在线客服

复合材料论文实用13篇

引论:我们为您整理了13篇复合材料论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

复合材料论文

篇1

②开展毕业设计的实践条件不足。毕业设计的选题大致为复合材料成型与胶接两个方向,学校虽然有一定的复合材料的成型和胶接的实验实训条件,但由于场地小,设备缺乏,无法满足专业学生的毕业设计要求,因此学生的毕业设计完成大多是参考相关文献进行工艺设计,只是理论上的分析,不仅学生完成困难,而且没有具体的工艺实训过程操作,内容空洞。

2教师方面

①师资匮乏,教师指导压力大。指导教师相对于学生的数量严重不足,教师指导压力大,无法保证对每位学生毕业设计进行有效的指导。毕业生忙于就业和实习,对于毕业设计不上心,加之高职学生基础薄弱,专业论文撰写的能力不强,所以老师指导起来更是压力倍增。教师在指导毕业设计同时还要完成相对较多的教学任务,往往会精力分散,指导学生又多,导致指导效果不佳。

②选题理论化,部分与生产实践脱节。虽然专业教师均具备硕士学位,专业理论水平高,但多半缺乏企业工作经历,不能及时准确把握企业动态和职业岗位的需求,因此在毕业设计选题上很多老师多半采取由学生自主选择毕业设计课题或让学生参与自己的立项科研课题,而未考虑学生职业岗位的需求。因此选题理论化,与生产实际脱节。

3学生方面

①对于毕业设计积极性不高。在毕业设计期间,很多学生忙于找工作和提前进入企业实习,对于毕业设计积极性不高,得过且过。学生常常不能按时完成老师布置的毕业设计的选题和资料搜集任务,也不能参加老师定期的指导会议。对于后期的论文修改,也不能及时认真修改,很多学生都是随意修改下,就交上来,态度不认真。还有部分同学很难联系上,对于毕业设计任务置之不理。

②搜集、整理资料能力差。撰写毕业设计首先应搜集相关专业资料阅读,并进行分析和整理,随后才能开展毕业论文的撰写。但很多学生搜集网络资料的能力非常差,大多数学生只会使用简单常用的搜索引擎,对于相关论文数据库的使用和信息检索非常陌生。同时,学生资料整理能力也有限,只会将查到的资料东拼西凑、无序堆积,缺乏逻辑性和前后的连贯性。

③毕业设计撰写能力差。毕业设计的撰写指导教师只起引导作用,主要给出资料搜集任务和对论文的修改意见,论文主体是由学生完成。大多数学生撰写毕业设计能力较差,在撰写毕业设计茫然一片,不知道如何编排结构,如何进行分层分析,逻辑推理。只是对搜集到的相关资料进行拼凑,论文内容逻辑混乱,前后层次不明,不连贯,读起来一头雾水。有部分学生内容与题目基本没关系,论文格式更是五花八门,错误百出。

二提高毕业设计质量的途径

1调整毕业设计时间

提前布置毕业设计任务条件允许的情况下,可以把毕业设计任务提前到第四个学期的期末,在学生参加暑期顶岗实习前,进行毕业设计工作动员和任务预分配工作。要求学生在顶岗实习期间,结合自己实习的相关工作拟定毕业设计课题范围,在相关专业岗位认真将其工艺流程、参数等进行详细记录的任务,并要求学生完成实习岗位工艺的相关科技文献查询任务,开学以书面报告形式上交给指导教师。这样为学生后续毕业设计完成积累了素材,完成毕业设计也会顺手很多。

2重视毕业设计选题

注重与生产实践相结合毕业设计的选题应在理论深度上降低要求,注重其技能性和实用性。学生可在顶岗生产实习的过程中自主选择适合工作岗位的课题。由于学生所选课题紧贴工作岗位,有些甚至可能是单位急需解决的问题,学生认真思考和亲手操作过,对于其中的工艺流程和质量管理过程非常熟悉,因此学生的积极性会提高,参与性较强,毕业设计质量会大幅提高。比如2010级部分暑期在西安航天复合材料研究所实习的同学,选择缠绕和模压等与其工作相关的成型工艺作为毕业设计选题,其毕业设计就完成的非常不错。

3专兼职指导教师合作

团队指导毕业设计面对师资力量匮乏,有经验、有资历的指导教师人手不足的情况,我们应充分利用校外实训基地、顶岗实习单位的资源,采取激励制度,扩宽教师聘请的渠道,鼓励和吸引技术专家工程技术人员、技师等具有丰富实践经验的技术骨干到校担任毕业设计指导工作。这些技术人员与我们的专职教师组成团队,共同指导毕业设计工作,这样既缓解了指导教师短缺的矛盾,又弥补了校内指导教师在实践方面的不足。另外,部分提前就业实习的学生可自主选择所在就业实习单位具有高级职称的技术人员作为指导教师,这样在做毕业设计时,指导教师就在身边,可随时指导,提高其解决实际问题的能力,也会避免老师与学生沟通障碍的问题,大大提高毕业设计指导效率和毕业设计质量。

4加强对毕业设计过程的监管

学校和系部对学生的毕业设计环节应加强监督管理,定期抽查,体现对毕业设计环节的重视。教研室定期组织指导教师对学生的毕业设计情况进行检查并将各组检查情况上报教研室。定期召开会议对各组指导情况及检查中存在的问题进行探讨,并给出下一阶段指导工作的任务和具体要求。另外还可开展教师和学生的互评活动,要求教师根据学生的表现给学生打分作为最后毕业设计总评的一部分;学生也可以根据教师的指导情况给教师评分,作为对教师教学效果评价的一部分,这样给学生增加了压力,给教师增强了责任心。与此同时,要严把答辩关,对于审查教师和评阅教师共同认定合格的论文才能进行答辩,并要求每位同学必须现场答辩,答辩过程中,论文的质量和现场表现均要纳入到答辩成绩中。

5毕业设计考核评价过程化

将学生平时参加组内讨论会情况、资料搜集整理工作情况、论文进度汇报工作情况、论文质量、答辩表现情况均纳入毕业设计考核中,并根据相应的项目给出合理的分数。毕业设计的考评最大限度反映学生的专业知识和综合素质水平,也使毕业设计考核工作更加合理和公平化。

篇2

1.2最新研究进展和趋势

日本开发研制成功一种带有铝合金接头碳纤维聚合卷管。研究发现这种聚合卷管具有高效的结构体系,在实际应用中可以获得特殊的建筑效果[1]。也有学者提出利用碳纤维优良的导电性,通过相应手段监测碳纤维复合材料加固部位导电性能的变化情况,实现对对土木建筑物或桥梁等的无创口健康监测和诊断,而目前利用碳纤维优良的导电性,实现对建筑结构的实时监测应用研究不多,郑立霞《局部叠层碳纤维水泥基材料的应变电阻效应研究》(四川大学学报(工程科学版)2011.2)研究指出利用不同将碳纤维所具有的特有的导电特性,将不同碳纤维取代钢筋加入普通混凝土中,普通混凝土便成为具有自诊断功能特性的智能混凝土。利用这些功能特性可望实现土木工程结构和基础设施的健康监测。并通过实验研究局部叠层碳纤维取代钢筋形成的三点弯曲梁在单调和循环拉应力作用下电阻的变化规律,分析了局部叠层碳纤维水泥基材料的应变-电阻效应,在此基础上进行横向对比,实验结果表明,局部叠层碳纤维水泥基材料的应变灵敏系数是连续碳纤维水泥基材料应变灵敏系数的近23倍,但稳定性要差一些;局部叠层碳纤维水泥基材料的电阻和拉伸应变成正比例,因此利用这一特性把可望把局部叠层碳纤维用于土木工程,便于实现在结构和基础设施的健康监测。

2碳纤维复合材料在构件承载力不足的情况下的应用

虽然在土木工程施工过程中在施工阶段,从上到下有严格的施工规范和要求,但是实际过程中却常常存在由于施工管理不严、施工人员能力缺陷、致使施工质量不能达到要求,特别是混凝土构件承载力不足导致在建工程或建成工程使用时在安全隐患,存在一定的潜在质量风险,可能导致伤害事故的发生,在这种情况下,如何在不拆除现有混凝土结构的条件下对混凝土构件进行范围内的加固和修复是要解决的问题,使用碳纤维复合材料为主要原料的纤维增强聚合布进行加固,可以在不毁坏现有结构的基础上,使混凝土结构得到理想的增补效果。加上纤维增强聚合布施工过程中无需任何重型机械,施工空间不受限制的优点,因此在维护和加固现有建筑中得到大量应用。

2.1碳纤维复合材料在民用建筑加固方面的应用

由于碳纤维增强聚合布的材料性能的特点,碳纤维增强聚合布大量应用在民用建筑中,如梁、板、柱、顶、梁腹裂缝发展过大的构件加固中。碳纤维增强聚合布加固可有效控制裂缝的发展。在使用碳纤维复合材料对不同部位进行加固时,操作手段、方法有一定差异。目前通常使用碳纤维布对钢筋混凝土裂缝等进行加固时首先选取合适粘合剂,以免造成粘合不紧密,加固效果差,在此基础上注意粘贴在混凝土裂缝处。在对钢筋混凝土抗弯构件进行加固时,通常采用特殊粘合剂将碳纤维布粘贴于混凝土构件强力受拉区,通过碳纤维布增加受拉区域强度,实现碳纤维布分担工程结构中混凝土钢筋的承受拉力,提高混凝土构件的抗弯承载力和受拉承载力。碳纤维复合材料加固损伤的受弯构件时,结果表明,通过碳纤维布的加固,检验结果显示,加固部位刚度恢复非常显著,加固部位强度和加固量、损伤程度具有一定关系,通过加固,两者都有不同程度的改善提高。在工程中使用碳纤维复合材料进行抗剪力加固时,一般要求将碳纤维复合材料粘贴于加固构件的受剪力区,力求形成整体的拉力,促使碳纤维复合材料的作用类似于箍筋,从而形成一定的加固力量,有效控制混凝土结构裂缝的进一步发展。目前研究结果表明,理论上推算碳纤维复合材料的随着外界条件变化应变发展比较缓慢,在实践中用于加固混凝土构件时,碳纤维复合材料达到的最大应变值比较小。在加固混凝土构件屈服后,碳纤维复合材料逐渐取代混凝土构件箍筋的作用逐,从而有效提高构件抗剪承载力,碳纤维复合材料对工程质量提高程度与加固方式、加固量、带间距及粘贴层数密切相关。因此实践中使用碳纤维复合材料对一定的混凝土结构进行维修和加固时,要区别对待,不同位置、强度的部件进行加强所需粘贴量不同,过多过少都不利于加固效果的最优化,如粘贴过量碳纤维增强聚合布,可能会导致不能充分的发挥碳纤维增强聚合布的优势。由于碳纤维增强聚合布的可设计性的优势它与所加固构建之间粘贴比较紧密,可以在不改变现有建筑外观形状的基础上进行整体加固,因此在一些对整体构件加固质量要求比较高,碳纤维聚合布在得到大量应用,如对历史建筑的抢救、保护和维护和原有建筑,同时构件的整体抗震性能得到提高。

2.2桥梁建设加固方面碳纤维复合材料的应用

由于碳纤维复合材料的使用特点,碳纤维增强聚合布可以应用在桥梁加固方面。如磨损、裂缝、局部塌陷的桥面,可以在保持现有混凝土构件的情况下,通过适当修补后加贴碳纤维增强聚合布,从而提高桥面坚固程度和增加使用寿命,如一般采用将碳纤维增强聚合布粘贴于桥面板下面,在提高桥面整体平整的基础上可以增强桥面板的抗弯及抗剪能力,延长桥梁使用寿命,目前碳纤维复合材料在桥梁建设方面的用途主要有两类,现有桥梁的加固方面和新桥梁的建设使用。在桥梁加固方面碳纤维复合材料主要用于混凝土桥梁的基本构件、节点、裂缝受弯构件、抗弯构件等的加固,加固的目的主要是提高桥梁的面板、构件的抗弯、受弯、抗剪、轴向抗压承载力等,桥梁建设加固方面碳纤维复合材料的应用在国外应用广泛,我国在这方面的工程实践是在引进吸收国外先进经验的基础上,结合我国桥梁工程和新材料发展状况,2003年7月对1971年建成的“宝成桥”进行了加固维修。提高了大桥承载强度,同时对大桥基本构件提供了抗裂防腐的保护作用[2-5]。但是碳纤维增强聚合布加固混凝土桥柱、桥梁时,应注意原有混凝土构件横向膨胀性能促使外包碳纤维增强聚合布的局部环向刚度增大,导致混凝土原有构件的脆性破坏,因此在应用碳纤维增强聚合布维修桥梁加固混凝土柱时要注意完全粘贴整个构件。

篇3

复合材料成型模具直接影响着产品的质量,在设计时应满足:①模具要有足够的刚度、强度,以保证模具型面基准不变;②热容量小,热膨胀小,热稳定性好;③加工精度高,表面光度高,模具自身协调性好;④施工便捷,操作安全可靠;重量轻,运输方便;⑤可维护性好,制造成本低;⑥具有良好气密性。根据复合材料U形梁的结构特点,在设计中需要解决以下技术难点:成型模具的结构形式如何保证构件的型面公差,如何满足脱模要求并解决U形梁的回弹问题。

3模具选材

3.1模具材料

复合材料成型模具用料要求热变形小、热膨胀系数小以及导热系数高,大多采用普通钢、INVAR钢、碳/环氧复合材料和铝合金。普通碳钢适用于型面曲率不大的模具,当产品批量生产、尺寸精度要求较高时,选择钢制模具最为经济、实用;铝合金适用于平板类、尺寸精度要求不高的模具;INVAR钢适用于结构复杂、曲率大、尺寸大的模具。不同模具材料对复合材料构件变形的影响主要体现在两个方面,一方面是不同的材料热导率会影响与其直接接触的复合材料构件固化温度场的分布,从而影响最终构件内残余应力的大小及分布,引起不同的构件变形;另一方面就是不同材料的热膨胀系数不同,模具与构件之间的相互作用程度不一样,因此导致构件的变形不同。在固化过程中,模具与复合材料构件之间的热膨胀系数不匹配会引起模具与构件接触处的层间应力,包括层间剪切应力和沿构件厚度方向的力,这主要是由于模具与构件在固化压力的作用下始终粘贴在一起,随着模具受热膨胀,靠近模具的构件层比远离模具的构件层受到的约束张力要大,因此沿构件厚度方向形成一定的应力梯度,在固化过程中这部分应力被“冻结”在构件中,在脱模以前都没有得到释放,固化完成后冷却至室温脱模,这部分应力将被释放,脱模后的复合材料构件必须通过变形来维持应力的平衡。

3.2模具型面补偿修正

模具设计时要考虑复合材料与模具热膨胀系数的差异,INVAR钢和复合材料模具受热膨胀的影响很小,可忽略不计;但对于普通碳钢和铝合金模具影响比较大,对于大尺寸的复合材料构件需要采取补偿措施,根据计算公式和生产经验。考虑到制造成本和构件精度要求,本文设计的模具选用Q235钢制造,根据上述公式计算缩尺KS为-0.65‰,结合生产经验和复合材料梁的结构形式,提取整个构件的理论型面并按适当缩尺进行缩小,模具设计时按照缩小后构件提取的型面作为模具的设计型面,以减小构件的变形或抵消变形的影响作用。

4模具结构设计

4.1模具回弹角的补偿

复合材料在热固化成型过程中由于材料本身的各向异性、铺层方向引起的力学性能差异、结构的不对称性和基体的固化收缩效应等因素,在构件内经应力梯度和温度梯度耦合作用导致固化时的内应力积聚,一部分应力在构件中以残余应力的形式长久存在,另一部分应力在构件脱模后释放,这两部分应力存在的形式共同导致回弹变形。对于梁、长桁类有大夹角的构件,固化成型过程中在拐角处的回弹变形会导致夹角变化,即构件在固化脱模后,夹角因收缩而小于模具角度,此差值为回弹角。这将给制件间的装配带来容差、超差等问题,翼梁缘条回弹使其外形偏离了设计要求而导致蒙皮与翼梁间螺栓连接装配孔错位,若对装配件进行强制装配将会引起残余应力、密封不好等问题,这样会降低结构的强度和疲劳寿命,甚至造成制件报废。在模具设计时,通过调整模具型面来补偿构件回弹,即构件夹角加上回弹角等于模具夹角,使构件在脱模回弹后符合工程数模要求。国内外专家学者都在积极研究复合材料结构固化变形的预测及控制方法。GFG公司在复合材料工形梁的成型模具设计时,考虑工形梁缘条的回弹,采用经验的方法在模具的缘条型面上加入修正值(约1°)以抵消构件回弹。国内贾丽杰等人针对复合材料典型C形结构的回弹变形进行研究,通过对回弹角的预测结果进行修正,确定C形梁回弹角度在1°左右。本文涉及的复合材料U形梁为闭角结构,成型模具设计时需要进行回弹补偿,结合以往生产经验和国内外学者的研究结果,在两侧缘条各设置1°回弹补偿角,提取补偿后的两侧缘条型面为模具的型面。

4.2模具结构形式

复合材料梁一般为细长结构,常用模具结构形式为阴模、阳模和阴阳模组合,分析构件是否有气动面、装配面、胶接面等,一般情况下可确定这些面为贴膜面。根据U形梁的结构特点,采用CATIAV5R18建模,模具为框架式阳模结构,采用Q235钢焊接制造,模具包括模胎、支撑框架(支板组件和框架)、盖板、工具球套。根据产品设计部门所提供的产品零件数模提取成型曲面作为模胎的理论型面,将该曲面偏移10mm切割实体,获得“Ω”型模胎;创建支板组件,输入单个支板尺寸创建实体并设计散热孔,通过阵列命令创建其他支板;框架为长方体结构,采用的方钢管为标准型材,根据彼此之间的位置约束关系通过阵列偏移命令进行设置。这种框架式模具结构厚度均匀,通风好,升温快,有利于模具各点温度均匀,可以减少模具在升温和降温过程中因各部位温度不一样而引起的模具变形。(1)模胎模胎是“Ω”型一体式结构,采用10mm等厚的钢板,在保证气密性前提下允许拼接焊接。在模胎上需要留有一定距离用于打真空袋,通常手工铺贴模具的余量区在100~200mm。模胎的型面轮廓度公差小于0.2mm,数控加工后按数模中模胎线数据集划线,深0.5mm、宽0.3mm,并在余量线外打出标记,所有划线位置的偏差不大于0.2mm。构件轮廓线用于非数控切边时使用,决定构件外形尺寸的精度,设计时应考虑模具材料的膨胀因素作适当缩放处理。铺贴线用于无激光投影时手工铺贴定位,以控制铺贴余量,防止由于铺贴不完全齐整、流胶、挡胶条等因素导致固化后产品边缘质量不高,通常铺贴线到产品轮廓线可留20mm余量。(2)支撑框架框架与支板组件主要起支撑作用,保证整个模具的强度和刚度。框架取消了传统的薄板格栅结构,采用方钢管焊接,具有成本低、加工周期短的优点,有效实现模具减重,又使得空气流在模具体上下表面任意流动,加热更均匀。在支板组件上设计散热孔,尽量在同一直线上保证成型过程中空气的流通性,有利于整个成型的复合材料构件温度均匀,保证成型产品的质量。同时在支板两端设计80×50×10mm的加强块,防止模具在吊装时沿长度方向产生变形。(3)盖板和工具球梁腹板平面处采用2mm铝盖板与阳模配套使用,使构件表面加热均匀,同时在抽真空的过程中传力均匀,保证构件外表面的平面度。工具球用于定位找正,在设计时要覆盖构件的最高点和最低点,长度方向间隔不超过1m。各工具球孔按数模制造,并在模胎上打出所有工具球实际坐标值及孔位序号,用于手动铺贴时放置激光投影的靶标,以定位铺层区域。(4)后续处理模具焊接完成后进行2~3次退火,消除焊接和机加应力,减少模具的变形;对模具型面进行激光测量,型面精度符合图纸要求;加工完毕做气密试验,保证模具气密性。

4.3工艺验证

在复合材料U形梁的热压罐成型工艺中,采用本文设计的成型模具进行铺叠成型,生产的复合材料构件易于脱模,表面光滑平整,型面公差符合要求,U形梁两侧缘条的角度变形控制在技术要求范围以内,满足了后续与壁板及其他组件的装配要求。

篇4

2.1加工设备GAG结构复合片材为多层结构,因此需多层共挤挤出设备成型,根据各层的材料特性选择合适的螺杆类型。作者采用先进的专用三层共挤挤出机,两组挤出机螺杆直径分别为:65mm、120mm。其它配套设备包括结晶设备、干燥设备、物料输送系统。

2.2加工工艺

共挤复合工艺是使用二台或二台以上的挤出机分别供给不同的熔融料流,运用不同的分配器,将各种粘接树脂通过一定的流道在一个复合机头内汇合与相应的基材进行粘合的加工过程。它能够使具有不同特性的树脂在挤出过程中彼此复合在一起,使之兼有几种不同材料的优良特性。常用的分配器为AAB、BAA、BAB,A一般为大螺杆,挤出量相应较大:B为小螺杆,挤出量相应较小。GAG结构复合片材采用BAB分配器,A层对应的螺杆挤出APET树脂,B层对应的螺杆挤出PETG树脂,通过调整分配器可以调整各层的比例。GAG复合片材的生产工艺图如下:

2.3关键问题及解决方案

(1)、APET树脂进入挤出机前需充分干燥[5],因为在熔融挤出过程中水份的存在会促使APET分子水解,而水解会使相对分子质量降低,导致物理性能特别是冲击强度的下降,还会使片材产生汽泡、条纹、模糊等,严重影响片材的品质。APET在挤出前必须干燥到水分含量低于0.005%,[6]此外干燥温度的高低及时间长短也会影响到材料的性能,使用大的空气流量、高的干燥温度和长时间干燥会使材料老化。使用低的干燥温度、低的空气流量和短时间干燥会导致材料水解。建议干燥工艺为:干燥温度150~155℃,干燥时间约4~5h,露点-20~-40℃;(2)、PETG树脂进入挤出机前同样需要进行干燥处理,干燥温度65~70℃,干燥4~6h,注意干燥温度不可超过75℃,否则树脂容易粘结结块;(3)、挤出温度控制:APET挤出料筒温度高于255℃,但不高于280℃,压缩段温度可以稍高,而后区温度稍低;PETG挤出温度210~240℃,挤出温度不可高于240℃,高于240℃材料容易发生降解使得材料发黄并影响材料性能;模头温度230~240℃;(4)、GAG复合材料表面摩擦系数较大,收卷后容易粘结难以分离,所以需要在表层PETG中添加内爽滑剂降低其表面磨擦系数,根据实际情况控制内爽滑剂的添加量,内爽滑剂的添加量不宜多大,否则会造成下料及泵前压力不稳定影响生产的稳定性;(5)、根据实际需要,可通过调整A机和B机的挤出速度来控制PETG与APET的层比,PETG层层比在15~20%时材料具有较好的韧性及热封性能,材料的性价比较好;(6)、生产完成停机前应注意让PETG挤出机继续运转15~30min将螺杆里的余料挤空。以免重新开机出现“抱螺杆”的情况。重新开机时螺杆温度到达设定温度后先开启PETG挤出机运转15~30min后再开启APET挤出机;(7)、GAG复合材料的边角料应特别注意要与APET材料的边角料区分单独回收,如APET回收料中混入GAG材料,二次利用生产过程中会出现材料发黄现象,影响材料品质。而GAG复合片材边角料的回收利用,由于其无法以正常的APET结晶干燥工艺处理,所以无法直接加入到APET层中再次利用,目前比较可行的处理方法是利用双螺杆挤出机先将其造粒,再在特定的温度下进行预结晶后加到APET中进行生产。

篇5

2.1用于结构加固

我国对FRP加固技术的研究始于1997年,中冶建筑研究总院有限公司(国家工业建筑诊断与改造工程技术研究中心)于1997年10月进行了国内首批外贴碳纤维布加固梁试验。随后在短短几年中,外贴FRP片材加固技术已成为全国土木建筑行业研究和应用的热点,很快为市场所接受,而市场的扩大使材料的成本大幅下降,这为FRP材料在建筑中的应用发展提供了更大的可能,在我国已迅速发展成为建筑结构补强加固的主要技术。至2012年,国内从事FRP试验研究及技术开发的科研单位几十所,用于土木建筑行业中的碳纤维制品生产销售的厂家几十个,从事于碳纤维加固补强的专业公司上百个,已经形成了相当大的研发、生产、设计、应用的社会群体。目前FRP材料在土木建筑中的应用以加固钢筋混凝土结构为主,加固的形式又以外贴FRP片材为主,但FRP技术在砌体结构、钢结构、木结构中的应用,以及采用FRP筋材、网格材、预应力FRP片材加固技术的应用已有很多,新的应用形式、新的产品、新的规范规程的研究正在世界各地广泛开展。

2.2FRP筋在新建结构中代替钢筋

传统钢筋混凝土结构中配置非预应力和预应力钢筋,在处于恶劣环境条件时,如干湿交替、化学介质等作用下,极易引起钢筋的腐蚀,严重影响结构的耐久性和适用性,甚至导致结构承载能力的降低。相比之下,防腐性能好、粘结性能与钢筋相差不多且抗拉强度高的FRP筋成为代替钢筋的一个较好选择。20世纪80年代初开始,FRP筋逐渐大量应用于有特殊性能要求的结构物中代替钢筋,如有磁共振医疗设备的建筑及海堤、工业厂房屋面板等受严重化学侵蚀的结构物中。1985年,美国SanAntonio医院大楼的MRI设备的桩、柱和梁中均采用了GFRP筋。1986年,SanAntonio的大学建筑中的边墙和钢筋混凝土梁中配置了GFRP筋。FRP筋的另一个应用对象是岩土工程,目前已用于因潮汐变化等干湿交替的挡土墙、地基锚杆及地铁沉井等工程中。

2.3FRP结构及组合结构

由于FRP材料具有高强、轻质、耐腐蚀等优点,FRP结构和FRP组合结构的应用也日益受到工程界的重视。

(1)早期试验性的FRP结构

20世纪60年代,英国已开始生产GFRP复合材料的屋盖结构,运往中东和北非建造使用,1968年一个采用GFRP夹心板与铝质骨架的圆顶结构建于利比亚Bengazhi;1972年阿联酋的Dubai国际机场,采用GFRP伞状屋顶。20世纪70年代及80年代初期,英国的一些建筑采用了GFRP作为除梁柱以外的承重或半承重构件。1974年,第一个全复合材料建筑在英国Lancashire落成,外形为三棱锥体组成的空间结构。早期的FRP结构,大多带有一定的试验性质,尚未在土木工程中形成规模。

(2)桥梁工程中的FRP结构构件

随着FRP生产技术和产品形式的迅速发展,FRP结构在桥梁工程中得到迅速发展。英国、瑞士、丹麦、日本、美国及中国等国家,均成功建造了一系列全FRP结构的人行天桥。同时,FRP结构也被应用于承受较大反复动载的公路桥梁中。1982年,我国在北京密云建成了一座跨径为20.7m的GFRP蜂窝箱梁公路桥。1994年,英国建造的BondMill桥采用GFRP拉挤型材组合而成,是一座可通过40t卡车的活动桥。1996年,美国堪萨斯州Russell架起了第一座采用FRP桥面板的公路桥。此后不到十年的时间里,采用FRP桥面板的中小型桥梁在美国已有数十座。FRP桥面板还被用于替换老化的混凝土桥面板。此外,FRP索还可替代钢索用于斜拉桥和悬索桥。

篇6

复合材料镀层的硬度和耐磨性试验结果表明,随着加热温度的提高,复合材料镀层的硬度增加,在400℃时达峰值,加热温度继续升高,镀层硬度呈下降趋势;此外,阴阳极相互垂直所得复合镀层的硬度高于阴阳极相互平行的硬度;镀态时复合镀层的磨损率均最高,随着热处理温度的提高,磨损率呈下降趋势,在400℃时磨损率最低,耐磨性最好。继续升高温度,磨损率有所上升。另外,随着镀层中磷含量的增加,其耐磨性改善。在400℃热处理条件下,随着热处理时间的延长,复合镀层的硬度和耐磨性增加,当热处理时间达到3小时时,镀层硬度和耐磨性达到最佳值;若继续延长时间,镀层的硬度和耐磨性将降低。随着镀液中SiC浓度的增加,RE-Ni-W-P-SiC复合材料镀层的硬度增加,同时镀层的耐磨性能也增强。镀液中钨酸钠浓度对RE-Ni-W-P-SiC多功能复合材料硬度及耐磨性的影响规律与镀液中SiC浓度对RE-Ni-W-P-SiC复合材料硬度及耐磨性的影响规律基本一致,即随着钨酸钠浓度的升高,RE-Ni-W-P-SiC复合镀层的硬度和耐磨性均提高。随着镀液中次亚磷酸钠浓度的升高,镀层的硬度和耐磨性均降低。

RE-Ni-W-P-SiC复合材料镀层的组织与结构分析表明,复合镀层在镀态下为非晶态,当热处理温度升到200℃时,镀层开始晶化并析出Ni3P相;当温度达到500℃时,镀层晶化完毕,产生新相g-(FeNi)。因此,整个镀层的显微结构随温度的变化过程是:非晶态混晶态晶态;稀土元素对复合镀层的显微组织无影响,但可以提高复合镀层中SiC微的含量;镀液中钨酸钠和柠檬酸的浓度对复合材料镀层的结构影响不大,复合材料中的磷含量是镀层非晶化的主要决定因素;镀液中钨酸钠和柠檬酸的浓度对复合材料镀层的表面形貌影响较大,当钨酸钠的浓度为90—150g/L和柠檬酸的浓度为150—170g/L时,复合材料镀层表面颗粒细小,而且平整光滑。

复合材料镀层的抗高温氧化试验结果表明,在高温氧化过程中,纯镍镀层、Ni-W-P、Ni-W-P-SiC和RE-Ni-W-P-SiC复合镀层的氧化膜重量和氧化时间的关系,在氧化时间小于60min时,氧化膜的增长规律近似于直线方程;而在氧化时间大于60min后,它的增长规律可以用幂函数方程表示。四种镀层氧化速率的大小顺序是Ni>Ni-W-P>Ni-W-P-SiC>RE-Ni-W-P-SiC。在高温氧化过程中,Ni-W-P、Ni-W-P-SiC和RE-Ni-W-P-三种镀层的氧化膜重量随着氧化温度的升高而呈指数型增加。RE-Ni-W-P-SiC复合镀层与Ni-W-P合金层相比,它的高温抗氧化性能可以提高2-3倍。镀层的截面形貌表明,经500℃下氧化,Ni-W-P合金已向基体扩散,与基体之间没有明显的分界线;Ni-W-P-SiC复合镀层与基体之间有分界线,但不明显;而RE-Ni-W-P-SiC复合镀层在此温度下有明显的分界线。经800℃下氧化后,除RE-Ni-W-P-SiC复合镀层与基体有明显分界线外,其它两种镀层均无分界线。Ni-W-P、Ni-W-P-SiC和RE-Ni-W-P-SiC三种镀层经800℃下氧化后的X-射线衍射图同样显示,RE-Ni-W-P-SiC复合镀层具有更好的抗高温氧化能力。

对电沉积RE-Ni-W-P-SiC多功能复合材料进行了日处理5平方米的中试试验,结果表明,用该工艺处理的多种零部件在磷化工、制糖和卷烟等工业中应用,其寿命明显高于国产零部件,接近或超过进口件的水平,并取得了一定的经济效益。

关键词:电沉积,RE-Ni-W-P-SiC复合材料镀层,硬度与耐磨性,耐蚀性,抗高温氧化性,组织与结构,应用。

Atract

ProceandbasictheoryofelectrodepositedRE-Ni-W-P-SiCmultifunctionalcompositecompositecoatinghavebeenstudied,includingsomecontentsasfollows:

E-pHpatterofNi-P-H2OandNi-C-H2Osystemsweredrownoutonthebasisofthermodynamicanalysis,andresultsshowthatNiandPcanco-depositonthecathodeintheformofNi3P;therearesomeNi3Cphasesinthecoating,andCcomesfromorganiccompoundwhichwasaddedinthebathandCO2intheairthatwasdiolvedinwater.

ExperimentalresultsofproceparametersindicatethataseriesofRE-Ni-W-P-SiCcompositecoatingswithdifferentcontentswereobtainedbymeaofaropriateparameters,andcomponentscopesofthecoatingsareSiC5~30wt,Ni50~60wt,W10~25wt,P5~15wtandRE5~10wt.ThecontentsofW,PandSiCi nthecompositecoatingswereincreasedwhenchloride,oxideandsulfaterareearthwasaddedinthebathreectivelyortogether.Theadditionofsodiumhypophohatemustbearopriate,ifaddedmuch,WandSiCcontentsinthecoatingsweredecreased,Sotheadditionofsodiumhypophohatemustbecontrolled10~15g/l.Currentdeity,temperatureandpHvaluehavecoiderableeffectsonthecontentsofW,PandSiCinthecompositecoatings.Generally,currentdeity(Dk)mustbecontrolled5~10A/dm2,pH6.0~6.5andtemperature55~65oC.Besides,DkandpHhaveagreateffectonthesurfacemorphologiesofthecoatings,andthecompositecoatingsgetcoarsewhenDkandpHwerehigh,onthecontrary,thecompositesgainfinecrystalwhenDkandpHwerelow.TheagitatingintervaltimehaslittleeffectonNi,WandPcontents,whileithascoiderableeffectonSiCcontentinthedeposits.ExteionofagitationandintervaltimewilldecreaseSiCcontentinthecomposites,sointervalandagitatingtimemustbecontrolled3miand4~5mireectively.

CurvesofcathodicpolarizationdilaythatwhenSiCparticlesandrareearth(RE)wereaddedinthebath,cathodicdepositingcurrentdeityofthecompositesincreases,anditisprofitableforNi-W-Pcoatingtodepositinthecathode,formingNi-W-P-SiCandRE-Ni-W-P-SiCcomposites.Onthecontrary,theadditionofPTFEinthebathdecreasescathodicdepositingcurrentdeityofthecoatings.Thecurrentdeityincreasesalittlewhentheamountofrareearth(RE)is7~9g/l;however,thedeityincreasesgreatlywithincreasingamountofRE,anditreachespeakvaluewhentheamountofREis11~13g/l.ButiftheamountofREisraisedfurther,thecurrentdeitydecreases.MechanismofSiCparticlesandNi-W-Pcoatingco-depositionis:SiCparticlescarryaboutnegativeelectricchargeitself,andtheymayadsorbpositiveelectricchargearoundwhenSiCparticlesareaddedinthebath.Theymovetothesurfaceofcathodeandformweakadsorptionundertheeffectsoffluiddynamicsandelectricfieldforce;secondly,SiCparticlesonthecathodicsurfacedehydrateundertheeffectoftheelectrostaticfieldforceandformstrongadsorptiothirdly,SiCparticlesadsorbedonthecathodicsurfacearecapturedbyNi-W-Pcoatinganddepositedinthecomposite.

CorrosionexperimentsofRE-Ni-W-P-SiCcompositecoatinginH2SO4,HCl,H3PO4andFeCl3solutioshowthatthecompositecoatingsonthebaseofNi-W-PcoatingshavebettercorrosionresistanceinH2SO4,HCl,H3PO4andFeCl3solutioatas-depositedorheattreatment,andtheircorrosionresistanceissuperiortothatof316Lstainlesteel;thecorrosionresistanceofNi-W-P-SiCcoatinginHCl,H2SO4andFeCl3solutioismuchbetterthanthatofNi-W-PandRE-Ni-W-P-SiCcoatings;however,thecorrosionresistanceoftheRE-Ni-W-P-SiCcompositeinH3PO4solutionissuperiortothatofNi-W-P-SiCandNi-W-Pcoatings.ThecorrosionmechanismofRE-Ni-W-P-SiCcompositecoatinginH2SO4andH3PO4solutioisgapandintergranularcorrosion,andinHClandFeCl3solutioispointandintergranularcorrosion.

Resultsofhardneandwearresistanceofthecompositecoatingsshowthatthehardneofthecoatingsincreaseswithincreasingheattreatmenttemperature,anditreachespeakvalueat400oC.Butitdecreaseswithincreasingheattreatmenttemperaturecontinually.Besides,thehardneofthecoatingbyverticalhangingbetweencathodeandanodeismuchhigherthanthatofonebyparallelhangingbetweencathodeandanode.Theabrasionrateofthecompositesishighestatas-deposited,whileitdecreaseswiththeriseoftemperature,itcutsdownlowestat400oC.Buttheabrasionrateincreaseswithcontinuingraisingheattreatmenttemperature.Thewearresistanceofthecoatingisraisedwithincreasingthephohoruscontentinthedeposit.Thehardneandwearresistanceofthecompositeincreasewithexteionofheattreatedtimeat400oC,andtheyreachtheirpeakvaluesat3hoursreectively.However,thehardneandwearresistanceofthecoatingdecreasewiththeriseoftheheattreatedtime.ThehardneandwearresistanceoftheRE-Ni-W-P-SiCcompositecoatingincreasewiththeriseofSiCandsodiumtungst ateconcentratiointhebathreectively,whilethehardneandwearresistanceoftheRE-Ni-W-P-SiCcoatingdecreasewithincreasingsodiumhypophohateconcentrationinthebath.

MicrostructureofelectrodepositedRE-Ni-W-P-SiCcompositecoatingwasstudied,andresultsshowthattheRE-Ni-W-P-SiCcompositecoatingisamorphousas-deposited.WhilethecoatingchangesintothecrystalandNi3Pphasesprecipitatewhenheattreatedtemperatureisraisedto200oC;Thecrystalproceofthecoatingisfinishedandnewγ-(FeNi)phaseisproducedwhentemperaturerisesto500oC.Therefore,themicrostructurechangingproceofthecoatingisamorphousmixturecrystal;therareearthhasnoeffectonthemicrostructureofthecoating,whileitcanincreasetheSiCcontentinthedeposits.Sodiumtungstateandcitricacidconcentratiointhebathhavenoeffectsonthemicrostructureofthecomposite,howevertheyhavecoiderableeffectsonthesurfacemorphologiesofthecoatings.Thecoatingswithfinecrystalandsmoothsurfacewillbeobtainedwhensodiumtungstateconcentrationis90~150g/landcitricacidconcentrationis150~170g/l.Thephohoruscontentinthecompositeisadecisivefactorthatenablesthecoatingtochangeintoamorphousstate.

篇7

1 引言

颗粒性复合材料由于其优异的性能在工程实际中得到广泛应用[1],但是在高温条件下工作的复合材料构件不可避免地产生热膨胀,导致结构尺寸发生变化而产生热变形,过大的热变形会导致结构破坏,这就要求材料具有很强的高温稳定性和低的热膨胀系数。而对复合材料的热膨胀系数进行预报是细观力学界研究的重要内容之一,也是对材料进行热分析的基础。当前,对于复合材料热膨胀系数预报多见于单向或长纤维复合材料[2-5],而对于颗粒性复合材料研究较少[6]。姚占军等人利用二相胞元法预报了颗粒增强镍基合金复合涂层的热膨胀系数,但其所建立的模型中并未考虑界面因素影响[8]。

本文基于细观力学理论建立了包含脱粘界面在内的复合材料四相模型,如图1所示;将颗粒夹杂、脱粘界面和基体壳简化为椭球三相胞元;根据Eshelby- Mori-Tanaka方法推导得到颗粒夹杂和脱粘界面的热膨胀本征应变,进而求出三相胞元的热膨胀系数;考虑到三相胞元在复合材料中随机分布,应用坐标变换公式得到复合材料平均热膨胀应变,进而求得复合材料的热膨胀系数。

2 热膨胀本征应变

取出一个三相胞元如图2所示,设三相胞元、颗粒夹杂以及脱粘界面体积分别为V为V1为V2,颗粒夹杂和基体的弹性常数分别为L1和L0,热膨胀系数分别为和。论文大全,三相胞元。

当温度变化ΔT时,由于基体和颗粒夹杂热膨胀系数失配而产生热应力为

(1)

式中,为颗粒与裂纹相互作用引起的扰动应变。

利用Mori-Tanaka方法和Eshelby等效夹杂理论可知颗粒中应力为:

(2)

其中,

(3)

式中,为是基体与颗粒的应变差值,是颗粒的等效本征应变,是基体和颗粒热失配应变,

(4)

此处

(5)

由于颗粒各向同性,我们知道

(6)

假设脱粘界面中存在应力,其弹性常数为,则根据式(2)得到:

(7)

(8)

其中,为脱粘界面与基体的应变差值,为脱粘界面的的Eshelby张量[7]。论文大全,三相胞元。论文大全,三相胞元。

实际上三相胞元脱粘界面处不存在应力,即,因此有

(9)

根据三相胞元内部扰动应力自平衡条件:

(10)

这里将(1)、(2)式代入(10)式得

(11)

式中,

将(3)和(11)式代入到(2)式得

(12)

上式,

其中,

将(11)和(12)式代入到(9)得到

(13)

式中

3 三相胞元等效热膨胀系数

体积为V的三相胞元的平均应变可以借助总量平衡的方法得到

(14)

将(3)、(8)和(11)式代入(14)得到

(15)

将(12)和(13)式代入(15)得到

(16)

式中,

矩阵K为3×3阶对称矩阵,可写成如下形式

(17)

式中Ki由颗粒和脱粘界面的Eshelby张量以及基体和颗粒的弹性常数确定。论文大全,三相胞元。

根据(16)和(17)可知

(18)

由此可得到三相胞元的热膨胀系数为:

(19)

4 复合材料的有效热膨胀系数

假设三相胞元椭球的三个主半轴长为,三相胞元椭球形颗粒为横观各向同性材料,其中为材料的对称轴,并且。论文大全,三相胞元。三相胞元颗粒在复合材料中随机分布,并设轴与x,y,z轴分别成,,角。

当无限大体内部温度改变时,单个三相胞元颗粒产生的热膨胀应变为:

(20)

再由应变换轴公式知单个三相胞元颗粒在坐标轴x,y和z方向的热膨胀应变为:

(21)

因为三相胞元颗粒在复合材料中随机分布,材料的平均热膨胀应变为所有颗粒的热膨胀应变关于随机后的均值,取分布函数为,则有

(22)

经积分得

(23)

由上式可看出复合材料为各向同性,进而求出复合材料的有效热膨胀系数为

(24)

图3给出含有脱粘界面体积分数分别为0.03%、0.05%和0.07%时,复合材料有效热膨胀系数随颗粒含量变化曲线。从中可以看出,复合材料有效热膨胀系数随着颗粒含量的增加而减小,主要因为颗粒的热膨胀系数大于基体的热膨胀系数,其含量越大,对复合陶瓷的热膨胀系数影响也越大;另外,脱粘界面含量越高,热膨胀系数也越小,因为复合材料在受热膨胀时,微裂纹存在会降低颗粒对基体的影响,满足一般规律。

图4给出含界面体积分数分别为0.03%、0.05%和0.07%时,复合材料有效热膨胀系数的尺度效应。论文大全,三相胞元。从中可以看出复合材料热膨胀系数随颗粒直径增加而减小,因为颗粒的热膨胀系数大于基体的热膨胀系数,直径越大,单个颗粒的影响也大。

5结论

1)本文基于细观力学方法建立了包含脱粘界面在内的复合材料四相模型,将颗粒夹杂、脱粘界面和基体壳简化为椭球三相胞元,并根据Eshelby-Mori-Tanaka方法得到颗粒夹杂和脱粘界面的热膨胀本征应变,推导出三相胞元的纵向和横向热膨胀系数;

2)根据三相胞元的方位随机性,结合应力应变换轴公式确定复合材料平均应变,进而求得复合材料热膨胀系数;

3)数值结果表明:随着颗粒夹杂含量增加,复合材料有效热膨胀系数会减小;另外,复合材料有效热膨胀系数具有较强的尺度效应,随着颗粒直径的增加,热膨胀系数会降低。

参考文献

[1]Wang Junying, Ni Xinhua, Yang Qizhi.Study of thermal fatigue resistance of a composite coating made by a vacuumfusion sintering method[J]. International Journal of Plant Engineering andManagement 2003,8: 60-64.

[2]Z Haktan Karadeniz, Dilek Kumlutas. Anumerical study on the coefficients of thermal expansion of fiber reinforcedcomposite materials[J]. Composite Structures, 2005, 55(1): 1-10.

篇8

一、产学研深度融合是校企联合培养共赢的基础

校企联合培养追求“高校一企业一学生”共赢的目标。理论上,共赢目标的愿景无限美好,但实际上国内外不断实践和探索的结果却不尽如人意,原因在于、共赢”必须以产学研深度融合为基础。深度融合,则“共赢”枝繁叶茂;不然,则空空如也。

根据邢素丽等人的论述,产学研深度融合应包括:(1)需融学科和产业、学问和技术、基础研究与工程应用内涵于一体;(2)需融高校科研、企业课题、国家和省课题内涵于一体;(3)需融高校学科优势、企业需求内涵于一体;(4)需融新技术、新需求、新理论、新应用内涵于一体。在产学研深度融合的基础上,以研究生培养创新基地为平台,发挥校企各自优势,促进不同领域、不同范畴、不同层次等之间的融合,为研究生营造创新环境、激活创新动力、提升创新水平、增强创新能力。

国防科大与时代新材料,以共同研发兆瓦级复合材料叶片为契机,深度合作,联合培养博士研究生,实现共赢。兆瓦级复合材料叶片研发需要解决四大关键技术:气动布局、结构、制备和全尺寸测试。气动布局直接关系叶片捕捉风能的效率和风能的利用率;合理的结构设计是确保叶片安全运行20年的保证;叶片效能的最终实现,关键在于如何制备出质量稳定的兆瓦级复合材料风电叶片,难点包括模具设计与制备、工艺设计与实现、制备控制与效率等,稍有不慎,整个叶片制备失败或质量差下,动辄就是百万级别的经济损失;制备完成后,在国际认证机构(例如船级社)的监视下,完成全尺寸静力测试和疲劳测试考核,才能获得市场准人资格。

国防科大充分利用自己气动设计、结构设计、大尺寸复合材料整体成型制备和大型构件全尺寸测试等方面的学科优势,结合时代新材资金、场地和人力,共同研发了1.5~4.0MW、低风速型、超长型、海上超大型等多款兆瓦级复合材料风电叶片并实现产业化,目前相关产品巳在国内外50多个风场装机运行,为国家新能源战略计划做出了重大贡献。该项目校企联合培养的博士研究生(笔者)全程参与了兆瓦级复合材料风电叶片气动设计、结构设计、成型制备和全尺寸测试的所有工作,涉及空气动力学、结构力学、复合材料力学、流体力学、复合材料学、流变学、热力学、化学等多学科知识,理论知识在工程实践中得到了很好的应用,同时以超大型碳纤维复合材料风电叶片为研究背景,针对结构设计和成型制备过程中的物理、化学变化机制,发表学术论文10余篇(其中SCI源刊8篇,EI源刊6篇),申请国家发明10余项,获湖南省科技进步一等奖1项,顺利完成博士毕业论文研究,相关研究成果支撑了2项科技鉴定成果。高校一企业一学生三方共赢,其根本原因就是校企合一,深度融合!

校企联合培养博士研究生通常是两段式,即课程学习阶段在高校进行,完成基础理论课程学习;学位论文培养阶段在企业进行,参与企业科研项目,完成学位论文。学位论文阶段,如果没有产学研深度融合,博士生难以顺利完成学位论文研究。困难主要是人、财、物三方面的保障问题,此问题对于材料科学与工程专业尤为突出。博士生在企业进行课题研究,往往是单枪匹马,企业的性质决定了难以给博士生配备助手,而很多论文的实验研究是必须有帮手才能完成。比如,我们采用光学测试系统监测大型风电叶片极限载荷下的变形,需要十几个助手才能完成,在企业往往一个助手都没有,如果不是深度合作,此类实验就无法完成。此外,材料学科开展研究通常需要购买大量的原材料,购买原材料的资金谁出,如果没有明确,学生就不知所然,如果高校出,学生只能通过高校购买平台进行购买,来回奔波,疲于奔命,浪费大量的精力和时间;假设企业出资,如果需要层层审批和控制,以学生一己之力,难以协调。因此,校企联合培养,深度合作,解决博士生资金和资金使用问题,是保证其论文课题顺利开展的前提。

二、双导师制是校企联合培养成功的保障

校企联合培养,采取双导师制培养方式,即由校方导师与企方导师组成导师组共同指导研究生。校方导师为主导师,企方导师为副导师。校企联合培养课题论文阶段在企业完成,这种双导师制,很好地解决了导师随时指导、监督和协调的难题,可以确保校企联合培养研究生(包括硕士生和博士生)顺利完成论文研究。

两导师的分工,有专家提出,选题确定后,由企方导师负责工作安排、现场学术指导、学位论文的初审;校方导师根据研究生论文题目及培养人才的需要,负责研究生培养计划的制定、学术指导、论文审阅与组织论文答辩等工作。校企双方导师及时交流,共同解决在创新基地研究生的科研和生活中出现的问题。学生每月按时向校企双方导师汇报工作学习情况,双方导师填写《指导情况记录表》,及时指导学生。这样,既保证了研究生培养要求,又充分发挥企业优势,加强科研实际训练,提高研究生的理论与实践能力。

以亲身经历而言,两导师的分工,笔者有不同的看法。企方导师的精力首先是以企业为主,负责企业的各种任务,目前令人尴尬的情况是:企方导师根本无暇顾及学生论文的指导,更别谈负责工作安排、现场学术指导和学位论文的初审。因此,笔者认为,校方导师不仅要负责研究生培养计划的制定、学术指导、论文审阅与组织论文答辩等工作,还要负责工作安排。这肯定有人会问,如果这样是不是就不需要企方导师了?答案是当然需要,而且非常必要,只是角色定位应该是负责人、财、物的协调,保证学生论文的顺利开展。人、财、物的协调对于学生开展论文工作至关重要,而且对于企方导师来说,往往易如反掌。研究生,特别是博士研究生,通常都具有高度的自觉性,每周或每月定期向校方导师汇报论文进展情况,完全可以做到积极主动,这样校方导师综合研究的学术和应用价值,与学生一起讨论制定研究方案、工作安排也是水到渠成的事,而且高效可行。

双导师制是一种很好的校企联合培养模式,但必须结合实际情况,合理分工,才能保障校企联合培养的成功,否则,就是纸上谈兵,空谈误人。

三、完备的创新平台是校企联合培养可行的前提条件

有了产学研深度融合的基础、双导师制度的保障,校企联合培养博士研究生是否可行,还取决于一个重要条件一一完备的创新平台。

国防科大与时代新材校企联合培养博士研究生,之所以行之有效,一个重要的前提条件就是时代新材拥有一个新材料检测中心,该中心具有材料科学与工程专业实验研究所需的多数检测设备和系统,即便是需要搭建平台,该中心也能快速完成。笔者博士论文涉及的实验和检测,几乎都是在该中心完成。假设时代新材没有该检测中心,即使是简单的力学性能测试都需要在高校完成,那么学生必然疲于奔波,留给论文研究和项目开发的时间还会剩多少?因此,一个开展论文课题研究所需的创新平台,对于校企联合培养博士研究生,实在是太必要了!如果没有,笔者建议不要轻易提校企联合培养,高校和导师要慎之又慎,以免误人子弟!

四、结语

篇9

篇10

碳纤维复合材料具有良好的力学性能和稳定的化学性能,作为一种结构材料已被广泛应用于航空航天、土木工程以及人们日常生活中的各个领域。同时,碳纤维复合材料具有良好的导电功能和力电效应(电阻(率)随应变等力学参数线性可逆变化),具有结构自监测和电磁屏蔽等多种智能特性。经过研究发现,树脂基碳纤维复合材料作为一种智能材料,具有良好的灵敏度和稳定性,可通过监测智能层电阻率的变化,从而实现对结构的应变测量。

本文探讨一种“U”型碳纤维树脂基智能层作为传感元件,具有结构简单,稳定性好,灵敏度高等优点,尤其是在树脂基复合材料结构的检测中的应用,相对于其他传感元件(如应变片、光纤传感器件等)而言,其具有本征特性的优势,因而在树脂基复合材料结构监测中具有潜在的应用前景。

1智能悬臂梁实验

1.1测试原理

以悬臂梁结构形式来说明智能层的应用原理,如图1与图2所示。将图2所示长为c的“U”型树脂基碳纤维智能层贴在悬臂梁上部,在自由端施加集中载荷F。由于碳纤维智能层测量的是悬臂梁的线应变,需要确定荷载F与智能层所测线应变之间的关系。

收稿日期:

篇11

一、教学过程中存在的问题

作为一门选修课,《复合材料概论》课的特点是知识量大,内容繁杂,且课程内容涉及有机材料,与学生所学的专业差异性较大,教学过程中存在很多问题。首先,由于是选修课,课程名称是“概论”,学生往往重视程度不够;其次,课程内容多,课时量少,无法将知识点展开讲,加上学生没有相应的基础知识,在学习过程中难以深入,不知道如何理顺知识体系,对有些关键知识点难以理解,有些无所适从;课程内容多为陈述性的内容,缺少以核心理论、定理、公式等为背景的知识体系,计算的东西少,叙述性的内容多,使得教师的授课很容易陷入平铺直叙的乏味陈述中,这些问题直接影响了教学效果。

二、《复合材料概论》课程的改革

(一)教学内容的调整。

《复合材料概论》课的特点是内容多,目前选用的教材包含17章内容,按照学校关于选修课教学课时的规定,配备课时数已经达到64节的上限。根据学科特点,课程组大胆创新,积极改革,除保留出4个课时进行复结外,把其余60课时分为两大部分,其中课程教学40个课时,科研实践20个课时。但是在40课时内很难完成全部“基本内容” 的课程教学任务。为此我们对教材章节进行结构上合并处理和内容上的归纳优化,处理后的内容仅保留绪论、复合材料的基体材料、复合材料的增强材料、复合材料的界面、聚合物基复合材料、金属基复合材料、陶瓷基复合材料、水泥基复合材料、碳/碳复合材料和混杂纤维复合材料等十章内容。此外在实用、实际、实效原则的基础上, 大胆地删掉一些过时的、落后于目前材料发展水平的旧知识, 引入材料科学的最新研究成果,及时地、有选择地补充最新研究成果, 使教学内容处于动态的优化过程中。

在20课时的科研实践中,教师对学生创新能力做最有效的培养和锻炼,结合自身的科研课题, 积极吸纳学生参与, 由老师提出研究项目, 学生选择课题确定后查找资料、设计实验方案、按方案完成实验、发表科研论文。这种方式在科研实践中提高了学生的综合、创新能力。

(二)教学方法的改革。

要实现教学重心的转移,充分激发学生的学习兴趣,发挥主观能动性,改变以往满堂灌的做法,摒弃注入灌输、死记硬背的教学方法。实践中,课题组采取多种措施进行教学方法的改革,使学生主动的学习。首先帮助学生理出知识脉络, 做到杂而不乱。在本课程的绪论部分, 就帮助学生整理出知识的脉络,告诉学生《复合材料概论》课程中的每种材料学习过程中都有一个知识结构, 那就是材料的成分、材料的结构、材料的性能、生产工艺、技术性质及应用。在分章节讲授每种材料的具体内容时, 有意识提醒学生对上述知识结构进行自我的理解和把握,样经过前几种材料的讲授, 学生基本上就可以形成对知识结构体系整体的认识和把握能力。

另外,大学课堂教学的特点是信息密度大、内容高度抽象, 这就要求教师要通过努力发掘学科本身的理论魅力去激发学生的求知欲, 重视非智力心理因素在教学中的作用。要让学生在听课中充满激情, 教师自己在讲授时就要充满激情。要做到这一点, 就要深入钻研本门课程的理论和应用, 以及学科的发展历史和背景。教师钻研得越深入,就会对自己所教的这门课程越有感情,就越能深入揭示这门学科的思想魅力和理论力量,并以此去感染学生,来充分调动学生的探求欲。

(三) 教学手段的丰富。

对没有工程经验、甚至对某种材料没有任何感性认识的学生而言, 在教学活动中大谈特谈该材料的性质如何, 怎么检测和使用, 他们只能根据想象来理解, 然后把教材的内容死记硬背, 这样的教学效果肯定不太理想。多媒体投影教学在这个方面弥补了传统教学手段的不足。利用制作好的课件, 不但可以使学生看到材料的照片、试验仪器的样子, 而且可以将一些材料应用过程中的图片介绍给学生, 使学生真正体会到复合材料的应用效果。

(四)课程考核方法的改革。

考核是检查、评价学生水准和才智的一种方法, 是教学的重要环节。通过它可以检测学生对所学课程教学大纲规定的掌握知识的情况, 检验教师的教学质量和教学效果, 促进教师改进教学方法。传统教学方式中考试是作为成绩评定的重要依据, 考试成为了教师手里一根重要的指挥棒, 同时对学生的学习也起了重要的引导作用, 考试后关心的是分数, 导致学生只看重考试的结果, 成绩成为学习的目的。最近几年,对《复合材料概论》这门专业选修课,我们采用综合考核, 灵活应试的办法来测验学生掌握这门课的水平。除期末考试之外,象课堂发言和讨论、书面作业和科研小论文都作为成绩重要的组成部分,这种多样化的考核手段的内容包括加强课堂提问、 加强平时考核、叙述自己的对课题的认识、加强期末考试的科学性客观性和有效性等

三、结束语

篇12

铝基复合材料是金属基复合材料中应用最广的一种,它具有良好的塑形和韧性,再加上它所具有的易加工性、工程可靠性以及价格低廉等优点,铝基复合材料要比一般的铝合金强度高主要是因为颗粒存在的原因[1]。当铝基复合材料承受载荷时,颗粒不但和基体一样承担载荷还能约束基体变形,通过Orawan位错绕过机制,我们知道颗粒在铝基复合材料中阻碍了位错运动,所以铝基复合材料相对于普通的铝合金强度要大很多,因此它成为当今金属基复合材料研究和发展的主流。目前,用于高体积含量陶瓷增强铝基复合材料的焊接方法还处在探索阶段,对于Si3N4/2024Al铝基复合材料连接的研究几乎空白。因此,解决在焊接中存在的问题迫在眉睫。本文对Si3N4/2024Al基复合材料的钎焊工艺及机理进行研究,为以后这种材料的广泛应用打下了良好的理论基础。

2.不同钎料在Si3N4/2024Al铝基复合材料表面的润湿性

这是因为,在一定的温度下,Zn元素在钎料润湿复合材料的过程中挥发,以蒸汽的形式沉积到母材铝合金表面氧化膜下,将氧化膜抬起,钎料沿氧化膜缺陷渗透,扩散进入母材。由此可见,高温为Zn元素的大量挥发提高条件,Zn元素的挥发在钎料向母材中的扩散起到了至关紧要作用。

将处理好的钎料和复合材料母材放入真空润湿角测量仪中在530℃保温10min的工艺参数下进行润湿性试验,可以发现铝基复合材料表面的润湿角非常大。钎料在复合材料表面形成的扩散层,扩散深度达到650μm。

采用Sn-Zn-Ti钎料钎焊复合材料,在钎料熔化后,钎料中的Zn元素挥发,以蒸汽的形式沉积到母材铝合金表面氧化膜下,将氧化膜抬起,钎料沿氧化膜缺陷向沉淀有蒸发Zn元素的界面铺展渗透,钎料中的Sn元素和母材当中的Al元素发生相互扩散。母材当中的Al元素扩散到钎料层当中,在块状的富Ti相周围与Ti元素形成化合物TiAl3;还有少部分的Ti元素也向母材当中扩散,在钎料与母材的交界处,形成细小的块状Ti-Al化合物;钎料当中的Sn元素扩散到母材当中只以β-Sn单质形式存在,并未与母材中的Al基体和Si3N4基体发生反应。从扫描电镜照片和XRD分析可以看出,扩散层当中的Al元素含量不多,多数Al元素都扩散到钎料当中,而Sn元素在母材当中的扩散路径也非常长,可见Sn元素向母材当中的扩散现象非常剧烈。但是,无论在能谱分析和XRD分析中,都很难找到Zn元素的存在,分析认为在真空钎焊高温加热过程中,Zn元素极易挥发,已经大部分散失。对Sn-Zn-Ti钎料在450℃下保温10min焊接的钎焊接头进行剪切强度测试,得出接头的剪切强度为11.28MPa。由断口形貌及其表面元素扫描结果分析可知,断裂面与扩散层成分一致,其断裂发生在钎料层与扩散层之间。

篇13

复合材料是由两种或两种以上不同性能的材料按一定的方式组合而成,具有单一材料所不能获得的综合优良特性或功能的材料。通过复合不仅能使几种材料的性能互为补充,而且可能产生单一材料所没有的新特性。

电导率是材料最重要的物理性能之一。考察聚合物复合材料的电导率的目的有三个方面:(1)制取高性能的电工绝缘材料;(2)制取具有中等电导率的材料,用于涂层、屏蔽或避免静电电荷;(3)制取具有金属性电导的导电聚合物。

由于导电高分子复合材料具有类似于金属的良好导电性能,同时具有类似于高分子材料的优异的力学性能和方便加工的特点。而导电高分子复合材料就是一种质优价廉的电磁屏蔽材料。验研究表明:导电高分子复合材料的导电性能主要决定于其所填充的导电材料的含量、电导率、形状、分布等因素。理论上准确计算导电高分子复合材料的导电性能是非常困难的。人们常常将问题简化,忽略所填充的导电颗粒的形状和分布来建立电导模型去研究导电高分子复合材料的导电过程[1]。我们建立了一个考虑导电颗粒形状影响的导电高分子复合材料的导电模型。利用该模型计算了碳纤维-聚脂树脂复合材料的有效电导率,结果表明该理论结果与实验结果符合较好。

1.2理论模型

我们研究这样一个导电高分子复合材料系统。它是由N1个椭球形的导电颗粒均匀地分散在N2个高分子颗粒中组成的。假定在导电高分子复合材料中第j个椭球形导电颗粒的三个半轴长分别为, 和,导电颗粒的量子隧道深度为t,那么该导电颗粒的实际体积与其有效导电体积的比值为

(1.1)

所以,导电高分子复合材料就可看作由有效导电颗粒和绝缘高分子颗粒构成。设导电高分子复合材料的有效电导率为;有效导电颗粒的电导率为;高分子颗粒的电导率为。

根据平均极化理论[2],可以利用式(1.2)来计算导电高分子复合材料的沿k 轴方向()有效电导率。

+ = 0 (1.2)

考虑到每个颗粒在空间取向上的随机性,我们可以得到整个导电高分子复合材料的有效电导率方程。

(1.3)

为了简单,假设所有的高分子颗粒都是球形的,而所有的有效导电颗粒都是相同的旋转椭球形。旋转椭球的轴长比为M

(1.4)

其中a, b, c(=b)是旋转椭球的半轴长。

根据文献[2],得到导电高分子复合材料的有效电导率方程。 (1.5)

其中,Ve为所有有效导电颗粒的总体积。

如果导电高分子复合材料中所有颗粒近似为球形,应用Maxwell-Garnett理论和两种拓扑结构(对称结构和反对称结构)的关系来确定上(下)边界[1],可表示为:

, (1.6)

其中,分别为第i个有效导电颗粒的考虑近场影响和未考虑近场的电导率。

将式(1.6)代入式(1.5),得到计算导电高分子复合材料有效电导率的公式。

(1.7)

其中,分别为考虑了近场影响的有效导电颗粒的电导率的x和y轴方向的分量。

1.3 导电颗粒形状和尺寸对渗流阈值的影响

实验研究表明:导电高分子复合材料的电导率不是随导电颗粒体积含量成正比地增加,而是当导电颗粒的体积含量增大到某一临界值时,导电高分子复合材料的电导率突然增加数个数量级。渗流阈值与导电颗粒形状和尺寸存在密切的联系。利用式(1.5),笔者分别计算了导电颗粒形状和尺寸对渗流阈值的影响情况。计算结果(如图1-1和1-2 所示)表明:渗流阈值的数值随着导电颗粒的轴长比M和界面层厚度t的增加而快速减小。