引论:我们为您整理了13篇电力系统论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
篇1
电力系统不同于其他系统的运行,尤其是顺利实现其信息的综合传输不可避免的需要解决诸多潜在的问题,尤其是信息业务综合传输过程中存在的流量冲突问题,特别需要注意的是不仅要保证实时信息业务的服务质量,同时也不可忽视各类非实时信息服务质量,这些非实时信息也是传输过程中重要的组成部分。实现基于IP技术和区分服务体系结构模型的网络通信模式的关键技术包括队列调度法,本文主要对队列调度算法进行深入讨论,使其在对电力系统信息综合传输的服务质量问题进行解决时能够发挥出关键的作用。WFQ算法的分组服务顺序与GPS模型有很大差异,它是一种模拟通用处理器共享模型的队列调度算法,本文在WFQ算法基础上提出了WF2Q+算法,并通过将“虚拟延迟时间”引入WF2Q+算法解决了该算法在推迟传输高优先级信息业务分组的问题,进而提出了提出以基于IWF2Q+算法的区分服务体系结构模型实现电力系统信息综合传输。
2.1WF2Q+算法介绍及分析WF2Q+算法是一种基于GPS模型的分组公平队列调度算法。在实际的信息业务传输过程中,分组到达各列队头部的时间会存在一定的微小差别,致使根据GPS模型得到的各队列头部分组服务顺序也出现微小差别,从而也会影响到WF2Q+调度器先为高优先级队列内分组提供服务,还是为低优先级队列提供服务。观察图1我们可以发现,优先级较高的信息业务在电力系统分组传输过程中不能保证其实时性,关键在于优先级较高的信息业务分组到达时间较晚,从而使得优先级较低的信息业务“捷足先登”,到达时间稍快,影响了电力系统高优先级信息业务分组传输的实时性。
2.2改进的WF2Q+算法——IWF2Q基于上述问题,为了保证电力系统信息综合传输中高优先级信息业务分组的实时性,本文采用了PQ调度算法,并用PQ算法原理对WF2Q+算法进行改进,按照这种方式获得的算法非常有可能将高优先级分组推迟传输问题轻而易举地解决,同时也能保持良好的公平性。具体操作如下:将优先级最高队列中传输个分组所需时间的倍定义为队列的“虚拟延迟时间。IWF2Q+算法与WF2Q+算法都采用SEFF分组选择策略,此时,不得大于系统虚拟时间,并且越小的队列中的分组越优先获得调度器的服务,通过这种方式高优先级队列中所转发分组的延时得到了降低。
3仿真分析
本文首先仿真对比电网发生故障时WFQ算法、WF2Q+算法和IWF2Q+算法情况下IEEE14母线系统各变电站与控制中心站之间变换信息时4类信息业务分组的平均延时,结果如图2所示。观察图2可知,WF2Q+算法与WFQ算法在保证信息业务实时性方面的性能不相上下,而WF2Q+算法推迟传输高优先级信息业务分组的问题可通过IWF2Q+算法解决,并且能够减小高优先级信息业务分组延时,同时也会导致低优先级信息业务分组延时变大。其次仿真对比电网发生故障时PQ算法、WF2Q+算法和IWF2Q+算法情况下得到的系统中各变电站与控制中心站之间传输四类信息业务的平均服务速率,如图3所示。该结果说明基于WF2Q+算法和IWF2Q+算法的区分服务体系结构模型能够较好地协调不同优先级信息业务获得的服务效率,达到了各类信息业务传输的公平性,且性能相当。
篇2
1.2地面中性点直接接地的变压器向井下供电
在实际安全考察中发现,大多数煤矿企业没有按照规定安装使用接入井下电源或非直接接地变压器中性点,而是采用单个煤矿专用或多家煤矿共用接地中性点变压器连接供电系统,通过三芯电缆线与三相火线的连接接入井下,使用保护接地与工作接地结合的中性线与单根相线接入办公区域和生活区,以供生活用电。
1.3没有采用双回路供电系统
我国的规定要求矿井生产使用双回路供电系统,年产量在6万吨以下的煤矿可以使用单回路供电,但必须满足备用电源的要求。但是,一些矿井仍采取单回路供电,虽然有些煤矿单位配置了柴油或汽油发电机,也仅仅为了应付检查或停电时紧急照明。而且双回路供电系统发电机容量限制情况下保证关键电气设备即使停电也可正常运行,为矿井工作人员的安全撤离提供了机会,防止透水事故和通风机停转导致粉尘、瓦斯聚集。此外,矿井周围存在静电和电火花,如果静电接地不良,会造成放电火花甚至爆炸。接触器和继电器可能因质量不佳,在开合时无法分断电流也会形成电火花;电缆长期在外力或超负荷状态下工作,也可能产生电火花,从而引发短路,导致瓦斯爆炸。
1.4地面引入的供电线路没有设置相关保护装置
煤矿井下的规定要求供电线路、通讯线路、入井轨道、电机车架线在入井处必须安装防雷装置;井下使用的电器必须具备漏电、过流和接地等保护功能。井下电气设备还要满足防爆要求。但是检查时却发现有些煤矿并没有按照规定将保护措施做到位,仅仅是将架空线接入井口,再由电缆线引入井下或者直接接入变压器,如果遇到雷电袭击,雷电会沿着导线侵入井下工作面,引起瓦斯爆炸或人员伤亡,设备遭受雷击也会被严重损坏,存在巨大安全隐患。而且,煤矿井下工作环境较为潮湿,影响设备绝缘,漏电保护器能够避免因漏电造成引发爆炸或明火,减少井下安全事故。
2煤矿井下供电系统的运行方式
2.1煤矿井下双回路供电系统的运行方式
双回路供电系统包括分列和并列两种运行方式。分列运行指的是两条线路同时运行,两段母线间的联络开关断开。分列运行适用于拥有较大负荷的变电和配电所,具有电缆线路的电流小、压降小、线路距离长、停电面积小的优点;缺点是由于两个回路具有不同负荷,对其总配电开关的保护整定也有所不同,如果一个回路停电,另一个回路的总配电开关也要重新进行整定,不利于两回路之间快速切换。并列运行指的是当一条回路运行时,另一回路带电备用,两段母线的联络开关相连接。并列运行适用于拥有较小负荷的变电和配电所,优点是两个回路拥有相同负荷,其总配电开关具有相同的保护整定,切换迅速;缺点是通过电缆线路的电流较大、压降大、运行线路间的距离短,如果短路会造成大面积停电。
2.2煤矿井下供电系统的运行方式技术要求
我国颁布的煤矿生产的安全条例明确规定必须将双回路供电运行技术应用到井下采矿区域的配电所、变电所中,为供电系统安全稳定运行提供可靠的保障。同时,井下变电所向部分通风机供电时,应采取分列运行方式,保障通风系统的安全可靠运行。此外,综合考虑井下作业的机电设备的规格和负荷,制定科学的供电方案,提高矿区生产的安全性和效率,保证井下作业的高效稳定、节能经济。
3煤矿井下供电系统的优化措施
一方面,井下供电系统的电源经地面变电所通过两台主变压器设备接入井下作业面实施供电。位于地面的主变压器采用一台运行、一台备用的运行方式,利用双电源向井下所有电气、动力、照明设备提供安全稳定供电。井下变电所的馈电盘柜为通风系统、给排水系统经过双回路电源实施供电。根据机电设备的容量和功率,按照1140V、660V进行电压的优化设置,按照127V对通信、照明和其他电气设备实施供电,按照36V对交流控制回路进行供电。另一方面,对井下供电系统要采取积极有效的漏电保护措施,建立匹配完善的保护体系。所有电气设备的保护接地装置和局部接地装置都应同井下主接地极连接成一个总接地网。严格要求井下电工按规范接线,确保电缆头密封,防止进入潮气引起漏电事故。对井下电缆悬挂到一定高度,防止出现“挤、压、砸、淋”等现象,减少漏电事故的发生。及时对馈电开关进行检漏保护试验和远方检漏试跳试验,确保漏电保护功能有效,及时切断漏电回路。
篇3
光纤通信的特点,主要是相对于传统电力通信方式来说的,这些特点同时也可视为光纤通信的优点,主要包括以下几个方面:(1)电力系统中的光纤通信的通信容量相当大,一般情况下,一对光纤便足以满足上百路甚至上千路信息路径通过,同时在一根光缆中,含有几十根甚至上百根光纤纤芯。(2)众所周知,光纤的制作材料一般为硅或者玻璃,所以这也就意味着光纤制作的原料来源非常丰富,所以对于节约金属材料的使用量具有重要的意义。(3)在电力系统通信领域中,光纤通信的保密性良好,外界的电磁干扰不容易对其造成影响,同时光纤通信也不受雷击、潮湿等因素的影响。(4)电力系统用的光纤,主要是OPGW光缆,其敷设与地线一次性完成,比较简单。(5)由于光纤通信无感应性能,所以电力系统中的光纤通信不容易受到电位升高的影响,毫无疑问,光纤通信技术是电力通信系统最为理想的通信技术。
3光纤通信在电力系统中的应用领域
光纤通信在电力系统中主要在以下方面有应用:(1)电网监控与调度自动化。电网智能化和自动化程度提高,在电网中应用光纤通信技术成为一种常态,在监控与调度中的应用表现为:把监控传感器采集到的状态信息传输给上级系统,同时下达有关的指令。(2)在配网自动化中的应用。确保系统运行的安全性与可靠性,要求在电力系统通信领域应用光纤通信,在状态监测、调度管理与分层控制等方面具有重要的作用。此外,光纤通信在继电保护器中也有着应用,主要是用于保护电流纵差中的导引线、保护继电保护装置、智能变电站或控制室内的信号传输线等。
4光纤通信在电力系统中的发展前景
现阶段,光纤通信在快速发展的形势下,已经发展到第五代光纤通信阶段,在这一阶段的光纤通信技术,具有容量大、信号传输速率快等诸多的优点。随着技术的进度与经贸水平的提高,全球的信息化程度逐步提高,因此对光纤通信的通信距离、容量和速度等提出了更高的要求。电力系统中,光纤通信的发展前景包括下面几个方面:
4.1光纤传送网新技术
目前,传输40GE/100GE网络的技术中,主要包括两种技术:①40Gbit/s技术;②100Gbit/s技术。同时,这两种技术中又包含有编码调制技术、色散补偿技术与非线性抑制技术,以及OSNR保证对策等几个方面。在未来电力系统发展过程中,为有效保证长距离光纤通信的要求,应使用光纤传输网新技术,主要是FEC技术,也就是多种增强前向纠错技术,以及动态增益均衡技术、新型编码调制技术等,通过利用电均衡接收机、功率调整技术等,可实现增加容量的目的。而频分复用技术、偏振复用技术和波分复用技术等,在未来的电力系统通信中,毫无疑问将会有越来越广泛的应用。
4.2光纤通信接入网新技术
在现阶段,电力系统中光纤通信接入技术主要存在传输距离、分光比、业务支持能力等方面的差距。目前光纤接入技术包括EPON技术(即太无源光网络)、GPON技术(即基于I-TU-TG984标准的新宽带无源光网络),以及基于星型结构的以太网接入技术、基于树形拓扑的APON/BPON技术等。一般情况下,EPON技术的实现,相比于GPON技术来说要简单不少,但是对于多业务的支持能力不如GPON技术。而基于星型结构的光纤接入技术是在传统的以太网的基础上实现的电力系统光纤通信的接入技术,这种技术适宜在单用户对宽带的要求大的区域(此种光纤接入情况下只能对单个用户进行连接)或者具有丰富光纤资源的区域,因此,相对来说基于星型结构的光纤接入技术的范围比较窄,并不是主流光纤接入技术的发展方向。
4.3光纤通信光交换新技术
对于光网络来说,典型属性之一便是光交换。当前,基于实现特征与交换颗粒进行光交换技术的划分,可以分为OPS即光分组交换、OBS即光突发交换、OCS即光路/波长交换。OCS的交换单位是波长,具有易于实现,交换颗粒大的优势,然而宽带的利用率以及复用特性非常差;OPS的交换单位是分组,并且交换的颗粒较小,因此不易于实现,然而其宽带的利用率以及统计复用特性非常好。基于光路/波长光交换技术与光分组交换技术的OBS,相对来说较为容易实现,同时,宽带利用率和复用特性能较好,因此,在未来电力系统通信中光纤通信的应用中,OBS会处于主导位置。
篇4
一、可靠性指标计算
预计2010年**省统调最大负荷为18200MW,用电量为93TW•h;统调主要电源装机容量为20222.7MW(不含三峡电站和恩施州)。可靠性指标计算结果如下:2010年**电力系统电力不足期望值HLOLE为33.61h/a,电量不足期望值EENS为26332.8MW•h/a。
二、敏感性分析
为分析各相关因素对发电可靠性指标的影响程度,特从以下几方面进行敏感性分析计算。
2.1负荷变化在其它各条件不变的情况下,最大负荷上下浮动,2010年**电力系统HLOLE值与负荷大小关系见图1所示。负荷敏感性分析图由图1可见,负荷变化对发电可靠性指标有着明显的作用,当最大负荷从推荐水平的120%减少时,HLOLE迅速降低,若负荷达到推荐负荷的105%,则HLOLE增加至基准负荷水平时的1.83倍;若负荷未达到推荐负荷水平(95%),则HLOLE仅为基准值的56.9%,HLOLE随负荷变化趋势减缓。由上可知,当负荷越处于高水平时,其变化对HLOLE的影响越大。由于负荷发展水平受多方面因素的影响,负荷预测不可能与实际一致。随着社会的发展,负荷越来越高,其较小的变化相对值,也会导致较大的绝对值变化,而且电源建设存在一定的周期。因此,更应重视负荷的中长期预测,使之更接近实际水平,另一方面也说明在电源规划中应确定合理的HLOLE的取值范围,使之具有一定的适应能力。
2.2电源装机由于电源建设项目受各方面因素影响较多,特别是在电力市场改革正在进行的今天,电源项目的投产期存在更多的不确定性。减少电源装机对HLOLE有一定的影响,但略低于负荷变化的影响;而增加电源装机对降低HLOLE的影响幅度小于因减少电源装机导致电力不足期望值增加的幅度,即系统装机容量越少,其变化对HLOLE的影响越大。从这一点也说明确定电力不足期望值的合理范围的重要性。
2.3等效可用系数通过提高现有机组的等效可用系数,相当于增加系统的可用容量,经济性方面优于新增机组方案。2005年**省火电机组的等效可用系数为91.90%,还具备一定的提高潜力。通过机组等效可用系数的浮动计算可知,随着等效可用系数的提高,HLOLE不断下降,在基准值上,可用系数平均降低4个百分点,相当于减少600MW的装机容量,而增加1个百分点,其效果接近于增加300MW的装机容量。因此加强技术水平和提高管理水平,提高机组的等效可用系数,在同样装机容量下,能有效地提高发电可靠性指标。
2.4强迫停运率2005年**省属机组等效强迫停运率为2.18%。由于各机组的强迫停运率本身不高,因此其变化时对可靠性指标的影响相对要小些。机组强迫停运率在基准值基础上,上下浮动30%对HLOLE的影响并不大,仅相差10%左右。即使机组强迫停运率增加一倍,对HLOLE的影响界于减少一台300MW机组和减少一台600MW机组之间;机组强迫停运率为零时,效果相当于增加一台300MW机组和增加一台600MW机组之间。
2.5电源结构**电力系统一个重要特点就是水电比重大,截止2005年底,**电力系统统调水电装机比重高达65.8%,随着三峡电站的建设投产以及水布垭等水电的开发建设,**电力系统水电比重仍将维持较高的比重。下面通过拟定不同的电源结构方案,其可靠性指标计算结果。可见,不同的电源构成对电力不足期望值HLOLE有影响,一般来看,相同装机容量下,火电装机容量比重高的系统其HLOLE要低一些,主要是因为水电存在受阻容量。从逐月计算结果看,火电装机容量比重高的系统枯水期HLOLE明显低于火电装机容量比重少的系统,主要是因为水电枯水期空闲容量的增加,使其可用装机减少。水火电的替代容量在0.875左右。当然,水电出力受各方面因素影响较多,计算结果与各个水电站有关,也与水电站的设计保证率有关。
2.6火电机组检修**电力系统水电机组检修一般安排在枯水季节,不影响电站出力。通过缩短火电机组的检修时间,可提高发电可靠性指标。火电机组检修周期提高30%,其效果相当于减少系统一台300MW的装机;而降低30%,其效果界于增加系统一台300MW和600MW的装机之间。
2.7与电力电量平衡程序计算结果对照现阶段,电源规划软件常用的是华中科技大学编制的《联合电力系统运行模拟软件(WHPS2000)》,因此,特对该软件计算结果与发电可靠性计算指标进行对照。注:表中备用系数不包含机组检修备用。可见,随着备用系数的取值不断下降,发电可靠性指标不断增大,也就表明系统的发电可靠性变差,基本上是备用系数降低0.01,发电装机可减少200MW,发电可靠性指标增加10%左右。由上述各计算结果可见,负荷水平和装机容量的变化对可靠性指标影响最大。从电源构成看,相同装机容量下,水电比重大的系统其可靠性要差些,2010年**省的水电替代容量在0.875左右,从这方面看,水电比重大的区域备用系数应高一些;从机组本身看,提高其等效可用系数比降低机组的强迫停运率的效果明显;另外,在可靠性指标计算中,检修是根据等备用原则安排,实际生产中,合理安排检修计划,提高机组的计划检修水平,逐步开展状态检修方法,也是提高发电可靠性的措施之一。
三、技术经济综合比较
任何可靠性水平总是与经济性密切相关,当电力系统越来越复杂、电力用户对供电质量的要求不断提高时,就需要用科学的可靠性理论来进行定量的研究。我国作为一个发展中国家,受到多种因素包括经济以及政治、社会因素的影响,一般认为可靠性指标的取值宜在1~2d/a之间。
篇5
灾害性天气及恶劣气候对电网的安全运行造成的影响主要表现为:大雪、冻雨、雨夹雪等天气极易使线路出现倒塔、断线的现象;强风易使输电线路发生断线或相间放电;大雾及沙尘天气易使输电线路发生污闪;雷电天气容易使变电站及输电线路由于雷击而遭受损坏;气温之间的温差过大也会使输电设备无法正常运行;暴雨天气极易使输电线路发生倒塔。以上灾害性天气必须引起电网调度部门的高度重视。及时、准确的对灾害性天气进行预警,能够使电网调度及管理部门提前做好应对的措施,从而减少或避免灾害带来的损失。
1.2野外的施工检修
每年都要对电力系统中的输配电设备进行定期或不定期的检修,需要检修的设备的数量多、时间长,操作也相对比较复杂,并且该项工作极易受到当地天气、气候等因素的制约,尤其是在恶劣天气状况下,会严重影响到室外的电力施工、抢修及检修等工作。为了确保顺利、安全的实施该项操作,需要先准确预报当地、当时的气象条件,再进行操作及检修等工作,这种方法不仅使检修的质量及速度有所提高,还能够在一定程度上减少由于停电引起的负荷损失。
1.3负荷预测在电力系统的运行管理及计划
过程中,负荷预测在电能分配、发电及输电等方面发挥着决定性作用。负荷用电不仅与经济的增长及工农业的发展息息相关,还受到经济、政治及政策等因素的制约。以本省为例,山西省负荷用电与天气及气候等因素之间的相关关系比较明显,干旱、内涝等增加了农灌的负荷,强度较高的降雪、降雨天气大幅度降低了用电负荷。山西省电网用电负荷表现出明显的季节性,通常表现为当夏季的气温升高时,制冷负荷有所增加;当冬季气温降低时,采暖负荷快速增加。因此,气温是电网负荷中一个较为敏感的因素。
1.4电气设备的气象服务评价
服务系统的主要功能是通过统计与分析历史的电力及气象资料,研究并逐步建立电力调度、电力线路发生污闪事故的气候量化条件,再依据不同的气象条件对污闪的概率进行计算。针对大风、温度、暴雨及湿度等建立起相应的警报系统,再分析电力设备的维护安装条件,并以此建立起合理的与设备安装维护相关的气象指标。
2电力系统气象信息服务网络化路径
2.1加大基础设施的投入力度,建立多元化的投资体系
电力气象信息服务网络化的基础设施建设是电力气象信息服务的关键问题。通常情况下山西省各个地区电力气象信息服务网络化基础设施建设存在着很大程度的差异,一些地区受到资金的制约,没有足够的资金投入到网络建设中,致使无法广泛、深入的开展电力气象信息服务网络化建设。因此,多元化投资体系的建立非常有必要。将政府投资作为主体,并设立专用资金用于建设电力气象信息服务的网络设施,从而为电力气象信息服务网络化创造良好的发展条件。另外,还要使市场的作用得到充分发挥,制定科学、合理的政策,吸引和鼓励个人及企业投资,为该地区电力气象信息服务网络化基础设施的建设提供充足的资金支撑。
2.2充分发挥政府的主导作用
社会及科技的发展,使山西省气象信息网络已经渗透到电力系统领域。目前,该地区的气象信息服务网络正逐步完善,但与发达省份相比,仍然存在着很大程度的差距。首先,基础设施相对比较薄弱,硬件设施较为简陋且短缺,技术手段也明显不足;另外,网络的运行维护及软件的开发等缺乏经费保障。电力气象信息服务网络化是一个与多个部门相互关联的综合性能较强的系统工程,相关部门必须建立起有力的具有主导性的领导体系,并加强对电力气象信息服务网络化的组织与管理,明确的对各个部门进行分工协作,不仅能使电力信息服务网络化建设过程中的浪费及重复建设现象大大减少,还能有效促进其快速、健康发展。
2.3开展技术培训,加强信息服务人才队伍建设
建设优秀的电力气象信息服务队伍是气象信息服务工作顺利开展的重要保证。目前,山西省正在逐步完善气象信息服务组织,但是仍然缺乏电力气象信息服务方面的人才,一方面存在着严重的数量不足;另一方面是现有的电力气象信息服务人员的技能及知识都已过时、陈旧,不能够与复杂的电力需求相适应。因此,必须加强工作人员的培训与教育,可以通过正规学校远程教育或在职培训,使人员的素质得到提升,还要定期组织相关人员进行技术业务培训,争取构建一支专业的高素质的电力气象信息服务队伍;同时,还要重视扩大电力气象信息服务的队伍,以确保及时、准确、有效的开展电力气象信息服务工作。
2.4建立有效的气象信息收集及机制
气象服务信息资源在电力的发展过程中发挥着重要作用,因此,必须对传播渠道进行改革,通过网络渠道收集电力部门对气象信息服务的广泛需求,并定期组织学者专家等进一步对需求进行分析,再向决策部门上报。这一方法就能够使决策部门对电力部门的需求及动向进行快速了解,并及时的对供给方式及内容等进行调整,还要快速的对电力部门的需求作出反应,使电力部门的需求与政府目标相互一致。另外,还要制定切实可行的法律及制度,使政府的气象信息更加制度化与规范化。
篇6
1.2缺乏完善的安全管理系统。
多数的电力单位对其所用技术和设备的检查不够,常常认为采用这些先进的设备不会出现问题,在单位中也就没有完善的安全管理系统,日常的工作没有规范,变电站的安全运行无法保证。在发生安全事故时,没有相应的应急系统,导致应急工作混乱,不能及时有效的恢复变电的正常运行。
1.3工作人员缺乏安全意识。
工作人员的操作是影响变电安全运行的重要因素之一。日常的工作中,电力操作人员缺乏安全意识,在工作中的状态不积极,往往是单位强制的要求维护或者领导检查时,员工才会去对基础设施进行检查和维护,很少主动的去维护设备。变电运行过程对设备的耗损相对较大,长时间的不维护保养会造成设备的老化、废弃等,甚至会影响到电力的传输和使用,更严重的可能导致一些安全事故的发生。
1.4基础设施不配套。
变电站的设备进行过多次的更换,一些设备已经符合最新的技术标准,但是还有一些设备更换次数较少甚至从安装使用后就没再更换过的,使得变电站的设备不配套。同时,由于使用时间较长,原有的设备符合当时的标准和安全要求。但在经过不断的改进后,现在已经属于被淘汰的不符合安全标准的设备了,但是由于一些原因,单位没有更换,在变电运行中增添了安全隐患。
1.5设备的老化、损耗带来的安全事故。
长时间的变电运行导致设备磨耗较多,老化严重,工作人员的不及时的维护和保养为安全事故留下了隐患,由小细节引发大的祸端。设备的不良状态制约着电网工作的正常运行,降低了电力传输和转化的效率,严重的影响了人们的生活,给人们带来生活上的诸多不便,甚至经济损失。
2提高变电运行安全运行的措施
针对变电运行中存在的单位对安全管理的重视度不够、缺乏完善的安全管理系统、工作人员缺乏安全意识、基础设施不配套、设备的老化、损耗带来的安全事故等问题,要通过加强变电安全运行的认识,完善单位的安全管理系统和制度,提高操作人员的专业素质,加强基础设施的建设,加强对于变电直流系统的管理,加强变电设备的检查维护来提高变电运行的安全。
2.1落实变电系统的分析制度
变电系统的监控站应建立变电系统运行情况的分析制度,保证一个周期内作出一次分析,分析的主要内容包括变电站安全运行情况和变电站的管理工作。针对变电站日常运行中出现的问题进行分析,如果出现问题应及时采取相关的措施进行改进。
2.2完善单位的安全管理系统和制度
引进先进的技术对变电实行科学有效的安全管理,单位内部不断完善已设立安全管理系统,加强对于变电运行的监控,统一单位内的管理制度和规范,促进单位的安全管理标准化,提高对于信号灯的检测频率和质量,加强对于光字牌和信息的保护的管理,强化五防闭锁在保护工作中的使用管理,经常对其进行维护和保养,提高系统安全事故发生时的预警机制,有效的保障倒闸操作时的系统安全。
2.3加强基础设施的建设
加强基础实施的建设,使得接地线和接地刀闸的数量和位置符合标准,确保其牢固的接地。同时加强主变、高抗冷却系统的管理,及时对换风冷电源进行切换,认真的检查备用电源和风机的完整程度,严格控制因为系统温度过高、负压过大导致的主变绝缘受损,引起系统跳闸,影响系统的正常运行,使得供电系统不能运转,配合使用五防接地桩,加大解锁钥匙的管理力度,实现管理的程序化。例如,在安装接地刀闸时严格遵循标准,确定位置和数量,明确刀闸的断开点,将接地点的螺栓稳固,验电后安装接地线。
2.4严格落实检查制度
变电站的值班人员应增加利用变电系统的监控系统进行巡视的次数,如果出现变电站的故障,应立即采取相应的措施进行解决。值班人员在进行巡视过程中,应当严格按照巡视的标准化作业指导书的内容进行巡视指导,并做好相关记录。
2.5加强对于变电直流系统的管理
直流系统直接影响熔丝的熔丝控制,控制开关的拉合,可以保护装置的正常的运行。在正常的运转中直流系统也会出现保护误动,导致供电系统不能正常运行。在日常的管理中,要注意及时的选线拉路,消除误动,减小保护误动带给人们的不便。加强保险丝的维护和更换,避免因为保险丝长期运行导致电流降低和接触不良问题的出现,对蓄电池进行定期的保养维护,确保放电的容量足够大,保证母线电压符合标准,对充电机进行电流检测。
2.6加强变电设备的检查维护
加强操作人员及时的对设备进行检查和维护,特别注意在低温、雷雨、高温天气后对设备的检查维护,进行保养,减少设备的损耗和设备中问题的纠正,避免因为一些细节造成的重大事故,注意冲油设备的油面、油位和油温、避雷针、未免防水等的检查。设置应急装备,在发生事故时能够及时有效的做出反应,迅速的恢复变电站的正常工作,保证人们的正常生活和工作。例如,在发生安全事故时,应及时的封锁现场,禁止不相干人员的进入,减少人身安全的威胁。
篇7
2.1健全电力企业的财务管理制度
随着我国市场经济的不断发展,企业现代化的程度不断提高,迫切需要与追求自我发展,追求利润相适应的现代企业管理,尤其是现代的企业财务管理。电力企业经历了改制,财务管理也应该跟上改革的步伐,以适应企业在市场经济条件下的发展。由于电力系统自身改革所遗留下的部分问题此时需要得到解决,再建立新的财务制度。企业的财务机构包括财务会计和管理会计,我国的财务机构是以会计为核心,主要行使会计核算的职能。两者相互联系又有着较大的区别。财务管理主要记录企业的日常经营活动,属于核算体制,对企业的日常资金流动和财务进行核算;管理会计则是分析财务会计提供的信息,并做对比研究,作为决策者的参考依据。作为电力企业,首先将管理职能和日常的会计职能进行有效的分离。电力企业内部中由于财务会计和管理会计的职能没能得到有效的分离,从而使各自的责任和权利混乱不清,服务对象不明,从而使财务的信息失真,不能真实的反应企业的状况,给企业的决策造成困难。当然管理和财务会计的职责不明晰不是电力系统所特有的现象,但是这种短视的行为却破坏了市场经济的秩序,也给企业的长远发展带来很大的危害。电力系统的企业应该尽力避免此类现象在企业内的发生,将会计核算和财务管理分离开来,使其相互监督和相互制衡,同时又互相配合,各负其责。
2.2加强电力企业财务管理的信息化的建设
信息在电力系统的财务管理中具有重要的作用。我国企业财务管理信息经历了单机会计电算化,企业内部局域网的统一财务软件以及企业内外流程的一体化应用三个阶段。在第三阶段,企业在局域网内实现了生产,供应,销售等于财务系统的数据共享,借助数据仓库技术和互联网,企业内部之间实现了及时的信息传递,整理和分析。给企业的管理层提供了很好的决策支持,这一阶段实现了企业管理的信息化。电力企业应该积极引进吸收这种先进的财务管理方法,实现整个电力集团内部的财务信息化,提高财务管理的效率,为决策提供及时可靠地财务信息。同时作为关系到国计民生的重要部门,电力企业更应该加强信息化的安全建设,保障企业财务的信息安全。
2.3做好电力企业的财务预算管理
实现电力系统企业的预算管理从单一逐渐变成比较完善的预算体系。通过科学的编制预算,引进先进的系统来分析财务预算,形成包括电力企业内部资金流动、生产和销售等分析报告。电力系统进行预算编制的时候应该根据自身企业的特点最好备用方案以防不确定因素的影响。同时对预算的情况应该实施监控,通过加强对自身的监督来自查预算的使用情况,同时与其他部门保持及时有效的联系来实现较好的预算目标。
2.4明确电力系统财务总监的职能与定位
健全财务管理的制度,提升财务管理信息对于管理决策的作用,要求我们重新定位和认识企业的财务总监一职。企业财务总监在企业的治理层面上说是要履行监督的职责,最好是企业的一名股东,能进入到董事会的,具有一名董事的权利和责任;而在企业的组织结构中,企业的财务总监则应该具有监督企业财务运转,参与到企业实际经营,行使企业内部财务的会计和审计职能。要协调好公司各个利益之间的关系,始终以公司的整体和长远利益作为考虑的出发点和基本点;充分发挥财务总监的监督职能,适当的可以负责包括管理,监察和审计的工作,克服传统企业中监控和审计不到位的情况,同时最大化下属主管的工作积极性。要保证公司的财务具有严格执行的规范,使杂乱无章的财务工作也能有着清晰的原则和界限,堵住不经批准随便挪用占用资金的行为,使财务工作公平公正的展开。这当然需要提升财务总监自身的专业技术和道德水平,做到严于律己,一切以公司长远可持续发展为导向。在具体的财务管理的方法中可以通过有效的计划管理,井然有序的操作,准确到位的服务,良好的奖惩激励,常态化的交流平台以及严密有效的监控来实施。总之,要更加科学系统的定位好财务总监的职能,发挥好财务总监一职的最佳作用。
篇8
1电压稳定性破坏的原因
1.1电压崩溃的起因电力系统稳定问题的物理本质是系统中功率平衡问题,电力系统运行的前提是必须存在一个平衡点。电力系统的稳定问题,直观的讲也就是负荷母线上的节点功率平衡问题。当节点提供的无功功率与负荷消耗的无功功率之间能够达成此种平衡,且平衡点具有抑制扰动而维持负荷母线电压的能力,电力系统即是电压稳定的,反之倘若系统无法维持这种平衡,就会引起系统电压的不断下降,并最终导致电压崩溃。当有扰动发生的时候,会造成节点功率的不平衡,任何一个节点的功率不平衡将导致节点电压的相位和幅值发生改变。各节点电压和相位运动的结果若是能稳定在一个系统可以接受的新的状态,则系统是稳定的,若节点的电压和相角在扰动过后无法控制的发生不断的改变,则系统进入失稳状态。电力系统的电压稳定和系统的无功功率平衡有关,电压崩溃的根本原因是由于无功缺额造成的,扰动发生后,系统电压无法控制的持续下降,电力系统进入电压失稳状态。无论是来自动态元件的扰动还是来自网络部分的扰动,所破坏的平衡均归结为动态元件的物理平衡。电力系统的动力学行为仅受其动态元件的动力学行为及其相互关系的制约。
2电压稳定性的分类
将电压稳定性问题适当分类,对电压稳定性的分析,造成不稳定基本因素的识别,以及提出改善稳定运行的方法等都是有利的。①按扰动的规模来讲电压稳定问题可以分为小扰动电压稳定性,大扰动电压稳定性。一是小扰动电压稳定性是在如系统负荷逐渐增长,送到负荷节点的功率的微小变化之下系统控制电压的能力。小扰动下系统能够稳定运行意味着系统本身能够不断调整以适应变化的情况,系统控制系统有能力在小扰动后令人满意地运行,保证系统发出的无功等于消耗的无功,在出现最大负荷时能成功地供电。这种形式的稳定性由负荷特性、连续作用的控制及给定瞬间的离散控制作用所确定。系统对小扰动的响应特性取决于初始运行条件、输电系统强度以及所用的发电机的励磁控制等因素。依靠负荷和电源自身固有的调节能力,使扰动前后的电压值相同或者相近。二是大扰动电压稳定性是关于在发生诸如系统故障后,系统控制电压的能力。这些扰动包括输电线上短路、失去一台大发电机或负荷,或者失去两个子系统间的输电线。系统对大扰动的响应涉及大量的设备。
此外,用来保护单个元件的装置对系统变量变化的响应也影响系统的特性。②按照失稳事故的时间场景电压稳定问题可以分为:一是暂态电压稳定性,稳定破坏的时间框架从0~大约10秒,这也是暂态功角稳定性的时间框架。在这类电压不稳定中,电压失稳和功角失稳之间的区别并不总是清晰的,也许两种现象同时存在。这类电压崩溃是由诸如感应电动机,和直流换流设备等不良的快速反应负荷元件造成的。对于严重的电压下降感应电动机可能失速,吸收无功功率急剧增加,进而将引起其临近的其它感应电动机失速。除非尽快切除该类负荷,否则会导致电压崩溃。二是中期电压稳定性,稳定破坏的时间框架通常为30秒到50秒,典型者为2到3分。发生此类电压失稳事故时电力系统一般处于高负荷水平,且从远方电源送入大量功率,当重载条件下运行的系统受到突然的大扰动后,由于电压敏感性负荷的作用,系统能够暂时保持稳定。但扰动后网络无功损耗大量增加,引起负荷区域电压下降,当自动调节分接头的变压器和配电电压调节器动作,而恢复末端变压器负荷侧电压,从而恢复负荷功率时,网络传输电流进一步增大加剧输电网络中电压的下降。同时送端发电机可能因过励磁限制而只发送有功,甚至由于发电机长时间过电流而被切除。这样含电源在内的输电网络已经不可能提供足够的无功功率,以支持负荷消耗与网络无功损耗的需要,就会最终导致电压崩溃对于这类电压崩溃事故,运行人员来不及干预,自动调节分接头的变压器及配电电压调节器,发电机过励限制等因素在此过程中起重要作用。应当指出的是,在这一过程中自动调节分接头的变压器的作用是抑制或加剧电压崩溃的进程,与负荷特性分接头位置及系统无功储备有关。三是长期电压不稳定性,这种场景的电压崩溃发展过程经历一个相当长的时间,其过程可大致描述如下:负荷过速增长,导致主要负荷母线电压单调下降。几分钟内由于自动调节分接头的变压器及调度干预等作用,电压的下降得到遏止后,一方面自动调节分接头的变压器使网上负荷得到恢复,另一方面负荷继续快速增加,电源的增加或当地无功补偿增加,跟不上负荷增长速度的需要,电压下降进一步恶化,最终导致部分地区电压崩溃,系统瓦解,造成大面积停电。在长期电压不稳定事故中,往往没有直接的扰动。其原因是本来已经薄弱的严重过载的结构,不合理的网络中的负荷恢复和快速增长造成的。3小扰动电压稳定性的机理分析
电力系统在给定的稳态运行点遭受任意小的扰动后,如果负荷节点的电压与扰动前的电压值相同或者相近,则称系统在给定运行点为小干扰电压稳定,此时系统扰动后的状态位于系统扰动后的吸引域内。从负荷节点可将系统分为两部分,一部分可以看为电源系统,则另一部分看为负荷。小扰动电压稳定性的前提是扰动后的系统电源的无功—电压静态特性和负荷的无功—电压静态特性必须有交点,并且在该点具有维持电压不变或有微小变化的能力。
4大扰动电压稳定性的机理分析
篇9
1.2电力技术水平和效率提高快
电力技术水平和效率的提高主要表现在特高压的输电能力不断增强,如新增1000kv交流输电线路一千多米。此外,电力系统积极采用超临界机组,不断推广大型空冷、循环流化床等先进技术手段,在技术进步和强化管理的作用下,火电又有较大的下降。
2电力系统节能存在的问题
现阶段,虽然电力系统的节能减排效果取得了良好的成绩,但是有些问题依然未得到根本解决,随着经济的不断发展,逐渐暴露出来。
2.1脱硫设备质量及运行管理水平不高
现阶段,国家对火电厂的烟气脱硫要求日趋严格,脱硫设备的建设任务更加重要和繁重。由于恶性竞争导致脱硫设备在设计和建设上都存在缺陷,严重影响了脱硫设备长期、稳定、安全的运行。另一方面,脱硫设备的设计未考虑到实际情况,设计量过小,导致脱硫设备投运后无法满足火电厂的要求。此外,高昂的修复费用也给电力企业带来了压力。
2.2火电节能减排的经济激励机制不完善
就当前而言,我国的大多数电力企业都是出于对国家政策法律法规的规定而进行的节能减排措施,在思想上仍然出于要我节能的阶段。这样的节能减排效果有限,且需要政府部门长期地监管。因此,需要研究建立健全可行的经济激励长效机制,政府利用市场的调节作用,通过给节能减排的电力企业施行减免税收、增加补贴等方式,确保电力企业节能的自发性和积极性。
2.3电煤质量下降影响节能减排效果
由于目前电煤的质量不高,存在着发热量下降、电煤的灰份与硫份的含量急剧上升,导致对发电机组正常出力影响大,严重磨损了发电设备,增加了火电厂的用电消耗,降低发电效率。此外,由于硫份的增加造成脱硫设备超负荷的运转,脱硫效率取法达到要求。
3电力系统节能技术措施
电力系统由发电厂、电网及用户三个部分组成,其承担着电能生产和消费的职责。在电力系统中,每一个部分都存在巨大的能量消耗。故而如何合理的选择电力系统的运行方案,实现每一部分上的能量节约,是完成电力系统节能减排的重要保证。
3.1发电厂的技术节能
现阶段,我国的发电厂主要是以火电为主,火电每年消耗的煤炭量数字惊人。因此在火电的节能上有着巨大的发展空间。首先,要定期对火电机组进行检测维护,保证发电机组运行的安全性和可靠性;优化发电机组的运行方式,提高其的经济运行。其次,对发电中产生的废弃排放物,要实现合理地处理和再生利用,对燃料的购买和使用进行科学的调整。最后,大力发展新型清洁可再生能源的利用,如太阳能发电、水力发电、核能发电等,进一步减少煤炭等常规能源的消耗,降低废弃物的排放。
3.2输电网络的技术节能
输电网络的节能主要从电网的总体结构、变压器的选择、电力线路技术的运用三个方面进行。首先,要合理设计规划输电网络,保证输电网络建设的质量,在建设时尽量采用环形或多路供电,以减少输电网络的电压等级,从而电网的运行成本,此外还要及时调整负载量,减少不必要的空载损耗。其次,在变压器的选择中,要通过科学的计算,依据实际的用电情况合理选择变压器的大小,加强用户无功补偿设备的配置;另外定期检查维修变压器,减少不惜要的能量消耗。最后,要加大新型材料和新技术的运用,减少输电线路的线损;运用先进的计算机技术,加强对电力系统的监控,提高用电利用水平。
3.3用户终端的技术节能
首先,在室内的用电供暖中,用户可以安装热量分配仪和温度调节阀,自行控制电能供给,从而达到舒适和节能的目的。其次,采用高效的照明系统,提高用电效率和照明效果,大力推广节能电器的使用,降低电器的能量消耗。其次,供电企业要采用节电控制器,有效控制电网的削峰填谷、改善电网运行方式。
篇10
在电力系统规划设计中,首先要进行的就是对拟建电力工程附近区域进行电力负荷预测和分析,在一般的工程中,主要进行是区域内电网的中短期负荷预测。其主要围绕区域内经济运行和发展的形式而进行系统分析,参照近年经济发展的趋势,结合当地经济的发展,对中短期区域内最大负荷进行逐年预测。详细分析包含对已建工程、在建、规划中的电力系统布局,分析其对电网供电的影响。一般常用的分析方法有:序列预测法;模糊控制理论等新方法。对重点项目,大型电力工程,可以综合考虑其分析方法。
1.2电源规划情况和系统出力
在电力系统规划设计的时候要综合考虑工程建设地点附近的电源电网规划情况,从电能的用电侧完成对于电能用电的规划情况,从而分析出电源出力情况,同时还要考虑电网所能统一调度的各类大型发电厂,也要兼顾地方上修建的小型水电站,以及大型企业自带的电厂之间的电能供给情况。综合分析,从而对电力载荷和电源的规划进行整体分析和布局。
1.3电力电量平衡
电力电量平衡也是其中必须考虑的重要因素之一,根据电力负荷预测和电源出力分析,并对得到的数据进行分析,对工程所在地区的电力,电量平衡计算,从而确定电力工程的布局和规模。
1.4接入方案的分析
在进行电力工程设计的时候还要考虑新建的工程采用什么样的方案接入现有的电力系统中。一般按照工程原有的网络特点,负荷分布和电网发展规划的情况,按照国家电网的规划,参照政府部门的审批意见,综合考虑当地的建筑分布,节约用地,尽可能的做到节能降耗,在保障电力供应的情况下通过尽量在工程中应用电网新技术来降低设备升级所带来的压力,通过此种方式来做好电力的设计规划。
1.5电气的计算
在具体的电气计算过程中,要首先对电力网络中的功率和电压的分布进行计算,通过这样的计算就可以确定系统的运行状态,检验各个器件是否满足系统的运行要求,为后续继电保护装置提供理论计算的依据和初值。通过计算得出的电网各个节点的电压,电力损耗,电力浪涌的计算,就可以分析系统的稳定性、可靠性、经济性、合理性。从而对电力系统运行过程中最容易出现故障的环节进行预防,方便后续电力系统的维护和检修。系统稳定性能的计算同样是电气计算过程中最重要的环节之一,稳定性的计算一般都是在潮流计算的基础上,对电力系统进行暂态稳定计算、电压稳定计算、频率稳定计算等。通过各种稳定计算,就可以计算出各个接入方案的运行参数能满足系统稳定运行的要求。在电力系统的线路上出现短路时的工况也要考虑进电力系统的设计中,在具体的设计过程中,还要按照设计手册计算出各个支路的短路电流。无功补偿,是为了解决电力系统中感性负载带来的电能损耗,在设计的过程中要充分考虑感性负载给系统带来的损耗。最后要进行的计算是系统的可行性论证,通过电气计算的各种结果来系统的分析工程接入方案的可靠性、实施性、经济性、发展性等工程技术指标,从而得到最佳的系统设计方案。
2如何进行电力系统规划设计的工作
随着我国经济的发展,用户对我国的电力供应和质量要求越来越高,电压的升高,电网规模的不断扩大,电力消耗的不断增加,我国的电力系统的发展越来越需要新技术的强力支撑。在电力工程的设计中,电力系统的专业设计得出的数据和系统的运行参数等相关数据对后续电力工程施工有着非常重要的指导意义,在具体的电力系统设计中,如何引入电力系统规划设计工作,是每位从事电力系统工程的技术人员都面临的问题:
2.1电力系统规划设计工作的开展
在开展电力系统规划设计工作之前,要对区域的负荷情况进行调研,收集发电厂,变电站,电力线路的地理布局,工厂自备电厂的容量等技术参数,对进区的电力系统运行相关材料进行了解。对电力系统最新公布的系统设计规范进行资料更新,必要时要组织员工进行进修或者从业培训,从而有效的对项目的运作准备好所有的材料。
2.2电力系统规划设计工作的准备
在电力系统的规划设计工作开展初期,电力设计单位要把大网的情况进行了解,对周边区域电力系统的运行数据材料进行整理和分析,对区域内企业的发展进行了解,经济的发展方向进行了解,资料的越详细越能保证电力系统规划设计最终计算数据与实际的相似程度。
2.3电力系统的设计规划的计算
通过对已有材料的整理和分析,对电力系统的潮流,浪涌计算,稳定运行数据的计算,以及对各个支流的短路电流的计算,对系统进行无功功率进行补偿量的计算,从而对电力系统的大体系统性能、规模、可靠性、经济性、可实行性等数据进行有效的理论指导,从而对电力系统的具体设计提供相关的数据参考,对系统的造价提供大概的指导。
篇11
1.2信息网络安全的实现要点
(1)需要对网络系统的硬软件及数据进行有效保护,对于系统遭到破坏、更改或泄露等情况需实现有效规避。(2)对于外部非法入侵行为需采取有效防止措施,同时加强内部人员的管理及教育,使内部人员的安全意识得到有效提高。(3)信息安全管理者需重视信息网络安全现状所存在的问题,例如行为管理的脆弱性,又如网络配置及技术的不完善性等。在认识到问题的基础上,制定有效的改善策略,进一步提高电力系统信息网络的安全性。
2电力系统信息网络安全架构策略探究
2.1防火墙技术
电力系统当中,为了防止病毒入侵,便需要防火墙技术的介入。目前具备的防火墙指的是设置在不同网络或网络安全域间的一系列部件的组合,它属于不同网络或者网络安全域间信息的唯一出入口,可以企业的安全政策为依据,进一步对出入网络的信息流实现有效控制,同时自身还具备比较强的攻击能力。另外,它还是提供信息安全服务的重要基础,也能够使信息网络更具安全性。近年来,防火墙技术已经广泛应用于局域网和Internet之间的隔离。
2.2NAT技术
应用NAT技术,能够让一个机构里的全部用户以有限的合法IP地址为途径,进一步对Internet进行访问,这样便使Internet上的合法IP地址得到了有效节省。另外,以地址转换为手段,还能够使内网上主机的真实IP地址实现隐藏,进而使网络的安全性得到有效提高。
2.3防病毒技术
利用防病毒产品,能够防止恶意程序的入侵,并起到抵御病毒的作用,进一步使网络当中的服务器及PC机获得了有效防护。防病毒产品具备功能强大的管理工具,能够对文件进行自动更新,让管理及服务作业更具合理性。另外,还可以使企业的防病毒安全机制更具完善性,具有优化系统性能及解决病毒攻击等优势,为电力系统信息网络的安全性提供了重要保障。
2.4网络加密技术
网络加密技术是指对原有的数据或明文文件通过某种特定算法进行有效处理,使其成为一段不可读的代码,然后只允许输入相应的密钥后才可显示出原来的内容,通过此途径为数据的安全性提供保障,同时使数据更具完整性及保密性。
2.5指纹认证技术
对于电力系统来说,其信息网络安全的身份认证显得极为重要。在现有的硬件防火墙的条件下,可以进一步应用最新的身份认证技术,即为指纹认证技术。基于电力信息网络管理过程中,把具有合法特质的用户指纹存入指纹数据库当中。使用指纹技术,便可以使认证的可靠性增强。主要原理是,把用户的密钥与用户指纹特征统一存储在密钥分配的KDC当中,用户在应用密钥时通过自动指纹识别确认身份后从KDC中获取。
2.6数据加密技术
防火墙及防病毒系统技术能够对电力系统起到保护作用,同时通过数据加密技术也能够对电力系统起到保护作用。数据加密技术是一种对网络传输数据的访问权进行限制的技术,在加密设备与密钥加密过程中会产生密文,把密文向原始明文还原的过程为解密,是基于加密处理的反向处理,但是对于解密者来说,需使用同样类型的加密设备及密钥,才能够进一步对密文进行有效解密。
3电力系统信息网络安全构架
通过防火墙、病毒网管及认证服务器,使非授权用户入侵网络的情况得到有效防止,进一步使网络系统的可用性得到有效体现。充分应用CA中心,能够对用户起到权限控制作用,并且在结合内容审计机制的基础上,能够对网络资源与信息实现有效控制。通过防毒管理中心,并利用漏洞扫描器,使系统内部安全得到有效保证,进一步保证了信息的完整性。通过VPN与加密系统,保证了信息不会泄露给没有获得授权的实体,进而使信息更具保密性。另外,利用入侵检测及日志服务器,能够为网络安全问题提供检测方面的有效依据,使信息实现可审查的特征,进一步充分保证了信息的可靠性及安全性。
篇12
1.2继电保护设备停电检查的二次安全措施
第一,工作人员必须断开与被检修设备相连接的电流回路,同时也应断开与被检修设备相连接的电压回路;第二,工作人员必须将继电保护系统中被检修设备电流互感器到母线保护之间的电流回路切断;第三,工作人员必须将继电保护中被检修设备与运行断路器之间的跳闸回路切断,如变压器的后备保护跳母线联络断路器、分段断路器以及旁路断路器的跳闸回路等;第四,工作人员必须将继电保护中的被检修设备启动失灵保证跳闸回路切断,主要包括启动远跳对侧断路器的相关回路;第五,工作人员必须将继电保护中的被检修设备启动中央信号、故障录波回路切断。
2电力系统继电保护二次安全措施的管理
2.1继电保护装置中的“投检修态”压板
通常情况下,“投检修态”压板的作用主要是为了将继电保护装置中发送的报文中的“test”位置“1”,这样就能够向其他设备中传递本装置正处于检修中的信息,当其他装置接收到了这个信息之后,它还可以与“投检修态”压板进行信息交换,但是其他装置已经不能再进行互相操作。只有检修态设备之间才能够进行互相操作。“投检修态”压板在整个继电保护装置中的作用是至关重要的,它是二次安全措施中最基础的防线。现如今,在市场上某些继电保护装置生产厂家在继电保护装置面板上没有对“投检修态”压板的状态标注明确的记号,只是将“投检修态”压板状态在继电保护装置的开入位置变位中进行标注,这在一定程度上就导致工作人员无法对该压板的实际运行状态进行实时把握。因此,当“投检修态”压板产生接触不良或是该压板在连接二次引线发生松动,从而导致“投检修态”压板的工作位置与实际工作情况不符,会给电力系统的正常运行造成严重的影响。针对上述情况,继电保护装置的生产厂家可以在进行继电保护装置设计过程中,在继电保护面板上比较醒目的位置上对该压板的实际投入与否状态进行明确的标注。
2.2继电保护装置中的软压板投退
继电保护装置中的软压板投退包含了多方面的内容,其中主要有出口GOOSE、失灵启动GOOSE以及间隔软压板投退。通常情况下,软压板投退可以为继电保护装置中的检修设备与运行设备提供所需的逻辑断开点。目前,继电保护装置的生产厂家对生产环境的命名以及功能的定义上都没有形成统一的标准。比如:在220kV母线保护工作的过程中,PCS-915所采用的主要是间隔投退软压板,而BP-2C-D所采用的主要是GOOSE接收软压板。因此,电力系统在具体的生产过程中会以所需为基础选择不同类型的软压板,这样可以满足电力系统对软压板的功能需求,但是由于软压板缺乏统一的规范,这就加大了管理上的难度。当工作人员进行继电保护工作的时候,必须对市场上的软压板名称以及功能差异情况进行充分的了解,这就对从事继电保护工作的工作人员提出了更高的专业要求,这样才能保障电力系统的安全措施做到准确无误。针对上述情况,在继电保护相关规范中,要统一规定继电保护装置的设备名称以及功能等,从而完成对继电保护二次安全措施的规范化管理。
2.3继电保护装置中的拔除光纤
在进行停电检修过程中,可以运用常规微机保护方式,通过“跳闸脉冲”的方式对电力系统中的回路进行完整的检测。通常情况下,在电力系统中如果不进行拔除光纤工作,就会导致不能进行有效的硬件间隔。因此,这就会造成继电保护装置运行中很有可能会出现风险,甚至引发比较严重的事故,这就要求工作人员除非在现场环境允许的情况下,才可以进行拔除光纤工作,否则便不能进行拔除光纤的方式进行检测。针对上述情况,需要电力系统重视变电站本身的调试工作,同时以此为基础进行跳闸逻辑的全面性检测。此外,电力系统还应该重视对相关的保护校验工作运用适当的检修方法进行定期检修。
篇13
2、电压稳定性的分类
将电压稳定性问题适当分类,对电压稳定性的分析,造成不稳定基本因素的识别,以及提出改善稳定运行的方法等都是有利的。①按扰动的规模来讲电压稳定问题可以分为小扰动电压稳定性,大扰动电压稳定性。一是小扰动电压稳定性是在如系统负荷逐渐增长,送到负荷节点的功率的微小变化之下系统控制电压的能力。小扰动下系统能够稳定运行意味着系统本身能够不断调整以适应变化的情况,系统控制系统有能力在小扰动后令人满意地运行,保证系统发出的无功等于消耗的无功,在出现最大负荷时能成功地供电。这种形式的稳定性由负荷特性、连续作用的控制及给定瞬间的离散控制作用所确定。系统对小扰动的响应特性取决于初始运行条件、输电系统强度以及所用的发电机的励磁控制等因素。依靠负荷和电源自身固有的调节能力,使扰动前后的电压值相同或者相近。二是大扰动电压稳定性是关于在发生诸如系统故障后,系统控制电压的能力。这些扰动包括输电线上短路、失去一台大发电机或负荷,或者失去两个子系统间的输电线。系统对大扰动的响应涉及大量的设备。此外,用来保护单个元件的装置对系统变量变化的响应也影响系统的特性。②按照失稳事故的时间场景电压稳定问题可以分为:一是暂态电压稳定性,稳定破坏的时间框架从0-大约10秒,这也是暂态功角稳定性的时间框架。在这类电压不稳定中,电压失稳和功角失稳之间的区别并不总是清晰的,也许两种现象同时存在。这类电压崩溃是由诸如感应电动机,和直流换流设备等不良的快速反应负荷元件造成的。对于严重的电压下降感应电动机可能失速,吸收无功功率急剧增加,进而将引起其临近的其它感应电动机失速。除非尽快切除该类负荷,否则会导致电压崩溃。二是中期电压稳定性,稳定破坏的时间框架通常为30秒到50秒,典型者为2到3分。发生此类电压失稳事故时电力系统一般处于高负荷水平,且从远方电源送入大量功率,当重载条件下运行的系统受到突然的大扰动后,由于电压敏感性负荷的作用,系统能够暂时保持稳定。但扰动后网络无功损耗大量增加,引起负荷区域电压下降,当自动调节分接头的变压器和配电电压调节器动作,而恢复末端变压器负荷侧电压,从而恢复负荷功率时,网络传输电流进一步增大加剧输电网络中电压的下降。同时送端发电机可能因过励磁限制而只发送有功,甚至由于发电机长时间过电流而被切除。这样含电源在内的输电网络已经不可能提供足够的无功功率,以支持负荷消耗与网络无功损耗的需要,就会最终导致电压崩溃对于这类电压崩攒事故,运行人员来不及干预,自动调节分接头的变压器及配电电压调节器,发电机过励限制等因素在此过程中起重要作用。应当指出的是,在这一过程中自动调节分接头的变压器的作用是抑制或加剧电压崩溃的进程,与负荷特性分接头位置及系统无功储备有关。三是长期电压不稳定性,这种场景的电压崩溃发展过程经历一个相当长的时间,其过程可大致描述如下:负荷过速增长,导致主要负荷母线电压单调下降。几分钟内由于自动调节分接头的变压器及调度干预等作用,电压的下降得到遏止后,一方面自动调节分接头的变压器使网上负荷得到恢复,另一方面负荷继续快速增加,电源的增加或当地无功补偿增加,跟不上负荷增长速度的需要,电压下降进一步恶化,最终导致部分地区电压崩溃,系统瓦解,造成大面积停电。在长期电压不稳定事故中,往往没有直接的扰动。其原因是本来已经薄弱的严重过载的结构,不合理的网络中的负荷恢复和快速增长造成的。
3、小扰动电压稳定性的机理分析