在线客服

脱硫工艺论文实用13篇

引论:我们为您整理了13篇脱硫工艺论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

脱硫工艺论文

篇1

过程:用电石泥作固硫剂,煤泥经刮板机进入下仓,在下仓投入电石泥,与煤泥按一定比例混掺,由预压螺旋送至搅拌仓,再次搅拌均匀后由浓料泵送至锅炉本体内进行燃烧,达到固硫的效果。

优点:炉外脱硫设施前SO2浓度可以降至500-800mg/m3,电石泥的固硫率在30%左右。

无需添加任何其他设备即可进行,节约成本及设备投入。

炉内固硫过程示意图

2.炉外脱硫:

过程:整个炉外脱硫系统主要由脱硫剂制备系统、吸收循环系统、副产物处理系统、配电及自动控制系统四大部分组成。

电石泥投入化灰池,清水泵开启注入清水,然后进入搅拌池,搅拌均匀使之与水充分混合,制备成为电石浆液。加浆泵经管道将浆液送至脱硫塔。首先烟气与浆液直接接触脱硫,然后4台浆液循环泵分别将电石浆液打入脱硫塔上部的喷淋装置,电石浆液经雾化后再次与烟气中的SO2反应,进一步除去烟气中的SO2。脱硫过程中所产生的未氧化的亚硝酸钙(CaSO3•1/2H2O)与自然氧化产物石膏(CaSO4•2H2O)的混合物经排渣系统排至沉灰池。

优点:整个脱硫系统位于烟道末端,除尘系统后,其脱硫过程的反应温度适中;

湿法烟气脱硫反应是气液反应,脱硫反应速度快,脱硫效率高,钙利用率高;

系统可利用率高、运行费用低、维护简单、运行人员少、能确保人员和设备的安全、能有效地节约和合理利用能源;

系统位于锅炉引风机之后,且有旁通烟道,脱硫系统相对独立,运行不会影响主体设施,且维护检修方便;

炉外脱硫过程示意图

2电石泥脱硫机理

在燃烧过程中,燃煤中的硫可以分为有机硫和黄铁矿硫两大部分,硫分在加热时析出,如果环境中的氧浓度较高,则大部分被氧化为SO2而很少部分残存于炉渣中。电石泥的主要成分是Ca(OH)2。

1.反应机理

Ca(OH)2+SO2=CaSO3.1/2H2O+1/2H2O

CaSO3.1/2H2O+3/2H2O+1/2O2=CaSO4+H2O

影响循环流化床锅炉脱硫效率的主要影响因素:(1)Ca、S摩尔比的影响。Ca、S摩尔比被认为是影响脱硫效率和SO2排放的首要因素,根据试验表明,Ca、S摩尔比为1.5~2.5时,脱硫效率最高,而继续增加Ca、S摩尔比或脱硫剂量时,脱硫效率增加的较小,而且继续增加脱硫剂的投入量会带来其他副作用,如增加物理热损失,影响燃烧工况等。(2)床温的影响。床温的影响主要在于改变了脱硫剂的反应速度、固体产物分布。从而影响脱硫效率和脱硫剂的利用率。有关文献表明,床温控制在850~900℃时,能够达到较高的脱硫效率。(3)脱硫剂粒度的影响。

2.计算用量

根据电石泥脱硫理论,按照给煤含硫量1.6%,Ca、S摩尔比2.5,电石渣中含水、杂质比例45%(其中含水40%,杂质5%),其余成分Ca(OH)2,07年我厂全年总耗煤约为耗煤量104253吨量计算,

(Ca的摩尔质量40,O的摩尔质量16,H的摩尔质量1)

进行理论计算

我厂每年产S量:104253×1.6%=1668.048(吨)

每年需Ca量:2.5×40×1668.048/32=5212.65(吨)

每年需Ca(OH)2量:(5212.65/40)×74=9643.4025(吨)

理论需要消耗电石泥量:9643.4025/(65%)=14836(吨)

3.脱硫试验

为了验证脱硫效果,对加电石渣进行脱硫加以记录(一小时中4次记录值)

4.数据分析

按照一定的比例加入电石泥,脱硫效率可以达到90%,能够将二氧化硫的排放浓度降到国家环保要求的480mg/m3以下。

5.存在问题

由于煤泥中搅拌添加电石泥,添加比例不好控制,搅拌不均匀,导致煤泥打空,容易出现个别点排放量超标。

6.建议

增加电石泥给料和输送设备,确保掺烧比例及掺烧均匀。

3结论

(l)我厂采用炉内掺烧脱硫剂(电石泥)固硫,和炉外烟气脱硫FGD湿法脱硫相结合的二段式脱硫方式脱硫取得成功,脱硫效果能够达到国家环保要求。

(2)按照每年用煤炭10万t计算,可以消耗近1.4万t电石废渣。不仅减少了这些废渣对环境的污染,而且为以废治废开辟了新的途径。

(3)利用废电石渣作为脱硫剂,不再采购石灰石大大地节省了运行费用。

(4)系统维护简单、运行人员少、能确保人员和设备的安全。

4参考文献

《电石渣干粉在电厂烟气脱硫工艺中的应用》---作者:史红

《燃煤炉预混—喷钙二段脱硫技术研究》------作者:刘建忠,周俊虎,程军,曹欣玉赵翔,岑可法

篇2

1引言

我国自然资源分布的基本特点是富煤、贫油、少气,决定了煤炭在我国一次能源中的重要地位短期内不会改变。根据《中国能源发展报告》提供的数据,2012年我国煤炭产量36.6亿吨,其中50%以上用于燃煤锅炉直接燃烧。预计到2020年我国发电用煤需求将可能上升到煤炭总产量的80%,每年将消耗约19.6~25.87亿吨原煤。SO2、NOx作为最主要的大气污染物,是导致酸雨破坏环境的主要因素,近年来燃煤电厂用于治理排放烟气中SO2、NOx的建设和运行费用不断增加,因此研究开发高效能、低价格的烟气联合脱硫脱硝一体化吸收工艺,有着极其重要的社会效益及经济效益。

2 联合脱硫脱硝技术

2.1 碳质材料吸附法

装有活性炭的吸附塔吸附烟气中的SO2,并催化氧化为吸附态硫酸后,与吸附塔中活性炭一同送入分离塔进行分离;然后烟气进入二级再生塔中,在活性炭的催化作用下NOx被还原成N2和水;在分离塔中吸附了硫酸的活性炭在350℃高温下热解再生,并释放出高浓度SO2。最新的活性炭纤维脱硫脱硝技术将活性炭制成直径20微米左右的纤维状,极大地增大了吸附面积,提高了吸附和催化能力,脱硫脱硝率可达90%左右[1]。

图1 活性炭吸附法工艺流程图

2.2 CuO吸收还原法

CuO吸收还原法通常使用负载型的CuO当作吸收剂,普遍使用的是CuO/AL2O3。此法的脱硫脱硝原理是:往烟气中注入一定量的NH3,将混合在一起的烟气通过装有CuO/AL2O3吸收剂的塔层时,CuO和SO2在氧化性环境下反应生成CuSO4,不过CuSO4和CuO对NH3进行还原NOx有着极高的催化性。吸收饱和后的吸附剂被送往再生塔再生,将再生的SO2进行回收[2]。其吸收还原工艺流程如图2所示。

图2 CuO吸附法工艺流程图

3 同时脱硫脱硝技术

3.1 NOXSO工艺

NOxSO为一种干式、可再生脱除系统,能脱除掉高硫煤烟气中的SO2与NOx。此工艺能被用于75MW及以上的电站及工业锅炉高硫煤烟气的脱硫脱硝。此工艺再生生成符合商业等级的单质硫,是一种附加值很高产品。对期望提高SO2与NOx脱除率的电厂及灰渣整体利用的电厂,该工艺有极强的竞争力[3]。

图3 工艺流程图

3.2电子束法

电子束法[4]即是一种将物理和化学理论综合在一起的脱硫脱硝技术。借助高能电子束辐照烟气,使其产生多种活性基团以氧化烟气中的SO2与NOx,得到与,再注入烟气中的NH3反应得到与。该烟气脱硫脱硝工艺流程如图4所示。

图4 电子束法脱硫脱硝工艺流程图

3.3 脉冲电晕等离子体法

脉冲电晕等离子体法可于单一的过程内同时脱除与;高能电子由电晕放电自身形成,不需要使用昂贵的电子枪,也无需辐射屏蔽,只用对当前的静电除尘器进行稍微改变就能够做到,且可将脱硫脱硝和飞灰收集功能集于一身。其设备简单、操作简单易懂,成本相比电子束照射法低得多。对烟气进行脱硫脱硝一次性治理所消耗的能量比现有脱除任何一种气体所要消耗的能量都要小得多,而且最终产品可以作肥料,没有二次污染。在超窄脉冲反应时间中,电子得到了加速,不过对不产生自由基的惯性大的离子无加速,所以,此方法在节能方面有着极大的发展前景,其对电站锅炉的安全运行不造成影响。所以,其发展成为当前国际上脱硫脱硝工艺研究的热点[5]。其工艺流程如图5 所示:

图5 脉冲电晕等离子体法脱硫脱硝工艺流程图

4 烟气脱硫脱硝一体化实例应用

本案例是根据石灰石-石膏湿法烟气脱硫脱硝工艺试验,使变成极易为碱液所吸附的。因为珠海发电厂脱硫系统在脱硝进行前己经完成,只用增加脱硝装置就行。而且脱硫脱硝一体化的重点在于的氧化,所以为实现脱硫脱硝一体化技术,深入研究分析氧化剂的试验功效并确定初步工艺参数,为以后工业试验及示范工程提供理论及试验基础,在珠海发电厂脱硫装置同时进行了脱硝测量[6]。

4.1氧化剂的配制

氧化剂配制:在氧化剂配制槽中,注入适量水及浓度在50%的氧化剂,其主要成分是,搅拌均匀后配制浓度分别是39.5%、30%的氧化剂[7]。

4.2 测量仪器

烟气分析仪:英国KANE公司生产的KANE940,性能是对、、的浓度以及烟气温度,环境温度,烟道压力等分析。烟气连续分析仪:德国MRU公司生产的MGA-5,功能是连续测量:、、、、温度、压力等;并配备专用数据采集处理软件MRU Online View,自定义采集时间间隔。

4.3 试验装置以及流程

测量是在珠海发电厂脱硫装置上进行的。脱硝装置安装在脱硫系统前部的烟道中,将烟气注入到脱硫塔之前进行脱硝试验。试验过程和部分现场试验装置如下图所示[8]:

图5 脱硫同时脱硝测量示意图

试验中,烟气由珠海发电厂总烟道设置的旁路烟道引出,由挡板门4控制烟气流量。氧化剂从氧化剂泵注入管道,由阀门1和流量计一起控制氧化剂总流量,之后将氧化剂分成两个支路从喷嘴逆流注入到烟道和烟气中进行混合。在2、3处由各自的阀门开关控制前后两支路,其中2处为前阀门,控制前支路;3处为后阀门,控制后支路,前后支路都安装有两个喷嘴。烟气在6处同氧化剂发生反应后,经由图中5、7烟气测点烟气分析仪连续记录试验前、后不同时间烟气中、、等浓度变化,分析确定最佳试验参数。之后将烟气引入脱硫系统[9]。

4.4 测量结果分析

在珠海发电厂脱硫同时脱硝测量中[10]:

(1)氧化度同氧化剂注入烟道的方式有关。逆流是最宜的氧化剂注入方式,所以,工业试验中脱硝剂最宜采用逆流注入方式。

(2)试验加入氧化剂后,氧化剂脱硝效果效果,可在工作应用中深入分析研究;50%氧化剂试验中,氧化度最高可达60%左右。

(3)试验中,首先,浓度为50%的氧化剂氧化度最高;其次,整体上浓度在39.5%的氧化剂氧化度高于30%浓度氧化剂的氧化度。有条件情况下,以后的具体应用中应最宜选用浓度为50%的氧化剂。但出于经济性和试验效果的考虑,工业应用中普遍选用浓度为35%的氧化剂。

5 结论

燃煤电厂脱硫脱硝技术为一项涉及多个学科领域的综合性技术,为了减少燃煤排放烟气中与对大气的污染。其一,改进燃烧技术抑制其生成;其二,应加强对排烟中与的烟气脱除工艺设计。当前,烟气脱硫脱硝技术是降低烟气中的与最为有效的方法,尤其是电子束法、脉冲等离子体法等应用更是大大地促进了烟气脱除工艺的发展。虽然相应方法有着很多优点,但还不完善,均还处在推广阶段。所以,研究开发高效能、低价格的烟气联合脱硫脱硝一体化吸收/催化剂,研发新的脱硫脱销装置及脱硫脱销工艺是科研人员工作的方向。

参考文献

[1] 胡勇,李秀峰.火电厂锅炉烟气脱硫脱硝协同控制技术研究进展和建议[J].江西化工,2011(2):27-31.

[2] 葛荣良.火电厂脱硝技术与应用以及脱硫脱硝一体化发展趋势[J].上海电力,2007(5):458-467.

[3] 宋增林,王丽萍,程璞.火电厂锅炉烟气同时脱硫脱硝技术进展[J]. 热力发电,2005(2):6-10.

[4] 柏源,李忠华,薛建明等.烟气同时脱硫脱硝一体化技术研究[J].电力科技与环保,2010,26(3):8-12.

[5] 吕雷.烟气脱硫脱硝一体化工艺设计与研究[D].长春: 长春工业大学硕士学位论文,2012.

[6] 刘凤.喷射鼓泡反应器同时脱硫脱硝实验及机理研究[D].河北:华北电力大学工学博士学位论文,2008.

[7] 韩颖慧.基于多元复合活性吸收剂的烟气CFB 同时脱硫脱硝研究[D].河北: 华北电力大学工学博士学位论文,2012.

篇3

防治烟气中二氧化硫对大气污染的途径分为炉前脱硫、炉中脱硫、炉后脱硫三种。

所谓湿法烟气脱硫,其特点是脱硫系统位于烟道的末端、除尘器之后,靠喷淋或其他形式使烟气跟吸收液充分接触,通过吸收液中的碱来捕获烟气中的SO2,从而达到烟气脱硫的目的。由于是气液反应,其反应速度快、效率高、脱硫剂利用率高,适合各种工况的烟气脱硫。

1、二氧化硫控制技术的比较

当前实际使用中常用的湿法烟气脱硫技术,按脱硫剂的不同,主要有石灰石/石灰―石膏法、双碱法、氧化镁法等。

1)、石灰石-石膏法

石灰石(石灰)―石膏湿法烟气脱硫工艺主要是采用廉价易得的石灰石或石灰作为脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。当采用石灰作为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆液。在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被吸收脱除,最终产物为石膏。脱硫后的烟气依次经过除雾器除去雾滴,加热器加热升温后,由增压风机经烟囱排放,脱硫渣石膏可以综合利用。从最近几年的运行情况来看,该工艺的脱硫效率在90%-95%,环境特性很好。不过,设备存在一定的结垢现象,防腐方面的研究也有待加强。

2)、MgO湿法烟气脱硫技术

该法用氧化镁浆液[Mg(OH) 2]吸收烟气中SO2,得到含结晶水的亚硫酸镁和硫酸镁的固体吸收产物,经脱水、干燥和煅烧还原后,再生出氧化镁循环吸收使用,同时副产高浓度SO2气体。工艺系统主要包括:烟气系统、SO2吸收系统、脱硫剂浆液制备系统、副产物处理系统、事故浆液系统、工艺水系统等。

氧化镁法可处理大气量的烟气,技术成熟可靠,脱硫率≥95%,无结垢问题,可长期连续运转,煅烧气含SO210~13%,可用于制酸或硫磺。缺点是副产品回收困难,并且脱硫剂氧化镁的成本较高。

3)、双碱法

双碱法是先用可溶性的碱性清液作为吸收剂吸收SO2,然后再用石灰乳或石灰对吸收液进行再生,由于在吸收和吸收液处理中,使用了不同类型的碱,故称为双碱法。钠钙双碱法是以碳酸钠或氢氧化钠溶液为第一碱吸收烟气中的S02,然后再用石灰或熟石灰作为第二碱,处理吸收液,再生后的吸收液送回吸收塔循环使用。

由于采用钠碱液作为吸收液,不存在结垢和浆料堵塞问题,且钠盐吸收速率比钙盐速率快,所需要的液气比低很多,可以节省动力消耗。双碱法脱硫同样是目前国内的主要脱硫工艺之一,其脱硫效率≥90%。

玻璃窑炉烟气治理难点分析

通过对国内目前脱硫技术的了解,我们可以发现石灰石-石膏法、MgO法、双碱法是目前国内脱硫技术主流中的高效脱硫技术,在大部分污染行业的烟气治理上是满足国内环境保护排放标准的。但往往应用在玻璃窑炉烟气治理时,效果不理想,普通的石灰石-石膏法、MgO法、双碱法技术使用后烟气中的二氧化硫排放浓度一般在300mg/Nm3-400mg/Nm3之间,高于国家的大气污染物综合排放标准(200mg/Nm3)。

要想提高现有的脱硫技术,首先我们要先了解玻璃窑炉烟气的特性及烟气成分。玻璃窑炉烟气的主要特点:烟气温度高、烟气流量适中、烟气中SO2的含量较高、粉尘的含量较低,排放二氧化硫浓度为6000mg/m3左右,排放烟尘浓度为350mg/m3左右,排放烟气黑度为1-2级;

通过上述对玻璃窑炉烟气特点的叙述,我们发现两个问题:

1)在进行烟气治理的工程设计时,我们往往因为玻璃窑炉粉尘的含量较低的特点放弃除尘,而放弃除尘设备,而脱硫塔喷淋时确实能够减低一部分粉尘,但是烟尘中所含的硅、铝的氧化物经过循环系统沉淀后总量逐渐增加,而当其进入吸收塔后与烟气中的F离子形成氟化铝络合物,从而影响SO2的溶解吸收,影响脱硫效率。

2)玻璃窑炉烟气中的二氧化硫浓度为6000mg/m3左右,而现行湿法脱硫技术一般稳定运行时,脱硫效率为95%,按理论计算6000mg/m3×(1-95%)=300mg/m3;

2、玻璃窑炉烟气治理的解决方法

a 增设除尘装置。璃窑炉烟气含酸碱度高,黏性强,无法使用袋式除尘器,因此水膜脱硫除尘器就成为了首选。水膜脱硫除尘器的成本低,除尘效率高,能够成功降低烟气中的烟尘含量,避免粉尘中的硅、铝的氧化物进入脱硫塔。

b 同时在水膜脱硫除尘器的浆液中加入适量的碱液,能够起到一级脱硫的作用,处理烟气中的部分二氧化硫,稀释空气中的二氧化硫含量,一级脱硫效率一般能够达到40%左右。

c 烟气经过过滤后进入湿式脱硫塔,此时进入湿式脱硫塔的二氧化硫浓度大约在6000mg/m3×(1-40%)=3600mg/m3,二级脱硫我们选择双碱法脱硫,双碱法脱硫效率高,系统稳定性高,投资费用低,运行费用低,并且无二次污染。同时因为二氧化硫的浓度降低,在保证脱硫系统的正常脱硫效率下,按理论计算3600mg/m3×(1-95%)=180mg/m3;这样既能保证二级脱硫后达标排放,又降低了设备的运行成本。

4、经济分析

虽然增设的除尘装置,烟气脱硫系统的成本有所增加。但水膜脱硫除尘器的成本较低,同时经过了一级脱硫处理后,脱硫塔的负荷减轻,可以对二级脱硫系统进行从容的布置,达到降低成本的要求。

5、结论

本文对玻璃窑炉的烟气治理进行了研究和分析,同时了解了目前国内的脱硫技术,并综合现有的脱硫除尘技术对玻璃窑炉的烟气治理提出了一套切实可行的治理方案。

由于时间有限和条件上的限制,本论文还有很多不足之处,有待进一步完善。希望本论文提出的治理方案能够在玻璃窑炉烟气处理的工程设计和实际操作上,实现它的可参考价值和现实的指导意义。

参考文献:

李广超 大气污染控制技术[M] 北京 化学工业出版社 2001

童志权 工业废气净化与利用[M] 北京 化学工业出版社 2001

茆令文 玻璃熔窑烟气脱硫除尘技术研究[J] 中国玻璃 2000,1,13-18

马广大 大气污染控制工程 中国环境出版社 1985

施亚军等 气体脱硫 上海科技出版社 1986

篇4

一.引言

我国是世界焦炭第一生产大国,同时也是第一焦炭消费大国。近些年来,我国的炼焦技术得到了较大进步,炼焦技术的发展,促进了炼焦行业节能技术的推广和应用。

二.炼焦技术的工艺特点。

1.回收炼焦工艺流程简述。

热回收炼焦工艺技术包括备煤、炼焦、筛焦、余热锅炉、废气脱硫等主要生产设施。炼焦煤由备煤车间制备好后送到炼焦车间,炼焦煤在装煤推焦车上由捣固机捣成煤饼送入炼焦炉,成熟的焦炭由接熄焦车送到熄焦塔内进行熄焦。熄焦后的焦炭由筛焦车间进行粒度筛分和储存。炼焦炉为负压操作,炼焦煤炼焦时产生的挥发份在焦炉内全部燃烧,高温废气经焦炉集气管道送到余热锅炉回收其热量产生蒸汽。回收热量后的低温废气脱除二氧化硫后经烟囱排放。蒸汽送到工业、公共设施,或用于余热发电车间发电。

2.回收炼焦工艺主要特点。

(1).炼焦炉负压操作,基本消除了炼焦炉对大气的污染。回收炼焦产生的挥发份燃烧为高温废气的热量,并回收其热量,彻底消除了化学污水的产生。实现了炼焦工业的清洁生产。

(2). 炼焦炉内煤饼和炉顶空间形成惰性气体保护层,取代耐火砖作为高温干馏炼焦煤和空气的隔离物。教好的解决了炼焦煤表面在高温干馏时的燃烧现象。

(3). 炼焦炉炼焦时挥发性的物质在焦炭层中的流程较长,二次裂解产生的具有活性键的碳充分和焦饼上的活性键起架桥作用,能改善和提高焦炭的物理化学性质和冷热强度。结合捣固炼焦,对于扩大炼焦用煤的范围和提高焦炭的质量具有重要意义。

(4). 热回收炼焦技术工艺在国际上首次使用具有我国自主知识产权的液压捣固,在国内首次使用具有我国自主知识产权的水平接熄焦,充分体现了我国坚持科学发展观和科技的创新能力。

三.发展清洁生产的大型捣固炼焦。

大力研发和推广具有完善环保设施、能够实现清洁生产的大型捣固炼焦技术。标定、调试和总结我国已投产的6.25米大型捣固焦炉,进一步修改和完善并建成6.25米大型捣固焦炉示范工程。

开发适合中国国情的6.7米捣固焦炉,其每孔年产焦炭1.443万吨,将是我国乃至世界上最大的捣固焦炉,2×52孔年产焦炭150万吨,填补我国年产150万吨级焦炭规模的大型捣固焦炉空白,并建成能起样板作用的示范工程,推动我国大型捣固炼焦技术的发展,使其达到世界领先水平。

发国产的适合中国国情的6.25米和6.7米大型捣固焦炉使用的捣固一装煤一推焦一体车(SCP机),使其机械化、自动化、安全性能和环保水平等方面达到世界领先水平。

随着我国大中型钢铁企业逐步接受和采用捣固炼焦技术,应推动焦化和炼铁工作者共同研究捣固焦炭的冶炼性能、适宜的焦炭质量标准、相应的高炉生产操作工艺和参数,推动大中型高炉使用捣固焦炭。

1.大力推广的节能技术。

(1). 发展高效节能环保的大型焦油加工装置。

淘汰耗能高、污染严重、装备水平落后的间歇蒸馏、间歇酸碱洗涤、间歇结晶和污染大的沥青成型工艺。

进一步推动我国煤焦油加工的集中处理,建设规模大、技术先进、节能环保的世界一流煤焦油加工厂。同时通过不断开发新产品,扩大产品品种和品级,配合化工、医药、材料等市场要求,开发出附加值高的洗油深加工产品、蒽油深加工产品和沥青深加工产品等。对附加值低的残油,在满足炭黑生产的同时,可采用加氢催化裂化、加氢裂解等技术,使其转化成为高附加值的汽油调和油、柴油调和油。

(2).推荐采用高效节能的脱硫脱氰技术。

新建焦化厂应该首选脱硫脱氰效率高、产品质量好、操作可靠的脱硫脱氰工艺,如利用荒煤气余热再生的真空碳酸钾法脱硫工艺等。

推进我国第一套HPF法氧化脱硫工艺废液与低纯度硫磺焚烧制取硫酸的工业装置投产,并建成示范装置,解决全国已有的HPF法氧化脱硫工艺存在的问题,推动其更新换代。

推荐采用间接法蒸氨,以减少焦化废水,有利于实现焦化废水的近零排放。

(3)积极研发焦炉煤气资源化利用技术。

COG含有54%-59%H2和24%-28%CH4。COG燃料化利用不如资源化利用效益高,因此只有在万不得已的情况下才用作燃料和发电。高质量地利用COG不仅有利于降低钢铁企业单位产品的能源消耗和排放负荷,甚至能开发出大量最清洁能源—氢气,从而引发钢铁制造流程能量流新的供需平衡关系,甚至会引发整个社会新的供需关系。

(4)开发新型焦化污水深度处理技术.

资源节约、环境友好的焦化厂必须使处理后的焦化废水资源得到最大限度地合理使用,因为生产1吨焦炭通常产生0.48吨焦化污水和0.42吨循环水排污水(采用CDQ时循环水排污水为0.53吨)。我国已开发出成熟可靠的焦化污水生化处理技术。对钢铁企业焦化厂来说,焦化废水经生化处理后可全部回用于焦化厂和钢铁厂的浊循环水系统。对采用湿法熄焦的独立焦化厂,生化处理时,可减少或不加稀释水,减少生化处理水量,使处理后废水全部作为湿法熄焦补充水,在焦化厂内消耗掉。但是,随着我国独立焦化厂逐渐采用干法熄焦,处理后废水无路可去,只能回用于净循环水系统。而净循环水系统对水质要求严格,对其补充水的水质要求更严。若将生化处理后焦化废水用作净循环水系统补充水,必须进行降低有机物和脱盐的深度处理。

“十一五”期间,进行了大量污水回用深度处理技术的开发工作。深度处理一般采用膜分离技术。即:生物处理(A-A/O)+超滤(UF)+纳滤(NF)(或反渗透(RO));或生物处理(A-A/O)+膜生物反应器(MBR)+纳滤(NF)(或反渗透(RO))。深度处理的产水率可达到70%以上,产水水质可达到循环水补充水的要求,用作循环水补充水。膜深度处理产出占原料水量30%左右的浓缩液。浓缩液不但含有较高的有机物,而且浓缩了大量的盐。浓缩液可以深度处理回用,也可以蒸发提盐,但这些手段成本太高,因此,浓缩液处理将是下一步重点开发的课题。

(5)研发焦炉荒煤气余热回收及利用技术。

离开焦炉炭化室的650-700℃荒煤气所带出的显热占焦炉输出热的36%,与红焦带出的显热相当,余热回收利用的潜力巨大。

“十一五”期间,国内外许多焦化企业积极研发焦炉荒煤气余热回收及利用技术,如:济钢将5个上升管做成夹套管,导热油通过夹套管与荒煤气间接换热,被加热的高温导热油可以去蒸氨、去煤焦油蒸馏、去干燥入炉煤等;宝钢梅山钢铁公司炼焦厂在其4.3米焦炉上升管采用热管回收荒煤气带出热的试验;济钢和中冶焦耐正在进行用锅炉回收荒煤气带出热的试验;无锡焦化厂在其4.3米焦炉上进行用半导体温差发电技术回收上升管余热的试验;平煤武钢焦化进行了高效微流态传热材料作换热介质的上升管余热回收试验;日本已在1个上升管和正在3个上升管上进行用荒煤气带出热对焦炉煤气进行无催化高温热裂解和重整试验,得到了主要含H2和CO的合成气体;中冶焦耐在初冷器一段用82℃-85℃的荒煤气加热真空碳酸钾法脱硫废液,用热废液闪蒸的蒸汽再生脱硫液;有的焦化厂拟用初冷器一段热循环水制冷,所得的低温水直接用于初冷器三段制冷。

“十二五”期间,应当支持荒煤气余热回收和利用技术的研发调试、改进完善、总结比较,选择最优方法;推动最优方法尽快工业化,总结经验,建立示范装置,加以推广普及。

五.结束语

炼焦,要做好能源生产和节能处理的两手抓,在确保生产的同时,要减少对能源的消耗,提高最终有效产出。

参考文献:

[1] 曹海霞CAO Hai-xia. 山西焦化工业技术发展现状与趋势研究 [期刊论文]. 《煤炭加工与综合利用》 -2007年5期

[2] 曾子平刘应隆. 应用氨肥法一体化工艺烟气脱硫促进高能耗产业节能减排——煤化钢铁企业炼焦废氨水脱硫产业链建设 [会议论文]. 2008年全国热工节能减排技术交流会

篇5

一、 石灰石一石膏法烟气脱硫(FGD)工艺简介

该工艺是将石灰石粉加水制成浆液作为吸收剂,在吸收塔与原烟气充分接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反应生成硫酸钙,主要反应方程1.SO2 + H2O → H2SO3 吸收

2.CaCO3 + H2SO3 → CaSO3 + CO2+ H2O 中和

3.CaSO3 + 1/2 O2 → CaSO4 氧化

4.CaSO3 + 1/2 H2O → CaSO3•1/2H2O 结晶

5.CaSO4 + 2H2O → CaSO4•2H2O

结晶硫酸钙达到一定饱和度后,结晶形成石膏.吸收塔石膏排出泵排出石膏浆液经浓缩、脱水,使其含水量小于 10%,然后用输送机送至石膏贮仓堆放。脱硫后的净烟气经除雾器除去雾滴,由烟囱排入大气。由于吸收塔内吸收剂浆液通过循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比 较低,脱硫效率可大于95%.

二、FGD吸收塔溢流危害

吸收塔浆液溢流流入原烟道,浆液中的硫酸盐和亚硫酸盐随溶液渗入防腐内衬及其毛细孔内,当水分蒸发,浆液会析出硫酸盐和亚硫酸盐的结晶体,体积膨胀,使防腐内衬产生应力,尤其是带结晶水的盐,在干湿交替条件作用下 ,体积会膨胀达几十倍,产生更大的应力,导致内衬严重剥离。,烟气脱硫。若是未防腐的烟道,会在烟道壁产生垢下腐蚀,大大缩短烟道的使用寿命和检修周期影响脱硫系统正常运行。

溢流到烟道的浆液会造成烟道严重积灰,会增大烟道阻力,影响机组的安全经济运行,

若运行人员发现溢流较晚,溢流浆液到达增压风机出口,会对增压风机叶片造成严重冲击,损坏叶片或叶片断裂,迫使脱硫系统停运的严重设备事故,甚至主机停运的非停事故。

三、 FGD吸收塔溢流原因分析

液位过高,容易使吸收塔内水平衡失控,导致吸收塔的溢流;液位过低,吸收塔脱硫效率低不能满足排放要求,且浆液密度偏高,加剧管路磨损.正确监视吸收塔的液位,防止虚假液位 (泡沫)的产生,吸收塔液位控制对吸收塔稳定运行至关重要.

我们采用的是双变送器单独引压的测量方式,完全排除热工测量回路的影响,还是不能给出一个让运行人员信服的解释。于是我们想到用一个简单且直观的方法来观测吸收塔的实际液位,那就是利用U型连通器的原理,从液位变送器的冲洗法兰处引出透明的四氟管到溢流口等高处,四氟管口对空敞口。,烟气脱硫。,烟气脱硫。液位DCS显示10米,用皮尺实测透明管液面高度为10.15米。此时运行人员开始向上提升液位,到显示值为10.9米时,皮尺测得液位高度为11.2米。此时,溢流管口(溢流管口设计高度为13.4米)有黑色泡沫开始流出,随着液位得慢慢升高,泡沫的颜色逐渐由黑转黄,随后有少量浆液和泡沫混合物流出。,烟气脱硫。DCS液位显示11.5米,皮尺测的液位高度为11.6米,有大量浆液溢流。,烟气脱硫。稳定液位,观察10分钟左右,溢流出的全是浆液。开始降低液位,在DCS液位显示为11米时溢流开始减少,直到液位显示为10.5米左右才没有浆液溢出。,烟气脱硫。

通过以上观察,我们查阅大量相关资料,和运行人员一起共同讨论,一致认为,导致脱硫装置吸收塔溢流的主要原因是:

1、吸收塔液面存在大量气泡和泡沫、杂质而产生虚假液位;

2、运行人员监盘不认真,调整不当或不及时;

四、FGD吸收塔溢流应对措施

1) 锅炉投油时暂时停运脱硫塔;

2) 降低运行液位;

3) 控制桨循泵出力;

4) 控制氧化风量

5) 及时排放脱硫废水;

6) 及时补充新鲜浆液,保持浆液质量;

7) 控制浆液密度,及时脱水;

8) 添加消泡剂,如烧碱等;

9) 采用纯度高的石灰石制浆;

10) 定期开启烟道底部疏水阀进行疏水;

11) 提高工艺水品质;

篇6

我国“十一五”规划纲要明确提出:要建设资源节约型、环境友好型社会,把单位GDP能耗降低20%,主要污染物排放总量减少10%,这是具有法律效力的约束性指标。当前,SO2的减排呼声最高,压力最大。钢铁企业是SO2排放的第二大户,存在巨大的减排空间,在电厂脱硫已取得较大成效的情况下,减排的压力正日益突出。烟尘主要来自烧结机的烧结过程及冷却机的冷却过程,SO2 主要来自烧结机头烟气。而烧结机头烟气中SO2 仍然采用烟囱高空排放,如果不对这些污染源加以控制,势必造成污染物的肆意排放,仍然会严重污染厂区环境,影响正常的生产,危害职工身体健康。

本文以济钢铸管集团公司为例,介绍了一种新型的SD-FGD系列喷射旋流曝气脱硫塔技术。

2 工程概述

2.1 工程简述

济钢铸管公司现有两台52m2烧结机,烧结机工艺设计分为两条主抽风烟道,配备有多管除尘器,排放烟气含尘浓度

2.2 烧结机烟气的特点

(1)烟气温度较高,随工艺操作状况的变化,烟气温度一般在120~180℃之间。

(2)烟气挟带粉尘多。粉尘主要由金属、金属氧化物或不完全燃烧物质等组成,一般浓度达10g/Nm3。

(3)含湿量大。为了提高烧结混合料的透气性,混合料在烧结前必须加适量的水制成小球,所以含尘烟气的含湿量较大,按体积比计算,水分含量在10%左右。

(4)含有腐蚀性气体。高炉煤气点火及混合料的烧结成型过程,均产生一定量的HCl、SOx、NOx等。

(5)CO含量较高。

(6)含SO2平均浓度较低,根据原料和燃料差异而变化,一般在1000~3000mg/Nm3。

(7)重金属污染物。

(8)含二噁英类。目前钢铁行业的二噁英排放居世界第2位,仅次于垃圾焚烧行业。

3 烧结机脱硫技术

3.1 脱硫工艺的选择

目前国内外的脱硫方法主要有干法脱硫、半干法脱硫及湿法脱硫。除尘技术主要有电除尘、机械除尘、过滤式除尘等,根据除尘过程中是否用水或其他液体,还可将除尘器分为干式和湿式两大类。2006年石钢3#、4#烧结机新上的脱硫系统采用的是密相干塔工艺,即干法脱硫,除尘系统采用的是电除尘器;2007年福建三钢的180m2烧结机脱硫采用的是循环流化床干法脱硫,除尘系统采用布袋除尘器;2008年5月梅钢180m2烧结机采用的是喷旋冲湿式石灰石-石膏法脱硫工艺,属于湿法脱硫;2008年12月邯钢400m2烧结机采用的是气固再循环半干法脱硫,除尘系统为布袋除尘器。

由于烧结烟气具有前述的特点,必须采用适合烧结烟气特点的烟气净化装置;而且应具有脱硫效率高、投资运行费用低、可靠性高、占地面积小、无废水产生、副产物易处理等特点。山东球墨铸铁管有限公司所提供场地面积较小,因次对工艺的选择必须考虑到系统占地面积等因素,在本项目中我公司选择了双碱法作为脱硫主要工艺。

3.2 除尘方案的选择

由于冶金行业的烟气具有粉尘细,易黏附结垢的特点,而湿式除尘器利用水与含尘气体作用,在净化粉尘的同时,具有净化有毒气体的作用,且设备体积较小、投资较省,考虑到现场的情况我们选择湿式除尘方案。湿式除尘方法中文丘里管除尘器具有除尘效率高,能消除1:m以下的细尘粒,结构比较简单,而且还能用于除雾、降温等方面,符合烧结机烟气的特点,因此在本项目中我们选择了文丘里管湿式除尘法。

除尘射流器应用原理是依据文丘里原理开发出的一种产品,文丘里除尘的工作原理是靠高速运动的气流及流经的管道截面发生变化,使气溶胶与洗涤液或吸收液在高速气流中发生相对运动,从而达到气溶胶与空气分离的目的,文丘里洗涤器净化原理图如图1所

图一 文丘里洗涤器净化原理图

3.3 工艺流程

我公司与日本住友金属工業(株)和歌山製鉄所環境部合作,结合我国冶金行业的特点,对日本及欧洲冶金行业的脱硫成熟技术进行引进与消化吸收。共同开发出了SD-FGD系列喷射旋流曝气脱硫塔。该设备集脱硫、除尘于一体,脱硫、除尘效率均较高,投资低、占地少,在国内处于先进水平该技术在日本冶金行业得到广泛应用。该技术吸取了我公司在济南庚辰钢铁有限公司24平米烧结机应用石灰石法脱硫工艺中的不足,解决了塔内及管道结垢缺陷,解决了出风含水量大的问题。我公司针对山东球墨铸铁管有限公司实际情况,对52平米烧结机进行专项设计,除尘、脱硫工艺中所配备的SD-PS80-Ⅱ喷射旋流曝气脱硫塔,具有气液传质好、脱硫除尘效率高、液气比小、装置内无活动部件、工程造价低、节省运行费用等优点。

本系统主要包括除尘系统、脱硫系统、脱硫液循环系统、除尘液循环系统。

4、 设计参数

4.1 文丘里洗涤器的最佳操作条件

(1).喉管面积A0=2.83m2

(2).喉管直径D0=1.7m

(3).喉管长度L0=1.6m

(4).收缩管的进气截面积A1=7.6m2

(5).收缩管的进气端直径D1=3.2m

(6).收缩管的长度L1=2.3m

(7).渐扩管出口直径D2=3.2m

4.2 脱硫方法

由双碱法的原理可以看出氧化反应主要是将SO32-和CaSO3氧化,而H++SO32-(HSO3-,故系统pH的高低也决定着氧化反应发生的程度。

对于脱硫效果来讲,塔进口pH越高,吸收液脱硫能力也就越强。但pH过高后,可能会增加系统中Ca2+的浓度,从而增加系统中CaSO4的过饱和度,引起系统的结垢和堵塞。为了防止系统的结垢和堵塞,下面对系统运行各个阶段的pH进行研究。

图1 清液池pH与再生池pH变化规律

图2 混浆池pH=11时再生池各阶段pH

由图1可知,随着清液池pH升高,无论是低pH运行还是高pH运行,再生液的pH都会升高。当低pH运行时,由于塔出口pH较低,且塔出口中大部分为HSO3-,HSO3-+OH-(SO32-,快速消耗OH-,故在开始阶段上升幅度较大,在pH=11.0左右时,再生液pH上升趋势才趋于平缓,此时再生液的pH也接近于7。高pH运行时,塔出口pH较高,随着清液池pH值升高,再生液pH继续升高,但上升的幅度整体趋于平缓。如果不断提高混浆池的pH值,即增加投入Ca(OH)2的量,可以增强脱硫液的脱硫效率,但一方面增加了系统的运行花费,另一方面投入Ca(OH)2的量增加,Ca2+也随着增加,将有可能引起系统结垢和堵塞。

4.3 脱硫液循环系统

脱硫液与烟气接触反应后,经塔体底部水封口由排水沟流入循环水池,循环水池由再生反应池、氧化池、沉淀池和清水池四部分组成。从脱硫装置底部出来的脱硫液首先进入再生反应池,与石灰浆液发生再生反应,然后进入氧化池,通过搅拌并鼓入空气将水池中的CaSO3氧化为CaSO4,经沉淀后的池底浓浆由浓浆泵将CaSO4抽出,送到板框压滤机,制成脱硫渣滤饼综合利用或抛弃,滤液流到循环水池。在清水池旁设有pH值检测仪,并补充NaOH溶液,调节pH值后,由循环水泵抽送到脱硫装置进行脱硫。

4.4 除尘液循环系统

除尘液与烧结烟气接触后,经管道流到后面的惯性分离器,固液分离后,除尘液经底部水封口流入循环池,循环池由泥浆池和清液池组成。从分离器底部出来的除尘液首先进入泥浆池沉淀,停留一段时间后,上清液进入清液池,由循环水泵抽送到除尘装置进行除尘;池底泥浆则由浓浆泵抽送到板框压滤机,压缩脱水后,定期由运渣车外运。

以上四个单元是本系统的主要单元,除此之外,本系统还包括脱硫剂制备系统及电气和自控系统等。

4.5 SD-FGD曝气脱硫塔原理

应用文丘里除尘、惯性分离等原理设计的高效喷射旋流曝气除尘脱硫塔,高效旋流曝气脱硫塔为圆柱形塔体,塔外有高效射流器,塔内安装有若干层高负荷旋流装置和高效除雾装置。脱硫工作时,烟气由塔底切向进入,形成旋转气流上升,烟气通过塔板旋流叶片的导向作用使烟气呈旋转上升。经二次扩散,使得气体里所含的二氧化硫散发,并与上部两层喷淋的脱硫浆液充分接触,从而增大气液间的接触面积;液滴被气流带动旋转,产生的离心力强化气液间的接触,最后液滴被甩到塔壁上沿壁流下,经过溢流装置到下层塔板上,再次被气流雾化而进行气液接触。如上所述,液体在与气体充分接触后得到有效分离,避免雾沫夹带,其气液负荷比常用塔板大一倍以上。又因塔板上液层薄,开孔率大而使压降较低,比达到同样效果的一般旋流板塔的压降约低50%,因此,综合性能优于常用的旋流板塔。

由于装置内部提供了良好的气液接触条件,气体中的SO2被碱性液体吸收的效果好;采用较低的液气比是1:0.8~1.2。高效喷射旋流脱硫除尘装置上部装有高效除雾装置,安装两层折板除雾器,从而使气流带出塔的雾滴很少。减少出口烟气带水的危害。

烟气进入射流器,由于有降尘水及烟尘里有烧结机烟尘带出来的氧化钙,可以作为一级脱硫处理,效率在30%左右。在旋流脱硫塔内进行二级脱硫处理,效率在65%以上,总的脱硫效率在95%以上。

5 存在不足

由于此工程为老厂改造,因此可用场地面积较小,该系统整体的设备与管路布局不够理想,造成系统阻力稍大。另外由于工程指标要求该技术没有涉及到脱硝的内容,以后的应用中将逐步完善技术,使其应用范围更加广泛。

6 结论

1. 在钢铁行业烧结机脱硫塔主体材料采用玻璃钢塔为国内首创。脱硫塔采用玻璃钢整体制造,密封性能好,无跑冒滴漏现象,耐腐蚀性比其它材料强,使用寿命长达25年不用维护。

2.该工艺采用的两段法工艺,在预处理部分采用的除尘液为高炉冲渣水,该水呈碱性,除对烟气的润湿作用外也提高了对硫化物的吸收率,并且提高了水资源的利用率,减少了水资源的消耗。脱硫部分采用的双碱法湿式脱硫。

3.脱硫塔为我公司自创的喷射旋流曝气脱硫塔(SD-FGD),塔底部设有导气旋流装置,使烟气在塔内流动均匀,并且通过控制脱硫塔进口的pH值解决了塔内的结垢问题。

参考文献:

[1] 郝继锋, 汪莉, 宋存义, 等.钢铁厂烧结烟气脱硫技术的探讨.太原理工大学学报, 2005, 36( 4):78-91.

[2] 单尚华,李春风.加快实施烧结烟气脱硫,促进区域环境改善[C].中国钢铁 年会论文集.北京:冶金工业出版社,2007.

[3] 张凡,张伟,杨霓云等.半干半湿法烟气脱硫技术研究.环境科学研究,2000,13(1):60-63.

[4]郜学.我国烧结球团行业脱硫现状及减排对策[J].烧结球团,2008,33(3):1-5.

[5]赛俊聪,吴少华,汪洪涛,等.中国烟气脱硫脱销技术现状及国产化问题.电站系统,2003,

篇7

在烟气脱硫方法按有无液相介入划分的湿法、半干法、干法、电子束法和海水法等分类中,湿式钙法脱硫在河北的应用企业较多,其脱硫剂主要包括石灰石粉和生石灰。这也与我省环保部门制定的《污染治理技术规范》相适应,该规范中要求200MW以上机组全部采用湿式钙法或双循环式钙法脱硫工艺,其脱硫效率必须达到95%以上;同时要求200MW以下小型发电锅炉逐步淘汰,且脱硫效率低于90%的半干法或循环流化床工艺也必须退出脱硫市场。

在我省,大多数发电厂的湿式钙法烟气脱硫系统均是直接购入石灰石粉用作吸收剂,这样,脱硫系统占地面积小,工序简单。由于烟气脱硫装置可以随石灰石成分有一定的变化范围,因此,对石灰石成分的要求的标准不一。但这种变化调节通常是以牺牲脱硫效率为代价的,为保证达到规定的脱硫效率,各脱硫公司多根据自己积累的运行经验,对石灰石粉的成分指标提出自己的要求。如表1、表2、表3是三个不同企业不同时期对石灰石品质的要求。

标准起草组通过对国内外相关标准的现状调研,然后参照我国现行的检测技术规范[3]及重庆市烟气脱硫(湿法)石灰石粉地方标准,讨论确定了标准起草的思路和框架。又针对CaCO3、MgCO3、酸不溶物、反应活性等几个重要技术指标,通过广泛征求意见,研究界定了指标的限值。

2 河北地标与重庆地标的比较

2.1 产品等级划分方式不同

重庆地标分等为优等品、一等品、二等品;河北地标等级划分为I级、II级、III级三个等级。虽有区别,但本质相同。

2.2 技术要求既有相同点也有不同点

重庆地标从项目上仅规定了外观、氧化钙含量、细度(0.063mm方孔筛筛余)和水分四项指标。河北地标除外观、水分与重庆基本一致外,氧化钙含量、细度指标均有明显提高,且增加了MgCO3含量、酸不溶物指标,并要求报告反应速率(转化分数达到0.8时所用时间)测定值。

2.3 氧化钙或CaCO3含量区别较大

重庆地标氧化钙含量按优等品、一等品、二等品分别为≥50.4、≥49.5、≥47.5(换算成CaCO3含量分别为≥89.95、≥88.35、≥84.78)。相对于河北地标中CaCO3含量分别为≥94.0、≥92.0、≥90.0(换算成CaO含量分别为≥52.67、≥51.55、≥50.43)的要求是偏低的,客观上有利于提高石灰石开采利用率。但就河北而言,多数脱硫企业面对严格的脱硫效率要求,普遍提出的CaCO3含量均在90.0%以上,并对影响脱硫效率的有害成分提出不同的限制要求。这也与石灰石资源丰富且低CaCO3含量石灰石利用方式较多的现状,以及脱硫企业专业技术人员较缺乏的现实有关。更由于脱硫企业曾发生的多次堵管事故,而不得不改用高品位生石灰救急的负面影响,为平衡供需双方关系,在编制标准时,我们支持了最低CaCO3含量在90.0%以上的要求。 [本文由WWw. dYlw.NE t提供,第 一论 文网专业写作职称论文和毕业论文以及服务,欢迎光临]

2.4 河北地标增加了有害成分MgCO3和酸不溶物的限制要求

由于影响脱硫效率的石灰石粉品质因素主要包括:石灰石成矿年代、晶体结构、CaCO3含量、MgCO3含量、杂质含量(主要是不溶性的Al2O3、Fe2O3、Mn3O4及SiO2等酸不溶物)、粒径(细度)有关。同时,石灰石所处运行环境的pH值、浆液中Cl-含量、Na+含量、F-含量、甲酸含量、浆液温度、搅拌速率与搅拌强度、添加剂的质量与品种、CO2分压、曝气效果以及烟尘中的可溶性Al3+、Fe3+、Zn2+对反应活性影响也较大。

结合企业脱硫实践和庄沪丰[4]、钟毅[5]等人的研究,我们确定控制的化学成分包括CaCO3含量、MgCO3含量、酸不溶物。其意义在于:

2.4.1 反应活性和脱硫效率的要求

石灰石矿通常有三种存在形式:一是以方解石形式时,其石灰石含量较高,达98%,氧化镁含量较低,对于石灰石-石膏来说是比较好的脱硫剂。二是以白云石形式存在时,其分子式为CaMg(CO3)2,这种石灰石是在地质变化过程中,钙原子被告镁原子代替自然形成的,而CaCO3与MgCO3是晶体间的力结合,其溶解度比CaCO3更低,对于石灰石-石膏脱硫系统而言,在pH值为5.2条件下,几乎没有活性。三是两种晶体结合物,既有单独的石灰石晶体,也有以白云石形式存在的混合物。如果氧化镁是以活性MgCO3形式存在时,而不是以CaMg(CO3)2形式存在时,烟气脱硫用石灰石粉的活性也差别很大。由于石灰石品质是由CaO含量决定,石灰石纯度越高,脱硫效果越好,因此需要对氧化钙、氧化镁含量、杂质含量(主要是不溶性的Al2O3、Fe2O3、Mn3O4及SiO2等酸不溶物)等加以规定。

2.4.2 运行控制和成本控制的要求

由于石灰石的成矿年代和CaCO3含量不同,其反应活性差异较大,CaCO3含量越高活性越大。而白云石比方解石的溶解速率低3~10倍,当石灰石纯度较低或要求的石灰石利用率较高时,白云石等杂质会大大降低石灰石的溶解度。MgCO3含量过高时,还容易产生大量可溶性的MgSO3,从而减小SO2气相扩散的化学反应推动力,严重影响脱硫化学反应的有效进行,且石灰石中CaCO3含量太低时会由于杂质较多而给运行带来一些问题,造成吸收剂耗量和成本费用增加。

2.4.3 促进生成优质脱硫石膏以便循环再利用的要求

烟气脱硫石膏[6]标准中规定干基二水硫酸钙含量分别不小于95%、90%、85%时划分为三个等级。其余组分大多为未充分利用的石灰石中CaCO3。对于不能达到分级要求的脱硫产物,一般采用丢弃形式,废液也随废水排放,从而会对环境造成新的污染。而造成脱硫石膏无法顺利生成的原因除了运行中的各种因素以外,因石灰石品位过低造成的循环利用率不高也是重要原因。因此也需要控制石灰石中CaCO3含量在9 0%以上。

考虑到上述原因,我们根据汇总相关实验数据,规定MgCO3和酸不溶物的限值分别为≤5.0和≤6.0。

2.5 两地地标中细度指标要求也有差别

石灰石粉细度也是影响脱硫效率的一个重要因素。对于纯度较高的石灰石,粒径对反应活性的影响远大于石灰石种类和成分的影响。反应接触面很大程度上决定化学反应速率,石灰石粉越细,单位质量接触面积越大。较细的石灰石颗粒各反应速率高,更快的吸收SO2气体,脱硫效率及石灰石利用率较高。一般情况下,0.063mm筛余小于10%时,即可满足脱硫时的粒径要求。粒径越细,越有利于气液反应,提高SO2气体吸收率。

重庆地方标准规定的是0.063mm筛余小于5.0%。而我省电厂通常采用325目筛(约0.045mm)手工干筛法测定并要求细度过筛率90%以上,即筛余小于10%。通过测定0.045mm、0.080mm负压筛细度与0.063mm干筛细度相比,感觉干筛数值不稳定,与负压筛的波动有的数据不可靠。

鉴于水泥负压筛析仪测定石灰石粉细度是成熟的方法,因此选用GB/T 1345-2005《水泥细度检验方法 筛析法》规定的45μm筛及其筛析方法,且规定45μm筛余≤10.0%。这个指标是综合考虑以下因素而确定的:一是为保证反应活性满足脱硫效率要求;二是为保证能源成本较低。由于现石灰石粉加工多为立式辊磨机或大型管磨机,均能在保证脱硫效率条件下兼顾经济性,也基本符合实际脱硫时石灰石粉的粒径情况。

2.6 河北地标中增加了反应速率指标

石灰石作为吸收剂的特性不仅包括其化学成分,主要也包括其反应活性,脱硫系统的碱量是通过石灰石粉的溶解来提供,吸收剂的活性影响到吸收剂的溶解度和溶解速度,是表示一种在酸性环境中的转化特性。活性较高的石灰石在保持相同石灰石利用率的情况下,可以达到较高的SO2脱除效率。石灰石反应活性高,石灰石利用率也高。石灰石品质不同,对生产控制有很大的影响,因此,生产中要综合考虑各个因素。

吸收剂的活性包含吸收剂种类、物化特性和与其反应的酸性环境。吸收剂的物化特性包括:纯度、晶体结构、杂质含量、粒径分布以及包括内表面(即孔隙率)在内的单位质量总表面积和堆积密度。对于石灰石粉,其反应活性的测试方法目前主要为反应速率法、MET法等两种方法。反应速率法即固定pH值为5.5、反应温度50℃和搅拌速度800r/min条件下的盐酸滴定法,表征反应时间与耗酸量的关系。因为我国已有电力标准[7]就是采用该法表征石灰石粉反应活性的,因此我们引用了该方法标准,与现有标准相衔接,突出了做为吸收剂石灰石粉的性能特点。

影响石灰石-石膏湿法烟气脱硫工艺效率的因素,除了吸收剂本身质量如纯度、粒度、杂质含量之外,过程控制质量、吸收塔工作环境、机组的烟气参数,如温度、SO2浓度、氧气量、粉尘浓度等也不同程度的影响脱硫反应进程。

3 试验方法的选择

(1)CaCO3:河北地标中按GB/T 5762-2012或GB/T 3286.1-2012进行CaO含量的测定。有异议时,按GB/T 5762-2012进行。重庆地标采用GB/T 5762-2000中EDTA法测定CaO含量。因此方法基本一致。

(2)MgCO3含量:河北地标中按GB/T 5762或GB/T 3286.1进行MgO含量的测定。有异议时,按GB/T 5762进行。

(3)含水量:同样为烘箱法。

(4)酸不溶物:河北地标中按JC/T 478.2-2013盐酸法进行。

(5)反应速率:河北地标中按DL/T 943进行。

4 结束语

河北地标虽较重庆地标在某些技术指标要求上较为严格,但相信随着脱硫技术装备的进步和专业技术人员水平的提高,一定可以在不远的将来把某些指标降到重庆地标水平,以更好地提高石灰石资源利用率。 [本文由WWw. dYlw.NE t提供,第 一论 文网专业写作职称论文和毕业论文以及服务,欢迎光临]

参考文献

[1]河北省地方标准.DB13/T 2032-2014.烟气脱硫(湿法)用石灰石粉[S]

[2]重庆市地方标准.DB50T 378-2011.烟气脱硫(湿法)石灰石粉[S].

[3]中华人民共和国行业标准.DL/T 986-2005.湿法烟气脱硫工艺性能检测技术规范[S].

[4]庄沪丰.石灰石粉品质对湿法烟气脱硫性能的影响[J].中国环保产业,2008,9:24-27.

[5]钟毅,林永明,高翔,等.石灰石/石膏湿法烟气脱硫系统石灰石活性影响因素研究[J].电站系统工程,2005,4.

篇8

随着当前工业化的快速发展,大气环境受到了比较严重的污染,比如二氧化硫和氮氧化物已经成为主要污染物。而烟气脱硫与其他脱硫方法有所不同,具有大规模商业化的性质,是控制酸雨和二氧化硫污染比较重要的技术手段措施。随着社会技术的进步,烟气脱硫脱硝技术也不断更新发展。但是在以煤炭为主要原料的企业中,在很大程度上就会增加额外的成本,很容易使企业背负比较沉重的经济负担。因此,要不断引进先进技术,积累经验教训,不断降低企业的投资成本,保证脱硫脱硝一体化技术良性运行。

一、传统的脱硫脱硝一体化技术

就目前而言,使用比较普遍的延期脱硫除尘技术主要包括以下几种技术:石灰石——湿法,这种方法具有不少的优点,原料价格比较便宜,脱硫率比较高,占有的市场份额比较高,但是投资成本比较高,很容易形成二次污染,需要得到比较好的维护;旋转喷雾半干法,与第一种方法相比,投资成本较低,最终的产物为烟硫酸钙;炉内喷钙增湿活化法,脱硫率比较高,相应的投资成本比较低,产物也是亚硫酸钙,但是很容易产生炉内的结渣;海水烟气脱硫法,施工工艺比较简单,脱硫率很高,整个系统在运行过程中安全可靠,同时投资成本比较低,但是海水烟气脱硫技术需要设置在海边,而且海水温度比较低,溶解氧的程度较高。氨法烟气脱硫法,主要以合成氨为原料,需要建立在化肥厂附近,产物主要包括氨硫等;简易湿式脱硝除尘一体化技术,脱硫脱硝率比较低,但是投资造价比较低,脱硫的主要原料为烧碱或者废碱等,需要建立在有废碱液排放工厂附近,在进行有效中和后,然后把产生的废水输送到污水处理厂。

二、原理分析

在进行脱硫脱硝过程中,主要考虑到原料、产物以及钙硫比等。首先,随着社会经济和技术的快速发展,大量的新兴产业不断崛起,许多旧的产业也不断退出市场。在烟气脱硫项目在建设过程中,需要投入比较大的投资,如果其中的工艺和原料过度依赖于化肥厂等,就会受到很大的限制,很有可能不能保证正常运转,很难取得比较良好的社会效益、经济效益和生态效益。在实际的运行过程中,石灰石和石灰作为中和剂的烟气脱硫技术得到了最为广泛的认同和应用,但是石灰石——石膏烟气脱硫技术需要将石灰石粉磨至200到300目,因此还需要建立一座粉磨站,这样不仅会增加企业的项目投资造价的成本,还会导致噪声粉尘污染,另外,脱硫的产物和反应物混在一起,在一定程度上提高了钙硫比,同时在也增加了其中运行的费用。如果采用烟气脱硫脱硝除尘一体技术,就可以在同一个装置内完成,这样就可以利用简单的设备,降低投资成本和运行费用,大大增加了企业的经济效益,还可以保护环境,防止污染。

其次,采用湿法脱硫,脱硫率比较高,主要产物包括硫酸钙和亚硫酸钙的混合物,这种中和产物二次利用可能性比较低,但要做好回收和维护工作,一旦中和产物的亚硫酸钙流到河湖中,具有比较强的还原性,在很大程度上会损耗掉水中的氧气,导致水中生物大量死亡。另一方面,由于这种物质溶解速度比较慢,会长时间的存留在水中,就会严重破坏整个水体环境,产生极为恶劣的影响。因此,在排放中和产物中,要清除其中有害杂质。

最后,钙硫比例的控制同样不能忽视,当硫钙比接近1的时候,才有可能保证最大限度的经济运行。就目前而言,湿法脱硫的方法很容易把剩余的反应物与脱硫的产物无法有效分离,这样很难实现理想中的钙硫比。因此,把反应物以颗粒状态存在就会有效解决这个问题,整个投资的资金和成本也会相应减少,提高企业的经济运行效益。

因此,在实际的运行过程中,比较理想的烟气脱硫技术应该保证脱硫率在90%以上,其中中和剂为石灰石,钙硫比要达到或者接近1,最终的产物中不能含有亚硫酸钙等杂志,才能真正降低成本,防止二次污染,实现全线的自动控制,要尽量减少对周边企业的依赖性,有效利用烟气余热。这是一种比较理想的烟气脱硫技术模式,却很难真正实现,主要原因主要包括以下几个方面:在脱硫过程中,石灰石颗粒在脱硫过程中会迅速溶解,但PH必须小于4,与此同时,CaCO3的溶解物在PH小于4的情况下,对二氧化硫就会丧失吸收能力。在二氧化硫溶于水后,就会生成亚硫酸和硫酸,与石灰石发生化学反应后,就会生成亚硫酸钙和硫酸钙,同时会依附于石灰石颗粒的表面,堆积就会越来越多,在很大程度上阻碍反应继续进行下去。另外,硫酸钙和亚硫酸钙都属于吸收产物,其中硫酸钙析出同时不产生亚硫酸钙是比较有难的。以上问题能否有效的解决,成为烟气脱硫技术工艺能够达到预期目标以及保证整个项目装置有效安全稳定运行的关键。

三、烟气脱硫脱硝除尘技术分析

烟气脱硫脱硝除尘一体化技术就是通过烟水混合器,有效利用二次喷射的原理把产生的烟吸收到水中,然后在溶解器把烟和水进行均匀的混合溶解,使烟气中的颗粒在水的作用下,进行沉淀,同时把有害气体溶解在水中,有效清除二氧化硫、氮氧化物以及粉尘等有害物质,这种技术除尘效率、脱硫率和脱硝率都比较高,比较适用于燃煤、燃气、燃油等工业窑炉的净化工程,具有成本较低、性能较高以及寿命比较长的特点。

总的来说,整个系统结构简单,使用的设备比较少。主要包括烟水混合器、均匀溶解器、水泵以及水池;另一方面,适用于多种工艺流程:废物丢弃、石膏回收以及化肥回收等。

在进行烟气脱硫脱硝除尘过程中,要采取一定的防腐措施,做好溶液的配置工作。溶液配置要呈碱性,要把溶液均匀的加入水池的循环液中,保证PH值在8到9之间,就可以使碱溶液中的碱和烟气的二氧化硫等酸性氧化物,在经过充分的化学反应后形成盐。因此,溶液要保持一定的弱碱性,降低腐蚀性。要采用耐碱和耐酸的材料,主要包括不锈钢、陶瓷以及耐火材料。另外,还要对溶液中的PH值进行随时的监控和监测,保证万无一失。

在设置废物排出系统过程中,沉淀池要进行圆形的设计,把底部设置成漏斗形状,同时还要安装沉淀物收集器,保证浓度比较大的浆液集中在漏斗内,然后用泥浆泵将浆液抽出,对于产生的废水澄清后,可以进行循环利用。其中丢弃物可以应用在建筑材料中,石膏主要用于工业。

在使用脱硫脱硝除尘一体化技术后,除尘率可以达到100%,脱硫率在97%以上,脱硝率在90%以上,同时把二氧化硫转化为石膏。

石膏法的工艺流程图

与此同时,要做好脱硝工作,就是采取有效措施对氮氧化物,主要要一氧化氮和二氧化氮。其中一氧化氮属于惰性氧化物,虽然溶于水,但不能生成含氮的含氧酸,在常温条件下可以与氧发生反应,生成二氧化氮。二氧化氮是一种强氧化剂,可以把二氧化硫转化成三氧化硫,二氧化氮在溶于水后,生成硝酸和亚硝酸。

脱硝的方法主要包括干法和湿法,在通常条件下,干法脱硝率在80%左右,同时成本比较高。因此,可以采用湿法脱硝。由于一氧化氮和二氧化氮都溶于水,可以采用还原的方法还原氮气,还原剂为亚硫酸铵。如果氮氧化物不能够全部被还原,剩余的部分就可以变成亚硝酸铵和硫酸铵被分解出来做成化肥。

就目前而言,脱硫脱硝一体化技术工艺已经成为控制烟气污染的重点和热点,虽然有的企业已经开始使用,但是较高的成本限制了大规模的使用,因此,要不断开发新技术和新工艺,不断降低投资成本和运行费,不断提高脱硫脱硝的效率。

四、结论

综上所述,烟气脱硫脱硝除尘一体化技术在清理二氧化硫以及氮氧化物,治理空气污染方面发挥了重要的作用,具有高效、节能、经济以及环保的特点,能够有效促进企业的可持续发展。

参考文献:

[1] 徐娇霞,丁明,葛巍.玻璃窑炉烟气除尘、脱硝一体化技术[A]. 2011年全球玻璃科学技术年会会议摘要[C]. 2011

[2] 沙乖凤.燃煤烟气脱硫脱硝技术研究进展[J]. 化学研究. 2013(03)

[3] 樊响,殷旭.烧结烟气脱硫脱硝一体化技术分析[A]. 2013年全国烧结烟气综合治理技术研讨会论文集[C]. 2013

篇9

1 火电厂脱硫工艺系统介绍

由脱硫废水排放系统、压缩空气系统、设备冷却水和工艺水系统、石膏脱水系统、排放系统、SO2吸收系统、烟气系统、吸收剂浆液供应系统、石灰石浆液制备系统等构成了脱硫工艺系统(如图1)。论文主要对石灰石浆液制备系统进

图1 脱硫工艺流程图

行说明。采用购买成品石灰石粉的方式为脱硫提供吸收剂,在石灰石浆液箱内加水,将石灰石粉制成浆液。一台电加热器、两台硫化风机、四台石灰石浆液泵、一个石灰石浆液箱、两台电动旋转给料阀、一座混凝土石灰石仓共同组成了石灰石浆液制备系统。

两台石灰石浆液给料泵分别设于脱硫装置中,一台运转、另一台作备用。供浆泵出口母管上安装了调节阀、电磁流量计、质量流量计。在BMCR工况下,每台泵的容量不小于120%的石灰石浆液总耗量。为了避免堵塞调节阀上游侧浆管,可将安装与调节阀上游侧浆管上的冲洗水阀程序设置成每两小时冲洗一次,这是由于石灰石浆流调节阀在正常运行的状态下有全关闭的可能。通过调节回路,按照化学计量比,将石灰石浆液输送至吸收塔反应池的中和区。石灰石浆液流量的修正可根据石灰石浆液实测密度来实施。反应池浆液 值、脱硫效率、SO2负荷等参数控制着石灰石供浆流量。为了使脱硫装置跟踪锅炉负荷满足设定的脱硫效率,吸收浆液PH值的改变可以通过调节石灰石给浆量来实现。

成品石灰石粉就可为脱硫提供吸收剂,在石灰石浆液箱内加入水,将石灰石粉制成浆液。为了给石灰石粉仓提供气化用,石灰石粉仓中可设置流化风机。石灰石粉仓的顶部侧面和顶部装有接触式料位计和非接触式料位计,一旦仓内达到最高料位时,接触式料位计会发出报警。石灰石粉仓的底部安装有流化装置,且还设计了相应的锥形下料口,气化丰管路、气化槽、气化装置等组成了流化装置。气化槽与气化装置由金属箱体和碳化硅多孔气化板构成。经过加热器进行加热后,通过装置底部接管将热空气引入气化腔,使粉料充分流化、并呈松散状态。因此,为了防止空气中湿气入仓导致的粉料起拱,可将流化空气加热。

脱硫所需的石灰石粉外购,经密封罐车运至脱硫岛。在该脱硫岛中设置了1个石灰石粉仓,每个粉仓设计有2个锥形下料口。每个下料口都设置了一套输送和计量装置。粉仓中的石灰石粉经电动插板门、旋转给料阀送入石灰石浆罐。同时,经调节回路控制的回收水或工业水也送入石灰石浆罐,自动配制成浓度为30wt%的石灰石浆液。石灰石浆液通过调节回路,按化学计量比,经石灰石供浆泵、调节阀送入吸收塔反应池中和区。

2 脱硫化学反应描述

2.1 吸收区的反应

(1)SO2在液相的溶解

在吸收区内烟气中的SO2溶解于喷淋浆液中,烟气中的HCl和HF也同时被吸收:

SO2+H2OH2SO3(1)

FGD装置的脱硫效率主要受气-液两相传质速率的影响,即L/G、气液接触时间、相对流速以及相互挠动程度强烈影响脱硫效率。

(2)酸的离解

SO2溶解于吸收液中形成的亚硫酸迅速离解成亚硫酸氢根、亚硫酸根和氢离子:

当低PH时(

当高PH时(>5)H2SO3H++SO32-(3)

HClH++Cl-(4)

HFH++F-(5)

吸收浆液通过吸收区后,由于吸收了SO2、HCl、HF等酸性物质,产生了H+,使浆液PH下降,吸收SO2能力降低。因此必须除去H+才能恢复洗涤浆液吸收SO2的能力。

(3)中间产物的中和

通过吸收区的洗涤液中含有一定量的CaCO3,由于洗涤液在吸收区的停留时间很短,仅有很少量的CaCO3溶解后与上述离子发生以下反应:

CaCO3(S) CaCO3 (a q) (6)

CaCO3 (a q) +CO2+H2O Ca (HCO3)2(7)

Ca(HCO3)2+2H+Ca2++2CO2+2H2O(8)

Ca2++2Cl-CaCl2(a q)(9)

Ca2++2F-CaF2(10)

Ca2++2HSO3-Ca(HSO3)2(a q)(11)

Ca2++SO32-CaSO3(12)

Ca(HSO3)2+O2 Ca2++2SO42-+2H+(13)

从式(3)可知,式(12)发生在高PH环境中,洗涤浆液在吸收区的顶部时PH最高,因此式(12)的反应易发生在吸收区顶部,同时吸收塔顶部浆液中HSO3-浓度很低。

洗涤液在下落过程中,不断吸收烟气中的SO2,因此吸收区较低部位的浆液PH较低,SO32-浓度大量减少,仅含有少量CaSO3,而更多的是可溶行的亚硫酸氢钙(见式11)。

由于烟气中含有一定量O2,部分O2溶于洗涤浆液中发生式13氧化反应使部分HSO3-氧化。此反应也会使洗涤液的PH下降。

2.2 氧化区的反应

在氧化区的下部设置了固定管网式氧化气管,大量的空气鼓入氧化区的下部,在吸收区形成的未被氧化的HSO3-几乎全部被氧化成SO42-和H+:

2HSO3-+O°(溶解氧)2SO42-+2H+(14)

上述反应最好在PH4~4.5的环境中进行。由于从吸收区落入氧化区的浆液的PH大致为3.5~5,再加之氧化区底部分隔器的作用,氧化区浆液可维持在最佳氧化PH范围内。

从式14可知,HSO3-被氧化的同时产生了更多的H+,浆液中过剩的CaCO3将中和H+,与SO42-形成可溶性CaSO4:

CaCO3+2H+Ca2++H2O+CO2(15)

Ca2++SO42-CaSO4(16)

反应池的排出浆液正是从此区的底部(即靠近分隔管的下面)抽出馈送至脱水系统,因为此区域浆液中未反应的CaCO3最少,亚硫酸盐含量最低。

2.3 中和区的反应

此区主要发生中和反应和石膏结晶析出,所以有时也称此区为结晶区。

由于循环洗涤浆液中仅有一定量的CaCO3,在吸收区和氧化区内中和了一部分H+。从吸收塔顶部喷淋下来的吸收浆液中CaCO3的含量不能过高,否则洗涤浆液的PH过高在吸收区内会形成大量CaSO3,CaSO3是较难氧化成CaSO4的。PH过高也会使氧化区的氧化反应不易进行。此外,CaCO3含量过高会使氧化后未反应的CaCO3太多,造成石膏品质下降。PH也提高,氧化区浆液PH最好控制在4~4.5,因此进入中和区的浆液还含有较多的H+和SO42-,通过向中和区补加一定量的石灰石浆液来中和之,与此发生式15和式16所示的反应。向中和区补加一定量的石灰石浆液的另一目的是,使进入下一循环的洗涤浆液中有适当含量的CaCO3,恢复洗涤浆液的PH值。

中和区中CaSO4的不断产生导致了溶液的过饱和,从而形成石膏结晶析出:

CaSO4+2H2OCaSO4·2H2O(17)

在石膏结晶析出的过程中,通过控制CaSO4的过饱和度使石膏结晶缓慢析出,避免形成大量细小的石膏晶核。通过维持循环吸收浆液含固量80~180g/l和浆液在反应池中有足够停留时间来优化石膏结晶过程,使过饱和的CaSO4趋于在已有的石膏表面析出结晶并有足够时间逐渐长大。

3 优化脱硫系统改进策略

传统的脱硫系统存在着一些问题,例如:系统经济性较差、脱硫系统与主机之间协调不足、GGH结垢及堵塞、脱硫工艺精度较低、运行稳定性差等。为了使上述问题得以有效解决,必须对脱硫系统进行优化。

3.1提高脱硫工艺

石灰石___石膏湿法脱硫反应的核心在于如何控制吸收塔浆液的PH值。吸收塔浆液的PH值受到石灰石品质、脱硫效率控制值、原烟气SO2浓度、机组出力大小等条件的影响。为提高脱硫效率,应对液气比进行合理控制。在湿法脱硫中,增加吸收塔内部的液气比的方法为:在吸收塔内增加运行循泵的台数和增设加装托盘。作为布风装置,吸收塔托盘置于吸收塔喷淋区域的下部,在整个吸收塔截面上,均匀分布着通过托盘后的烟气。循泵上的喷嘴是用来雾化石膏浆液的。喷淋系统将浆液均匀分布于吸收塔内,使烟气与吸收浆液充分接触,从而充分吸收烟气中存在的SO2。

3.2技术革新与设备改造

循环泵噪声超标、吸收塔防腐内衬局部脱落、机械密封损坏、浆液泵过流部件腐蚀磨损、 结垢堵塞等问题严重,技术革新与设备改造已势在必得,这也是优化脱硫系统设备的重要环节。

(1) 设备改造

GGH,是中文烟气换热器的英文缩写,是烟气脱硫系统中的主要装置之一。其为原烟气与净烟气之间的热交换元件。在脱硫工艺中,会先冷却进入吸收器之间的烟气。我们先从改造吹灰系统来看,可截断吹灰器原蒸汽吹灰管路,采用原蒸汽吹灰程序作为控制程序,增加高压水吹灰系统;同时注意控制吸收塔运行参数,包括吸收塔PH值,浆液密度和吸收塔液位等,也是保证GGH长周期正常运行的重要手段。经过对吹灰系统的改造,系统差压问题获得解决。

(2)更换GGH元件

仅仅通过对热换元件的冲洗不能彻底解决元件内部结垢严重的问题,因此,在不改变GGH框架的情况下,需要对换热元件进行更换。更换后,有效降低了GGH系统阻力,差压问题得到改善。

(3)人工冲洗脱硫系统

在冲洗脱硫系统并人工冲洗、检查了除雾器后,降低了脱硫系统运行电耗、提高了机组运行可靠性、降低了GGH差压、使得GGH换热元件的畅通面积得到改善。为了保持脱硫运行的可靠性,可对GGH以及除雾器进行定期彻底人工冲洗,人工冲洗GGH后,效果非常的明显。

3.3 增强主机与脱硫系统之间联调控制

将后烟气系统接入脱硫系统,在烟囱与引风机之间串接脱硫系统,如图2

图2 脱硫系统串接于后烟气系统图

所示。在机组遇到非计划停运时,通常走脱硫回路的机组烟气则被切除至旁路。串接脱硫装置后,主机与脱硫系统之间烟气通道的切换是通过旁路挡板以及进、出口挡板,烟气通道在脱硫回路与旁路的切换过程会影响到主机炉膛内部负压。对此,在对旧机组烟道进行改造的基础上解决烟气脱硫的唯一方法就是加装脱硫装置。脱硫设施在加装于主机烟道尾部后,尤其提高了高灰份煤、高硫煤的燃煤标准,这对脱硫率的数值产生了影响。脱硫系统采用两炉一塔方式,引风机并列后与增压风机串联运行,再设计一个控制器实现主机设备与脱硫系统之间的联合控制回路确保主机安全、稳定运行。同时,通过内部调节,保证入口负压在理想区间内,实现脱硫系统与主机联动控制的目标。当机组烟气走正常脱硫烟气回路时,炉旁路档板处于关闭状态时的联合控制回路,该回路新增协调控制回路,前馈采用机组负荷指令,通过引入炉膛负压偏差,共同控制运行不但实现了稳定控制炉膛负压,还合理分配了串联运行效率,减少了能量损失,提高了运行经济性。

随着国家对环保的重视,对电厂脱硫排放要求越来严格,逐步取消脱硫旁路挡板是大势所趋。我厂在2010年已取消脱硫旁路挡,脱硫系统故障停运时必须联锁停止主机组运行,这对脱硫系统的可靠性和安全提出了更高的要求。所以,对湿法脱硫系统进行运行优化,提高脱硫系统的可靠性和安全性势在必行。

4 结语

为使火电企业实现零排放,推进烟气脱硫产业化模式,致力于脱碳、脱硝、脱硫工作。只有生存环境优美了,经济才能获得稳步发展。文章分析、探讨了石灰石___石膏湿法脱硫系统优化运行的策略,结合我厂的实际脱硫系统工艺现状,从脱硫系统与主机之间的联控设计、技术革新、脱硫系统设备改造方面进行了介绍。

参考文献:

篇10

酸轧机组AGC控制应用介绍

连续退火炉炉辊的应用与改进

1420冷轧轧机斜楔调零装置设计

1420冷轧乳化液系统的应用与实践

电镀锡机组锡溶解工艺的应用研究

提高冷轧普冷家电板抗时效性能的试验研究

镀锡板切斜的控制与研究

镀锡板表面淬水斑产生机理及控制研究

镀铝锌机组辊涂工艺研究

锌锅外部加热装置在镀锌机组的应用探讨

镀锌板平整边皱缺陷的产生原因及其解决措施

镀锡机组电镀电流的控制

减少热镀铝锌锌渣的产生

降低轧制T5料轧制力异常升高的措施

镀锡机组橡胶套筒损伤原因及防范措施

T4料局部边浪形成机理分析

冷轧厂轧制油消耗分析

对钢板桩有关特性参数的初步认识与分析

转炉炉体挡渣板装置

梅钢新原料贮运工程特点

高炉料面探测系统使用雷达探尺的实践

干熄焦技术在梅钢的应用

中间件在镀锌机组L2过程控制系统中的应用

梅钢1420mm酸轧机组的自主集成与创新

罗斯蒙特3051型智能变送器在套筒石灰窑中的应用

转炉倾动装置切向键装配工艺研究

基于BP神经网络的BNS440热轧板力学性能预测

12MW汽轮发电机轴承破裂问题研究处理

原料码头门机卸煤能力与泊位功能定位分析

烧结烟气湿法脱硫与干法脱硫工艺比较与总结

浅析自耦式电网无功连续补偿技术

热轧板边部损伤缺陷分析及控制

钢中氮含量对翘皮的影响

热轧平整过程控制系统稳定性分析

调整6RA70整流参数的铸机动态负荷分配实践

建构适应企业发展的培训学科体系的思路

科技论文中常见不规范表达问题分析

降低硬度的新技术在梅钢回用水厂的应用

一种连铸拉矫机动态负载分配控制装置

板坯去毛刺机控制系统及其在梅钢的应用

蓄热式燃烧技术在梅钢加热炉上的应用

含杂质气体的取样探头

液压交换机速度过缓问题处理实践

钢板桩在基坑支护工程中的应用

一种连铸坯表面目标温度监控分析方法及其装置

铸造起重机起升机构的性能特点及使用维护

一种新型试验焦炉的自动控制系统

DCS系统中在线无干扰升级的过程与技术

采用便携式超声波流量计对在线流量计的检测

冷轧带钢电解碱洗技术

梅山尾矿分级过滤试验研究

对一种连铸板坯异常变形的分析

梅钢电力调度自动化系统发展探讨

梅钢压缩空气系统概况及节能思考

篇11

引言:

在我国的电能结构中,基于燃煤的火力发电是主要发电方式,可占据整个电能装机容量的百分之七十以上。但是在提升能源供给的同时,如果不及时采取有效的技术和方法对燃煤电厂的氮氧化物排放进行控制则会对我们的生活环境带来的巨大的负面影响。为消除这种影响必须采用更加高效的煤燃烧技术和烟气除尘脱硝脱硫技术来降低发电过程中生成的氮氧化物。

1.干法烟气脱硝脱硫技术在电厂的应用

所谓干法烟气脱硫,是指脱硫的最终产物是干态的。主要有炉内喷钙尾部增湿活化、荷电干式喷射脱硫法(CSDI法)、电子束照射法(EBA)、脉冲电晕法(PPCP)以及活性炭吸附法等。以下对炉内喷钙加尾部增湿活化、吸收剂喷射、活性焦炭法作简单分析。

1.1炉内喷钙加尾部增湿活化脱硫工艺

炉内喷钙加尾部增湿活化工艺是在炉内喷钙脱硫工艺的基础上在锅炉尾部增设了增湿段,使脱硫的效率大大提高。该工艺的吸收剂多以石灰石粉为主,石灰石粉由气力喷入炉膛850-1150℃温度区,石灰石受热分解为二氧化碳和氧化钙,氧化钙与烟气中的二氧化硫反应生成亚硫酸钙。由于反应在气固两相之间进行,受到传质过程的影响,反应速度较慢,吸收剂利用率较低。在尾部增湿活化反应内,增湿水以雾状喷入,与未反应的氧化钙接触生成Ca(OH)2进而与烟气中的二氧化硫反应,进而再次脱除二氧化硫。当Ca/S为2.5及以上时,系统脱硫率可达到65%-80%。

在烟气进行脱硫,因为增湿水的加入烟气温度下降(只有55-60℃,一般控制出口烟气温度高于露点10-15℃,增湿水由于烟温加热被迅速蒸发,未反应的反应产物和吸收剂呈干燥态随烟气排出,被除尘器收集下来。同时在脱硫过程对吸收剂的利用率很低,脱硫副产物是以不稳定的亚硫酸钙为主的脱硫灰,使副产物的综合利用受到影响。

南京下关发电厂2×125MW机组全套引进芬兰IVO公司的LIFAC工艺技术,锅炉的含硫量为0.92%,设计脱硫效率为75%。目前,两台脱硫试验装置已投入商业运行,运行的稳定性及可靠性均较高。

1.2吸收剂喷射同时脱硫脱硝技术

1.2.1炉膛石灰(石)/尿素喷射工艺

炉膛石灰(石)/尿素喷射同时脱硫脱硝工艺由俄罗斯门捷列夫化学工艺学院等单位联合开发。该工艺将炉膛喷钙和选择非催化还原(SNCR)结合起来,实现同时脱除烟气中的二氧化硫和氮氧化物。喷射浆液由尿素溶液和各种钙基吸收剂组成,总含固量为30%,pH值为5~9,与干Ca(OH)2吸收剂喷射方法相比,浆液喷射增强了SO2的脱除,这可能是由于吸收剂磨得更细、更具活性[17]。Gullett等人采用14.7kW天然气燃烧装置进行了大量的试验研究[18]。该工艺由于烟气处理量太小,不能满足工业应用的要求,因而还有待改进。

1.2.2整体干式SO2/NOx排放控制工艺

整体干式SO2/NOx排放控制工艺采用Babcock&Wilcox公司的低NOXDRB-XCL下置式燃烧器,这些燃烧器通过在缺氧环境下喷入部分煤和空气来抑制氮氧化物的生成。过剩空气的引入是为了完成燃烧过程,以及进一步除去氮氧化物。低氮氧化物燃烧器预计可减少50%的氮氧化物排放,而且在通入过剩空气后可减少70%以上的NOx排放。无论是整体联用干式SO2/NOx排放控制系统,还是单个技术,都可应用于电厂或工业锅炉上,主要适用于较老的中小型机组。

1.3活性焦炭脱硫脱硝一体化新技术

活性焦炭脱硫脱硝一体化新技术(CSCR)是利用活性焦炭同时脱硫脱硝的一体式处理技术。它的反应处理过程在吸收塔内进行,能够一步处理达到脱硫脱硝的处理效果,使用后的活性焦炭可在解析塔内将吸附的污染物进行析出,活性焦炭可再生循环使用,损耗小,损耗的粉末送回锅炉作燃料继续使用。其中活性焦炭是这一处理过程的关键和重要的因素,它既作为优良的吸附剂,又是催化剂与催化剂载体。脱硫是利用活性焦炭的吸附特性;除氮是利用活性焦炭作催化剂,通过氨,一氧化氮或二氧化氮发生催化还原反应而去除。

活性焦炭吸收塔分为两部分,烟气由下部往上部升,活性炭在重力作用下从上部往下部降,与烟气进行逆流接触。烟气从空气预热器中出来的温度在(120-160)℃之间,该温度区域是该工艺的最佳温度,能达到最高的脱除率。

烟气首先进入吸收塔下部,在这一段二氧化硫(SO2)被脱除,然后烟气进入上面部分,喷入氨与氮氧化物(NOX)反应脱硝。饱含二氧化硫的焦炭从吸收塔底部排放出来通过震动筛,不合大小尺寸的焦炭催化剂在进入解吸塔之前被筛选出来。经过筛选的活性焦炭再被送到解吸塔顶部,利用价值较低的活性焦炭被送回到燃煤锅炉中,重新作为燃料供应。

活性焦炭解吸塔包括三个主要的区域:上层区域是加热区,中间部分是热解吸区,下面是冷却区。

天然气燃烧器用来加热通过换热器间接与活性焦炭接触的空气,被加热的空气和燃料烟气一起送到烟囱,并排入大气。在解吸塔的底部,空气从20℃被加热到250℃,接着天然气燃烧器继续将空气加热到550℃,这部分空气将在解吸塔的上部被冷却到150℃。

2.我国燃煤电厂烟气脱硝现状

(1)在脱硝装置建设方面来看,我国已建脱硝机组在2008年已超过1亿千瓦。这种建设现状是由政府规定的氮氧化物排放标准与燃煤机组建设时的环境影响评价审批共同作用形成的。这说明燃煤电厂烟气脱硝已经成为我国经济发展和环境保护所需要重点考虑的问题之一。

(2)在脱硝工艺选择方面来看,我国绝大部分燃煤机组所使用的脱硝工艺为SCR方法,这种方法实现结构简单、脱硝效率可以超过90%,且不会在脱硝过程中生成副产物,因而不会形成二次污染,是国际中应用最为广泛的脱硝方法。统计数据表明,基于SCR工艺的烟气脱硝机组占我国总脱硝机组的比例超过90%。

(3)在SCR烟气脱硝技术设计与承包方面来看,现代烟气脱硝市场中,我国国内的承包商基本已经具备了脱硝系统的设计、建造、调试与运营能力,可基本满足国内燃煤电厂的烟气脱硝系统建设需求。

(4)在SCR关键技术和设备方面来看,虽然我国大部分燃煤电厂仍旧以引进国外先进技术为主,但是在引进的同时同样注意在其基础上进行消化、吸收和创新,部分企业或公司还开发了具有自主知识产权的SCR关键技术。在相关设备研发方面,可实现国产的设备有液氨还原剂系统、喷氨格栅设备、静态混合器设备等,但是诸如尿素水热解系统、声波吹灰器、关键仪器仪表等还未实现国产化。

(5)在产业化管理方面来看,政府正在逐渐加大对烟气脱硝的管理力度,而企业也正在按照相关要求制定和执行相关的自律规范,但是总体来说我国的烟气脱硝管理仍处于初级阶段,还需要在借鉴国外先进管理经验的同时结合我国国情制定符合我国发展要求的产业管理制度。

3.烟气脱硫脱硝技术的发展趋势

(1)在研究烟气同时脱硫脱硝技术的同时,理论研究将会更加深入,如反应机理和反应动力学等等,为该项技术走出实验室阶段,实现工业化提供充分的理论和坚实的依据。

(2)目前,国内外的研究主要集中于烟气同时脱硫脱硝技术这方面则集中在干法上,在以后的研究中,研究人员则加强研究湿法同时脱硫脱硝技术,为今后锅炉技术改造节约大量资金,减少投资金额,降低投资风险,以避免不必要的浪费。

(3)研究任何一项烟气脱硫脱硝技术,都要结合我国国情。因此,应主要研发能够在中小型锅炉上广泛应用的高效、低耗、能易操作的同时脱硫脱硝技术。

4.结语

近年来,我国电厂的烟气脱硫脱硝技术得到了很大的提升,但是它尚处于推广阶段,存在很多问题。因此,研发新型脱硫脱硝技术与设备,不断完善应用现有技术,开发更经济的、更有效的、更低廉的烟气脱硫脱硝技术是科研人员工作的方向。

参考文献:

[1]刘涛,烟气脱硫脱硝一体化技术的研究现状[J],工业炉,2009(29)

[2]周芸芸,烟气脱硫脱硝技术进展[J],北京工商大学学报,2006(24)

[3]陶宝库,固体吸附/再生法同时脱硫脱硝的技术[J],辽宁城乡环境科技,2008(06):8-12

[4]王志轩,我国燃煤电厂脱硝产业化发展的思考[C],中国电力,2009(42)

篇12

1、工艺流程图

合成氨工艺流程见图1-1:图1-1合成氨生产工艺流程

2、合成氨生产废水来源

1、以煤、焦造气为原料的合成氨废水主要来自三个部分:①造气的洗涤塔和冲渣污水;②脱硫工序产生的脱硫废水;③铜洗工序产生的含氨废水。

2、以油为原料的合成氨的废水主要来自三个部分:①除炭工序产生的碳黑废水及含氰废水;②脱硫工序产生的脱硫废水;③在脱除有机硫过程中产生的低压变换冷凝液及甲烷化冷凝液即含氨废水。

3、以天然气制合氨工艺废水,主要是①脱硫工序产生的脱硫废水;②铜洗工序产生的含氨废水;③在脱除有机硫过程中产生的冷凝液即合氨废水。

3、氮肥工业生产废水零排放处理技术的研究现状

针对氮肥工业生产废水排放的特点,目前治理技术种类有物理法、化学法、生物法等多种,特别是近年来开发的新工艺、新技术层出不穷,在很多方面都取得了突破性的进展,为氮肥生产污水的治理和实现零排放提供了先进适用、经济有效的技术手段。

氮肥工业治水污染必须从源头抓起,即要实现清浊分流、三水闭路循环;采用先进生产工艺技术醇烃化和尿素工艺冷凝水深度水解,消除生产过程2个污染源;以高效换热设备,提高热回收率,减少冷却水用量;生物法终端处理,再生水回用;控制全企业的水平衡等措施,可以使氮肥生产过程吨氨补充水大降低,做到氮肥生产废水零排放,全国以煤为原料的中小氮肥厂合成氨生产量为3422.85万t,如果每年冷却用水减少80%,那么减少污水排放30.12亿t。

4、源头治理的方法

源头治理的措施是采用当前国内先进的生产工艺、技术设备,对生产工艺进行改进,在生产过程中全面回收,重复利用,尽量提高资源和能源的利用效率。具体方法有:①采用造气、脱硫系统冷却水闭路循环技术,实现含氰、含酚、含尘污水零排放。②采用锅炉系统除尘水闭路循环技术,实现含硫、含尘污水零排放。③用栲胶脱硫替代氨水液相催化脱硫,采用连续熔硫工艺回收硫磺,消除硫泡沫污染,实现含硫氨水零排放。④采用含氨废水提浓回用、稀氨水回收利用不排放技术。⑤采用尿素工艺冷凝液深度水解技术,回收其中的尿素和氨,处理后废水中含氨、含尿素均小于5×10-6作为工艺软水全部用于锅炉,实现尿素含氨氮废水零排放。⑥采用甲醇精馏残液用作造气夹套锅炉补水工艺,实现甲醇废液零排放。⑦含油废水经回收油后作为锅炉除尘洗涤水系统补水,实现含油废水的零排放。⑧采用“一套三”浅除盐工艺制脱盐水,含酸、含碱废水送入锅炉除尘洗涤水系统,实现闭路循环。

5、末端治理的方法

对末端污水处理的工艺有深度水解法、吹脱法及气提法、折点氯化法、离子交换法、化学沉淀法、生物法以及多种方法的组合等。

①深度水解技术是在20世纪70年代兴起得一门技术,可将尿素生产中要排放的工艺冷凝液中的尿素分解成氨和二氧化碳,再进行解吸将氨和二氧化碳从工艺冷凝液中分离出来回收至生产系统,使排放废液中的氨氮值低于环保规定值。早期的水解技术可使废液中的氨氮和二氧化碳残余量均小于50mg/L,但还不能满足环保的要求,后来发展的深度水解技术可使废液中的氨氮和二氧化碳残余量均小于5mg/L,水解解吸后的残液完全符合国家和行业规定的排放标准,还可将残液处理后作为软水回收至锅炉房循环使用,不外排。

②吹脱法及气提法:均是将废水和气体接触,使氨氮从液相转移到气相的方法。

吹脱法是使水作为不连续相与空气接触,利用水中组分的实际浓度与平衡浓度之间的差异,使氨氮转移至气相而去除。废水中的氨氮通常以铵离子(NH4+)和游离氨(NH3)的状态保持平衡而存在。将废水pH值调节至碱性时,离子态氨转化为分子态氨,然后通入空气将氨氮吹脱出。

气提法是用蒸汽将废水中游离氨转变为氨气逸出,处理机理与吹脱法一样一个传质过程,即在高pH值时,使废水与气体密切接触,从而降低废水中氨浓度的过程气提法适用于处理连续排放的高浓度氨氮废水,操作条件与吹脱法类似,对氨氮的去除率可达97%以上。但气提塔内容易生成水垢,使操作无法正常进行。

③折点氯化法是将氯气通入废水中达到某一点,在该点时水中游离氯含量最低,而氨的浓度降为零。氯化法的处理率达90%-100%,处理效果稳定,不受水温影响,投资较少,但运行费用较高,副产物氯胺和氯代有机物会造成二次污染。氯化法只适用于处理低浓度氨氮废水。

④离子交换法是指在固体颗粒和液体的界面上发生的离子交换过程。离子交换法采用无机离子交换剂沸石作为交换树脂,沸石具有对非离子氨的吸附作用和与离子氨的离子交换作用,它是一类硅质的阳离子交换剂,成本低,它对氨氮有很强的选择性。

⑤化学沉淀法是通过向废水中投加某种化学药剂,使之与废水中的某些溶解性的污染物发生反应,形成难溶盐沉淀下来,从而降低水中溶解性污染物浓度的方法。利用化学沉淀法可使废水中的氨氮作为肥料得以回收。

⑥生物法是指首先在好氧条件下,通过好氧硝化菌的作用,将废水中的氨氮氧化为亚硝酸盐或硝酸盐,然后在缺氧条件下,利用反硝化菌(脱氮菌)的将亚硝酸和硝酸盐还原为氮气而从废水中逸出。该方法可去除多种含氮化合物,总氮去除率可达70%-95%,二次污染较小且比较经济,因此在国内外得到了广泛的应用。其缺点是占地面积大,抗冲击能力较差。

⑦用循环冷却水系统脱氮

循环冷却水系统由冷却塔、循环泵和换热设备组成,它是一个特殊的生态环境,具有合适的水温、长的停留时间、巨大的填料表面积、充足的空气等优良条件,可促使氨氮的转化。氨氮主要是在冷却塔内得以脱除,其中80%为硝化作用,10%为微生物同化作用,10%为解吸作用,三种作用综合影响,但以硝化作用为主。本法适宜处理氨氮浓度低于5Omg/L的废水,一般操作条件为:温度为25-40℃,停留时间为12.5h,pH值为7.0-8.2。

6、研究目的

本论文通过对氮肥企业废水实际工程处理工艺的研究分析,寻找经济上合理、技术上可靠的小型氮肥行业废水处理的完整工艺。从而实现合理、高效地用水,提高现有水资源的重复利用率,做到按品质供水、一水多用,实现废水零排放。(作者单位:太原市排水管理处污水净化四厂)

篇13

自动化联锁保护系统优化操作

中图分类号:F407文献标识码: A

论文主体:

脱硫剂制粉生产工艺较为简单,即将原料高钙石灰石矿石进行破碎制粉达到电厂炉内脱硫所要求的粒度即可,由于整套生产设备控制方式主要是逻辑开关量控制,所以采用PLC作为自动化控制系统,我所在的项目PLC硬件采用西门子S7 300系列CPU及IO模块,通讯网络采用ProfiBus DP总线配置;上位HMI软件采用SIMATIC WinCC6.2,通过以太网和PLC通讯。硬件网络配置如下图:

硬件配置中的AI模块主要采集现场设备的电流数据,DI模块采集设备的运行状态数据,DO模块负责向设备发送启停命令,RTD模块负责采集现场大型电动机的绕组温度数据;所有I/O模块通过IM153通讯模块与CPU联接集中控制;若在硬件方面有多个独立的PLC子系统,可通过以太网联接整合成一个总的控制系统便于集中管理。

该控制系统从逻辑控制上又可细分为上料系统、制粉系统和输送系统。

一、上料系统

上料系统是将原料从原料堆积场输送到一定高度的原料缓冲仓中以供制粉设备使用,虽然此流程不是生产的核心环节,但它逻辑控制最为复杂,是PLC控制系统最为主要的部分,它的基本设备流程见下图:

系统中的每个设备的控制组成都由两个DO输出控制点(启动、关闭)和两个DI输入显示点(运行、停止)组成,系统设备的启停逻辑顺序为倒启正停,系统的运行方式可设为以下三种:

三种运行控制方式中“自动方式”为平时的正常运行方式,系统会通过模拟量输入模块(AI模块)从原料缓冲仓安装的雷达料位计采集料位数据,按照设定值自动启停上料设备,不需人为干预,设备与设备之间的启停都设有缓冲时间,一旦有中间设备发生故障,系统会根据DI模块监控到的现场设备运行状态自动关闭相应设备以避免事故扩大化;“联锁手动”和“解锁手动”是在系统非正常情况或排除故障以后采用的试验运行方式。

二、制粉系统

制粉系统是脱硫剂生产中的核心部分,设备包括给料设备、研磨设备、回料设备、风选设备和除尘设备组成。由于在此系统的启停阶段各设备之间没有紧密的逻辑关系,所以可以不设置自动启停,由控制室内的主操人员通过计算机监控到的设备现场工艺数据远程手动完成设备启停工作,只设置生产系统正常运行后的设备联锁保护。若研磨设备在运行过程中电流不稳定,所采用的给料设备送料均匀的情况下可使用PLC中的PID控制器命令,自动调整给料量,提高设备的稳定运行性。在风选设备工艺调整方面,可选用现在应用已十分成熟的变频器改变鼓风机转速替代原始的风门调节方法,这样即可以通过PLC远程进行精确的工艺调整,又可以大大降低风机的能耗。

三、成品输送系统

生产出的成品粉料可由粉罐车运输到电厂的炉前仓;若使用量较大,制粉厂与电厂的距离适中的情况下可采用由PLC全程自动化控制的气力输送方式进行,这套系统的逻辑控制比较复杂,一般会由设备制造厂家根据现场实际运行条件编制,在这里就不进行详细叙述了。

四、人机界面组态