所示。(4)故障设置模块故障设置模块采用ULN2803达林顿管驱动器,驱动继电器,通过控制继电器,从而实现断路故障、虚接故障和短路故障,在汽车线路中串接继电器的常闭触电,当继电器不动作时,线路正常,当继电器动作时,可设置汽车线路的断路故障;在断路故障中控制断路故障继电器不定时断开或接通来实现虚接故障;在汽车线路中的传感器输出信号线中在不断开线路的基础上,通过继电器的常开触电把信号线与GND连接,当继电器不动作时,线路正常,当继电器动作时,可设置汽车传感器信号线的短路故障。智能主控板故障设置电路图,如图6所示,其中K1为断路故障继电器,K2为短路故障继电器。(5)电压采集模块电压采集模块采用ATmega16单片机自带的10位ADC模块,由于汽车电路采用的是12V电源,在发动机发动后较高电压可达到14.8V,通过电阻分压电路是AD采集电源在0~5V的范围内,选用200kΩ和100kΩ电阻串联,分压后的电压为被测电路的1/3。电压采集模块电路图如图7所示。
3汽车整车智能系统软件设计
根据实际应用的需求,软件部分能够真实地实现20名以上学员同时进行车辆高技术系统的维修诊断实训,解决车辆及场地不足的问题;可以实现网络教学,将复杂的汽车电路,形象地显示出来,便于学生理解;系统实时地采集车辆各种电器线路的电压数据,学员只需要在电脑上即可完成各种电压和电阻的测量,大大地提高了实训的效率;智能化的考试管理功能,方便教师进行考试试卷设计,以及学员考试完后成绩的统计,实现考试网络管理;网络化的实训管理,系统可以随时控制每一位学员的工作状态,教师对学员实训管理的网络化。本系统适用于中高等职业技术院校、普通教育类学院和培训机构对整车电器理论和维修实训的教学需要。汽车整车智能系统软件界面如图8所示。
作者:王志海 单位:广东省机械高级技工学校
智能汽车论文:从CES展看智能汽车趋势
从某种程度上看,亚洲消费电子展(CES Asia)似乎正在变得越来越“汽车化”,汽车科技,特别是代表汽车发展未来的“自动驾驶”技术受到了前所未有的关注。在上海新国际博览中心的N3馆里,不但聚集着奔驰、宝马、本田、现代、NEVS等整车企业、各级供应商、服务商,还有百度等互联网科技公司。占据了展馆面积半壁江山的传统汽车企业与百度等互联网企业都在现场也展示着关于自动驾驶、智能交通等汽车的未来技术。
汽车企业也越来越显示出“主场”的热情,越来越多的车企开始在这里“秀肌肉”,亮出自己在汽车电子领域的黑科技,显示自己对于汽车未来发展“诗和远方的情怀”。首次参展的现代汽车向中国市场了其Connected Mobility 、Freedomin Mobility和Clean Mobility三大未来Mobility 战略。宝马将BMW i未来概念座舱带到现场试图向中国市场展示宝马对于汽车在实现自动驾驶和高度互联后乘坐者对于车内休息、办公或娱乐需求的理解。这个以“数字化的私人移动空间”为理念设计的汽车内部空间里搭载的BMW HoloActive触控系统展示着人机交互技术的未来趋势。而奔驰在现场所展示的“Fit&Healthy智能健康概念车”不但诠释了其“瞰思未来”(C.A.S.E.)战略中“智能互联(Connected)”,而且将中国元素展现得淋漓尽致,受到了极大关注。不仅仅是展会现场的静态展示,奔驰还大手笔地在CES Asia开展前夕、在场馆之外,举办了一场以“健行・见未来”为主题的媒体科技日活动,把今年的CES Asia变成了一个热闹的派对PARTY,一场盛大的狂欢和一次奔驰对于未来交通梦想的启程。
奔驰为此在黄浦江边专门打造了一个类似智能健身馆的“科技日展馆”,在两个具有未来感的“天穹体验馆”中,通过两款概念车及一系列互动体验环节,展示着奔驰对于未来出行发展前景的理解。北京梅赛德斯-奔驰销售服务有限公司执行副总裁、负责销售与市场营销的段建军还在现场练起了瑜伽,大“秀”功夫茶道。
除了洲消费电子展(CES Asia)之外,在中国的外资品牌汽车企业正在匆匆赶往另一个“陌生”的展会――“GSMA世界移动大会”。在参展商名单上,戴姆勒、大众、丰田等跨国巨头汽车企业都赫然在列。“2017GSMA世界移动大会(上海)”开幕当天,大众宣布其所开发的“智能手机镜像科技”与MirrorLink、百度CarLifeTM、Apple Car Play以及Android AutoTM系统已实现车载无缝连接,并在现场展示了这个技术的应用场景,这是大众首次在公开场合展示该技术。而丰田能够出现在“世界移动大会”的现场则多少让人有些惊讶。这家低调的日本企业一直奉行“少说多做”的行事原则,此前几乎不主动对外“智能”、“互联”等有关于汽车未来和前瞻性的“梦想”规划。这次他们展出的是基于Smart Device Link(以下简称“SDL”)开源平台研发的连接智能手机和车载终端的5个不同类型的应用程序。在搭载了SDL平台的车辆中,驾驶者能够通过车载终端以及语音,更安全、更方便地使用自己的智能手机应用程序。丰田宣布力争在2018年推出搭载SDL的产品,为此,他们正在大力推动与各厂商、合作伙伴及应用程序开发商的协作。目前,国内已有15个应用程序支持SDL,丰田表示今后还会继续与SDL联盟内的其他组织成员一起为消费者提供更优异的第三方应用程序。时代也许是一次“逆袭”的机会?但是从目前来看,传统汽车巨头企业已经开始在智能、互联领域快速地排兵布阵,提前实施了一系列“落地”的划。因此如何有效抓住机遇,在这一轮变革中获得胜利,也需要本土品牌汽车企业积极应对。
智能汽车论文:基于K60竞赛用智能汽车的路径识别系统研究
摘 要 智能车技术的研究是一项综合性的研究,其中包括机械、传感器检测、电机控制、模式识别、图像分析、信号处理、嵌入式系统等多个学科融合。本文以智能车控制系统的图像信号采集与图像处理为研究对象,分析了图像传感器OV7620的工作原理,并且提出了图像信号采集与图像处理的方法,图像处理中使用了二值化和中值滤波算法,在提取黑线上采用边沿提取法。
关键词 图像传感器OV7620 二值化 中值滤波 边沿提取法
1图像传感器OV7620的工作原理
摄像头 OV7620 是一款数字的 CMOS 型、NTSC 制式的摄像头,每秒能够输出 30 帧图像,OV7620 摄像头是隔行扫描图像的,即在每行扫描点数不变的情况下,将图像分成奇偶两场分别传送,奇场图像传送 1、3、5、7……奇数行,偶场图像则传送与之相对应的偶数行,这两场图像的效果是一样的。图像在低电平的时候传输给的单片机,采用下降沿捕捉,既在每场图像开始时候采集,采用这种方法采集的图像更为些。行中断的周期为 63.6us,图像在高电平时输出像素点,低电是换行时间,所以一定要捕捉上升沿将来触发行中断,因为下降沿后的数据是无效的。
要操作摄像头,首先进行初始化,传统的中断触发方式都是上升沿触发,而本文研究的行、场中断都是下降沿触发,在这里需要解释一下。由于OV7620的图像大小是640'480,而单片机不需要这么多的列,由于使用了DMA功能,而DMA只能连续采集,因此我们选用硬件四分频,因此实际采集到的列数为640/4=160列,而行数我们采用隔行采集的思想。
做摄像头信号采集一定要做好时序的分析工作,一帧分为两场图像,即奇场和偶场,将图像处理放在偶场进行处理,而奇场进行采集图像。其中AcqAryy[50]中存入需要采集的行,由于摄像头一帧有480行,一场有240行,因此,需要在这240行中挑选50行,具体操作为在赛道上放一根黑条,每2cm采集一次(理论距离为250=100cm,但实际最远端的行采集不清楚,不得不每两行采集一次,调整一次黑条,也可在赛道上粘50根黑条,直接采集240行图像,发送到上位机上,从中挑选50行,最终能够达到图1的图像效果。
3.1二值化处理
将图像导入matlab进行分析,发现原始图像像素值均在0-255内,而白色区域像素值一般在 160以上,黑色区域一般在 70以下。为了提取出黑线,检测像素值的跳变是最直观的方案,但是实际中一般黑白线边沿的像素值不是突然跳变的,而有一个过渡过程。所以,将原始图像进行二值化处理不但有清晰边沿线的功能,还能方便后续路径识别部分算法的设计与处理。
二值化处理就是对于输入图像的各个像素,先确定某个亮度值,当像素的亮度超过该阈值时,则将对应输出图像的像素值设为 1,否则为 0,原理公式如下:
其中, f ( x, y), g ( x, y)分别为处理前 、处理后的图像中处于( x, y)位置上的某个像素的浓度值,t为阈值 。图 2为二值化后的效果, 0为黑点, 1为白点 。
二值化后的赛道状况已经非常明了,但是仍有干扰存在,这样对赛道的识别及接下来的算法设计会造成一定的困难。 因而,选择对图像进行中值滤波。该方法是一种局部平均的平滑技术, 对脉冲干扰和椒盐噪声的抑制效果好,能有效保护图像的边缘 。
1x3窗口中值滤波是非常简单的一种去噪方法,是将某个像素点和相邻两个像素点的像素值按大小顺序排列,取出中间值作为该点的像素值。这种方法能够有效地抑制随机噪声,并且计算量相比去噪常用的 3x3模板要小得多 。减小计算量能够有效地提高单片机识别道路的速度,这一点对时间要求较高的实时处理是非常重要的。
为了说明此方案的适用性,随机在图像数组中加入噪声点,如图3。为了使接下来的验证过程更为方便,设计中将实际图像用matlab进行二值化,导出一个二维数组,在验证算法时不同的道路状况只需修改数组中的值即可。
3.2黑线提取
这里的黑色引导线以白色为衬底,因黑线和白色底板存在很多大灰度比,在图像信号上会形成相应高低不同的电压值。当检测到黑线时,图像信号中将形成一个“ 凹”形槽,凹槽处即是黑线在一行数据中的相对位置。
对图像每行数据的处理将得到每行图像中黑线的相对位置,即下面的行数据处理;而对每行图像中黑线的位置的综合分析将再现黑线的形状,即下面的帧数据处理。本设计将采集的模拟量数据存放在一个二维数组中,当完成对一行数据的采集后,就可以对该行的数据进行处理,即提取黑线的算法。 在提取黑线上采用边沿提取法。该算法具有对黑线反应灵敏、度高、抗干扰能力强等特点。
图4表示的是光线比较好的情况下,A/D采集一帧中一行像的数值结果,即二维数组中的某一行数据。小圆点的纵坐标表示 A/D采集值,横坐标表示采集点在二维数组该行中的相对位置。
边沿提取法,即通过程序检测到上述图形的上升沿和下降沿 ,然后通过上升沿和下降沿的位置求出黑线的位置。边沿提取算法流程,其提取流程如图5所示:
通过判断下降沿位置和上升沿位置,来计算黑线的相对位置,并通过判断上升沿之后的数据是否满足相差不大于阈值来减小误差,以计算黑线的相对位置。
智能汽车论文:浅议智能汽车技术及汽车动力学控制系统
【摘 要】汽车动力学稳定性控制系统(DSC)是汽车主动安全电控系统的重要研究前沿,是继ABS之后需要进行重点突破的汽车主动安全控制系统。要求汽车具有更好的可控性和更高的行驶安全性。因此,汽车的操纵稳定性日益受到重视,成为现代汽车研究的重点。本文通过对国内外关于DSC的研究文献和开发的产品进行收集整理,为DSC研发提供参考。
【关键词】汽车 动力 控制系统
汽车动力学稳定性控制系统(DSC)是汽车电控研究前沿。这一系统目前没有统一的命名,Bosch公司称之为汽车电子稳定程序(ESP);丰田公司称之汽车稳定性控制系统(VSC)或汽车稳定性辅助系统(VSA),汽车电子稳定控制系统(ESC);宝马公司称之汽车动力学稳定性控制系统(DSC)。名称不尽相同,但在设计目标,控制策略,追求的性能上大体是相同的。
1 智能型汽车的特点
智能车又称为无人驾驶汽车,属于轮式移动机器人的一种,是一个集环境感知、路径规划、自动驾驶等多功能于一体的综合系统。智能汽车技术将许多领域联系在一起,如计算机科学、人工智能、图像处理、模式识别和控制理论等。智能汽车与一般所说的自动驾驶有所不同,它更多指的是利用GPS和智能公路技术实现的汽车自动驾驶。这种汽车不需要人去驾驶,因为它装有相当于人的“眼睛”、“大脑”和“脚”的电视摄像机、电子计算机和自动操纵系统之类的装置,这些装置都装有非常复杂的电脑程序,所以这种汽车能和人一样会“思考”、“判断”、“行走”,可以自动启动、加速、刹车,可以自动绕过地面障碍物。
2 智能汽车操纵稳定性研究的目的及意义
汽车动力学稳定性控制系统(DSC)是汽车电控的研究前沿。这一系统目前没有统一的命名,Bosch公司称之为汽车电子稳定程序(ESP);丰田公司称之汽车稳定性控制系统(VSC)或汽车稳定性辅助系统(VSA),汽车电子稳定控制系统(ESC);宝马公司称之汽车动力学稳定性控制系统(DSC)。名称不尽相同,但在设计目标,控制策略,追求的性能上大体是相同的。随着高速公路的发展和汽车技术的进步,公路交通呈现出行驶高速化、车流密集化的趋势。现代轿车的设计较高时速一般都大于200km/h,有的运动型轿车甚至超过300km/h。汽车在高速公路上的行驶速度通常也都在lOOkm/h,其次驾驶员的非职业化发展趋势,使得车辆在高速行驶时出现了各种各样的稳定性问题。要求汽车具有更好的可控性和更高的行驶安全性。因此,汽车的操纵稳定性日益受到重视,成为现代汽车研究的重点。
3 国内外研究现状
国外发达越来越多的车型已将电子稳定性控制系统作为其标准配置2005年大约40%的新注册车辆配备了ESP,在品质车上,ESP已经成为了标准配置,中档车上的装配率也迅速提高,在紧凑型车上装配率稍低。国内对汽车操纵稳定性控制的研究起步较晚,目前仍然处于研究开发的初期,没有具备自主知识产权的产品。电子稳定性控制系统的装配率还比较低,以往通常只在品质车上才装配ESP,2006年上市的东风雪铁龙的凯旋、一汽大众的速腾和上海通用的君越都配有ESP,但是装备的都是国外公司的产品,国内还没有自己的实际开发系统的能力,大多数学者只是基于理论的研究。
4 车辆操纵稳定性控制的基本原理及分析
汽车电子稳定控制的基本思想是通过对临界稳态工况的控制,来阻止汽车进入不可控的非稳态,此时汽车的质心侧偏角往往较大,车轮的侧向力已接近轮胎与路面的附着极限,此时方向盘转角控制对车辆稳定性的改善并不明显,所以一般不使用方向盘转角控制,可以采用通过纵向力匹配来产生横摆力矩的控制方法来改善车辆稳定性。本文采用横摆力矩控制来保障车辆稳定性,使车辆的实际运动状态与期望状态一致。首先由传感器检测出汽车运行状态如横摆角速度、整车侧偏角、侧向加速度以及左右轮速差等实际值,然后根据理想状态模型计算出汽车运动状态的名义横摆角速度和质心侧偏角的值,当实际变量值与名义变量值之差超过某一极通过一定的控制逻辑和算法计算出所需要控制的横摆力矩,这里所采用的控制逻辑和算法是具有较强鲁棒性的模糊逻辑控制器,通过控制汽车的横摆力矩来达到改善汽车操纵稳定性的目的。
5 车辆动力学模型的建立
建立的整车模型,是进行系统仿真的关键。两轮模型参数简单,能够考虑纵向、横向运动控制,是动力学控制系统开发常用模型。基于该模型,开发了侧偏角估算算法,侧向速度估算算法。但在进行环仿真分析过程中,一般采用四轮多自由度汽车仿真分析模型,可以考虑悬架、轮胎、车身的非线性,以及汽车的动态非线性,能够较为地反映汽车的动态特征。
6 模糊逻辑控制器的设计
模糊控制是以模糊集合论、模糊语言变量及模糊逻辑推理为基础的一种计算机数字控制。模糊控制的基本思想是将操作人员的控制经验用具有模糊含义的语言变量加以描述,用一组条件语句构成控制规则以及相应的模糊推理,最终通过模糊决策得到的控制量,使复杂系统做出合乎实际的、符合人类思维方式的处理成为可能。模糊控制系统对于无法得到被控对象的数学模型或系统具有较强非线性的控制过程将会取得较好的控制效果。
7 汽车稳定性系统的联合仿真的建立
ADAMS是一种多刚体动力学软件,其中的ADAMS/Car模块可以的建立整车虚拟样机多自由度模型。ADAMS本身可以进行的控制方式有两种:一、输入、输出变量的设置和对控制函数的定义。二、利用ADAMS自带的控制工具箱(Controls Toolkit)。控制工具箱提供了简单的线性控制模块和滤波模块,可以方便地实现前置滤波、PID控制和其它连续时间单元的模拟仿真。利用此工具箱可以直接在ADAMS样机模型中添加控制模块,解决一些简单的控制问题,很难实现复杂的控制联合仿真。