引论:我们为您整理了13篇高中数学必修一知识点范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
篇1
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:
1.元素的确定性;
2.元素的互异性;
3.元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}
1.用拉丁字母表示集合:A={我校的篮球队员}B={12345}
2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集N-或N+整数集Z有理数集Q实数集R
关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a:A
列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}
②数学式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
4、集合的分类:
1.有限集含有有限个元素的集合
2.无限集含有无限个元素的集合
3.空集不含任何元素的集合例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA
2.“相等”关系(5≥5,且5≤5,则5=5)
实例:设A={x|x2-1=0}B={-11}“元素相同”
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
①任何一个集合是它本身的子集。A?A
②真子集:如果A?B且A?B那就说集合A是集合B的真子集,记作AB(或BA)
③如果A?BB?C那么A?C
④如果A?B同时B?A那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的运算
1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集.
记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.
2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。
记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集与并集的性质:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A
A∪φ=AA∪B=B∪A.
4、全集与补集
(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
记作:CSA即CSA={x?x?S且x?A}
(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。
(3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]
交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。
对称轴为直线x=-b/2a。对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P(-b/2a,(4ac-b^2)/4a)
当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a
|a|越大,则抛物线的开口越小。
高一数学必修1函数的知识点篇四:一次函数
一、定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)
2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k
知识高中数学必修一3反比例函数
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
上面给出了k分别为正和负(2和-2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数
当K
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:
1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。
(加一个数时向左平移,减一个数时向右平移)
知识高中数学必修一4空间几何体表面积体积公式:
1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,
3、a-边长,S=6a2,V=a3
4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱锥S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6
9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)
11、r-底半径h-高V=πr^2h/3
12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6
16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4
17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)
知识高中数学必修一5(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式:
注意下面四点:
(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程
①点斜式:直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:,直线斜率为k,直线在y轴上的截距为b
③两点式:()直线两点,
④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。
⑤一般式:(A,B不全为0)
⑤一般式:(A,B不全为0)
篇2
一、营造教学情境
在高中数学课堂中使用多媒体技术,是将课本教材中的枯燥乏味的抽象、不易理解的概念更加生动化、形象化,更加突出图文并茂,从多角度和多种层次来分析、掌握知识点,通过这种方式可以使学生的好奇心和求知欲被很好的调动,引发学生学习数学的兴趣,从而保障数学教学的课堂效率和质量。例如,在新课标数学必修五的第一章内容,讲解的正弦定理和余弦定理的知识点,那么,我们可以通过使用多媒体,发挥多媒体动态化的特点,并和余弦定理和正弦定理和知识点相结合,逐步向学生仔细分析、解释,同时,也可以把一些图片制作成特效,把教材的内容变的更加具体化、形象化,充分调动学生的脑、眼、耳等多种感官器官共同进入学习中,把学生的思维更加活跃]。再例如,在学习利用正弦定理、余弦定理来解决实际问题时,可以通过经典的加尔比海盗的故事,或是郑和下西洋的典故等,发挥这些故事的趣味性和动态性,针对这些故事来设定航海的路线、方向、出发点、终点,从而使用正弦定理和余弦定理来解答问题,使得数学问题更加吸引学生的注意力,引导学生对故事带来问题去思考。因此,我们能够看出,多媒体技术包括声像结合、动静结合等优势,正基于此,才能够更好的营造出高中数学课堂教学的教学情境,调动学生学习数学的自主性和积极性,有助于开发学生的动脑和思维能力,也有助于打造高效的课堂教学。
二、“以学生为主体”教学法
伴随着新课程改革的不断深入,传统教学中以教师为主体,同时使用填鸭式的课堂教学方法,不注重学生的独特性。这些特征使得传统教学模式已经远远达不到学生的学习要求和新课程改革政策的要求。而新型的教学方式,注重学生和教师的互动性,注重以学生为课堂主体,课堂教学围绕学生来开展。而多媒体技术正是实施新型教学模式的支持工具,把多媒体技术和教师课堂进行引导和启发,能够让学生有种身临其境的感受,让学生自主参与到学习知识点中,再经过逐渐的质疑、探索和讨论,真正的改变传统的被动接受知识的形式。例如,在学习正弦定理和余弦定理的知识点时,我们可以针对知识点的认知规则,来设计多媒体教学课件,在制作课件时,要使用循序渐进的设计方法,逐步引导学生自主去理解和掌握“正弦定理和余弦定理”、“测量距离相关的术语”“解决实际测量的方法”等问题,让学生在发挥学习自主性的同时,还可以调动学生自主研究和探索的学习的兴趣,从而使得高中数学课堂教学能够高效的进行。
三、发挥多媒体技术优势
多媒体技术在浏览网页时会有一个收藏夹,这是在浏览网页时收藏网址的站点。它能够将我们要保留的网页地址进行存储,方便后期继续使用。而在高中数学课堂教学中同样也可以使用这一功能,高中数学课堂教学内容思维量、信息量以及训练的强度都比较大。因此,当我们通过网络来搜集教学有关的内容时,把这些网址保存起来,日复一日会给数学教学积攒很多有用的信息资料,让收藏夹成为数学教学的储存资源库。另外,高中数学课堂想要实现高效性,就要求教学的内容大容量、快节奏,而收藏夹正好满足这一需求,教师只要点击收藏夹的网址,就能够把教学内容展示出来。通过此种方法可以增快课堂教学的容量和节奏,同时也可以给学生带来更多的学习资源,有利于学生培养学生的主动性和积极性]。传统的教学方式大部分都是使用板书来制作图像,不能使图像生动化、形象化,而多媒体技术能够把静态的课堂学习过程转变成动态性的知识传播过程,再通过层次化的问题导入,使得学生能够有效的掌握重点、难点知识、比如,在学习利用正弦定理和余弦定理解决实际测量的问题时,教师可以制作动态的图像,通过图像的勾画,让问题更加形象直观。
四、结语
多媒体的应用促进了当代教学模式的革新,它具有的视听结合、形象生动等特性,使得课堂教学能够发挥最大的优势,因此,我们要使用多媒体的优势来营造更好的教学情境,激发学生的学习积极性,创建更高效的教学课堂。
作者:郑宗桥 单位:西安市铁一中学
参考文献:
[1]张召伟.引入多媒体技术打造高效数学课堂[J].中国教育技术装备,2013,(31):36-37.
篇3
一、高中数学成绩分化的原因
1.初中数学相对容易,而高中数学内容多、难度大。
首先,初中数学教材内容通俗具体,多为常量,题型少而简单;而高中数学内容抽象,多研究变量、字母,不仅注重计算,而且注重理论分析,直接加大了学习难度。
其次,课堂内容也多,每节课容量大于初中数学。由于实行九年制义务教育和倡导全面提高学生素质,现行初中数学教材在内容上进行了较大幅度的压缩,对许多在高中经常要用到的知识,如:十字相乘法、根与系数的关系、立方和(差)公式等不作要求或要求较低。高中数学从知识内容上整体数量较初中剧增,高考中对学生的能力提出了更高的要求。如高一上学期必须完成必修1、必修2两本教材,其中必修1包括《集合与函数概念》、《基本初等函数(Ⅰ)》、《函数的应用》三章内容,必修2包括《空间几何体》、《点、直线、平面之间的位置关系》、《直线与方程》、《圆与方程》四章。而下学期还将完成必修3、必修4两本教材。这些都是高一学生数学成绩大幅度下降的客观原因。
最后,由于近几年教材内容的调整,虽然初高中教材都降低了难度,但相比之下,初中难度降低的幅度大。而高中由于受高考的限制,教师都不敢降低难度,造成了高中数学实际难度没有降低。因此,从一定意义上讲,调整后的教材不仅没有缩小初高中的教材内容的难度差距,反而加大了。
2.高中数学教师教法的改变。
随着教材难度的提高,课程内容的增加,在教学方式上,高中教师的教学方法也与初中不同。
在初中,由于所学内容少,涉及题型简单,课时较充足。因此,教师有充足时间对重难点内容进行反复强调,对各类习题的解法进行举例示范,学生也有足够时间进行演练、巩固(包括到黑板上板书)。而到了高中,由于知识点剧增,教学教材内涵丰富,课堂容量大,进度自然加快,没有更多的时间来反复强调重难点内容,而课后安排的习题类型也不可能与课堂上所讲的配套。在教学过程中,同学们普遍反映数学课能听懂但作业不会做。不少学生说,平时自认为学得不错,但考试成绩就是上不去。在初、高中数学教师的课堂教学是不同的,初中教师重视直观、形象教学,老师每讲完一道例题后,都要布置相应的练习,学生到黑板上板演的机会相当多。为了提高整体成绩,初中教师可以把题型分类,让学生死记解题方法和步骤。在初三,重点题目反复做过多次。而高中教师在授课时强调数学思想和方法,注重举一反三,在严格的论证的推理上下工夫。又由于高中课程紧,教师如果像初中教师那样上课就可能完成不了教学任务。因此造成初、高中教师教学方法上的巨大差距,中间又缺乏过渡过程,致使高一新生普遍适应不了高中教师的教学方法。
二、如何顺利完成初中数学与高中数学的衔接
面对以上问题,有的学生感到困惑,有的学生开始畏惧,如何帮助他们尽快适应以上变化,将直接影响他们学习效率、学习成绩的提高。其实,针对高中学生的个性特点和认知结构,我认为可从以下几个方面来使他们适应高中数学的学习,顺利完成初中数学与高中数学的衔接。
1.引导学生养成课前预习的习惯。
高中课堂容量大,知识点多,有时一节课便要学习几个定理、公式,学生若不进行课前预习,便很难跟上教师的讲解,也难保证听课的针对性。事实上,学生做好课前预习,真正做到带着问题听讲,可以明显地提高教学效率,培养学生的自学能力,使学生能适应强度较大的高中数学学习。
2.引导学生学会听课。
学生在课堂上必须专心听讲,特别是教师对核心概念的讲解、典型例题的分析,同时要善于独立思考,归纳总结出解题的数学思想和方法,找出解题的一般规律和特殊规律,最后还应适当作些笔记或批注,以提高听课效率。
3.引导学生养成及时复习、系统小结的习惯。
高中数学概括性强,题目灵活多变,只靠课上听懂是不够的,需要课后进行认真消化,归纳总结,将所学新知识融入有关的体系和网络中,以强化对核心概念、基本原理的理解和记忆,保持知识的完整性,变传统的被动学习为主动学习,不仅达到“学会”,而且实现“会学”。
4.在数学教学中以突破学生的数学思维障碍作为最好的衔接。
例如:高一年级学生刚进校时,我们都要复习一下二次函数的内容。而学生对二次函数中最大、最小值尤其是含参数的二次函数的最大、小值的求法普遍感到比较困难。为此我作了如下题型设计,对突破学生的这个难点问题有很大的帮助。在整个操作过程中,学生普遍(包括基础差的学生)热情高涨,思维始终保持活跃。
设计如下:
(1)求出下列函数在x∈[0,3]时的最大、最小值:
①y=(x-1)2+1,②y=(x+1)2+1,③y=(x-4)2+1.
(2)求函数y=x2-2ax+a2+2,x∈[0,3]时的最小值.
(3)求函数y=x2-2x+2,x∈[t,t+1]的最小值.
上述设计层层递进,每做完一题,适时指出解决这类问题的要点,大大地调动了学生学习的积极性,提高了课堂效率。
总之,如何做好初高中数学衔接,是有待于我们在今后的教学中不断创新和研究的课题。
篇4
一、高中数学课程内容的主要变化
新课程改革中倡导数学科目教学采用“模块化”和“螺旋式上升”的理念。尽管从小学到初中再到高中都有相同的知识点,但是这些知识点的难度却沿着由浅入深的过程螺旋式递进上升,是根据人类的接受能力和认知能力而循序渐进的,最终才能达到教学标准规定的目标,并非一蹴而就、揠苗助长。
为了让学生在全面发展的同时可以兼顾兴趣和爱好,高中数学教学根据大学教育的模式,做出了相应的改变,设置了“必修课程”和“选修课程”,通过学分制对学生进行考核。例如,传统数学教学中,代数、立体几何和平面解析几何等课程的全部内容都是每位学生必须学习的,新课改理念提出以后,如今的选修和必修的都要设置各类知识的模块或者专题,知识难度有所不同;之前的数学教材更专注于对数学结果和结论的渗入,新课改之后,则更注重数学方法的传授,函数的零点、二分法、投影与三视图、茎叶图、算法与程序框图等知识点日渐出现在了高中数学的教材之中;同时,之前只在大学数学中才涉及定积分、矩阵与行列式、条件概率、统计案例、超几何分布、球面几何以及数学史等内容,也可以在高中数学的教材中一窥身影了。
二、大学数学与高中数学在课程内容上的不同之处
因为学生的年龄段和智力水平处于不同的程度,高中数学和大学数学教学在课程内容的设置上存在很大的不同。概括而言,大学数学是变量数学,高中数学是常量数学。大学数学大多情况下研究抽象的、系统的、广泛的空间形式和数量关系,涉及的概念大多比较抽象、难懂,理论比较深刻;高中数学则相对而言比较具体、简单、零散,比较容易被学生理解,重在传递数学结论。
三、大学数学和高中数学如何进行课程内容的衔接
1.审阅大学数学与高中数学具体内容,精简重复的内容
审视当前的数学学科教育内容,有些知识在高中数学教学中出现后,又继续在大学数学中出现。为了避免重复,减少教学时间的浪费,大学数学必须精简与高中数学教学中重复的内容。
最明显的一个例子,新课标改革之后,高中数学的选修课程中已经详细系统地介绍了导数和定积分的相关知识,导数的概念、极限的概念、运算法则及左右极限的概念,常见函数的求导公式、求函数的极值和最值、根据导数判断函数的单调性等知识点都有涉猎。因此,大学数学教学中一元函数微积分的部分内容就可以做出适当的精简,避免与高中数学教学内容上的重复。
2.补充高中数学删除或涉及较浅的内容
新课改之后,高中数学教学内容既有增加也有减少,大学数学教学除了要避免与高中数学存在重复内容之外,也应该对高中数学中删减掉的内容有所涉及,这样才能有效避免数学知识的脱节。例如,新课改后,高中数学中删掉了反函数、极坐标的相关知识,但这些知识是大学数学课程中反函数求导、反三角函数积分、反三角函数求导、复合函数求导、利用极坐标计算二重积分等内容教学的基础,如果学生不了解这些方面的基础知识,会严重阻碍后面知识的深入,因此,可以考虑将反函数、反三角函数、极坐标的相关知识添加到高等数学的教学内容之中。
高等教育和中学教育有着密不可分的关系,既是中学教育结果的接受地,又是中等教育资源的来源处。只有做好高等教育与中学教育的衔接拼合,才能真正达到教育育人成才的目的,才能让我国的教育事业进入一个新的阶段。作为一门最基础的课程,数学教学质量的好坏也关乎重大。新课改之后,高中数学教育在课程内容上已经有了较大的变化,虽然大学教育还没有到达相应的高度,但是随着各项措施的实施,相信数学大学教育和高中教学会在课程内容上有更好的衔接。
篇5
前 言:
高中数学学科本身就具有高度抽象、难点多、思路宽等特点,因此,其数学作业也具有一定的特殊性,教师在课堂上讲解之后,必须会给学生留一些关于本节课知识点的作业,那么这个作业就一定是对本节课高度的抽象概括,而且每天都要有数学作业,这就有突出一个频繁行的特点。所以教师在留作业的时候就要注意数学作业的结构、设计原则、批改等。
一、高中数学作业结构的调整与设计
(一)数学作业结构
高中数学作业主要包括巩固性和研究性两种作业结构组成。那么巩固性作业的作用是巩固本章或本节的知识点,在老师对知识讲解之后,学生通过作业进行演绎、归纳,以便消化知识点,培养学生的运算能力、公理化、函数思想及转化的数学思想方法;研究性作业是培养学生搜集信息、处理数据等一些实际操作能力。促进学生把实际问题归结为数学模型,然后运用数学方法解决问题。调整和设计好这两种数学作业结构有利于提高学生独立思考、积极探索、科学学习的能力。
(二)高中数学作业结构的调整与设计
传统的高中数学作业,基本都是以教材为中心的,参照高考,高考经常出现的题型,教师不仅在教学中作为重点,在给学生留作业时也作为着重点,通过机械重复来加强学生的记忆,而且作业形式过于单一,过于重视结果,对学生的独立思考、创新思维等有着严重的制约和影响。针对以上情况我们对高中数学作业的结构进行了一系列的调整,并设计出了让学生更加有效吸收知识点的高中数学作业新模式。
1.自主选择作业内容
我们首先按照教学内容给学生留一点固定性作业,而研究性作业由学生自主选择其内容。如:在讲解苏教版必修二第一章第二节:点、线、面之间的位置关系中,其中“垂直于同一个平面的两条直线平行”这一知识点,在课堂教学之后,我会给学生留几道关于这个知识点的练习题,然后再让学生自由选择一些自己认为难度比较大的题型,或者是自己感兴趣去研究的内容,这样既尊重了学生的选择和兴趣,也改善了作业的效果,学生不再觉得作业是一个负担了,反而享受到了自主选择的乐趣,提高了学生作业的质量,也达到了巩固知识点的教学目的。
2.分层矫正作业
教师有一定计划的对学生进行一段时间的测验,考察学生这段时间的学习情况,这个测试就从学生的作业入手,通过测验的结果可以把学生分为两组,一组是成绩优秀的,另一组是需要继续努力的,然后让优秀的一组给需要努力的一组批改作业,并帮助改组同学学习。这样有利于学生在教学单元过程中互相帮助提高学生完成作业的主动性和积极性。
3.教师给定范围,学生选题(研究性作业)
教师在给学生留作业时,要注意给学生更大的选择自由,划定范围,学生自主搜集整理资料,进行研究、反馈、修正,然后同学之间进行交流和评价,教师协助解答疑难问题,最后达到良好的研究性作业效果。例如,我讲解苏教版高中数学必修五第一章第二节。等差数列的时候,尤其让学生理解和记住等差数列公式an=a1+(n-1)d,并且会运用到实际题型中去。我把课后作业的范围划分到该知识点之内,让学生自由选择可研究性的几种特殊情况,如,当公差为1时,等差数列是怎样的;再如,根据等差数列怎样求前n项和等一系列可研究性的作业方向。学生之间做完作业再进行探讨和交流。这样有利于启发学生开动脑筋,培养学生的思维能力,激发学生学习数学的兴趣,养成良好的学习习惯,逐步提高学生学习数学的自控能力,有利于培养学生的主体意识。
二、作业结构调整的思考
作业题要具有典型性。教师在布置作业时要知道本次作业是巩固学生本节或本章知识点的,而不是泛泛的给学生留任务。高中数学的知识点或公式都是比较多而复杂的,所以教师在布置作业时一定要具有一定的代表性,让学生课后所做的题型都典型的代表着哪一个知识点等。科学的安排作业量和质,本着对学生高度负责的态度。这样才能提高学生对数学的兴趣,使其数学知识完整化、系统化。
布置作业要有侧重点。根据教学大纲的要求,教师明确本章本节的重点和难点,在布置作业时,就有一定的目的性,重点和难点的地方就要让学生多练习几遍,有计划的安排一定程度的重现性作业,但是这里所说的重现性并不是机械的重复,要注意是有一定计划和目的的,这样才能保证学生获得牢固的知识和熟练的技能。
结语:
高中数学作业是教学中的一个重要环节,其作业结构不仅是对数学知识点的巩固及运用,对学生智能结构的发展也有重要的影响,而且通过作业可以开发学生的数学潜能,因为学生在做作业的时间里,其思想是自由支配的,合理的作业结构,可以促进学生数学思想、数学意识及优化学生数学思维品质,以达到提高学生数学成绩及教学质量的目的。
参考文献
篇6
首先是高、初中数学教材容量和培养目标的调整。一方面初中数学教材中关于数学概念、定理、公式等的严谨阐述较少,而到了高一后,数学教材中知识内容的数量剧增,如在高中数学必修1中第一、二章的概念有将近四十个。这样一来,还没有完全适应身份转变的高一新生在课堂上要完成的学习任务与初中阶段相比多了很多,学生压力很大。另一方面与初中主要是以形象具体进行叙述相比,高一增加了许多抽象知识,如在高中数学必修1的第一章中的数学符号就有近30个。培养内容的变化带来的就是数学思维方式的变化。
其次是高中数学教学方式的原因。受应试教育的影响,在初中阶段数学教师主要是将一些数学知识以片断的形式传授给学生。而到了高中阶段,学生的思维开始从具体向抽象过渡,学生的主动理解能力、综合能力有了一定的提高。但是,仍然有不少高一数学教师没有认识到学生这种变化,还是沿用以前的教学方法,不注重学生的思维训练、逻辑推理能力培养及创新精神的培养,导致很多高一新生对数学失去兴趣,学习积极性无法提高。
2.学生方面的因素。
初中阶段的数学学习主要是知识点的识记,学生主要是在教师的直接组织和引导下学习。但到了高中阶段,学校和老师在组织学习方面给予学生的自由度更大了,而高一学生还没有做好相应的心理和思维方式的准备,没有改变初中时的学习方法,很吃力地保质保量完成每天的作业。同时,高一学生受初中定式思维的影响,他们面对那些更抽象,更注重逻辑推理的内容和题目往往无从下手,不善于或不愿意思考、不主动探索,总是等老师讲答案,思想上的惰性越来越严重,思维能力没有得到提高。
二、帮助高一学生尽快适应数学学习转变的策略分析
1.注意高一教学内容与初中数学内容的衔接。
知识是有连续性的。初中数学知识是高中数学知识的基石,高中数学知识是初中数学知识的延伸,因此,在平时教学时,高中教师在讲课尤其是新授课时,要从高一学生熟悉的初中知识入手,以激发其学习热情和积极性。
以函数为例,中学数学无论是初中还是高中阶段,无论是中考还是高考,函数都是一条重要的主线。高中数学必修1函数一章与初中的二次函数联系较多。所以,教师在讲授函数内容时,必须兼顾学生以往的知识储备。如在讲授二次函数y=ax■(a≠0)时,可以从初中正比例函数y=kx(k≠0)的知识入手。在正比例函数中,函数的图像是随中常数k的不同而不同,k的符号确定直线所在象限的位置,而|k|则确定直线向上方向和y轴正方向夹角的大小;教师可以引导学生回忆这一内容,并让学生想想,二次函数的常数a的值的变化是否也是决定确定曲线的位置?|a|又会起什么作用呢?最终的结论是a的值确定着曲线所在象限的位置情况,|a|则确定着曲线与y轴的相对位置情况。可以确定的是,在高一学生刚刚入门时,这样的教学处理肯定能帮助尽快学生抓住一元二次函数的本质,并学会利用一元二次函数图像求最值,解一元二次不等式、一元二次方程等。另外,在讲授幂函数、指数函数、对数函数和三角函数时都可以从常数a的作用入手。
2.正确处理高一数学内容与初中数学内容的断层点。
为了减轻学生的负担,课改后的初中数学课程体系中有一些知识点被弱化甚至被删除了。但这些内容和知识点在高中数学学习中却会出现甚至是重点。所以,教师在讲授这些内容时要有所侧重。比如,在初中数学中计算能力已经被淡化,但在高中却是学生要反复运用的能力。所以,高一老师更要注重学生这方面能力的训练。教师要多组织练习;另外,还有一些在初中被淡化或删除的知识,如根的分布、因式分解、立方和差公式和十字相乘法等,高一的老师上课时只要涉及相关内容,就应该花一定的时间和精力对学生进行必要的补充和强化;对于在高中经常应用,初中却不作要求知识和内容,如韦达定理,一元二次函数的图像与一元二次方程根的分布等,教师也应该进行相应的深化拓展。
3.根据高一新生的思维特点,及时调整自己的教学方法。
首先,高中数学课程由模块和专题两部分组成的,在平时教学中,教师要对比各分支的不同点和相同点,使高一学生逐步领会高中数学知识之间的网状联系,整体把握高中数学.进一步理解数学的本质,提高解决问题的能力。如在可以借助一元二次函数的图像,探究一元二次函数、一元二次不等式、一元二次方程之间的内在联系。
篇7
高中数学学习具有抽象性,包含许多方面内容。学生学习过程中,可能会对教学内容不能完全理解。怎样让学生在教学过程中充分理解知识点,是需要认真思考的问题。微课的出现改进了传统数学教学方式,能够概括一个重点或者难点,并且时间较短,有利于学生理解,更适合学生的个性发展。另外,微课实现了数学课堂知识点的补充,在课外帮助学生答疑和复习。
1.高中数学教学中微课的含义和组成
微课是教师在数学课堂上或者课外教学中对高中数学知识点或者重点难点进行教学的方式,不仅包括高中数学课堂教学视频,还包含数学知识点的设计、数学课件、连写测试等,是由教学难点和辅课件、测试、反思构成的一种新型的教学资源和环境。
2.微课的特点在高中数学中的体现
2.1教学时间短。
微课相对于传统课堂来说,具有时间较短的特点,解决传统课堂中由于长时间教学而注意力不集中的问题,让学生更集中精神,更好地理解教学知识点。
2.2教学内容较少。
传统高中数学课堂由于时间长,一节课包含的教学内容很多。学生理解时间不够,导致对知识点不够理解和认知。微课时间短,内容精炼,更便于学生记忆和理解。
2.3使用方便,传播广泛。
微课视频一般时间较短,所以资源总容量较小,更便于学生下载和保存。学生可以很方便地查看教学内容。
2.4针对性强,目标明确。
高中数学教学中包含许多方面知识,如三角函数、数列、导数等。微课主要对这些专题进行整理,有针对性地制作视频,让学生在使用过程中结合自身优势和劣势进行选择。
3.微课在高中数学中的应用
3.1微课在高中数学中的应用,有利于改变教学方式。
高中数学课堂教学中,教师是主导者。随着教学方式不断进步与发展,要求教师掌握和使用科学技术。微课在高中数学教学中的运用能改变传统教学方式,不仅节省教学时间,更有利于学生理解,并且更容易地把握教学方式和时间。利用信息技术手段使抽象的数学概念和知识点变得生动和形象,有利于学生理解和教师讲解。如笔者在高中数学基本初等函数第一课时指数函数教学中,就利用了微课。从精品教学网上下载指数函数的教学视频,将之应用在课程当中。与传统教学中利用板书的教学方式相比,学生在观看过程中充分理解指数函数的定义和图像。并且视频内容非常简洁明了,充分阐明了指数函数的定义和性质,在例题讲解和理解方面非常细致,包括习题测试和讲解。在指数函数课堂教学中运用微课,取得非常明显的效果,学生对这样的讲课方式更易于接受。
3.2微课在高中数学中的应用,有利于重点难点教学。
微课具有时间短的特点,一般十分钟内完成教学内容。高中数学学习对于学生来说存在一些难点和重点,在教学过程中教师应该注重重点和难点的讲解。课本知识的教学要扎实,教学在过程中对于立体的选择很重要。学生不仅需要掌握知识点,更重要的是对于经典例题的讲解。必须在很短时间内突破重难点的掌握,在教学中应用微课能很好地进行难点和重点教学。例如,笔者在必修2第一章立体几何的教学中同样采用微课教学方法,在网上下载苗金利老师的立体几何的微课视频。苗老师生动幽默的讲课方法受到了学生的欢迎,并且在教学过程中利用数学题还能解释人生哲学。这样的教学方式让学生得到充分的理解,激发学生的学习热情。
3.3微课在高中数学中的应用,利于对教学的反思。
微课在高中数学中的应用,从某一点来说为学生接受知识提供一种新的模式。在学生学习数学的过程中,微课能有效提高学生的学习兴趣,改变传统课堂带来的无聊和枯燥,实现学生在学习过程中充分掌握及巩固学过的知识的目标。在教学方面实现个性化教学,为教学方式带来新的改变,一定程度上改变学生的学习态度,变被动为主动,实现自我提升。
结语
微课应用在高中数学中不仅能提高教师的教学效率和水平,还能提高学生的学习水平,改变传统教学方式,为高中数学教育注入新的理念和方式,促进教学工作有效开展。
篇8
新课标的初中、高中数学教材,就内容上而言,降低了难度.尤其是初中的数学教材,降低的幅度较大,呈现出“易、 少、浅”这样的特点. 高中数学教材虽然也看似降低难度,事实上,受高考指挥棒的影响,教师还是在教材内容的基础上,进行补充.再加上,本身高一数学内容就比较多.而且大多数知识又是高中数学的重点,高考的考点,比如:集合、函数、立体几何、解析几何等.还有对一些必要的数学思想方法的要求,所以就内容难度而言,初中到高中差距比较大.另一方面,现行的初中教材把原先的一些内容删除,但我们高一的老师还是以为那些内容学生已经学过,造成一些困扰.比如:解一元二次方程,我们常用的方法是“十字相乘法”.但是这一内容在初中教材中,已经被删除.有些初中老师另外将这种方法介绍给学生,而有些按照大纲要求没有另行要求.这样导致高一学生在遇到解一元二次方程的时候产生混乱,有些学过,有些没学过.高一数学老师也在是否详细讲解这一知识点中迷茫,详细讲解的话,那些学过的学生就觉得浪费时间.不详细讲的话,确实有一些学生根本不会这一方法.
(2)教学方法
首先,初中数学教材每一课时的容量小,进度慢,教师有充分的时间让学生练习、巩固、强化.但是高中数学教材每课时的容量大,进度快,很多内容不能一一展开,点到为止.自然也没有充足的时间让学生在课堂上巩固练习.所以,高一新生普遍反映数学进度太快.其次,初中对一些概念的定义,直观性强,学生容易理解.而高中出现了一些抽象的概念,学生理解起来比较困难.比如:函数的概念、函数的单调性、导数等.此外,初中数学题型较少,一般只要学生把教师讲过的题型反复练习,基本上能得到一个很不错的成绩.但是高中数学题型多而活,而且好多题目都是一个题涉及到好几个知识点.教师不可能有那么多的时间把每种题型都讲到位.所以,对于习惯了初中那种教法的高一新生来说,在解高中题的时候,常常抱怨“老师都没讲过这类型题”,普遍出现了难以适应高中数学的教学方法.
(3)学习方法
首先,初中学生大多是跟着老师走,习惯模仿,缺乏独立思考的能力.而对于高中生,最大的差别是学生要学会自主学习.其次,初中对数学的学习,比较直观,容易理解.而高中对抽象思维、空间想象要求较高.比如:高一必修2的立体几何,部分学生对几何体毫无感觉.所以,高一学生如果还是沿用初中的学习方法,会给高中对数学的学习带来阻力.
(4)心理状态
高一新生在经历完中考后,太过松懈,没有紧迫感.认为高考还远着呢,出现这种不良的心理状态.
2、从初中到高中数学过渡的应对策略
首先,高一数学教师应做好内容上的过渡.充分掌握初中教学大纲和教材,了解学生对初中知识的真实把握情况.把初中数学教材删掉而高中数学必要的知识点,可以通过校本课程的形式向学生的开放.比如: “十字相乘法”、“三角形重心性质”、“根与系数的关系”等.在高一教学过程中,不能盲目的追求进度,使学生平稳的渡过这一艰难时期.但是按照课标要求,高一上学期要完成两个模块的教学.而我们大多数都是完成必修1、必修2.这两个模块对于刚刚进入高一的学生来讲,难度较大.我认为高一可以适当的调整所上内容.比如第一模块我们可以考虑学习必修3.这一模块主要是统计案例、算法初步.尤其统计学生在小学、初中都有所涉及,容易过渡.
其次是教学方法的过渡.高中的许多知识是对初中知识的深化.所以,咱讲授这些新知识的时候,应注意对旧知识的回顾,以消除学生学习新知识的恐惧感.比如,在讲幂函数的时候,我们可以从学生熟悉的正比例函数 、反比例函数 、二次函数 入手,来体会幂函数.再就是遇到一些抽象的概念的时候,我们可以考虑从生活中的实际案例出发,创设学生熟悉的情境.比如,对于函数的单调性,我们可以通过中国历届奥运会获得奖牌、获得金牌这样的一个案例引入,把抽象的问题具体化.
篇9
一、弄清新教材的特点
人教版《普通高中课程标准试验教科书》数学(A版)教材,具有如下特点:具有“亲和力”“问题性”“科学性”与“思想性”“时代性”与“运用性”、“联系性”.
二、新教材教学重点
必修模块:重点是函数,基本初等函数,三角函数及三角恒等变换,解三角形,函数的应用,平面向量,不等式,数列,直线与方程,圆与方程,空间几何体,点线面的位置关系,算法初步,统计,概率.(共15章)
选修模块:重点是圆锥曲线与方程,导数及其应用,推理与证明,复数,常用逻辑用语,空间向量与立体几何(理科),计数原理与统计概率(理科).(共7章,文科5章)
三、根据教学内容调整教学要求的知识点
增加知识点:幂函数,三视图,空间直角坐标系,几何模型,茎叶图,三角函数模型的简单应用,全称量词与存在量词,统计案例.
删减知识点:三垂线定理及其逆定理,余切函数,已知三角函数值求角,反三角函数,线段定比分点,平移公式,分式不等式,函数的极限,极限四则运算,函数的连续性.
四、学习初中数学教材,弄清初高中教学的衔接点
做好初高中数学教学的衔接,是一项既复杂而又具体的系统工作,师生应高度重视,衔接工作做好了,将对整个高中数学的学习起着重要的作用。首先,要研究学生,使初高中数学教学的衔接符合学生的心理特点。其次,研究教材,注重初高中相关知识的衔接,完善学生的认知结构。最后,更重要的是研究教法,培养能力,加快学生对高中数学的适应速度.
五、深入研究教材、合理开发新教材的注意点
解读教材,要认真思考三个问题.首先是“教材中编写了什么”,意在熟悉教材的编写内容,尤其是跳出某一章某一节教材的框框,将某一知识点放置于这一学段甚至于整个知识体系中审视,做到了然于胸.其次是“教材中为什么这样编写”,意在对教材的呈现方式及编写理念有一深入探寻.最后是“教材中这样编写对教学有什么启示”,教材的编写对教学的启示,不仅表现在一节课中,还表现在这一知识领域中。
六、研究学生、找准学生学习行为的落实点
新课标下应研究学生、找准学生学习行为的落实点的五种做法:
做法一:让学生具备阅读数学文献的能力.
做法二:引导学生主动学习,激发学生学习数学的兴趣.
做法三:引导学生合作学习.
篇10
以高中数学(人教版)必修一第一章《集合与函数概念》中的“集合”为例,这一节的重点是学会求两个集合的并集和交集,理解补集及其运用。教师在讲授“集合”这一节时,可以采用问题教学的方式,具体做法是教师先问学生:“你们认为集合是什么?”学生摇摇头,教师鼓励学生去想,学生说出自己的答案。教师在这时先不点评学生的回答,然后讲对象、集合、元素的概念,讲完后教师说:“现在你们知道什么是集合吗?”学生点头说“知道”。教师紧接着以问题的形式向学生出示一些例题,让学生独立思考,比如让学生思考“参加里约奥运会的中国代表团所有成员构成的集合其中的元素是什么”。以问题的形式激励学生主动思考问题,有利于培养学生的探究能力,从而有利于培养学生的创造性思维。
二、重视一题多解,培养学生的创造性思维
教师对例题的讲解不应只局限于让学生理解,而应该做到让学生在理解的基础上去学会一题多解,从而激发学生的创造性
思维。
以高中数学(人教版)必修五“等差数列”的习题为例,比如讲等差数列的通项公式an=a1+(n-1)d时,教师就要运用多种方式推导这个公式,而不是只把这个公式告诉学生。教师先把公式写在黑板上,对学生进行提问,让学生说出自己的推导方法,然后教师再在黑板上用多种方法进行推导,具体有罗列法、定义法、累差法等。让学生在这一过程中开拓自己的数学思维,形成创新性思维。教师也可以在习题中让学生用两种方法解答问题,比如“已知x、y≥0且x+y=2,求x2+y2的取值范围”这一道题,这一题学生就可以利用函数思维、几何思维、三角换元思想、基本不等式等方法去解决,从而在这一解题过程中发展创新性思维。对公式或习题进行一题多解,可以开拓学生的数学思维,促进学生创新性思维的养成,提高高中数学的教学效率。
三、注重推理能力,培养学生的创造性思维
推理能力是学生在学习高中数学的过程中不可缺少的能力之一,教师在数学教学中要注意公式或习题的推理,让学生通过教师推理这一过程,通过做题逐渐形成专属于自己的推理能力,从而促使创新性思维的养成。
以高中数学(人教版)必修四中的“三角函数诱导公式”为例,教师在讲这一节时不仅要给学生讲三角函数中常用的公式,如sin(2kπ+α)=sinα(k∈Z)、sin(π+α)=-sinα等,还要以此为依据在黑板上对这些公式进行推导。比如万能公式的推导sin2α=2sinαcosα=2sinαcosα/(cos2α+sin2α),这是因为cos2α+sin2α=1,如果再把分式上下同时除cos2α,又可以得出sin2α和tαnα之间的关系。教师讲解完这一推导过程后,可以向学生留一道思考题,即让学生自己推导出三倍角公式。学生通过教师的推导以及课下自己关于三倍角公式的推?В?开拓了三角函数中的数学思维,牢牢掌握了三角函数诱导公式的相关知识点,同时这一过程也有利于培养学生关于数学的创造性思维。
四、利用多媒体技术,培养学生的创造性思维
篇11
在传统高中数学课堂教学过程中,部分老师过于强调严谨性和抽象性的数学知识的教学,且注重形式化教学,无法从根本上提高学生的数学素养。同时,由于教学过程中所使用的教材,其内容尚未涉及数学概念发现过程、数学理论形成过程的分析等数学背景知识,所以在高中数学实际教学过程中,老师只是将数学教学作为一整套完整的概念体系进行教学。著名的大数学家莱布尼茨曾说:“理解任何知识点都没有比看到知识点形成过程更重要。”然而,大部分老师只是将数学课堂教学过程视为简单和静态的反映,这不利于提高学生的创造能力。因此,在新课程深化改革的背景下,老师在数学课堂教学过程中应该充分认识到数学背景知识教学的重要性,重视数学背景知识的教学,坚持用开放性的目光看待数学课堂教学,促进学生的数学知识构建,从而有效提高学生的数学水平。
二、不断充实自己的专业知识,全面做好数学背景知识的积累和整理工作
通常情况下,在高中数学课堂教学过程中能否最大限度发挥教材的教育性作用,其关键因素在于老师。其中,高中数学老师应该较全面地理解数学学科专业知识与其他人文学科之间存在的关系。老师不仅应该明白数学知识形成的过程,还应该明白数学知识的实际应用所在。除此之外,数学老师还必须具备良好的数学思维模式和数学解题思想方法。在高中数学实际教学过程中,只有老师掌握丰富的专业知识,树立起正确的数学教育观,才能够对学生学习过程产生较积极的影响。因此,为了最大限度发挥高中数学教材的教育作用,需要老师不断提高自己的数学专业素养,重视数学背景知识教学,从而促进学生的数学知识构建,确保高中数学的课堂教学水平。
通过总结发现,当前大部分数学背景知识主要散落存在于数学教材和新课程数学配套练习中,这对高中数学老师的专业水平提出了更高的要求。当前,为了充分发挥高中数学背景知识的教育作用,需要老师大范围地搜集和整理相关数学知识点的背景知识[1]。同时,需要根据高中学生的实际数学水平和学习习惯,有效结合高中数学教学目的,对高中数学背景知识的历史性资源进行选择、组合和改造,让学生在课堂教学过程中更容易理解和记忆,从而促使学生能够从中获取有价值的信息[2]。其中,在整理数学背景知识的过程中,主要包括有效的数学学习方法、著名数学家的故事、数学思想方法等,让学生在学习数学背景知识的过程中促进自身的知识构建。
三、正确认识数学背景知识和课堂教学内容的关系,确保课堂教学效率
在当前高中数学教学过程中,大部分老师没有认识到数学背景知识教学的重要性,而学生也错误地依靠老师在课堂上讲解数学背景知识。这样的现象使数学课堂成为学生学习数学背景知识的主要场所,所以在高中数学课堂教学过程中,需要老师准确把握数学背景知识和课堂教学过程之间的关系,坚持在向学生传授数学背景知识的基础上保证课堂教学过程有序进行。尽量避免出现喧宾夺主的关系,从而确保数学课堂授课计划的正常实施。同时,要求老师应该准确把握课堂教学过程,选取合适的时间引入数学背景知识教学,坚持教学时间合理,从而更好地达到数学课堂教学目的。其中,在进行数学背景知识的教学过程中,老师可以采用多种方法解决数学背景知识和课堂教学过程之间的矛盾关系,其可以进行详细讲解,也可以进行简单粗略的讲解;可以使用一堂课进行数学背景知识专门讲解,也可以通过开展课外实践活动探究数学背景知识,从而促使数学背景知识有计划、有目的地进行。除此之外,高中数学老师还可以通过开展数学晚会、数学报告,以及著名数学家生辰纪念会等形式介绍数学背景知识。尤其是在现代信息技术飞速发展的社会背景下,老师可以要求学生充分利用多媒体设备查找相关数学知识点的数学背景,让学生在每堂数学课的前几分钟进行简单的介绍,让学生通过自己查找充实数学知识体系,从而有效提高学生的数学素养。例如:在学习《任意角的三角函数》时,笔者首先要求学生利用课余时间进行预习,让学生充分利用各种资源查找“任意角的三角函数”的来源,然后在数学课堂教学过程中引导学生进行相互沟通、相互交流,这样不仅有利于节约数学课堂教学时间,而且能够充分调动起学生参与调查和学习的积极性,从而最大限度地激发学生学习数学的兴趣,进一步加深学生对数学知识的记忆,有效促进学生的数学知识构建。
四、结语
在高中数学课堂教学过程中,老师应该充分重视数学背景知识教学,将以人为本的思想意识贯穿于整个课堂教学中。同时,坚持以数学背景知识为主要载体,让学生能够在课堂学习过程中感受到数学知识的魅力,从而促使学生的思想情感和智力得到全面发展。
篇12
导学案指的是以新课标为标准,以素质教育为目的,教师指导学生依据学案进行自主学习、主动参与及合作探究的一种教学方案,是供教师导学所使用的。它一般由四个部分组成,即学习目标、预习导学、达标检测、总结反馈。因此如何设计高中数学的导学案我们就从这四个方面入手。
(一)学习目标
学习目标是学习过程的总体愿望,因此在设计学习目标时,既要有精炼的总体的目标,又要有明确、具体的分目标。并且分目标的设定要同时考虑知识、能力、情感、价值观等多方面的目标。在设定高中数学导学案的学习目标时,需要注意的几个方面有:
1.目标不可过多或过少。
2.要在目标内涵盖学生在自学过程中可能涉及到的重难点问题,从而引起学生的重视。
3.目标表述要清晰明了,并且要具备可检测性。例如,在设定高中数学必修一《函数的概念》这一课的学习目标时,可将总目标设定为通过实例学习用集合与对应的语言来刻画函数,清楚地了解函数的概念。分目标可设定为:(1)了解构成函数的要素;(2)会求一些简单函数的定义域和值域;(3)能够正确使用“区间”的符号表示某些函数的定义域。结合学生的实际情况设定有总有分的学习目标,为学生的自学指明方向。
(二)预习导学
预习导学的部分是导学案的中心环节。教师首先要教给学生预习方法,要让学生在自学的过程中总览教材,了解重要的概念或信息,筛选出教材中较为重要的问题记录在导学案中,并进行反复斟酌。在这一过程中,教师需要嘱咐学生的是,不要照搬照抄辅导资料,要根据个人的实际情况去学习、去探索,切不可走“捷径”,这样就是去了预习导学的意义。
(三)达标检测
在导学过程中设置测验环节是可以检测相应知识点的掌握程度的,这对于巩固知识点的学习是十分重要的。在编写导学案时,注意在达标检测的环节中要做到:题量要适中,一两道题即可;题目要有针对性,紧扣知识点;题的难易程度要适中,可根据不同层次的学生设置不同难易程度的考题;题目要在规定的时间内完成,以培养学生独立思考的能力。检测不光局限于自测,也可以将其转化为提问、展示等多种形式,要根据实际情况选择检测方式。
(四)总结反馈
总结反馈部分可以说是导学案中的精华部分。总结即将知识结构进行整理归纳,反馈则是将自学过程中的难点知识以及自身的学习过程进行解析,从而收获更为深层次的东西。在编写导学案时,在这一环节一定要留出较大的空白让学生来填写,并且在课上让学生互相分享自己的总结反馈,因为学生分享总结反馈的过程也是将自学升华的一个过程。
二、如何使用高中数学的导学案
(一)通过导学案引领学生自主学习
要想让导学案在学生们的自主学习中发挥作用,首先就应提前一天将导学案分发给学生,让学生有相对充足的时间去自学教材、查阅相关资料、与同学一起探讨教师所设计的教学目标,依据导学案一步一步地进行预习。学生通过导学案进行自主学习需要做到的是解决基础性的知识,找出本节的重难点所在,如有能解决的问题尽量自己开动脑筋解决,若不能解决就做好标记,上课时向教师提问解决。例如,在进行“对数函数”这一节的预习时,学生通过导学案能大概了解到对数函数的概念,能初步理解对数函数的图像,但是对于对数函数的性质这一知识点学生一般都不太了解其推导过程,因此教师了解到这一点后就应在课堂上重点讲对数函数的性质及其相关的应用,通过教材上的例题以及课后练习题来解析这一知识点。需要注意的是,教师在上课之前应将学生的导学案收集起来,大致了解学生的预习程度,以便把握讲课的重点和方向,从而对高效课堂的构建起到一定的帮助作用。通过导学案引领学生自主学习的方法使学生久而久之养成自主学习的习惯,培养学生乐学的学习精神。
(二)通过导学案进行达标训练,进行及时的矫正反馈
通过导学案以及教师的课堂讲解解决难点疑点、理清知识点后,教师可以让学生做导学案上的达标检测题目以检验学生对当前知识点的掌握程度,做好查漏补缺。教师可以根据达标检测中再出现的问题,进行一番讲解后再出一些类似的题目,进行巩固性训练,从而将所学知识点更好地内化。同时,在教学过程中,教师要进行及时的矫正反馈,加强对数学水平较低的学生的辅导,学生要认真做好反思总结,认真梳理本堂课的重难点,把所学的知识纳入自己的知识结构当中,进一步构建知识网络。这样一来更加有利于高效课堂的构建。例如,在学习空间点、直线、平面之间的位置关系时,许多学生缺乏空间想象力,因而造成考虑问题不全面,甚至需要借助实物才能理解,针对这种情况,教师应该为学生反复地讲解知识点,并且多布置一些相关的专题训练以达到巩固知识点的目的。在这一过程中,教师要积极与学生互动,进行矫正反馈,学生在掌握这一知识点后,应将这一过程记录在导学案中以加深印象。本文通过学习目标、预习导学、达标检测、总结反馈四个方面对如何设计导学案进行解答,以及通过导学案引领学生自主学习、进行达标训练、进行及时的矫正反馈两方面大致地阐述了导学案的使用方法。当然,笔者对于导学案的探索仅仅是一个起步,但希望本文所提及的一些方法能为优化和提高导学案教学起到一定的提示作用。参考文献:
[1]王东刚.基于导学案的高中数学课堂教学方式研究[D].山东师范大学,2014.
篇13
一、引言
高等数学作为一门大学生的基础课,在大学一年级入学时就开设了。根据生源的情况,学生可能是选修高等数学(理工科学生)、经济高等数学(经济管理类学生)、文科数学(文科生)、大学数学(介于理工科与文科之间的,如农学、林学等专业)。通常是学习一个学年,上学期学习高等数学I,内容主要集中在一元函数极限与微积分及其应用;下学期学习高等数学II,内容主要集中在多元函数极限与微积分及其应用、无穷级数、微分方程等。由于最近几年大多数高校调整教学模式、减少理论课学时、增加实验课学时数,高等数学I、II的理论课时均缩减至64学时。同时,高中生也在所开设的数学课中,学习了部分高等数学的知识,与大学所学内容有重复的情况。高中数学也细分为必修与选修内容,这样做的出发点是好的,但高中数学是以高考为指挥棒,高考不要求的内容,中学教师基本上是不会花过多时间讲解的。高考大纲才是决定高中数学内容的关键。因此,在非常有限时间里,如何高效地讲授高等数学?如何补充高中未学过的内容?如何减弱或规避高中已经学过的内容?如何编写高等数学教材与大纲?现行的高中数学大纲与高等数学大纲是否合理?如何做好高中数学与高等数学的教学衔接?现在的中学教师与大学教师是否应该与时俱进,更多地提升自己以适应新形势与新情况?现在教育部门的管理者是否应该更多的听取一线教师的意见,正视教学实践中碰到的问题,从而主导大学高等数学的教学改革?本文通过比较研究,系统性地指出二者间的异同及存在的问题,并提出自己的建议,供中学教师、大学教师、教育管理部门参考。
二、内容的比较
最近十多年,大学数学中的部分内容已经下放到高中进行讲解;高中的内容在20世纪90年代的教材基础上,增加了微积分初步内容、算法初步、概率、平面向量、简单逻辑、统计等,同时也删除了一些内容。部分内容在高等数学中有重复,因此,在大学数学教学过程中面临着一些实际问题。重复的内容如何精简讲解?高中弱化或不作要求的内容,如何再强化讲解?这些都是一线教师、教材编写者、教育主管部门需要了解并想办法处理的事情。现对高中数学中的函数与极限、一元微积分内容与大学高等数学中相应的内容做比较。这块内容是重复较多的部分,也是最有代表性的内容。通过比较可以发现哪些内容在中学已经学过了?哪些内容在中学还没有接触?哪些内容在高中与大学都省略掉了,但在后续的学习中又要继续用到它,这部分内容是应该重点讲授的。如果是学过的内容,这部分内容的计算技巧学生应该是比较熟练。如果没有学过,那就得加强讲解与学习。下表是一元函数极限、微积分内容与高中数学所对应内容的异同,以这块内容为例,可以看出目前大学的高等数学(上册)内容与中学很多内容是重复的。
这是大学数学内容下放的结果。感觉还是混乱,大学数学与中学数学的内容界限不清楚。中学数学是在模仿大学的课程模式,如必修、选修,其中又细分为必修1、2等。选修也分好几个模块,这样的初衷是想因人而异,让学生去选,出发点是好的。但所有的这一切,其实最终还是落到了高考指挥棒上。无论怎么细分,最终中学的师生都是围绕高考大纲进行学习,其他的只不过是摆设,即使学有余力的学生,也不会花精力去学习这些高考不考的内容。这样的选修内容就没有意义,它不像大学的选修课,至少可以修学分。
三、存在的问题
高等数学通常分上、下两册,一个学年的学习时间。由于课时缩减,很多学校是64学时一个学期,即一周4节高等数学课。对于高数上册的内容,这个时间是完全够用的。高数上册集中讲解一元函数的微积分,这些内容学生在高中都有了初步认识,因此,入手并不难,学生期末考试的通过率也较高。但高数上册的教学、内容安排存在一些问题。
(一)大学学生的直观认识
刚进入大学,学生忙于各种事情,包括适应新的环境。高等数学上册的前几次课是讲映射与函数,数列极限等内容。这些内容学生在中学已经学过,如果教师还是照本宣科,学生的积极性与求知欲会受到严重打击,从而失去兴趣。学生会直观认为教师是在重复高中的内容,以为高等数学很容易学。但事实是高等数学下册内容是较难的,但学生碍于师生关系,不会及时向教师反映这些情况。出现这些情况,教师与教育管理部门应该负很大责任。除了教材之外,我们还应该了解一下高中数学、往年的高考数学题等,从而对学生的高中数学有一个基本了解。
(二)教师的教学问题
现在的大学数学教师基本是硕士研究生或以上的学历,他们对高数内容的理解、讲解是没有问题的。但这些教师的高中数学知识都是在20世纪90年代获得的,现在高中数学的教学大纲已经发生了很大的变化。教师们还是停留在自己以前的记忆里,没有与时俱进,拿着老旧的教材,重复讲解高中的数学知识,学生在课堂上一脸茫然,不是听不懂,而是觉得■嗦。而对比较难的、有实用性的内容教师反而又省略了,如相关变化率、反常积分等。这样下去,学生会觉得教师是在做无用功、在重复高中数学。学过的、容易的反复讲,难点内容又省略了。其实不用过分担心学生,数学是严谨的,就是要讲解抽象定义、定理与方法,而不是回避、省略它们。
(三)高等数学教材要做大的修订
修订高等数学教学大纲与高等数学教材迫在眉睫。不仅是高等数学,还有概率论、概率论与数理统计、文科数学等,这些课程也一样。为什么要修订?重复的内容太多,断层的内容不少,两不管的内容也存在。有了合适的教材与教学大纲,才能与中学的内容衔接好,做到既不重复又不遗漏地把高中数学与高等数学有机地衔接起,成为一个完整的体系。现在流行自编高等数学教材,这是很好的现象,理工学校有自己的教材、农林院校有自己合适的高数教材。这些工作通常是由一个学校或几个学校的数学教师合作完成的。正是因为如此,教材也参差不齐,这是关系到学生后续课程的基础内容。在编写教材的过程中,教师们应该充分调研高中数学内容,知道学校的生源主要在哪里?文科生还是理科生?不同的高数教材应该区别对待。教材的编写应尽量做到知识点内容不重复、不遗漏、突出重点与应用。
(四)高等数学的教学教法需要项目立项
只有立项这方面的教改科研项目,才能更好地展开全面研究,才能投入更多人、财、物去实践。因为这是一个系统工程,不是简单写本教材即可。在项目支撑下,可以对高中数学的教学情况、教学范围、教学用教材、教学辅导材料、教师的教学理念等进行调查,对大学教师的教学观念、高等数学教材、高等数学的教学计划与大纲等进行分析。通过比较研究,形成学术成果,发表于刊物,让教育工作者与决策层参考,从而对高等数学进行全方位的改革。
(五)现行高等数学授课、考试等相关问题
现在高等数学与高中数学的重复内容较多,这就决定了我们在授课过程中,首先要了解学生们在高中都学了些什么内容?是必修还是选修,是高考有要求的吗?如果是必修、高考要求的内容,那么学生高中三年对常见的计算技巧应该是比较熟悉的。如:定积分的计算、数列的极限等。其次,要了解生源,由于大学很多是大班授课,学生来自全国不同的省份,可能高中学过的数学内容有些不一样。有的可能是文科生与非文科生混在一起,这时学生的数学基础是不一样的,要照顾好所有学生的学习。再次,要充分了解高等数学教材与教学大纲,只有这样才能对高等数学与高中数学的区别、异同做到心中有数,突出重点难点,少重复,才能在非常有限的时间里,不遗漏地传授数学知识。第四,在考试方面,大学高等数学不是竞争性考试,应该更多地考查学生掌握知识的全面性,考查的覆盖面要广、知识点要多,但难度与技巧性要降低。更多的是让学生理解高等数学中的定义、定理、方法的内涵,了解数学思想,而不是死记很多公式、定理,要让学生学会自学、发现问题、查找资料解决问题。最后,应该增加平时的考核,方法与形式可以多样化。这样做是为了突出应用性,而不是为了应用而讲应用,应该结合学生的专业方向,让学生以课程论文的形式去挖掘其中的数学思想与方法理论,这是区别于高中数学的地方。
(六)高中的数学内容安排是否合理
对于大学高等数学与高中数学的衔接比较问题,现在我们更多的是从高等数学的内容适应高中内容的角度来研究,是否可以换个角度看这个问题?比如高中的数学内容与大纲的改革是否恰当?是否应该修正?目前,高中数学有必修课和选修课,内容多而杂,几乎涉及了目前大学中非数学专业的所有数学课,如:高等数学、概率论、概率论与数理统计、线性代数等。其中,高等数学、概率论与大学数学的内容重复较多。高中是以高考为目的、为指挥棒的,这是师生努力学习的目标。如果其所选的内容没有纳入高考范围,那么这些选修内容就形同虚设。另外,因为文科生与理科生的考试范围不一样,学习的内容也不同。中学的教材是不是应该更细化?对偏文科的高中生有专门的教材,从而把理科生的教材也区别出来。这样处理高中所学的数学内容就非常明确。对高考不要求的内容应该坚决去除,以免高中有内容但不讲解,而大学又觉得中学接触过了,从而轻视讲解,这样导致出现两不管现象从而误导了学生。最后,大学的数学内容是否下放到高中太多了呢?目前有这种现象,小学就接触初中的内容,初中里有高中的知识,高中又占了很多大学的内容,都是往前赶,界限不明确,学生以为自己都学了,都接触了,但事实是都不太懂。
(七)大学生学习高等数学的问题
在目前的高等数学教材、教学大纲下,大学生如何学习高等数学?这得从高中数学的教与学谈起。高中数学主要以高考为目标,对各种学习都是举一反三、反复练习。教师可以用较短的时间讲完新课,每个小的知识点教师可以讲得很详细,板书也很到位,一步接一步,很清晰。然后是课后的大量作业、测试题、模拟题。而且教师会每天陪在学生身边,包括晚自习时间。但进入大学之后,情况发生了巨大的变化。大学生的时间相对自由,教师上完课后就走了,其余时间大学生可以自由支配。在大学里,学生主要是靠自学,他们在图书馆查资料,与同学讨论,向教师请教,通过自主完成教师布置的作业,自己动手解题。教师的讲课过程相对较快,教师要在短时间内完成较多的教学内容,板书也不像高中那样整齐划一,形式比较自由。因此,有部分学生不适应大学高等数学的学习。在大学里,平时考试测验较少或几乎没有,只有期末考试一次,这也与高中大不一样,这也让学生有点不太适应。这些问题值得注意,应适当调整,让学生适应新的学习环境。
(八)上级主管部门是否应主导改革,其余时间大学生可以自由支配
这得从两个方面看。一是高中数学安排是否合理?很多以前大学数学内容下放到高中,而高中目前还都是以高考为目标,纳入很多选修的内容是否恰当?是否有点事与愿违?将大学数学内容下放到高中,出发点是拓宽学生的知识面,但实际上高中师生只围绕高考大纲而进行教学。因此,应该少而明确地下移部分大学数学内容到高中,不能太泛,不然与大学的数学没有明显的界限。也许高中的数学教师并不太了解大学的数学,这就导致了是不是把更多的大学数学内容下放到高中,让学生们提前接触大学的数学知识就是一种素质教育,是一种看起来很让人觉得“高大上”的学习?这些都值得思考。此外,高中数学的教学大纲、高考的大纲与范围是否应该调整?二是大学的高等数学必须改革,如果再不改革,就跟不上时代的变化。高等数学的教材、教学大纲、教学计划与要求、考试的模式等,都要在上级主管部门的组织下进行改革。同时,任课教师需要了解当前高中数学学习的内容,需要进一步加深对当前高中数学学习内容的了解。做到知己知彼,方能融会贯通,这样两个阶段所学的数学内容才能做到自然衔接。教育管理部门应自上而下出台相应的政策,让高中教师与大学教师均参与其中,把这两块数学的改革工作顺利完成,使得这两块的内容衔接更自然。
四、对问题的思考与对策
针对以上问题,笔者提出如下一些思考对策。第一,修改高中数学与大学高等数学的教学大纲,做到二者之间的内容尽量少重复、少遗漏,知识点界限明确,少模糊地带。高中不要有不属高考范畴的选修课,至少目前不适合。应该把文科生的教材与理科生的教材区分开来,采用不同的教材。在当前高中教育阶段,不适合开设选修课,因为师生都没有多余的时间和精力去教学高考不要求的内容。第二,修编高中与大学的数学教材,组织既了解大学又了解当前高中数学的教师参与编写教材,合理安排内容,做到有机衔接。有了明确的教学大纲与好的教材,那么经过高中数学的学习,大学的高等数学就好处理了。同时,高中学过的内容在高等数学教材中就不用再写入了。第三,大学生在学习高等数学时,要有心理准备。进入大学并不是什么都“解放”了,虽然平时不用考试,与高中相比轻松了很多,但要学会自己管理时间。学生要和高中时一样努力,独立完成作业、独立思考,从图书馆查找资料,与同学、教师多交流,主动思考,勤学多问,而不是像中学那样等教师来讲解。第四,在教学过程中,教师也需正视自己的问题,积极提升自我,积极申报教学研究项目。教师在教学过程中应尽量做到小班教学。如果条件不够,那文科生和理科生一定要分开授课,这样才有针对性。如果这个也做不到,那只能迁就文科生的数学水平教学,而不是拿着教材就讲,不去了解学生们高中数学都学了些什么。如何快速了解高中数学?一是买本高中数学教材,二是查找近几年的高考数学试卷。这样就基本可以掌握学生的基础情况。第五,教育主管部门应充分调研,收集一线教师的教学问题与经验,为改革作参考。教育主管部门要更多地倾听一线师生的意见,并参考海内外的教学教材的优秀经验,取其精华,为我所用。
以上这些思考与对策虽不太全面,但从教学内容与教材、学生的学习、教师的教学、主管部门的主导改革等几个方面做了分析,为高等数学与高中数学中存在的衔接问题提出了一定的解决思路。
五、总结
作为一线的高校数学教师,在最近几年的教学过程中,笔者深刻感觉到当前大学的数学教学与高中的数学有很多重复的内容,如高等数学中的微积分、概率论、概率统计等。鉴于此,笔者从高等数学中的一元函数的微积分与高中数学的比较出发,提出了当前高等数学与高中数学中存在的一些问题,这些类似情况也存在于概率论与概率统计中。笔者在这里提出自己的一些思考与对策,也许还不太完整且不太成熟,但这些都是一些独立的思考,仅供大家参考。
[ 参 考 文 献 ]
[1] 同济大学应用数学系.高等数学(第五版)上册[M].北京:高等教育出版社,2002.
[2] 张宇.高中数学公式定律及要点透析[M].沈阳:辽宁教育出版社,2015.