顶管施工技术论文实用13篇

引论:我们为您整理了13篇顶管施工技术论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

顶管施工技术论文

篇1

对支承一介质的要求

对支承一介质的要求,可以根据摩擦定律推算出来。

摩擦定律概要

除了不在这里讨论的滚动摩擦之外,可将摩擦区分为:

a)粘附摩擦(与静摩擦相同);

b)滑动摩擦。

在粘附摩擦和滑动摩擦的情况下都存在如下的关系:

T=N·μ

式中

N——法向力;

T——切向力;

μ——摩擦系数;

摩擦系数μ是一个材料常数,与滑动面和滑动物体的表面性质有关,而却不以接触面积F的大小为转移。

无量钢系数μ在粘附摩擦的情况下,一般大于滑动摩擦时的数值,因为在粘附摩擦的情况下,表面会由于经常存在的不平度而被“楔紧”。

滑动摩擦又可分为:

b1)干摩擦;

b2)液体摩擦。

在干摩擦时,滑动体和滑动面直接接触,在液体摩擦的情况下,滑动体和滑动面则被介质隔开

在滑动摩擦的情况下。滑动体和滑动面之间存在相对速度。

在干滑动摩擦的情况下,摩擦系数μ与相对速度υ无关。

在液体滑动摩擦的情况下,视在摩擦系数μ则相随滑动体和滑动面之间液体的流动阻力而变化。流动阻力则取决于液体的运动粘滞度和流动速度。根据流体动力学可知,流动阻力与流动速度的平方成正比。

在两个互相接触的物体之间,起作用的是一个比压:

P=N/F

在液体摩擦的情况下,作用在液体上的是一个流动压力:

p’=f(υ2)

若p=p’,物体和介质便处于平衡状态。这时运动的物体就“漂浮”在滑动面上。

如p>p’,介质便会从运动物体和滑动面之间的缝隙中逐渐被挤压出去,直到液体摩擦转变为干滑动摩擦为止。液体摩擦的前提在于,无论物体和滑动面都必须是不透水的。如果介质能够渗人物体或滑动面,而又不以同样的数量给予补充,那么液体摩擦就会变成干摩擦。

从摩擦定律得出的结论.

按照摩擦定律来考虑,对于顶管施工可以得出完全明确的结论如下:

a)为了保持较小的推顶力,干摩擦须以尽可能小的摩擦系数μ为前提。管子表面的光滑,能使摩擦系数降低。管子表面的机械加工和涂抹减摩剂,同样都能起到减小μ值的作用。

b)在干摩擦的情况下,管子表面在推顶过程中会被周围上层磨毛,因而使摩擦系数增大。所以在项管距离较大时,一般多采取液体摩擦的方式。

C)液体摩擦须以管子和土层之间存在介质为前提,也就是说,须将介质压人其间。

d)介质必须保持一定的厚度方能有效。

e)管子和土层间必须存在一定的空隙,也就是说,要留出一定的空隙,以便在压人介质后能够形成所需厚度的一个液体层。

f)管子和土层之间充满介质的空隙,在整个推顶过程中必须保持不变。要作到这一点,介质必须能够阻止土层落到管壁上,亦即介质必须承受着各种具体条件下起作用的上压力来托住土层。因此,在介质中必须经常保持相当于土应力的液压。这样,介质同时也起着支承介质的作用。交承压力的反作用力则由顶进管来承受。

g)为了形成管子和土层之间所需的空隙,刃脚直径的取值最好稍大于顶进管直径。

h)对粘性很小的土壤来说,推顶时在刃脚周围产生的松散地带便能形成管子和土层之间所需的空隙,因而不需要刃脚直径大于管径。

i)上层和管子之间既已形成空隙,就必须在土层落到管体一上以及土压力上升达到全值之前将支承-介质充入其中。事后再来克服土压力将土层从管壁上推开是不可能的。一旦周围土壤的某些颗粒接触管壁并被土层压附在管壁上,立即便会发生于摩擦,即使随后压人介质,情况仍然如此。

k)可以把顶进管看作是不透水的。管子接头在整个推顶过程中应保持密闭。

l)土层总是多少有些透水的。因此,支承一介质必须起到的另一作用,即在于封闭管子周围土层的空隙,以便在土层中造成一个不透水的环形地带,从而阻止支承-介质渗入土层。

m)为了能够封闭土层的空隙而又不致流失到土层中去,支承-介质必须具有足够高的运动粘滞度。

n)为了取得尽可能小的视在摩擦系数μ,又需要支承-介质的运动粘滞度较低一些。

o)支承-介质不得对顶进管材料(钢、钢筋混凝土、石棉水泥或塑料混凝土)和接头材料(钢和橡胶)造成侵蚀。

P)支承-介质不得污染地下水。

膨润土矿物悬浮液能够最充分地满足对支承-介质提出的一切要求。

作为支撑-介质的膨润土

1890年,美国的福特·本顿首先发现了膨润上。它的主要成分和对于它作为支承一介质的性能起着决定作用的,乃是其中叫作蒙脱土的一种粘土矿物,这种矿物以其位于法国南方的蒙脱英里翁矿床而得名。在德意志联邦共和国的巴伐利亚,则有着大约一千万年前作为风化产物形成的一些酸性火山质玻璃凝灰岩矿可供这方面的应用。

蒙脱土是一种层状结构的结晶氢化硅酸铝。硅酸盐多层体是一种三层结构,其中包括一层SiO4四面体、一层氢氧化铝八面体和一层SiO4四面体。蒙脱土晶体即由许多这样的硅酸盐叠层组成。蒙脱土晶体遇水膨胀,与此同时水分子便渗入各个叠层之间。于是两个蒙脱土叠层之间的距离就加大了一倍。晶体内部膨胀现象的原因,则在于叠层内部电荷分布的不均匀。

我们可以设想,在静止下来的膨润上悬浮液中,薄片状的蒙脱上微粒形成一种纸牌房子式的结构,其中这些微粒以它们的角隅和棱缘彼此接触或互相支撑。一旦静止状态被扰乱,例如由于搅拌、振动或泵送等等,于是大多数的“纸牌房子”坍塌下来,因而在静止状态下凝结起来的悬浮液就会变成溶胶。当这种溶胶再次静止下来,薄片状的蒙脱上微粒又会彼此搭在一起形成纸牌房子式的结构,于是溶胶重新凝固。悬浮液每当静止便结成凝胶,一旦运动起来又变成溶胶,这种从静止状态到运动状态以及从运动状态又回到静止状态的结构交替,可以永无止境地重复下去,这样的特性便叫作触变性。

作为顶管施工中的支撑-介质,膨润土的重要特点即在于它的膨胀性能。这一点须取决于薄片状蒙脱俄土微粒的大小和数量。

膨润土主要有两类,即钙膨润土和钠膨润土上。

它们的区别在于起决定作用的蒙脱土是钙蒙脱上还是钠蒙脱土。

在膨润土含量相同情况下,钠膨润土悬浮液中所含极薄的硅酸盐叠层片的数量,约为钙膨润上悬浮液中所含数量的15到20倍。由于这种极薄的硅酸盐叠层片的数量大得多,便有利于蒙脱土微粒形成纸牌房子式的结构,因而亦有利于提高悬浮液的膨胀性能,这样既可改善悬浮液在溶胶状态下的流动性,也能改善悬浮液在凝胶状态下的固结性。所以钠膨润土比钙膨润土更适用于顶管施工。

而巴伐利亚矿层却只含有膨胀性能较差的钙膨润土。

但钙蒙脱土有一个特性,亦即其中化合的钙离子可以用钠离子来置换。通过这样的离子交换,钙膨润土的性能会有很大的变化,从而被赋予钠膨润上的优良特性。

由于销膨润土和通过钠离子置换而活化的钙膨润土——也叫作活性膨润土——能够最大程度地满足顶管施工中提出的要求,因而下面的讨论便以这两种膨润土为基础。

化学分析表明,膨润土中大约有56%的二氧化硅和20%的氧化铝,二者共同构成了蒙脱土上晶体的基本物质。与此相对应,矿物组成中也有75%的蒙脱土。筛分析也很值得注意,根据筛分析,膨润土中粒径小于0.025毫米的占55%。

膨润土加水搅拌即成悬浮液,这里对水质的要求和拌制混凝土时一样。判断膨润土悬浮液是否适于用作支承一介质的标准在于它的物理特性。而对后者起决定作用的,主要是悬浮液中的膨润土含量。表2中按照每立方米制成悬浮液中含有30、40、60和80公斤膨润上的四种情况,分别列出了各种悬浮液的主要参数。

首先从容重的数据中可以看出,膨润土含量对容重的影响不大。在我们所考察的试样上,容重大致变化于1020到1050公斤/米3之间,因此只是稍高于纯水的容重。所以膨润土悬浮液也可以在水下顶管施工中用作支承介质,无需顾虑悬浮液因容重不同而流失,故而对膨润土悬浮液来说,容重并不是一个重要的判断标准。

反之,流变极限测量结果都表明,无论在运动状态或是静置状态下,悬浮液中的膨润土含量都对流变极限有很大的影响。正如事先的考虑所预见到的,流限在运动状态下达到了下限值。观察表2可以看出,膨润上含量从每立方米30公斤增加到60公斤时,亦即在膨润上含量增大一倍的情况下,运动流限从22.4克(力)/厘米2上升到204克(力)/厘米2,因此也就是提高到大约9倍,当膨润土含量从40公斤/米3增加到80公斤/米3时,同样也是在增大一倍的情况下,可以看到大致相同的比率。这时运动流限从44.6克(力)/厘米2上升到439克(力)/厘米2,亦即增大到10倍左右。

静置一分钟后的比率也类似于流动状态下的情况。在这种条件下,当膨润土含量从30公斤/米3增加到60公斤/米3时,流限从42.8克(力)/厘米2提高到320克(力)/厘米2,即增大到7.5倍。当膨润土含量从40公斤/米3增加到80公斤/米3时,流限则以100:696—1:7的比例提高。

最后,在静置24小时的情况下,当膨润上含量从30公斤/米3增加到60公斤/米3时,流限比率为198:1265一1:6,80公斤/米3含量的相应数值则限于现有的测量技术条件而无法测出。

因此得出的结论是,膨润土含量增加一倍,可使膨润上悬浮液的支承作用提高到7至10倍。但是这也意味着,若膨润土含量减少1/2,支承作用就可能降低到1/10。所以,确定悬浮液中的膨润上含量,便有着如此重大的意义。

得到的另一个结论是,在从运动状态过渡到静止状态时,流限的增大须取决于悬浮液中的膨润土含量。

在每立方米悬浮液中含30公斤膨润土的情况下。静置1分钟后的流限以42.8:22.4=1.9:1的比率增大。在膨润土含量为40公斤/米3的情况下,静置1分钟后的增大比率已达100:44.6=2.2:1。然而在膨润土含量为60公斤/米3情况下,这一比值却降低到320:204=1.6:1,以及在膨润土含量为80公斤/米3的情况下,比率仍为696:439=1.6:1。

静置24小时后的流限与运动状态下的比率,在悬浮液中的膨润上含量为30公斤/米3时是22.4:198=1:8.8,在40公斤/米3的情况下是44.6:584=1:13.3,在60公斤/米3的情况下是204:1265=1:6.2,而对于80公斤/米3的含量,则已无法取得测量值。

在将膨润上悬浮液用作支承-介质的情况下,静止状态的流限值与运动状态的流限同样具有重要意义:

静止状态下的流限值决定着悬浮液是否适于用作支承介质,运动状态下的流限值则决定着悬浮液是否适于用作介质。

当运动流限与静止流限之比为1:6到1:10(最大1:15)时。膨润上悬浮液便完全能满足这两个方面的要求。

流限值适用于膨胀过程业已最后完结的悬浮液。这种膨胀过程的性质,在于水已渗入了构成蒙脱土晶体的硅酸盐叠片的晶层中。致使层间距离增大起来。水对微小蒙脱土晶体的渗透过程以及水渗入更小得多的晶层之中都需要时间。这就是膨胀时间,搅拌越充分.膨胀时间就越短,否则在水和膨润土的混合料未获充分搅拌的情况下,膨胀时间就会延长许多倍。搅拌取得良好效果的前提,是要有足够长的搅拌时间,至少要有半个小时,有时甚至可能需要若干小时。另一个前提是要求膨润土不留余渣地充分溶解在水中,尽可能使每一个膨润土颗粒都被水包围着。最后,在搅拌时不要让空气进入水和膨润土的混合料中,因为空气会妨碍水渗入蒙脱土晶体。再则,膨胀时间也会受到混合料温度的影响。高温(夏季温度)可使膨胀时间缩短,低温(冬季温度)则使膨胀时间延长。当温度低于零度时,膨胀过程即告中止,但混合料并不会遭到破坏。解冻后膨胀过程又会重新继续下去,在这种情况下,须将冻结的时间计入膨胀时间之内。

在搅拌效果良好的情况下,搅拌过程结束后即已能够达到80%左右的最终流限,而在搅拌效果不良的情况下,这一比值则降低到大约35%。由此可见,在搅拌效果良好和高温条件下,经过5个小时的膨胀时间后即已达到最终流限。反之,在搅拌效果不良和低温条件下,则需要24小时方能达到最终流限。

对于膨胀过程是否已经结束,需要仔细地进行观察,因为膨胀不充分的悬浮液一方面起不到支承作用,另方面也会由于随后的膨胀而引起膨润土管路的堵塞,并且引起顶进管与周围土层之间表观摩擦系数的上升,从而可能导致提高顶进阻力。

对充分膨胀的膨润上悬浮液来说,流限在静止状态下可达到上限值。如悬浮液变为运动状态,例如由于摇动、振动或泵送等等,立刻又出现流限的下限值,这便是流动状态下的流限,或者也可以说是运动流限。一且再次静止下来,流限又会升高,经过一定时间之后再次达到其上限值。

悬浮液经每次静止之后都可以达到流限的上限值。然而在达到最终流限之前,如果悬浮液又变为运动状态,那么流限的升高过程便也可能中断。

蒙脱土微粒在纸牌房子式结构上的变化,用我们的肉眼是看不见的,但却可以通过流限的变化测量出来,因此一种悬浮液的触变性也是可以为我们的感官所觉察的,而这种触变性作为悬浮波物相任意多次的转变,我们可以将它表示为

凝胶溶胶

膨润土悬浮液在疏松土层中的应用

在无粘性的疏松土层中以及在粘性很小的土壤中,例如在砂砾土中,若不采取其它辅助措施,土层由于本身极不稳定,以致在刃脚推进之后立刻就会坍落在管壁上。所以对这类土壤来说,膨润土悬浮液的支承作用尤其具有重要意义。为了起到这种支承作用,先决条件是要尽可能准确地掌握膨润土悬浮液在砂砾上中的特性。膨润上悬浮液将渗入土层的孔隙内,充满孔隙,并继续在其中流动。流速取决于孔隙的横断面与悬浮液的流变特性,同时也取决于压浆压力。因此为了在同样的压浆压力下达到相同的渗入深度,在孔隙横断面很小的细粒土层中便需要低流限的悬浮液,面孔隙横断面较大的粒粒土层则需要高流限的悬浮液。在克服流动阻力的过程中,压浆压力随着渗人深度的增加而成比例地衰减,所以相应每一种压浆压力,都有一个完全确定的渗人深度。

为了便于了解渗入过程,可以把上层看作是一条条许多毛细管的总和。图7显示了一条圆形横断面的毛细管中的流动过程。

这样的一条毛细管必然会对其中穿流的流动介质、在这里即是对膨润上悬浮液产生一个阻力W。

W=τ·U·l=τ·2·r·π·l

为了克服这一阻力便需要一个压力:

P=p·F

=p·r2·π

只要P>W,毛细管中的介质便向前流动。一当流动阻力大到与作用于介质的压力P相等,即。

W=P

流动过程即停止。由此可知平衡条件为

τ·2·r·π·l=P·r2·π

(τ·2·l)/r=p

根据这一关系式可以算出流动长度,换言之亦即渗入深度

l=(r·p)/(2·τ)

由此可见,渗入深度与毛细管的直径和压浆压力成正比,与悬浮液的流限成反比。只要悬浮液在毛细管中流动,它便处于流动状态,因而对悬浮液起作用的便是运动流限。这时悬浮液便具有溶胶的稠度。

但一当悬浮液达到可能的渗入深度之后静止下来,只须经过一个很短的时间,它的流限便达到静止数值。于是悬浮液就变成了凝胶。

由于静止状态下的流限高达流动状态下的10倍,因而在这种情况下膨润土悬浮液便象泥浆那样地充满着土层的孔隙。

这样在管体四周的土层中就形成了一层密实而有承载能力的环套,其厚度即相当于悬浮液的渗入深度

现在,如果在这一环套和顶进管之间保持一个相当于土压力的悬浮液压力,于是悬浮液使承受着全部的土压力,致使土压力不再直接地,而是经由悬浮液间接地加荷于管壁。

作为使摩阻力降低到最小限度的先决条件,最佳支承作用的取得须具备下列前提:

1.在设计时以及在推顶过程中准确地查明土层情况,并根据筛分曲线详尽地掌握土层的颗粒分布;

2.计算出土压力,从而确定膨润上悬浮液的压人压力;

3.按基本粒径确定膨润土悬浮液的混合比,并经常进行检验,

4.正确地制备膨润土悬浮液;

5.保证在全部顶进管路上和全部顶进时间内都有膨润上悬浮液压入。

其中最重要的一点,是必须求得正确的混合比。

此外必须注意,悬浮液稳定极限大约是每立方米悬浮液至少含40公斤膨润上。这一理论计算结果在实际施工中须仔细加以核验。必须特别指出的是,膨润土含量过低、因而也就是流限过低的悬浮液起不到支承和作用,因为这样的悬浮液会毫无阻力地或只受到很小阻力地流散到土层中去,因而不可能在管体周围形成一个支承环带。

在基本粒径为10毫米的情况下,要求悬浮液的膨润土含量为60公斤/米3左右,在基本粒径为20毫米的情况下,要求悬浮液的膨润上含量为80公斤/米3左右,反之,在基本粒径为2毫米时。悬浮液的膨润上含量为40公斤/米3即已足够.但滑动阻力与运动流限成正比。

运动流限在每立方米悬浮液中含:

40公斤膨润上时为44.6克(力)/厘米2

60公斤膨润土时为204克(力)/厘米2

80公斤膨润土时为439克(力)/厘米2

这就是说,在每立方米悬浮液中含膨润土60公斤时,运动流限几乎为40公斤/米3情况下的5倍,而在每立方米悬浮液中含膨润土80公斤时,则已经高达含量为40公斤/米3时的10倍。

这就意味着,如果悬浮液中的膨润上含量在全部推顶距离上保持不变,那么对粗粒土壤来说,由于需要悬浮液的膨润土含量较高以保证支素作用,故而推顶阻力以及因之所需的推顶力就会比细粒土壤的情况下更大一些。

但孔隙~旦被膨润上悬浮液充满,并因而形成支撑环带时,于是粗粗土壤的状况也就无异于细粒土壤了。因而在这种情况下,为了在推顶过程中支承土层,悬浮液中的膨润土只需要达到稳定极限所要求的最小含量40公斤/米3即可。

因此,在粗粒土壤的情况下,只是直接在刃脚之后压入相应于基本粒径的高含量膨润上悬浮液,而在全部后续管路上则可使用稠度低得多的悬浮液。这样便可以大大降低推顶阻力,或者也可以说是在相同的推顶力下加长推顶距离。同时还可以借此节省膨润土,并减少中继顶压站的数目。

为此采用两套膨润土配拌设备附带两台压浆泵和两套管路所需的额外费用,在管径较大和推顶距离较长的情况下一般是值得的!

压浆时须注意,压出的膨润上悬浮液要尽可能均匀地分布在整个管体,以便能够围绕整个管体形成所需的环带。因此,压浆赖以进行的注射喷口要均匀地配置在整个管壁圆周上。注射喷口的间距或数量须取决于土壤允许膨润上向四外扩散的程度。在渗透性很小的土壤中,例如密实的矿土和砂砾上,间距就必须缩小一些,在疏松的砾石土中,间距则可以相应地加大。注射喷管即可以在整个管壁圆周上与一条环管连接,也可以分组连接,在分组连接时,一般是上半固联成一组,下半圈另成一组。

为使膨润土尽快地起作用,应尽量靠近刃脚尾部进行压浆。所以压浆最好是直接从刃脚后的第一节管子中开始。但实践证明,在压浆压力较高的情况下,膨润土将均匀地沿着管子周围扩散,也就是说,即向后扩散,也向前扩散。因此便存在着膨润上悬浮液沿刃脚向前流动、并且又在切削刃上流出来的危险。

在纠偏量颇大的情况下,有可能造成刃脚和第一节管子之间的密封损坏,或者在刃脚分成两个部分情况下,则是造成切削段和顶压段之间的密封损坏,于是膨润上悬浮液就会从这些地方渗人工作空间。

根据这一理由,膨润上在刃脚后第二节管子中开始压入比较适宜。

膨润土悬浮液经由注射喷口压人的压力应相随所遇土层的压力而变化。在膨润土泵上,除了这一压力之外,还会受到一直通向注射喷口的膨润上管道的阻力。

膨润上管道中的压力损失,由于假设条件并不可靠而且经常变化,故而计算很难准确,因此,对于必须准确地与上压力高度保持一致的压浆压力,便有必要直接在注射喷口上进行连续的测量。

压浆压力调得过高可能是有害的。这时膨润上悬浮液会从注射喷口中涌出,在管口周围形成一个高度压缩区。这样就有可能形成栓塞,阻碍膨润上悬浮液的继续流出和扩散。

如果一次注入的膨润上能在管子周围的土层中保持不变,那么只要直接在刃脚之后注入一次就足够了。然而十分明显,在推顶过程中,膨润土由于流散到土层中去而有所消耗。鉴于此,对后续管路也必须补充压人膨润上,以使管子和上层之间空隙中的膨润上悬浮液压力能够在顶进管路的全部长度上保持与土压力一致。注浆孔的间距主要取决于土层的性质、膨润土悬浮液的流变特性、刃脚的控上量和推顶速度。在许多已完成的工程中,注射喷口的间距是2节管子到5节管子以上。注浆孔的实际需要数量,只有在施工中才能知道。为了确保即使在最不利的场合下亦能提供所需数量的注浆孔,似乎最好是尽可能每隔2节管子即留出一些压浆孔。另方面当然也要考虑到,所有注浆孔在顶管结束后必须拆除和封闭。这需相当大的一笔费用,所以一开始即应力求间距适当。这一点在很大程度上也取决于施工公司的经验。

膨润上的压人技术在很大程度上仍然要依靠经验,然而实际经验多半也是可以找到理论根据的。

尽管就某种场合来说,随着管子的推进同时在管子整个圆周上和管路全部长度上均匀地压浆证明是相宜的,而在另一些场合下,正确的方法则又可能是分段压浆。例如现已得知,在管子下半部,膨润土在顶进过程中比静止状态下更容易流出,而上半部的压浆则是在管路静止的情况下更容易进行。因此最好是将管子下半部的注浆孔和上半部的注浆孔分别组合起来。这种半侧压出的原因在于,静止状态的管道以其全部很大的重量沉落于底部。这样便在管道的顶部形成了小空隙,或者至少是形成了一个压力较低的区域。因而在这种状态下,膨润土在管顶处比在管底部更容易流出。反之,在顶压力和浮力同时作用下,管道有向上拱起的倾向。这时管道离地升起,于是管底下方便形成了一个低压区,致使膨润土更加容易渗入其中并均匀地散开。

如果顶进管路被中继顶压站分成若干段,那么每次总是只有一个管路段受到推顶,其余各段则保持不动。这时宜于仅向被推顶的管路段内压人膨润上悬浮液,而对于静止不动的管路段,则停止压送。此外,膨润土的压人要与中继顶压站的动作协调一致,这一点可以通过手动或远距离自动控制的方式来实现。

特别要注意的是,膨润土悬浮液沿着管壁运动的方向不得与管路推顶方向相反,否则,由于管子和悬浮液的逆向运动,悬浮液非但起不到介质的作用,却反而起了制动介质的作用。结果便会大大增加推顶阻力。如果只在顶进管路的前区压人膨润土,就会发生逆向运动,因为在这种情况下悬浮液便不得不向后流动。所以正确做法是,悬浮液的补压始终要保持从后向前的方向。

在无粘性的疏松土层中,例如对于有流动倾向的矿土以及滚动的砾石上来说,可能十分重要的是,在第一节管子推入土层后立即开始压人膨润土悬浮液,以便在管子周围形成支承环带,从而不引起干摩擦。同样重要的是,对所有后续的管子来说,一但管子离开顶压坑,都要补压膨润土。然而为使悬浮液不能立即又在进口处向外流出,便需要设置如图12所示的弹性滑动密封,否则悬浮液的流出不仅要弄脏工作坑,而且也会破坏支承压力的形成。

篇2

一、顶管技术在城市给排水中的发展

地下给排水管网是城市基础设施的重要组成部分,对城市给水管网进行改造的时候,管道安装工作需要专业的工程技术人员进行。传统的地下管线施工技术通常对地表有很大的破坏,而且地下管线的改造是在城市道路下的工程,必然会对本来就拥堵的城市交通带来更大的不便,也严重影响了人民群众的正常出行,施工后的道路恢复工作也比较麻烦,在一些人口密集交通易堵塞的大城市这个问题显得更加明显,因此,这个问题成为了众多专家研究的话题,也是我们急需解决的问题。

非开挖工程技术彻底解决了管道埋设施工中对城市建筑物的破坏和道路交通的堵塞等难题,在稳定土层和环境保护方面凸显其优势。这对交通繁忙、人口密集、地面建筑物众多、地下管线复杂的城市是非常重要的,它将为城市创造一个洁净、舒适和美好的环境。非开挖技术是指在进行地下管线的铺设改造中尽力不开挖或者少开挖。

顶管技术就是在目前的形势下发展起来的一种菲开挖技术,这种技术在国外应用非常普遍,在我国也有很大的普及空间。伴随着顶管技术的投入使用,在运用中也经常出现一些问题,本文主要提出在顶管技术施工中容易出现的技术问题,值得施工技术人员重视,并以此和同行共享。

二、顶管施工的特点

顶管法又称为非开挖管道敷设技术.它具有不需要开挖面层.就能穿越地面构筑物和地下管线及公路、铁路、河道的特点,相比开挖敷设技术。投资和工期将大大节省。同时,顶管施工技术可以降低噪音,减少粉尘.减轻对城区的交通条件和环境状况的干扰和破坏.属于真正的无污染、高效率的施工技术。顶管施工法由于其上述多方面的优点.在市政工程中尤其是在市政给排水管线工程中得到了广泛地应用。概括起来,顶管施工技术具有几大方面的优点:施工面由线缩成点,占地面积小;地面活动不受施工影响,对交通干扰小;噪音和震动低.城市中施工对居民生活环境干扰小.不影响现有管线及构筑物的使用;可以在很深的地下或水下敷设管道,可以安全穿越铁路、公路、河流、建筑物,减少沿线的拆迁工作量.降低工程造价。其主要缺点是施工技术难度较高,需要详细的工程地质和水文地质勘探资料。

三、顶管技术施工应用分析

1、顶进管的选择

顶进管一般选州钢筋砼管.如没有腐蚀要求可选用钢管。钢筋砼管的规格设计、配筋和应力验算应遵守有关钢筋砼的标准和技术规程.特别是有关钢筋砼管的标准和技术规程。

2、顶进管岛径的选择

顶进管的直径选择是片先根据工程性质、工程需要确定内径。根据顶进管所受荷载确定砼管的配筋及壁厚.进而确定外径。因为顶管工程工作面上需要配备挖土工人.所阻一般管内径不小于500rm。

3、顶进管妊度的选择

顶进管的长度对顶管过程的可控性和经济性有很大的影响。在直线推顶的情况下使用长管可以减少装管的次数.取得良好的效果.但随着管长度的增长.如果偏离原定的路线,建造顶坑时顶娅坑的长度也要增大.挖坑、支护、回填、修复的费用将相应地增加。反之,在直线上推顶很短的管也较困难.闪为短管比较容易向周闱土层中挤入.致使整个管呈蛇形弯曲,这便降低了管路顶进的可控性。

4、顶管施工的前期准备

现场平面布置,平面总体帛置包括起重设备、自动拧制室、料具间、管片堆场、拌浆棚及拌浆材料堆场、注水系统、弃土坑的布置等,始硼t作井内安装发射架、顶管机、前顶铁、主推千斤顶、反力架等顶进设备.工作井边侧设置下井扶梯供施工人员上下。

顶管机进,出洞处以及后靠土体加固为确保顶管机出洞的绝对安全,对后靠土体机进。为防止腰管机进、出预留空间导致泥水流失.并确保在顶进过程中压注的触变泥浆不流失,必须在工作井安装洞口止水装置。

三、顶管施工的工艺

顶管施工又称为顶进法施工.是指利用顶进设备将预制的箱形或圆形构造物逐渐顶入路基.以构成立体交义通道的施工方法。顶管施工需先在确定的管段之间设置工作井和接收,在工作井内安装推力设备将导轨上的顶管机头推入土体,机头导向。将预制的钢筋混凝上管向前顶进.前端土体通过上作井运出,最后完成管道铺设。

1、顶管井的设计

顶管井分工作井与接收井两种,顶管井的建造结构有很多种类,一般使用钢筋混凝土结构。工作井的结构形式通常有单孔井和单排孔井,它们的结构受力性能由高至低依次为圆形一矩形。结构布置时,可在井内设置内支撑.改善结构受力。在建造过程中工作井按双向顶进设计,问距与设计枪杳井间距一致.施工完毕,在工作井和接收井的位置上按设计要求做检查井。

2、顶管施工工序

①穿墙:打开穿墙闷饭将工具管顶出井外.并安装穿墙止水装置,主要技术施工措施如下:a穿墙管由填夯压密实的纸筋粘上或低强度水泥粘土拌和土.以起到临时性阻水挡土作用;b为确保穿墙孔外侧一定范嗣内土体基本稳定并有足够强度.工作井工具管穿墙,对穿墙管外侧采取注浆同结措施;

c穿墙前对可能出现的问题进行分析并制定相应处坪措施:d蝴板开启后迅速推进工具管.同时做好穿墙止水.

结束语:管工艺的施工从技术上讲是完全可行的.相对于开槽坪管从社会效益与经济效益睐讲更具有优越性,另外一方面从切实做到保护环境人手.加人推广顶管施上技术力度势在必行.可以预见未来的管线铺设技术将以顶管工艺为支撑。

篇3

一.引言

顶管施工最突出的特点就是适应性问题。针对不同的地质情况、施工条件和设计要求,选用与之适应的顶管施工方式,如何正确地选择顶管机和配套辅助设备,对于顶管施工来说将是非常关键的 。

顶管施工是继盾构施工之后而发展起来的一种地下管道施工方法,它不需要开挖面层,并且能够穿越公路、铁道、河川、地面建筑物、地下构筑物以及各种地下管线等。顶管施工借助于主顶油缸及管道间中继间等的推力,把工具管或掘进机从工作井内穿过土层一直推到接收井内吊起。与此同时,也就把紧随工具管或掘进机后的管道埋设在两井之间,以期实现非开挖敷设地下管道的施工方法。

二.工程实例。

1.工程概况。

某地外环路,路段I

2. 施工方案。

顶管全长535.5m,检查井按30m或40m两种间距设置,管材采用抗渗等级为S6的C50II级加强离心式预应力钢筋混凝土管,F型柔性接口。顶管施工,选择管道的相应检查井位置设置2个工作井和3个接收井进行顶进,工作井作管道顶进用,接收井为顶管出洞回收工具头用。顶管最大单元长度140m。管道顶进完后,再施作污水检查井。

3.工作经设计、施工。

工作井上设活动式工作台,台上设起重架,用于起吊管井。

(1). 工作井井底长、宽尺寸可按式(1)、式(2)确定。W=D+(2.4~3.2)(1)式中为工作井底宽度,m;D为被顶进管外径,m;L=Ll+L2+L3+L4+L5(2)式中为工作井底长,m;L为管节顶进后,尾端压在导轨上的最小长度,混凝土管一般留0.3m;L2为每节管长度,m;L3为出土工作间隙,一般为1.0~1,5m;L4为千斤顶长度,m;L5为后背墙厚度,m;

本工程工作井长宽为7m×4m,工作井护壁为厚0.4m C30钢筋混凝土,底板为厚0.5m钢筋混凝土

(2). 水泥搅拌桩施工。为保证施工时不塌方和减少地下水的流入,在工作坑外侧设置了水泥搅拌桩止水帷幕。桩径D=0.50m,相互搭接0.15m,水泥掺入量19%,水泥用量70kg/m,水灰比为0.45~0.50,用P.032.5普通硅酸盐水泥。采用“四搅四喷”施工工艺。

(3). 工作井开挖。采用人工垂直开挖,每开挖1m即护壁1m,井底施打木桩进行加固,及时对井底进行封闭。

4.顶管参数及设备安装。

顶管工程力学参数确定顶管推力就是顶管过程中管道受到的阻力,包括工具管切土正压力、管壁摩阻力。

(1). 工具管切土正压力。

F1=S1×K1=πr2×K1=π×0.482×50=36.2t(式中F1为顶管正阻力,t;S1为顶管正面积,m2;K1为顶管正阻力系数,t/m2。) ,工具管切土正压力与土层密实度、土层含水量、工具管切土状况有关,根据有关统计资料,软土层一般为20~30t/m2,硬土层一般为30~60t/m2,本工程顶管经过地层为亚粘土和砂质亚粘土,K1。取50t/m2

(2). 管壁摩擦阻力。

F2=S2×K2=πDL×K2=π×0.96×140×0.9=380t( 式中F2为顶管侧摩擦力,t;S2为顶管侧面积,m2;K2为顶管侧阻力系数,t/m2。) 管壁摩擦阻力一般在0.5~1.2t/m2之间,本工程采用触变泥浆减阻,管壁摩擦阻力取0.9t/m2,顶进长度按140m计。

(3). 顶管总阻力。

F=F1+F2≈420t 考虑地下工程的复杂性及不可预见因素,顶管设备取1.4倍能力储备,设备顶进能力应为600t。

(4)千斤顶安装。本工程采用3台200t的千斤顶。千斤顶固定在支架上,并与管道中心的垂线对称,要求其合力的作用点与管壁反作用力作用点在同一轴线上,防止产生顶进偏差。根据施工经验,千斤顶的着力点作用在管节垂直直径的1/4~1/5为宜。

(5). 顶铁的安装。顶铁是顶进管道时,千斤顶与管道端部之间临时设置的传力构件。其作用是将一组千斤顶的合力,通过顶铁均匀地分布在管端,并起调节千斤顶与管端之间距离的作用。顶铁可分为环形顶铁和u形顶铁两种。安装顶铁时,顶铁与导轨之间、顶铁与顶铁之间的接触面,要擦拭干净,防止接触不良,相互滑动。安装后,要使千斤顶轴线、顶铁轴线和管道的轴线相互平行。顶铁轴线必须与管道中心的垂线对称,避免顶力产生偏心,导致“崩铁”。顶铁拼装后要进行锁定。(3)顶铁与管口之间垫缓冲材料联接(胶合板),使顶力均匀地分布在管端。

三. 顶进施工以及相关措施。

顶进过程中的管道轴线和高程的测量控制:在顶管施工中,激光束的投射通过机器中开口(激光窗)以及其他辅助设备到装在掘进机前部的目标靶上。由于激光发射器定期拆卸校对,重新按照定位销装上下来可能会有少许位移,在施工过程中需要定期调整激光束的方向。

1. 正常顶进施工。顶进管道前,进行全部设备检查与试运转。护壁上的管孔凿好后将工具管立即顶人土层。每顶进30cm,测量不少于一次,管道进入土层正常顶进时,每顶进100cm,测量不少于一次。工具管开始顶进5~10m的范围内,允许偏差为:轴线3mm,高程0~+3mm。否则要采取措施纠偏。顶进时遵循“边压触变泥浆边顶进,不压浆不顶进”的原则,新开顶时需对整个管路进行补浆。

2. 测量与纠偏。测量仪器采用全站仪和激光水准仪。测量频率。顶进第一节管节时为20~50厘米/次,正常顶进时为1米/次,校正顶进时为每顶进半节管测量一次。中心线测量。在工作井边的两方向桩上挂铅锤至工作井底部,在工作井内用激光水准仪照准两铅锤,读管前端的中心尺刻度,若与中心尺的中心刻度相重合,说明其方向准确,否则其差值即为偏差值。高程测量。在工作井内引设水准点,在停止顶进时,将激光水准仪支放在顶铁上,测量前端管底高程。纠偏。工具头前方有纠偏节,纠偏节中安装有纠偏千斤顶,顶进过程中,当工具头的方向偏差超过5mm,即应纠偏,调整纠偏千斤顶,实现顶进方向的控制。

3. 顶管节接头及防水措施。混凝土管采用F型橡胶密封圈柔性接口,氯丁橡胶楔形胶圈,由制管厂配套供应,接头内设止水钢环。当管节正常顶进安成后,管节之间都能达到良好的密封状态。

4. 穿墙顶进。顶管出洞口对顶管来说是非常重要的环节,为了顺利顶进,在接收井四周仍然采取了深层水泥搅拌对穿墙管前方2m范围内的土体进行加固,起到挡土、阻水的作用。

5. 作业面通风。选用大型风扇作鼓风式通风。

四.结束语

因此,随着我国经济的不断的快速发展,城镇规模的不断扩大,特别是临近大中城市的县镇,发展势头迅猛,目前世界上的顶管技术已经发展到了十分成熟的阶段,各种各样的顶管方式方法出现。但是,万变不离其宗, 顶管施工技术的原理都是一样的。一般都是垂直地面做工作井,然后用高压液压千斤顶,将水泥或者钢制管道涂抹介质顶入地下,各种技术的差别就在于运输管道内挖掘出来的泥土,石头等渣子的方法,有人工的,有水抽式的,先进的还有遥控的。在今后的发展中我们应更科学的对施工范围及地下管线进行详细的勘测,保证工程的圆满。

参考文献:

[1] 蒲吉见Pu Jijian市政道路污水管顶管施工技术[期刊论文] 《路基工程》- 2007年4期

篇4

Key words: pipe technology;municipal engineering;application;construction process

0 引言

地下管网是城市基础设施的重要组成部分,日夜肩负着传送信息和能量的重要任务。为城市处理污水的系统、自来水、煤气、电力和通讯设施等等都属于地下管网之内,要对上述市政设施进行改建、新建、扩建,需要工程技术人员进行安全的管道安装。传统的挖槽埋管地下管线施工技术由于对地面交通影响较大,使本来就拥挤繁忙的城市交通如同雪上加霜,同时给市民工作、生活带来许多不便,特别在人口稠密的城市和交通拥挤的地区以及不允许开挖的地段,这个矛盾就更加突出。市政工程如何使这些安装工程对城市的影响减至最小,如何尽可能减少对人们日常生活的影响。已经成了一个迫切解决的问题。

非开挖技术将完全能解决这些难题,提供安全及经济的施工方法。非开挖技术是指利用少开挖和不开挖技术来进行地下管线的铺设或更换的工艺。顶管技术就是在这种情况下发展起来的一种非开挖技术,其在国外已广泛使用,在国内也已逐渐普及。随着顶管技术在市政工程的广泛运用,本论文主要讨论在顶管作业施工过程中出现了一些具体的技术问题,值得施工技术人员重视,并以此和同行共享。

1 顶管施工的特点

顶管法又称为非开挖管道敷设技术,它具有不需要开挖面层,就能穿越地面构筑物和地下管线吸公路、铁路、河道的特点,相比开挖敷设技术,投资和工期将大大节省。同时,顶管施工技术可以降低噪音,减少粉尘,减轻对城区的交通条件和环境状况的干扰和破坏,属于真正的无污染、高效率的施工技术。顶管施工法由于其上述多方面的优点,在市政工程中尤其是在市政管线工程中得到了广泛地应用。概括起来,顶管施工技术具有几大方面的优点:施工面由线缩成点,占地面积小;地面活动不受施工影响,对交通干扰小;噪音和震动低,城市中施工对居民生活环境干扰小,不影响现有管线及构筑物的使用;可以在很深的地下或水下敷设管道,可以安全穿越铁路、公路、河流、建筑物,减少沿线的拆迁工作量,降低工程造价。

2 顶管技术施工应用分析

2.1 顶进管的选择 顶进管一般选用钢筋砼管,如没有腐蚀要求可选用钢管。钢筋砼管的规格设计、配筋和应力验算应遵守有关钢筋砼的标准和技术规程,特别是有关钢筋砼管的标准和技术规程。①顶进管直径的选择:顶进管的直径选择是首先根据工程性质、工程需要确定内径,根据顶进管所受荷载确定砼管的配筋及壁厚,进而确定外径。因为顶管工程工作面上需要配备挖土工人,所以一般管内径不小于500mm;②顶进管长度的选择:顶进管的长度对顶管过程的可控性和经济性有很大的影响。在直线推顶的情况下使用长管可以减少装管的次数,取得良好的效果,但随着管长度的增长,如果偏离原定的路线,使之恢复正确路线要比使用短管更加困难。建造顶压坑时顶压坑的长度也要增大,挖坑、支护、回填、修复的费用将相应地增加。

一般情况下,管长度须相对于管径来衡量,当L/D外≤1.10时,为短管;当L/D外=1.15时,为标准管;当IJD外≥2.10时为长管。

2.2 顶管施工的前期准备 ①现场平面布置:平面总体布置包括起重设备、自动控制室、料具间、管片堆场、拌浆棚及拌浆材料堆场、注水系统、弃土坑的布置等。始发工作井内安装发射架、顶管机、前顶铁、主推千斤顶、反力架等顶进设备,工作井边侧设置下井扶梯供施工人员上下;②顶管机进、出洞处以及后靠土体加固:为确保顶管机出洞的绝对安全,需对后靠土体及进、出洞区域土体进行高压旋喷桩加固。为防止顶管机进、出预留洞导致泥水流失,并确保在顶进过程中压注的触变泥浆不流失,必须在工作井安装止水装置。

2.3 顶管施工的工艺:顶管施 叉称为顶进法施工,是指利用顶进设备将预制成椭圆形或圆形构造物逐渐顶入路基,以构成立体交义通道或涵洞的施工方法。顶管施工需先在确定的管段之间设置工作井和接收井,然后在工作井内安装推力设备将导轨上的顶管机头推入土体,由机头导向,将预制的钢筋混凝土管向前顶进,前端土体通过工作井运出,最后完成管道铺设。

2.3.1 顶管井的设计:顶管井分工作井与接收井两种,顶管井的建造结构有很多种类,一般使用钢筋混凝土结构。工作井的结构形式通常有单孔井和单排孔井。前者形状有圆形、正方形、矩形等,后者则大多为矩形,它们的结构受力性能由高至低依次为圆形一正方形一矩形。

2.3.2 顶管施工工序 ①穿墙:打开穿墙闷板将工具管顶出井外,并安装穿墙止水装置,主要技术施工措施1)穿墙管内填夯压密实的纸筋粘土或低强度水泥粘土拌和土,以起到临时性阻水挡土作用;2)为确保穿墙孔外侧一定范围内土体基本稳定并有足够强度,工作井工具管穿墙前,对穿墙管外侧采取注浆固结措施;3)穿墙前对可能出现的问题进行分析并制定相应处理措施;4)闷板开启后迅速推进工具管,同时做好穿墙止水,本工程采用止水法兰加压板,中间安入20mm厚的天然优质橡胶止水板环,要求具有较高的拉伸率和耐磨性,借助管道顶进带动安装好的橡胶板形成逆向止水装置,应防止因穿墙管外侧的土体暴露时间过长而产生扰动流变。②顶管出洞:顶管出洞是顶管作业中一个很值得注意的问题,顶管出洞,即顶管机和第一节管子从工作井中破出洞口封门进入土中。开始正常顶管前的过程,是顶管技术中的关键工序,也是容易发生事故的工序。为防止管线出现偏斜,应采取工具管调零,在工具管下的井壁上加设支撑,若发现下跌立即用主顶油缸进行纠偏,工具管出洞前预先设定一个初始角弥补下跌等措施。③注浆减阻:在顶管施工中还有一个重要的技术措施就是通过压注触变泥浆填充管道周围的空隙,形成一道泥浆保护套,起到支撑地层,减少地面沉降,减少顶进阻力的作用。在施工中,首先对顶管机头尾部压浆,并要与顶进工作同步,然后在中续间和混凝土管道的适当位置进行跟踪补浆,以补充在顶进中的泥浆损失。注浆工序一般多应用于长距离顶管施工中。④顶管纠偏:纠偏是指机头偏离设计轴线后,利用设置在后部的纠偏千斤顶组,改变机头端面的方向,减少偏差,使管道沿设计轴线顶迸。顶进纠偏是采用调整4台纠偏千斤顶组方法,进行纠偏操作,若管道偏左则千斤顶采用左伸右缩,反之亦然。

3 膨润土悬浮液在疏松土层中的应用

在无粘性的疏松土层中以及在粘性很小的土壤中,例如在砂砾土中,若不采取其它辅助措施,土层由于本身极不稳定,以致在刃脚推进之后立刻就会坍落在管壁上。所以对这类土壤来说,膨润土悬浮液的支承作用尤其具有重要意义。为了起到这种支承作用,先决条件是要尽可能准确地掌握膨润土悬浮漓在砂砾上中的特性。膨润上悬浮液将渗人土层的孔隙内,充满孔隙,并继续在其中流动。流速取决于孔隙的横断面与悬浮液的流变特性,同时也取决于压浆压力。因此为了在同样的压浆压力下达刭相同的渗入深度,在孔隙横断面很小的细粒土层中便需要低流限的悬浮液,面孔隙横断面较大的粒粒土层则需要高流限的悬浮液。在克服流动阻力的过程中,压浆压力随着渗入深度的增加而成比例地衰减,所以相应每一种压浆压力,都有一个完全确定的渗入深度。

尽管就某种场合来说,随着管子的推进同时在管子整个圆周上和管路全部长度上均匀地压浆证明是相宜的,而在另一些场合下,正确的方法则又可能是分段压浆。例如现已得知,在管子下半部,膨润土在顶进过程中比静止状态下更容易流出,而上半部的压浆则是在管路静止的情况下更容易进行。因此最好是将管子下半都的注浆孔和上半部的注浆孔分别组合起来。这种半侧压出韵原因在于,静止状态的管道以其全部很大的重量沉落于底部。这样便在管道的顶部形成了小空隙,或者至少是形成了一个压力较低的区域。因而在这种状态下,膨澜土在管顶处比在管底部更容易流出。反之,在顶压力和浮力同时作用下,管道有向上拱起的倾向。这时管道离地升起,于是管底下方便形成了一个低压区,致使膨润土更加容易渗入其中并均匀地散开。

4 顶进管在膨润土悬浮浪中受到的浮力

只要顶进管在整个圆周上被膨润土悬浮液所包围,浮力定律便对它有效,即使悬浮液层的厚度很小也同样如此。在钢筋混凝土管情况下,浮力均为管子自重的1.4倍。这样,只要通过正确地压人膨润土悬浮液,从而在土层中围绕顶进管形成一个支承环带,并保持悬浮液压力等于土压力,于是管子就会在膨润土悬浮液中漂浮起来。为此必需的前提在于悬浮液应是液体状态的,亦即呈现为表观流限相应较低的溶胶状态。在悬浮液的膨润土含量低到接近运动状态下的稳定极限时,这个条件便能得到满足。浮力可使管外璧摩阻力减小,因为管底部由于自重产生的法向力减少了。这一效果首先会对大直径管子的长距离推顶产生有利的影响

5 结语

顶管设计在市政工程中,特别是深覆土大管径的管道工程和交通繁忙的城市主干道改造工程设计中显得尤为重要。在特定工程条件下,相对与开槽埋管更具优越性。时代要前进,城市要发展。市政设施配套完善,地下各种管道建设将会大量增加,顶管设计和施工也会增多。管径加大,长度加长,有直有曲,种类繁多,这将是今后大城市顶管施工的发展趋势。因此,我们要重视这个良机,进一步地完善和提高我们的顶管设计和施工技术,使之综合施工技术达到国际水平。

参考文献:

[1]廖霞柳.洛河电厂取水工程顶管施工质量控制分析[J].安徽水利水电职业技术学院学报,2010,(01):13-14,17.

邓雅婷.地下建筑与工程专业揭密及院校介绍[J].高校招生,2002,(07) :58;学校学报,2010,(01):23-24,37.

篇5

1、工程概况

本工程是位于天津市和平区,是太原道泵站改造工程排水工程的部分工程,且穿越大沽北路,管道较深度(顶管管道深度为11.7米)。顶管穿越土层土质为淤泥质粉质粘土,土质较差,周边建筑物较多,并且太原道为主要交通干道。

2、施工技术方案

(1)经调查分析研究,根据本工程具体情况,采用土压平衡式顶管工艺进行施工。其主要原因是:a、它的适应范围都比气压平衡、泥水平衡两种方式宽。b、土压平衡掘进机在施工过程中所排出的渣土要比泥水平衡掘进机所排出的泥浆容易处理。C、土压平衡掘进机的设备要比泥水平衡和气压平衡简单得多。

(2)顶管施工工艺流程:

施工前期准备测量放样、复核工作井施工搅拌桩施工工作井上下设备安装准备工具头吊车下井、全套设备调试工具头穿墙顶进后续吊放管道管道顶进、测量控制及纠偏管道排泥和废泥浆外运下一节管吊放就位下段顶管顶进管道贯通、回收工具头竣工验收、清场

(3)施工顺序:

顶管法施工采用先施工顶管工作井及接收井,后顶进管道,然后施工检查井的施工顺序,顶管工作井及接收井施工、管节制作、顶进施工、检查井施工尽可能平行交叉进行、以缩短工期。

3、关键施工技术措施

1)测量和轴线控制技术

确保顶管施工的关键在于控制好顶进轴线。在进入前30m,顶进测量的频率提高到1 次/m,并每顶进15m 就进行一次顶进轴线复核,确保顶管机头在进入穿越段之前处于准确的姿态,轴线偏差控制在10mm 以内。进入穿越段后,每顶进50cm 测量一次顶管姿态,做到勤推、勤测、勤纠。避免因为轴线出现过大偏差而进行强制纠偏,从而将对管体外土体的扰动减少到最小。

2)触变泥浆压浆控制技术

在顶管管节外壁与土层之间形成良好性能的触变泥浆套,不仅可使顶进阻力成倍的下降,而且对控制地表沉降、减少土体的扰动有很好效果。因此,在实施穿越时,为了确保完整泥浆套的形成,严格控制泥浆质量并选用优质膨润土,并根据顶进情况,不断优化泥浆配比。在控制好泥浆配比的同时,控制泥浆拌制质量;拌制好的泥浆静置24h 后,要求漏斗粘度时间大于26s,并使用前再次搅拌。其次,在压浆时还着重控制以下4 个方面:

①出洞口的止水装置要确保不渗漏,管节接口和中继间的密封性能良好,是形成泥浆套的先决条件;

②从出洞口开始压浆,出洞口的压浆可以避免管子进入土体后被握裹,进而引起“背土”的恶果;管道在“背土”条件下的运动将对土体产生很大的扰动;

③机尾的同步压浆,使泥浆套随机头不断延伸,若不及时压浆,机壳外面也很容易产生背土现象,尤其是在穿越地铁隧道阶段,确保机尾处泥浆套形成对减少土体扰动非常重要;

④对管道沿线定时补浆,不断弥补浆液向土层的渗透量,在穿越过地铁隧道后的后续顶进中,不断地补浆有助于减少管道前移时对地铁隧道上方土体的摩擦扰动。

3) 控制泥浆置换质量

及时利用触变泥浆压注孔对管道外的触变泥浆进行纯水泥浆置换,从而减少了管道的后期沉降。

4、其他技术措施

1)安装导轨

导轨采用重型导轨,安放在砼基础面上,导轨定位时必须稳固、准确,在顶进过程中承受各种荷载时不移位、不变形、不沉降,两根轨道必须相互平行、等高,导轨面上的中心标高按顶管管内底标高设置。在顶进中经常观测调整,以确保顶进轴线的精度,导轨安放前先校核管道中心位置。

2)顶管后背处理

顶管后背采用整体钢板焊接的后背,后背铁和支护桩之间用C20混凝土浇筑,这样使千斤的集中应力传导至后背铁上,最后逐步扩散到后背土体,由土的被动土压力承担。后背铁的摆放垂直度满足规范的要求。后背铁的摆放要对称于管道中线,同时千斤架的摆放满足对称要求,反方向施工顶进以已经顶进的管道为后背,在原有管道的接口处放置大于10mm厚的橡胶板,再放环形顶铁一块,保护好原有管口。

3)做出洞止水封门

在顶进方向出洞口处增加止水封门。止水封门做法,将洞口处的土挖掉并清理干净,形状为内圆外方,内圆直径为管外皮直径加100mm,外方横向尺寸为以内圆直径加600mm,高度为管材半径;露出水泥搅拌桩支模,厚度为300mm,浇筑混凝土。在与水泥桩的接触缝隙处一定要灌满砼,并用振捣棒细致振捣,在距内圆5―100mm的位置上予埋ф16螺栓,长350mm,埋入混凝土200mm,外露150mm。螺栓间距150mm,分内外两排,梅花桩交错布置,待混凝土强度达到50%后,先对封门迎面进行找平,凸起处用錾子剔掉,凹处补高标号水泥砂浆整体找平后,安装环形橡胶板,厚20mm,内环直径要比管外皮直径小200mm,外环直径同封门外边尺寸,在环形橡胶板上和螺栓对应的位置挖孔,将环形橡胶板紧紧贴住封门的迎面,并使螺栓从与其对应的孔中露出,再在橡胶板外面压上同厚度同形状的环形钢板(但钢板内环直径为管外皮加60mm,这一点与环形橡胶板不同,其余都同),最后用双螺母拧紧螺栓,将环形钢板和环形橡胶板与封门紧紧顶严,保证破洞后坑外的泥水不会顺着封门与管外皮的缝隙处流进坑内,

5、结论

篇6

中图分类号:TL353+.2文献标识码:A 文章编号:

地下给排水管网是城市基础设施的重要组成部分。城市污水处理系统、自来水系统、雨水系统等等都属于地下给排水管网之内,要对上述市政设施进行改建、新建、扩建,需要工程技术人员熟悉管道安装的施工工艺、施工技术。传统的挖槽埋管地下管线施工技术由于对地面交通影响较大,使本来就拥挤繁忙的城市交通如同雪上加霜,同时给市民工作、生活带来许多不便,特别在人口稠密的城市和交通拥挤的地区以及不允许开挖的地段,这些矛盾就更加突出,成为一个迫切需要解决的问题。非开挖技术将完全能解决这些难题,提供安全及经济的施工方法。非开挖技术是指利用少开挖或不开挖技术来进行地下管线的铺设或更换的工艺。顶管技术就是在这种情况下发展起来的一种非开挖技术,其在国外已广泛使用,在国内也已逐渐普及。随着顶管技术在市政工程的广泛运用,本论文主要讨论在顶管作业施工过程中出现了一些具体的技术问题,值得施工技术人员重视,并以此和同行共享。

1 顶管施工的特点

顶管法又称为非开挖管道敷设技术,它具有不需要开挖面层,就能穿越地面构筑物和地下管线及公路、铁路、河道的特点,相比开挖敷设技术,投资和工期将大大节省。同时,顶管施工技术可以降低噪音,减少粉尘,减轻对城区的交通条件和环境状况的干扰和破坏,属于真正的无污染、高效率的施工技术。顶管施工法由于其上述多方面的优点,在市政工程中尤其是在市政给排水管线工程中得到了广泛地应用。概括起来,顶管施工技术具有几大方面的优点:施工面由线缩成点,占地面积小;地面活动不受施工影响,对交通干扰小;噪音和震动低,城市中施工对居民生活环境干扰小,不影响现有管线及构筑物的使用;可以在很深的地下或水下敷设管道,可以安全穿越铁路、公路、河流、建筑物,减少沿线的拆迁工作量,降低工程造价,其主要缺点是施工技术难度较高,需要详细的工程地质和水文地质勘探资料。

2 顶管技术施工应用分析

2.1 顶进管的选择。顶进管一般选用钢筋砼管,如没有腐蚀要求可选用钢管。钢筋砼管的规格设计、配筋和应力验算应遵守有关钢筋砼的标准和技术规程,特别是有关钢筋砼管的标准和技术规程。

2.1.1 顶进管直径的选择。顶进管的直径选择是首先根据工程性质、工程需要确定内径,根据顶进管所受荷载确定砼管的配筋及壁厚,进而确定外径。因为顶管工程工作面上需要配备挖土工人,所以一般管内径不小于500mm。

2.1.2 顶进管长度的选择。顶进管的长度对顶管过程的可控性和经济性有很大的影响。在直线推顶的情况下使用长管可以减少装管的次数,取得良好的效果,但随着管长度的增长,如果偏离原定的路线,使之恢复正确路线要比使用短管更加困难。建造顶压坑时顶压坑的长度也要增大,挖坑、支护、回填、修复的费用将相应地增加。反之,在直线上推顶很短的管也较困难,因为短管比较容易向周围土层中挤入,致使整个管列呈蛇形弯曲,这便降低了管路顶进的可控性。

一般情况下,管长度须相对于管径来衡量,当L/D外≤1.10时,为短管;当L/D外=1.15时,为标准管;当L/D外≥2.10时为长管。

2.2 顶管施工的前期准备

2.2.1 现场平面布置。平面总体布置包括起重设备、自动控制室、料具间、管片堆场、拌浆棚及拌浆材料堆场、注水系统、弃土坑的布置等。始发工作井内安装发射架、顶管机、前顶铁、主推千斤顶、反力架等顶进设备,工作井边侧设置下井扶梯供施工人员上下。

2.2.2 顶管机进、出洞处以及后靠土体加固。为确保顶管机出洞的绝对安全,需对后靠土体及进、出洞区域土体进行高压旋喷桩加固。为防止顶管机进、出预留洞导致泥水流失,并确保在顶进过程中压注的触变泥浆不流失,必须在工作井安装洞口止水装置。

2.3 顶管施工的工艺。顶管施工又称为顶进法施工,是指利用顶进设备将预制的箱形或圆形构造物逐渐顶入路基,以构成立体交叉通道或涵洞的施工方法。顶管施工需先在确定的管段之间设置工作井和接收井,然后在工作井内安装推力设备将导轨上的顶管机头推入土体,由机头导向,将预制的钢筋混凝土管向前顶进,前端土体通过工作井运出,最后完成管道铺设。

2.3.1 顶管井的设计。顶管井分工作井与接收井两种,顶管井的建造结构有很多种类,一般使用钢筋混凝土结构。工作井的结构形式通常有单孔井和单排孔井。前者形状有圆形、正方形、矩形等,后者则大多为矩形,它们的结构受力性能由高至低依次为圆形一正方形一矩形。结构布置时,可在井内设置内支撑,改善结构受力。在建造过程中,工作井按双向顶进设计,与接收井间隔布置,间距与设计检查井间距一致,施工完毕,在工作井和接收井的位置上按设计要求做检查井。

篇7

地下管网是城市基础设施的重要组成部分,日夜肩负着传送信息和能量的重要任务。为城市处理污水的系统、自来水、煤气、电力和通讯设施等等都属于地下管网之内,要对上述市政设施进行改建、新建、扩建,需要工程技术人员进行安全的管道安装。传统的挖槽埋管地下管线施工技术由于对地面交通影响较大,使本来就拥挤繁忙的城市交通如同雪上加霜,同时给市民工作、生活带来许多不便,特别在人口稠密的城市和交通拥挤的地区以及不允许开挖的地段,这个矛盾就更加突出。市政工程如何使这些安装工程对城市的影响减至最小,如何尽可能减少对人们日常生活的影响。已经成了一个迫切解决的问题。

非开挖技术将完全能解决这些难题,提供安全及经济的施工方法。非开挖技术是指利用少开挖和不开挖技术来进行地下管线的铺设或更换的工艺。顶管技术就是在这种情况下发展起来的一种非开挖技术,其在国外已广泛使用,在国内也已逐渐普及。随着顶管技术在市政工程的广泛运用,本论文主要讨论在顶管作业施工过程中出现了一些具体的技术问题,值得施工技术人员重视,并以此和同行共享。

1 顶管施工的特点

顶管法又称为非开挖管道敷设技术,它具有不需要开挖面层,就能穿越地面构筑物和地下管线吸公路、铁路、河道的特点,相比开挖敷设技术,投资和工期将大大节省。同时,顶管施工技术可以降低噪音,减少粉尘,减轻对城区的交通条件和环境状况的干扰和破坏,属于真正的无污染、高效率的施工技术。顶管施工法由于其上述多方面的优点,在市政工程中尤其是在市政管线工程中得到了广泛地应用。概括起来,顶管施工技术具有几大方面的优点:施工面由线缩成点,占地面积小;地面活动不受施工影响,对交通干扰小;噪音和震动低,城市中施工对居民生活环境干扰小,不影响现有管线及构筑物的使用;可以在很深的地下或水下敷设管道,可以安全穿越铁路、公路、河流、建筑物,减少沿线的拆迁工作量,降低工程造价。

2 顶管技术施工应用分析

2.1 顶进管的选择 顶进管一般选用钢筋砼管,如没有腐蚀要求可选用钢管。钢筋砼管的规格设计、配筋和应力验算应遵守有关钢筋砼的标准和技术规程,特别是有关钢筋砼管的标准和技术规程。①顶进管直径的选择:顶进管的直径选择是首先根据工程性质、工程需要确定内径,根据顶进管所受荷载确定砼管的配筋及壁厚,进而确定外径。因为顶管工程工作面上需要配备挖土工人,所以一般管内径不小于500mm;②顶进管长度的选择:顶进管的长度对顶管过程的可控性和经济性有很大的影响。在直线推顶的情况下使用长管可以减少装管的次数,取得良好的效果,但随着管长度的增长,如果偏离原定的路线,使之恢复正确路线要比使用短管更加困难。建造顶压坑时顶压坑的长度也要增大,挖坑、支护、回填、修复的费用将相应地增加。

一般情况下,管长度须相对于管径来衡量,当L/D外≤1.10时,为短管;当L/D外=1.15时,为标准管;当IJD外≥2.10时为长管。

2.2 顶管施工的前期准备 ①现场平面布置:平面总体布置包括起重设备、自动控制室、料具间、管片堆场、拌浆棚及拌浆材料堆场、注水系统、弃土坑的布置等。始发工作井内安装发射架、顶管机、前顶铁、主推千斤顶、反力架等顶进设备,工作井边侧设置下井扶梯供施工人员上下;②顶管机进、出洞处以及后靠土体加固:为确保顶管机出洞的绝对安全,需对后靠土体及进、出洞区域土体进行高压旋喷桩加固。为防止顶管机进、出预留洞导致泥水流失,并确保在顶进过程中压注的触变泥浆不流失,必须在工作井安装止水装置。

2.3 顶管施工的工艺:顶管施 叉称为顶进法施工,是指利用顶进设备将预制成椭圆形或圆形构造物逐渐顶入路基,以构成立体交义通道或涵洞的施工方法。顶管施工需先在确定的管段之间设置工作井和接收井,然后在工作井内安装推力设备将导轨上的顶管机头推入土体,由机头导向,将预制的钢筋混凝土管向前顶进,前端土体通过工作井运出,最后完成管道铺设。

2.3.1 顶管井的设计:顶管井分工作井与接收井两种,顶管井的建造结构有很多种类,一般使用钢筋混凝土结构。工作井的结构形式通常有单孔井和单排孔井。前者形状有圆形、正方形、矩形等,后者则大多为矩形,它们的结构受力性能由高至低依次为圆形一正方形一矩形。

2.3.2 顶管施工工序 ①穿墙:打开穿墙闷板将工具管顶出井外,并安装穿墙止水装置,主要技术施工措施1)穿墙管内填夯压密实的纸筋粘土或低强度水泥粘土拌和土,以起到临时性阻水挡土作用;2)为确保穿墙孔外侧一定范围内土体基本稳定并有足够强度,工作井工具管穿墙前,对穿墙管外侧采取注浆固结措施;3)穿墙前对可能出现的问题进行分析并制定相应处理措施;4)闷板开启后迅速推进工具管,同时做好穿墙止水,本工程采用止水法兰加压板,中间安入20mm厚的天然优质橡胶止水板环,要求具有较高的拉伸率和耐磨性,借助管道顶进带动安装好的橡胶板形成逆向止水装置,应防止因穿墙管外侧的土体暴露时间过长而产生扰动流变。②顶管出洞:顶管出洞是顶管作业中一个很值得注意的问题,顶管出洞,即顶管机和第一节管子从工作井中破出洞口封门进入土中。开始正常顶管前的过程,是顶管技术中的关键工序,也是容易发生事故的工序。为防止管线出现偏斜,应采取工具管调零,在工具管下的井壁上加设支撑,若发现下跌立即用主顶油缸进行纠偏,工具管出洞前预先设定一个初始角弥补下跌等措施。③注浆减阻:在顶管施工中还有一个重要的技术措施就是通过压注触变泥浆填充管道周围的空隙,形成一道泥浆保护套,起到支撑地层,减少地面沉降,减少顶进阻力的作用。在施工中,首先对顶管机头尾部压浆,并要与顶进工作同步,然后在中续间和混凝土管道的适当位置进行跟踪补浆,以补充在顶进中的泥浆损失。注浆工序一般多应用于长距离顶管施工中。④顶管纠偏:纠偏是指机头偏离设计轴线后,利用设置在后部的纠偏千斤顶组,改变机头端面的方向,减少偏差,使管道沿设计轴线顶迸。顶进纠偏是采用调整4台纠偏千斤顶组方法,进行纠偏操作,若管道偏左则千斤顶采用左伸右缩,反之亦然。

3 膨润土悬浮液在疏松土层中的应用

在无粘性的疏松土层中以及在粘性很小的土壤中,例如在砂砾土中,若不采取其它辅助措施,土层由于本身极不稳定,以致在刃脚推进之后立刻就会坍落在管壁上。所以对这类土壤来说,膨润土悬浮液的支承作用尤其具有重要意义。为了起到这种支承作用,先决条件是要尽可能准确地掌握膨润土悬浮漓在砂砾上中的特性。膨润上悬浮液将渗人土层的孔隙内,充满孔隙,并继续在其中流动。流速取决于孔隙的横断面与悬浮液的流变特性,同时也取决于压浆压力。因此为了在同样的压浆压力下达刭相同的渗入深度,在孔隙横断面很小的细粒土层中便需要低流限的悬浮液,面孔隙横断面较大的粒粒土层则需要高流限的悬浮液。在克服流动阻力的过程中,压浆压力随着渗入深度的增加而成比例地衰减,所以相应每一种压浆压力,都有一个完全确定的渗入深度。

尽管就某种场合来说,随着管子的推进同时在管子整个圆周上和管路全部长度上均匀地压浆证明是相宜的,而在另一些场合下,正确的方法则又可能是分段压浆。例如现已得知,在管子下半部,膨润土在顶进过程中比静止状态下更容易流出,而上半部的压浆则是在管路静止的情况下更容易进行。因此最好是将管子下半都的注浆孔和上半部的注浆孔分别组合起来。这种半侧压出韵原因在于,静止状态的管道以其全部很大的重量沉落于底部。这样便在管道的顶部形成了小空隙,或者至少是形成了一个压力较低的区域。因而在这种状态下,膨澜土在管顶处比在管底部更容易流出。反之,在顶压力和浮力同时作用下,管道有向上拱起的倾向。这时管道离地升起,于是管底下方便形成了一个低压区,致使膨润土更加容易渗入其中并均匀地散开。

4 顶进管在膨润土悬浮浪中受到的浮力

只要顶进管在整个圆周上被膨润土悬浮液所包围,浮力定律便对它有效,即使悬浮液层的厚度很小也同样如此。在钢筋混凝土管情况下,浮力均为管子自重的1.4倍。这样,只要通过正确地压人膨润土悬浮液,从而在土层中围绕顶进管形成一个支承环带,并保持悬浮液压力等于土压力,于是管子就会在膨润土悬浮液中漂浮起来。为此必需的前提在于悬浮液应是液体状态的,亦即呈现为表观流限相应较低的溶胶状态。在悬浮液的膨润土含量低到接近运动状态下的稳定极限时,这个条件便能得到满足。浮力可使管外璧摩阻力减小,因为管底部由于自重产生的法向力减少了。这一效果首先会对大直径管子的长距离推顶产生有利的影响

5 结语

顶管设计在市政工程中,特别是深覆土大管径的管道工程和交通繁忙的城市主干道改造工程设计中显得尤为重要。在特定工程条件下,相对与开槽埋管更具优越性。时代要前进,城市要发展。市政设施配套完善,地下各种管道建设将会大量增加,顶管设计和施工也会增多。管径加大,长度加长,有直有曲,种类繁多,这将是今后大城市顶管施工的发展趋势。因此,我们要重视这个良机,进一步地完善和提高我们的顶管设计和施工技术,使之综合施工技术达到国际水平。

参考文献:

[1] 廖霞柳.洛河电厂取水工程顶管施工质量控制分析[J].安徽水利水电职业技术学院学报,2010,(01):13-14,17.

[2] 邓雅婷.地下建筑与工程专业揭密及院校介绍[J].高校招生,2002,(07) :58;学校学报,2010,(01):23-24,37.

[3] 张振宇.盾构法施工技术在我国的应用与发展[J].武汉工程职业技术学院学报,2005,(04):26-28,36.

[4] 马福海.发展中的中国非开挖事业[J].非开挖技术,2006,(03):85.

[5] 方客军.北京地铁蒲黄榆车站超前长管棚试验研究[J].铁道建筑技术,2005,(05)63.

(下接第31页)

而且做工细致。

制作本身就是利用实物演示形象地说明专业理论,如果发动得当,学生会有许多创新产品出现。因此,指导学生制做制作大大提高了学生学习本专业知识的兴趣,加深他们对专业理论的理解,进而提高了动手操作能力、创新能力,也培养了他们团结协作的精神。

6.结语

在新课标教育改革下,教师应当要善于避开思维定势的方向,善于从侧向和逆向设奇想、出奇问,跳出传统教学模式的束缚,对教学环节进行不断的创新。而作为机械专业的教师来说,要从改善课程的教学质量,提高学生的创新能力,就必须要对机械教学进行创新。

参考文献:

[1] 薛小雯.创新教育在机械基础课程中的实践[J].无锡教育学院学报,20O4(l) .

[2] 干成.机械基础教学中的形象思维培养[J].职业教育研究,2004 .

[3] 王五一在《机械基础》教学中应注重学生创新素质的培养[J].教学研究与实践,2004(1).

(下接第32页)

故障安全评价。对于故障分析时需要考虑哪些故障,就是GB7588―2003中14.1.1.1和附录H叶|所列出的故障。把这些故障分别输入评价流程图中,只有能到达“可接受”的设计才是符合安全标准的。对含有电子元件的

安全电路还需进行规定的型式试验合格。目前对安全电路进行故障安全评价这一环节未能得到有效地控制。使用计算机软件(程序)作为安全电路的组成部分,是电梯控制技术发展的趋势;而GB7588标准中提到的安全电路的三个组成部分却并不包含软件(程序)。

4 结语

电梯制造企业在设计电气控制系统时,应充分考虑其对各种意外情况下的安全保护,应达到不低于标准GB7588-2003的相关要求,电梯检验人员在检验过程中,亦应加强对电气控制系统的试验,严格把关。通过对电梯电气控制系统故障的诊断和分析,找到了电梯电气控制系统一般故障有效的检查方法和切实可行的维修方案。

参考文献:

篇8

中图分类号:TU99 文献标识码:A 文章编号:2095-2104(2012)

引言

地下管网是城市基础设施的重要组成部分,日夜肩负着传送信息和能量的重要任务。为城市处理污水的系统、自来水、煤气、电力和通讯设施等等都属于地下管网之内,要对上述市政设施进行改建、新建、扩建,需要工程技术人员进行安全的管道安装。传统的挖槽埋管地下管线施工技术由于对地面交通影响较大,使本来就拥挤繁忙的城市交通如同雪上加霜,同时给市民工作、生活带来许多不便,特别在人口稠密的城市和交通拥挤的地区以及不允许开挖的地段,这个矛盾就更加突出。市政工程如何使这些安装工程对城市的影响减至最小,如何尽可能减少对人们日常生活的影响。已经成了一个迫切解决的问题。

1顶管施工的特点

顶管法又称为非开挖管道敷设技术,它具有不需要开挖面层,就能穿越地面构筑物和地下管线吸公路、铁路、河道的特点,相比开挖敷设技术,投资和工期将大大节省。同时,顶管施工技术可以降低噪音,减少粉尘,减轻对城区的交通条件和环境状况的干扰和破坏,属于真正的无污染、高效率的施工技术。顶管施工法由于其上述多方面的优点,在市政工程中尤其是在市政管线工程中得到了广泛地应用。概括起来,顶管施工技术具有几大方面的优点:施工面由线缩成点,占地面积小;地面活动不受施工影响,对交通干扰小;噪音和震动低,城市中施工对居民生活环境干扰小,不影响现有管线及构筑物的使用;可以在很深的地下或水下敷设管道,可以安全穿越铁路、公路、河流、建筑物,减少沿线的拆迁工作量,降低工程造价。

2顶管技术施工应用分析

2.1 顶进管的选择

顶进管一般选用钢筋砼管,如没有腐蚀要求可选用钢管。钢筋砼管的规格设计、配筋和应力验算应遵守有关钢筋砼的标准和技术规程,特别是有关钢筋砼管的标准和技术规程。①顶进管直径的选择:顶进管的直径选择是首先根据工程性质、工程需要确定内径,根据顶进管所受荷载确定砼管的配筋及壁厚,进而确定外径。因为顶管工程工作面上需要配备挖土工人,所以一般管内径不小于500mm;②顶进管长度的选择:顶进管的长度对顶管过程的可控性和经济性有很大的影响。在直线推顶的情况下使用长管可以减少装管的次数,取得良好的效果,但随着管长度的增长,如果偏离原定的路线,使之恢复正确路线要比使用短管更加困难。建造顶压坑时顶压坑的长度也要增大,挖坑、支护、回填、修复的费用将相应地增加。

一般情况下,管长度须相对于管径来衡量,当L/D外≤1.10时,为短管;当L/D外=1.15时,为标准管;当IJD外≥2.10时为长管。

2.2 顶管施工的前期准备

①现场平面布置:平面总体布置包括起重设备、自动控制室、料具间、管片堆场、拌浆棚及拌浆材料堆场、注水系统、弃土坑的布置等。始发工作井内安装发射架、顶管机、前顶铁、主推千斤顶、反力架等顶进设备,工作井边侧设置下井扶梯供施工人员上下;②顶管机进、出洞处以及后靠土体加固:为确保顶管机出洞的绝对安全,需对后靠土体及进、出洞区域土体进行高压旋喷桩加固。为防止顶管机进、出预留洞导致泥水流失,并确保在顶进过程中压注的触变泥浆不流失,必须在工作井安装止水装置。

篇9

关键词 顶管技术;砂砾层;市政工程

1 工程概况

某城市截污管道工程是该地区环境治理的重点工程项目,污水管线布簧沿原护城河两岸布置,其原始地貌属河流冲洪阶地及山坡地,沿线较平缓。污水将被输送到新建的污水处理厂进行处理。管道敖设直径为DNl500的钢筋混凝土管,现场施工条件复杂,顶管穿越的地质情况复杂,主要为含砾中粗砂层、淤泥质土层。管道覆土约6.5m,且管线敷设在道路上,因此采用顶进设计方案。管道沿线共设2座工作井和2座接收井,工作井和接收井均采用沉井法施工,井底深度为7-9m。顶管管材选用用F型接口钢筋混凝土管。

2 砂砾层土体工程中顶管施工技术控制措施应用

在砾砂层中采用项管法施工,由于管道周围砂土坍塌无法形成卸力拱,导致管周水平土压力和垂直土压力增大,加大了管道顶进的摩擦阻力和工具管头部阻力,该摩阻力是管道顶进的主要阻力,为了充分发挥顶力的作用,在相同顶力条件下,为达到尽可能长的顶进距离。须采用一定的措施尽可能降低顶进中的管壁外周摩擦阻力。本工程采用管壁外周加注触变泥浆,在土层与管道之间注入泥浆,形成一定厚度的泥浆环,使工具管和顶进的管道在泥浆环中向前滑移,来达到减阻的目的。

2.1 泥浆剂选用

泥浆剂又称为触变泥浆,是由膨润上、CMc(粉末化学浆糊)、纯碱和水按一定比例配方组成。膨润土是触变泥浆的主要材料,作为顶管施工用的膨润土应选纳基膨润土,由其拌制成的浆液,触变以后的流动性和静止下来的胶凝性、固化性都比钙基膨润长拌制的浆液要好,对土层的支承和效果好。

2.2 触变泥浆施工控制

注浆减摩是项管施工中非常重要的一个环节。合理使用触变泥浆可以保持土体稳定,减少塌方起到减阻和护壁作用。浆液通过注浆系统由注浆孔注入周围土中。

触变泥浆的工作原理是:管道外环空间充满触变泥浆形成的泥浆环套,不仅减少了土层对管子的垂直压力,而且因泥浆具有浮力作用,减轻了管道对下部土层的正压力,泥浆处于流动湿润状志,从而保持为湿润摩擦——一种摩擦系数较小的摩阻状态。有触变泥浆,其减阻效果可达30-60%。

注浆主要有3个作用,一是起作用,将管土之间的干摩擦变为湿润摩擦,减小摩擦阻力:二是起支撑作用,在注浆压力下使隧洞变的稳定:三是改良土质,通过泥浆向管道周围土体的渗透作用来改良不好的土质。

顶管施工过程中,如果注入的浆能在管子的外周形成一个比较完整的浆套,则其减摩效果将是十分令人满意的。在顶管时,管子随着距离的增长,在经过不同的土质时,推力上升得很快,一旦推力超过混凝土管所能承受的极限时,混凝土管就有可能被破坏。如果是这样,工程就有报废的可能。当然,出现这种情况的原因可能是多种多样的,但是起到减摩的浆套无法形成或无法完全形成则可能是主要的原因之一。

2.3 压浆与补浆施工控制

触变泥浆减摩效果的好坏,与注浆孔的布置、注浆泵的选用和注浆压力与浆液注入量有关。顶管掘进机后部环向均匀设置压浆孔,一般为3或4只。顶进时,及时进行跟踪补浆,确保在掘进机后面及时形成完整的泥浆环套。顶管掘进机后面管子上都布置有压浆孔,其后每三节管道中有一节布置有压浆孔。

地面泥浆站配置好的触变泥浆,经液压注浆泵增压后,进入输浆总管,通过环形分管注入顶管机及管节的压浆孔形成泥浆套。当管节顶进时,利用掘进机尾部环向均匀布置的压浆孔,与顶进同步进行跟踪注浆,以确保当掘进机顶进时所形成的管壁周围空隙被触变泥浆全部填充从而形成完整的泥浆环套。在顶进过程,由于浆液的流失,还应进行补浆。一般在一节管节顶进结束后以及管道阻力过大时,都应进行补压浆。

选用的注浆压力值应不使膨润土悬浮液从注浆孔喷出,在孔口周围形成高压密区,原则上控制在同步跟踪压浆量为管节外理论空隙体积的8倍左右,补压浆量一般为管节外理论空隙体积。

对注浆工艺,应予控制的参数主要是注浆压力和注浆量,二者均应适度。注浆压力的合理确定与由上覆地层产生的水土压力值有关,注浆压力值不宜过高,应根据浆液的粘度和管路输送长度,以及管壁处的土压力值经试验确定。

2.4 压注触变泥浆控制

(1)机尾三节混凝土管同步压浆,以形成原始浆套,填充固有间隙和纠偏间隙。

(2)沿线(及洞口)压浆,以补充管道不直形成的沿线浆套缺损。

(3)定点压浆,根据沉降测量反馈数据,对沉降过大处补偿性压浆,以支撑地表。

(4)触变泥浆的配比选料中,膨润土应选择膨胀倍率大、杂质小,颗粒在250目以上的优质膨润土较好。石膏具有使浆液保持其减摩效果持久的功能,同时又提可高浆液的胶凝强度,是触变泥浆配比中的必选品。

(5)在顶管施工时,要做好压浆量、点的记录,确保压浆工作到点,以降低管外壁摩擦阻力,提高顶管质量。地面沿线有专人巡视,防止压浆打穿地层造成浆套损坏。

(6)注浆前,在与机头相连的三节混凝土管以后的施工管上设置注浆孔,每隔6m设置一圈压浆孔,每个压浆孔上安装一只1.5寸球阀,由橡胶软管与压浆总管相连。压浆总管是一根1.5寸钢管,连接压浆泵。压浆系统上设有流量、压力调节阀。触变泥浆选用标准配方浆料,在拌料筒内按一定比例兑水充分拌制后,储放24h后方可使用。

2.5 施工质量保证措施

(1)制定严格的质量管理制度并进行定期的检查,确保施工质量;

(2)所有管节质量、接口焊接质量必须符合规定质量要求,运到现场应附有产品的合格证明,并逐一进行外观检查;

(3)所有顶管设备,必须经过维修保养,在进入工作井安装时必须进行单机和整机联动调试,在顶进中必须贯彻执行保养制度;

(4)建立完整的施工管理质量检查体系,进行定期和不定期的质量检查,每月二次定期召开质量会议,并做好记录;

(5)在顶进施工过程中,必须合理安排施工人员,确保24h日夜连续施工;

(6)在拆除封门前必须检查洞口止水圈与机头外壳的环形间隙是否密封,无泥浆注入;

(7)测量纠偏是顶进中的控制关键,必须贯彻勤测微纠的原则;

(8)工作井内应设置由地面水准点引入的临时水准点,在交接班时进行仪器高程的校对与调整;

(9)在顶进注浆过程中,认真做好压入量、压浆压力和压浆点位的原始记录。

3 结语

随着城市对环保标准要求的提高,城市市区建设的污水管线铺设量越来越大,顶管技术得到极其广泛的应用。论文结合工程案例,对于在砾砂层土体中进行的顶管施工技术控制措施做了分析,在顶进过程中采用管壁外周加注触变泥浆,给出合理的注浆控制参数,以达到减阻的施工措施,确保了本工程的顺利实施。

参考文献

[1]颜培育.排水管道顶管施工的常见问题分析[J].建材发展导向(下),2014(9).

篇10

Keywords: pipe jacking construction; the water balance method; construction management; effect monitoring

中图分类号:Q946.885+.7文献标识码:A 文章编号:2095-2104(2013)

一、工程概况

80万吨乙烯上游管廊工程作为中国石化武汉分公司80万吨/年乙烯工程项目的组成部分之一,主要承担武汉石化与乙烯工程之间物料互送任务。由武汉石化、武钢和乙烯工程所处的地理位置决定了上游管廊必须从武钢厂区通过。物料输送线包括7根为武汉石化和武汉乙烯之间物料输送线,1根乙烯分输站至武汉石化天然气输送线,8根预留管线,管径均为250mm,介质为氢气、氮气、芳烃抽余液等物质。这些管线需要从武汉石化铺设到80万吨乙烯项目部,如何铺设,如何处理将直接影响工程的成败。

通过石化设计人员和武钢管理部门双方的多次协商和实地考察,决定采用方案二,即大管径的顶管技术进行施工。如图所示(方案一为架空敷设,直接穿过武钢重要厂矿,被否定)。

乙烯项目路线图

二、顶管方案

本工程采用D3000泥水平衡法顶管施工工艺,顶进的混凝土管长约981.26m。由于线路曲折,需要采用钢筋混凝土顶管工作井4座,钢筋混凝土顶管接收井5座。

三、泥水平衡式顶管施工工艺与技术

1、泥水平衡顶管施工工艺技术

本顶管工程拟采用泥水平衡式顶管技术。泥水平衡顶管机如右图所示,该型顶管机利用机头刀盘旋转切削并破碎前方土体,同时利用外部提供的泥水将破碎的土进行拌合,在泥土仓内形成流塑状的泥水与土的混合体,同时该泥水混合体保持一定的压力以支撑并平衡周围土体以及地下水的压力,因此称为泥水平衡。泥水仓内泥水混合体的压力必须高于地下水压力15kPa左右。 泥水平衡式顶管机

2、施工平面布置

为了保障顶管施工顺利进行,节约工期和成本,需要在工作井周围布置一台匹配的吊车(50T),负责顶管施工中的各类物资的吊装和安置。顶管施工中的主要操控都在控制室内进行,因此控制室必须靠近工作井以便于对管道顶进进行实时监控。

工作井刚性后座由钢板和高强度混凝土组成,后座钢板与管道轴线垂直,后座中心与管道轴线一致。千斤顶、导轨、顶铁等顶进设备的布置如图所示。

施工期间在工作井内及管道内应合理布置排水泵,以保证管内和工作井内不大量积水,保障管道施工时设备和人员的安全。

工作井内布置如下图所示:

3、顶管施工关键参数计算

顶管机主要性能参数要根据本工程设计的管道直径大小以及地质勘察资料和地下水情况,并结合顶管机生产制造厂家的设计,共同计算完成。

顶力计算:顶管施工过程复杂,它涉及到多方面的力学计算问题。但顶管计算的根本问题是要估计顶管的顶力。顶管的顶力就是顶管过程管道受的阻力,包括端阻力和侧壁摩阻力。

最大推力计算,采用经验公式,按最大顶距200m计算:

(2-1)

F――总推力;

F1――端阻力;

F2――侧壁摩阻力;

(2-2)

D――管外径m;

P――控制土压力KN/m2;

(2-3)

Ko――静止土压力系数,一般取0.55

Ho――地面至掘进机中心的高度,取值15.9m

γ――土的重量,取1.9T/m3

(2-4)

f――管外表面综合磨擦阻力,取值0.50T/m2

D――管外径m

L――顶距m

工作井内采用8个200T的千斤顶,能满足顶进推力的需要。若在顶进过程中遇到复杂的地质情况,阻力有较大的增加,导致总推力超过1600T时,则需要增设中继间。

4、泥水平衡顶管施工过程控制

4.1.穿墙顶进

篇11

沉管的发生和造成的危害在同行业中早已形成共识,沉管已成为一种灾害。由于受技术条件的限制,以往发生沉管,一般都是采取开槽翻挖,重新敷设管道。随着城市交通的逐渐拥挤,传统的开挖技术的应用也开始受到了限制,采用非开挖技术抢修沉管倍受青睐,新材料、新工艺的引进,使沉管抢修传统的“开膛破肚”技术受到挑战。“非开挖技术”,既降低成本,又便利交通,使传统的开挖技术望尘莫及。

本论文主要讨论非开挖技术在排水工程中的应用,其施工工艺及应该注意的问题,对于进一步提高非开挖技术在排水工程中的应用水平是非常有意义的。

一、常用的非开挖技术施工分析

(一)顶管法

顶管施工法是最早用在排水工程施工中的一种非开挖施工方法。最初,顶管施工法主要用于跨越孔施工时顶进钢套管,随着技术的改进,顶管法也可用于无套管情况下顶进永久性的公用管道,主要是重力管道。当前,顶管法应该最为普遍的是采用水平定向钻头实施的顶管作业技术。

1.顶管法施工技术。顶管法又称为非开挖管道敷设技术,它具有不需要开挖面层,就能穿越地面构筑物和地下管线及公路、铁路、河道的特点,相比开挖敷设技术,投资和工期将大大节省。同时,顶管施工技术可以降低噪音,减少粉尘,减轻对城区的交通条件和环境状况的干扰和破坏,属于真正的无污染、高效率的施工技术。简单来说,顶管施工就是借助于管顶油缸以及中继间的顶进力,把工具管或顶管掘进机从工作坑内穿过土层一直顶进到接收坑内吊起。与此同时,把紧随在工具管或掘进机后的管道埋设在两个工作坑之间。概括起来,顶管施工技术具有几大方面的优点:(1)施工面由线缩成点,占地面积小;(2)地面活动不受施工影响,对交通干扰小;(3)噪音和震动低,城市中施工对居民生活环境干扰小,不影响现有管线及构筑物的使用;(4)可以在很深的地下或水下敷设管道,可以安全穿越铁路、公路、河流、建筑物,减少沿线的拆迁工作量,降低工程造价。其主要缺点是施工技术难度较高,需要详细的工程地质和水文地质勘探资料。

2.水平定向钻进非开挖施工技术。水平定向钻机施工工艺顺序是:现场勘察钻进轨迹设计钻进先导孔扩孔回拖铺管。

这里需要强调的是,采用水平定向钻进非开挖技术,可以提高施工的效率和质量,同时避免了交通的高峰拥堵,但是,钻进结束后,应当根据铺管直径及种类的不同,换上不同的回扩钻头和旋转接头,然后在旋转接头后接上回拖钻杆一次或多次回扩,直至达到所需孔径。扩孔的目的主要是为了减小拉管时的扩孔工作量。对直径较小的管线可不进行专门的扩孔钻进,而是在扩孔的同时将待铺设的管线拉入;对直径较大的管线,可进行多次扩孔钻进,使钻孔直径逐渐扩大,在扩孔钻进时,同步拉入钻杆。

(二)顶杆法

顶杆法是利用小直径杆完成的非开挖铺管技术,它的最大特点在于该方法简单易行,占地少,施工成本较低;另一方面需要注意的是,顶杆法主要是利用小直径完成的非开挖技术,因此它只适合于在土层中铺设小直径和短距离的水平管线,一般用来铺设直径200mm以下、一次铺管长度20m以内的各种管线。该方法适合在工程量较小的非开挖铺管工程中应用。

二、非开挖技术在排水工程中的应用分析

(一)工程背景介绍

杨浦区位于上海市中心的东北部,地处黄浦江下游西、北岸,黄浦江的支流杨树浦港纵贯区域南北,杨浦区由此得名。国和路是杨浦区东西向的主干道,自2005年以来,在国和路有路面沉降现象发生,有关部门对该路面进行了修复。但由于无法对雨、污水管道进行处理,管道外水土继续从脱开、错位的管缝间流失,围土也在不断松散,地面的不均匀沉降范围不断增加。上述分析说明该管道地基松散,基础不坚固,管道接缝的脱开、错位,地下水土的涌入,管道围土的不断流失及道路车辆动载的不断冲击,这一系列现象都是互相关联的,且随着时间的推移会产生恶性循环。如果不及时采取有效的技术处理措施制止其继续恶性发展的势头,将会直接影响国和路的交通安全及该路段雨、污水管的正常运行。

经潜水调查发现:该路段的雨水管和污水管道都有不同程度的损坏。污水Φ300污水管己经严重堵塞,Φ100、Φ800雨水管内有裂缝,管内土体流失严重。为了保证国和路的交通安全及畅通,彻底修复雨、污水管道,上海市排水处、杨浦水政管理所组织有关专家分析论证,决定对Φ300污水管采用开槽埋管,原Φ300污水管拆除后排设Φ300 UPVC管,为保证交通的正常通行,采用非开挖技术,直接铺设新排水管道,并对原损坏的部分管道进行修复。结合工程的实际情况,非开挖技术选用水平定向钻进施工作业。

(二)施工过程及工艺分析

1.进场前的准备工作。进场前的准备工作,主要是要完成该路段的地下管线施工分布图,并完成现场施工的方案设计,施工机具要安装到位,并着手开始进入施工环节。

2.钻机的进场及其放置:根据现场情况及设计的钻孔曲线在现场确定出了钻进中心线;为使钻机的位置满足方案设计曲线要求,即满足所铺设管线的允许曲率半径要求。

3.泥浆混配。由于该路段地下为中强风化泥岩,除加入化学泥浆及膨润土等原料外,还需加入剂、派克添加剂,计算泥浆理论用量约60m3。

4.导向钻进。导向孔的钻进是非开挖铺管施工的关键环节。为了保证先导孔的成孔质量,先导孔钻头选用适用于质地较为坚硬的地层和软质岩石层的斜面岩石钻头;同时,钻机调整好位置后,安装导向钻头,标定控向仪,调整好入土角度,按照设计曲线开始导向钻进。另一方面,在实际施工时应该根据地层的变化,及时调整钻压、泥浆配量以及泵送量,顺利完成导向孔的施工。

5.孔洞回扩。因为岩质较硬为提高扩孔效率,加快施工进度拟采用Ф250、Ф550、Ф750回扩器分三级进行切扩,然后用Ф650回扩器挤扩、清孔。实际施工中,导向孔钻通后,用回扩器进行扩孔,按照钻杆-回扩器-DCD接头-钻杆顺序连接好后,试验泥浆,检查水嘴,然后开始回扩。

6.管线回拖。为避免管线在钻孔中卡住,回拖一般要一次完成,但本工程中实际拖管长度有80m,受到道路实际宽度及交通管制的限制,仅能安放不大于45m长的管道,同时,考虑到钻孔基本上都处于中强风化泥岩中,孔形保持较好,而且已进行多次挤扩和清孔,采用了一个接口两次回拖,每段管道长40m。回拖管道前,对检验合格的燃气管道采用了外包裹措施,以免其防腐层遭到破坏。管道就位后,在挤扩器引导下,回拖敷设管道管线施工,顺利完成。

通过上述的施工工序,及时、顺利的完成了该路段的雨、污水管铺设及修复问题。

三、结语

我国从事非开挖铺管施工的单位(公司)目前约有40家。目前全国拥有各型铺管机(含进口的)100台左右,并且多数集中在上海、天津、北京等大城市。现在国内已能施工穿越黄河、海河、黄浦江等大直径、长距离油气管道。但和世界发达国家相比,尚处于发展初始阶段。随着我国城市、交通、电信、油气管道等基础设施的建设,包括西部大开发和西气东输等工程的启动,加上国家环保立法的完善,非开挖技术在我国的市场容量十分宽广,均有待有志者的努力与开拓。

参考文献

[1]中华人民共和国建设部.给水排水管道工程施工及验收规程[S].1997.

篇12

Keywords: pipe jacking technology application construction process

中图分类号:TU74 文献标识码:A 文章编号:

1顶管施工的特点

顶管法又称为非开挖管道敷设技术,它具有不需要开挖面层,就能穿越地面构筑物和地下管线吸公路、铁路、河道的特点,相比开挖敷设技术,投资和工期将大大节省。同时,顶管施工技术可以降低噪音,减少粉尘,减轻对城区的交通条件和环境状况的干扰和破坏,属于真正的无污染、高效率的施工技术。顶管施工法由于其上述多方面的优点,在市政工程中尤其是在市政管线工程中得到了广泛地应用。概括起来,顶管施工技术具有几大方面的优点:施工面由线缩成点,占地面积小;地面活动不受施工影响,对交通干扰小;噪音和震动低,城市中施工对居民生活环境干扰小,不影响现有管线及构筑物的使用;可以在很深的地下或水下敷设管道,可以安全穿越铁路、公路、河流、建筑物,减少沿线的拆迁工作量,降低工程造价。

2顶管技术施工应用分析

2.1 顶进管的选择顶进管一般选用钢筋砼管,如没有腐蚀要求可选用钢管。钢筋砼管的规格设计、配筋和应力验算应遵守有关钢筋砼的标准和技术规程,特别是有关钢筋砼管的标准和技术规程。①顶进管直径的选择:顶进管的直径选择是首先根据工程性质、工程需要确定内径,根据顶进管所受荷载确定砼管的配筋及壁厚,进而确定外径。因为顶管工程工作面上需要配备挖土工人,所以一般管内径不小于500mm;②顶进管长度的选择:顶进管的长度对顶管过程的可控性和经济性有很大的影响。在直线推顶的情况下使用长管可以减少装管的次数,取得良好的效果,但随着管长度的增长,如果偏离原定的路线,使之恢复正确路线要比使用短管更加困难。建造顶压坑时顶压坑的长度也要增大,挖坑、支护、回填、修复的费用将相应地增加。

一般情况下,管长度须相对于管径来衡量,当L/D外≤1.10时,为短管;当L/D外=1.15时,为标准管;当IJD外≥2.10时为长管。

2.2 顶管施工的前期准备①现场平面布置:平面总体布置包括起重设备、自动控制室、料具间、管片堆场、拌浆棚及拌浆材料堆场、注水系统、弃土坑的布置等。始发工作井内安装发射架、顶管机、前顶铁、主推千斤顶、反力架等顶进设备,工作井边侧设置下井扶梯供施工人员上下;②顶管机进、出洞处以及后靠土体加固:为确保顶管机出洞的绝对安全,需对后靠土体及进、出洞区域土体进行高压旋喷桩加固。为防止顶管机进、出预留洞导致泥水流失,并确保在顶进过程中压注的触变泥浆不流失,必须在工作井安装止水装置。

2.3 顶管施工的工艺:顶管施叉称为顶进法施工,是指利用顶进设备将预制成椭圆形或圆形构造物逐渐顶入路基,以构成立体交义通道或涵洞的施工方法。顶管施工需先在确定的管段之间设置工作井和接收井,然后在工作井内安装推力设备将导轨上的顶管机头推入土体,由机头导向,将预制的钢筋混凝土管向前顶进,前端土体通过工作井运出,最后完成管道铺设。

2.3.1 顶管井的设计:顶管井分工作井与接收井两种,顶管井的建造结构有很多种类,一般使用钢筋混凝土结构。工作井的结构形式通常有单孔井和单排孔井。前者形状有圆形、正方形、矩形等,后者则大多为矩形,它们的结构受力性能由高至低依次为圆形一正方形一矩形。

2.3.2 顶管施工工序①穿墙:打开穿墙闷板将工具管顶出井外,并安装穿墙止水装置,主要技术施工措施如下:1)穿墙管内填夯压密实的纸筋粘土或低强度水泥粘土拌和土,以起到临时性阻水挡土作用;2)为确保穿墙孔外侧一定范围内土体基本稳定并有足够强度,工作井工具管穿墙前,对穿墙管外侧采取注浆固结措施;3)穿墙前对可能出现的问题进行分析并制定相应处理措施;4)闷板开启后迅速推进工具管,同时做好穿墙止水,本工程采用止水法兰加压板,中间安入20mm厚的天然优质橡胶止水板环,要求具有较高的拉伸率和耐磨性,借助管道顶进带动安装好的橡胶板形成逆向止水装置,应防止因穿墙管外侧的土体暴露时间过长而产生扰动流变。②顶管出洞:顶管出洞是顶管作业中一个很值得注意的问题,顶管出洞,即顶管机和第一节管子从工作井中破出洞口封门进入土中。开始正常顶管前的过程,是顶管技术中的关键工序,也是容易发生事故的工序。为防止管线出现偏斜,应采取工具管调零,在工具管下的井壁上加设支撑,若发现下跌立即用主顶油缸进行纠偏,工具管出洞前预先设定一个初始角弥补下跌等措施。③注浆减阻:在顶管施工中还有一个重要的技术措施就是通过压注触变泥浆填充管道周围的空隙,形成一道泥浆保护套,起到支撑地层,减少地面沉降,减少顶进阻力的作用。在施工中,首先对顶管机头尾部压浆,并要与顶进工作同步,然后在中续间和混凝土管道的适当位置进行跟踪补浆,以补充在顶进中的泥浆损失。注浆工序一般多应用于长距离顶管施工中。④顶管纠偏:纠偏是指机头偏离设计轴线后,利用设置在后部的纠偏千斤顶组,改变机头端面的方向,减少偏差,使管道沿设计轴线顶迸。顶进纠偏是采用调整4台纠偏千斤顶组方法,进行纠偏操作,若管道偏左则千斤顶采用左伸右缩,反之亦然.

3膨润土悬浮液在疏松土层中的应用

在无粘性的疏松土层中以及在粘性很小的土壤中,例如在砂砾土中,若不采取其它辅助措施,土层由于本身极不稳定,以致在刃脚推进之后立刻就会坍落在管壁上。所以对这类土壤来说,膨润土悬浮液的支承作用尤其具有重要意义。为了起到这种支承作用,先决条件是要尽可能准确地掌握膨润土悬浮漓在砂砾上中的特性。膨润上悬浮液将渗人土层的孔隙内,充满孔隙,并继续在其中流动。流速取决于孔隙的横断面与悬浮液的流变特性,同时也取决于压浆压力。因此为了在同样的压浆压力下达刭相同的渗入深度,在孔隙横断面很小的细粒土层中便需要低流限的悬浮液,面孔隙横断面较大的粒粒土层则需要高流限的悬浮液。在克服流动阻力的过程中,压浆压力随着渗入深度的增加而成比例地衰减,所以相应每一种压浆压力,都有一个完全确定的渗入深度。

尽管就某种场合来说,随着管子的推进同时在管子整个圆周上和管路全部长度上均匀地压浆证明是相宜的,而在另一些场合下,正确的方法则又可能是分段压浆。例如现已得知,在管子下半部,膨润土在顶进过程中比静止状态下更容易流出,而上半部的压浆则是在管路静止的情况下更容易进行。因此最好是将管子下半都的注浆孔和上半部的注浆孔分别组合起来。这种半侧压出韵原因在于,静止状态的管道以其全部很大的重量沉落于底部。这样便在管道的顶部形成了小空隙,或者至少是形成了一个压力较低的区域。因而在这种状态下,膨澜土在管顶处比在管底部更容易流出。反之,在顶压力和浮力同时作用下,管道有向上拱起的倾向。这时管道离地升起,于是管底下方便形成了一个低压区,致使膨润土更加容易渗入其中并均匀地散开。

4顶进管在膨润土悬浮浪中受到的浮力

只要顶进管在整个圆周上被膨润土悬浮液所包围,浮力定律便对它有效,即使悬浮液层的厚度很小也同样如此。在钢筋混凝土管情况下,浮力均为管子自重的1.4倍。这样,只要通过正确地压人膨润土悬浮液,从而在土层中围绕顶进管形成一个支承环带,并保持悬浮液压力等于土压力,于是管子就会在膨润土悬浮液中漂浮起来。为此必需的前提在于悬浮液应是液体状态的,亦即呈现为表观流限相应较低的溶胶状态。在悬浮液的膨润土含量低到接近运动状态下的稳定极限时,这个条件便能得到满足。浮力可使管外璧摩阻力减小,因为管底部由于自重产生的法向力减少了。这一效果首先会对大直径管子的长距离推顶产生有利的影响 。

5结语

篇13

笔者在设计深圳葵涌污水处理厂配套干管工程时,有段350m长DN1500的污水管需要穿过强风化岩及中风化岩,经过经济及技术比较后采用顶管方案通过。在地下顶管施工中遇到岩石地层,按照常规施工工艺,可采用风镐破碎岩体,或者采用凿岩机械顶进。采用人工风镐破碎岩体,工作环境差,进度缓慢,不适于长距离岩体破碎成洞;采用凿岩机顶进价格昂贵,并需进行技能培训,增加项目投资,大大滞后工期,不经济。通过综合分析比较,决定采用微型爆破顶管施工技术来解决这一施工难题。

1、爆破方法的选择:

由于本工程水平成洞尺寸(直径1.5m)较小,爆破成洞精度要求较高,加之爆破地点位于居民区,四周房屋较多,故对爆破安全要求很高,针对工程的实际情况,洞身爆破及顶管工作坑爆破均采用石方静力爆破法爆破。微型爆破工艺流程图如下:

2、静力爆破法无声破碎剂性能介绍

静力爆破法采用无声破碎剂进行爆破。无声破碎剂在中华人民共和国建材行业标准《无声破碎剂》(标准号JC506-92)中定义为:凡经高温煅烧以氧化钙为主体的无机化合物,掺入适量外加剂共同粉磨制成的具备高膨胀性能的非爆破性破碎用粉状材料,称为无声破碎剂(又称静态破碎剂)。无声破碎剂是通过与水反应,形成固相体积增大的结晶,结晶生长对孔壁施加压缩应力,当压缩应力与垂直方向的张拉应力超过了脆性物体的极限强度时,物体发生龟裂,随着无声破碎剂的膨胀压不断增长,被破碎物体的裂缝不断扩大,直到破碎。常规施工方法是将无声破碎剂用水拌成浆体,填充在岩石钻孔中,在常温下可产生30Mpa以上的膨胀压,经6 h~24 h将混凝土构筑物或岩石破碎。

3、微型爆破设计

岩石的破碎设计首先要了解山体的地质构造、岩质、节理发育状况,岩石的抗压强度和抗拉强度,然后确定破碎时的最小抵抗线形W、孔距a和排距b、孔径D、孔深L、钻孔方向和钻孔布置。根据经验,各种参数一般估计值如下:

3.1 最小抵抗线形W

最小抵抗线应根据岩石的形状、节理、钻孔孔径和要求破碎的块度等因素来确定,一般取值为:

破碎软质岩石:W=40cm~60cm,

破碎中、硬质岩石:W=25cm~40cm。

本段顶管基本穿过中风化岩,属于中、硬质岩石,所以取W=35cm

3.2孔距a和排距b

岩石破碎块度较小时,W、a、b均取小值,相反,取大值,一般取值为:

破碎软质岩石:a=40cm-60cm,

破碎中、硬质岩石:a=30cm-50cm。

排距b应根据岩体的自由面多少决定,自由面多,b取较大值,反之,b取较小值。多排孔分次破碎时,b一般等于(0.6-0.9)a。多排孔宜采用梅花形布孔。

本段顶管穿过中、硬质岩石,取a=40cm,b=0.8a=32cm。

3.3孔径D

孔径是决定无声破碎剂破碎效率的重要因素。孔径D较大,破碎剂装药量多,产生的膨胀压较大,其破碎效果较高。但由于破碎剂水化同时放出热量,当内部蓄热状态达100℃时,破碎剂浆体中未水化的水分就会沸腾,产生蒸汽压,从而把无声破碎剂浆体喷出来。所以,最大孔径D主要取决于无声破碎剂浆体是否喷出来。一般孔径不宜小于20mm,但不宜大于50 mm,本工程取D=40mm。

3.4孔深L

孔深大小主要取决于破碎面的高度(H)和岩石的约束程度。一般按如下公式计算

L=(O.90-1.05)H。(H为设计破碎高度)

本工程H=2.0m,L取1.8m。。

本段顶管爆破半径R=100cm,在外圈环向加设一排光面爆破孔,间距20cm,使微爆孔洞成型。孔距、排距、孔径及孔深等以上参数为设计中的估算值,在具体施工中应根据实际地质情况进行适当调整。

3.5破碎剂型号的选择

根据中华人民共和国建材行业标准《无声破碎剂》(标准号JC506-92)中的规定,产品根据使用温度分为三个型号,如表1

表1无声破碎剂型号和使用范围

结合本工程的地点及施工时间,选用无声破碎剂I型。

3.6无声破碎剂使用量估算方法

根据试验检测无声破碎剂每立方米浆体中无声破碎剂重量K值。SCA-Ⅰ型号,K=1540 kg.m-3。

无声破碎剂用量Q=πR2LK

式中:Q――每米钻孔的无声破碎剂理论用量,kg/m3;

R――钻孔半径,m;

L――钻孔深度,m;

K――每立方米无声破碎剂浆体中无声破碎剂用量,kg/m3

本工程钻孔直径D=40mm,钻孔深度L=1.8m,得出每m钻孔装药量为3.48kg。

3.7拌浆及灌浆

无声破碎剂一般每袋5 Kg,加水量一般为无声破碎剂重量的30%,即加入1 500ml的水,无声破碎剂浆体以畅流入孔为准,不宜多加,否则会降低破碎效果。混合搅拌时间一般为60 s~90 s。

对于垂直孔,可直接倾倒进去,孔口留下2 cm左右空隙,用废纸或废布将口堵实。对于斜孔或水平孔,为防止倒流的现象,可用水灰比为0.25~0.28的水与无声破碎剂拌成浆体,用手搓成条,塞入孔中,再用木棒捣压密实,最后用塞子堵口。

3.8清理破碎岩石

一般过24小时,无声破碎剂完全膨胀后,由人工使用钢钎清理破碎的岩石。清理的顺序自上而下,在清理过程中应注意安全,防止岩石坠落砸伤工人。

4、混凝土导向管基设计

用经纬仪定出管轴线及高程,采用C15砼浇注砼管基,管基厚10cm,为90°下底

弧。为提高混凝土的早强强度,管基砼浇筑时加早强剂。示意图如下:

5、顶管四周注浆设计。

本段顶管管材为钢筋砼管,在厂家生产时每节管道自身预留4个灌浆孔。砼导向管基达到一定强度后进行顶进,每50m顶进结束后进行压注水泥浆,注满管外壁与岩石之间的缝隙。注浆材料为水泥、粉煤灰(重量比1:1)混合浆液,采用注浆泵进行注浆,注浆压力>0.1Mpa。浆液凝固后起到固定管道、防止渗漏及加固地层的作用。