引论:我们为您整理了13篇系统集成论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
篇1
1.2网络化系统的集成优化控制问题
实际系统中的优化问题无处不在,同时由于计算机网络及其技术的发展,使得分散的、具有区域特征的复杂系统形成了具有鲜明特征的网络化系统,对网络化系统的集成优化控制问题进行研究具有重要的理论意义和实际应用价值。本文就是将集成优化控制方法与网络自动化技术相结合,对网络化系统的集成优化控制方法进行了研究。
网络化系统的集成优化控制问题可以描述为:针对网络环境下的复杂系统,将集成优化控制方法与网络自动化技术相结合,对网络化系统进行集成优化控制,获得网络环境下复杂系统的优化解。
2网络化系统集成优化控制的实现
2.1网络化系统集成优化控制算法及其实现
网络化系统的集成优化控制方法就是将复杂系统的集成优化控制方法和网络自动化技术相结合,用来解决网络化复杂系统的优化控制问题,使其在难以建模、系统具有网络化和区域化等情况下,获得满意的优化控制结果。网络化系统集成优化控制方法的特点是引人了网络回路,在优化算法中引人了一些不确定因素,其优化控制更加依赖于网络系统和网络技术。网络化系统集成优化控制的关键技术在于动态系统优化与参数估计集成优化方法的实现和网络信息传输,借助于动态系统集成优化控制技术和网络自动化技术可实现网络化系统的集成优化控制,可以基于局域网或Intemet实现。基于局域网的网络化系统集成优化控制的示意图如下图所示。
2.2网络化系统集成优化控制的特征
对一个动态优化控制方法,除了给出优化算法,还需要对其性能进行分析,只有这样才能保证优化方法的实施。网络化系统的集成优化控制方法的性能包括实时性、最优性、收敛性及其鲁棒性等。
2.2.1实时性
在引人网络之前,针对跨区域的复杂系统,其优化控制的实施是很困难的,即使能够,其实时性也难以保证。网络化系统集成优化控制方法由于借助于计算机网络技术来实施集成优化控制,可以较好地解决跨区域复杂系统集成优化控制的实时性问题。
2.2.2最优性
算法最优性是指在算法收敛的情况下,收敛解是否实际系统的最优解。对于网络化系统集成优化控制方法,在最优解存在且唯一等假设条件下,若算法收敛,则收敛解满足最优性必要条件,即所得优化解是实际系统的真实最优解。
2.2.3收敢性
网络化系统集成优化控制方法需要实施,首先要求其优化控制算法是收敛的,收敛性就是研究算法收敛的条件,针对不同的算法其收敛性条件有所不同。对于网络化系统的集成优化控制方法,其优化的框架没有改变,只是引人了网络回路,利用算法映射及压缩映射原理,通过分析可以获得保证优化算法收敛的条件。
2.2.4鲁棒性
网络化系统集成优化控制方法的鲁棒性问题是指在存在这样那样扰动的情况下,优化算法保持其收敛性,并收敛到最优解的能力。网络化系统的集成优化控制方法在不需要实际过程的精确数学模型的情况下可以获得实际系统的真实最优解,对模型的结构和参数具有较强的鲁棒性。
网络化系统的集成优化控制方法是一种基于网络环境下的集成优化控制方法,计算机网络的信息的安全问题必然影响到系统集成优化控制的实施。因此,对网络化系统集成优化控制中的信息安全问题及其对策进行分析和研究是十分必要的,只有这样才能保证网络化系统的集成优化控制的顺利实施。网络化系统集成优化控制中的信息安全问题可以借助于计算机网络的信息安全对策予以解决。
网络化系统的集成优化控制方法为解决区域性复杂系统的优化控制提供了一种新思路,该方法具有以下优越性:
l)由于网络化系统的集成优化控制方法本质是采用动态大系统的DISOPE递阶优化方法,这样就使得网络化系统的集成优化控制在不需要复杂系统的精确数学模型的情况下,就可以获得实际系统的真实最优解;
2)网络化系统的集成优化控制方法为解决跨区域性的复杂系统的优化控制提供了一种可靠的实现途径和形式。同时由于网络自动化技术的发展和网络信息传输实时性的提高,使得实时地解决区域性的复杂系统的优化控制成为可能。
3结束语
本文将大系统的递阶DISOPE集成优化控制方法与网络自动化技术相结合,对网络化系统的集成优化控制方法进行了研究和探讨,为在网络环境下实现分散性复杂系统的优化控制问题提供了一种可靠的实现途径,研究具有重要的理论意义和实际应用价值。文中提出了网络化系统集成优化控制向题,对网络化系统的集成优化控制方法及其实现进行了分析和研究,并对网络化系统的集成优化控制的实时性、最优性、收敛性和鲁棒性进行了探讨,并对网络化系统的集成优化控制实施行中的信息安全问题以及实际应用问题进行了研究和探讨。
参考文献:
[1]SinghMG,DynamicHierarchicalCootrol[M],North-Holland,1980.
[2]RobertsPD.Optimalcontrolofmonlinearsystemswithmodelrealitydifferences[A].31stConferenceonDecisionandControlProceedings16[C].1992,p257-258
[3]BecerraUMandRobertsPD.Ahierarchicalextensionofdynamicinergratedsystemoptimizationandparameterestimstion[A],IFACSypostiononLarge-ScaleSystems[C].LondonUK1995,p213-218
[4]孔金生,万百五。非战性离散动态大系统的DISOPE关联预测递阶算法[J]系统工程理论与实践,2000,20(12)77-83
[5]孔金生,万百五。非线性离散动态大系统的DISOPE关联平衡协调算法[Jl.系统工程,2001,19(4):14-21.
[6]ViktorBNetworkingandintegrationoffaclitiesautomationsystems[M]CRCPreasLLC,2001
篇2
二、基于J2EE平台的系统集成的架构
J2EE旨在为支持Java语言服务器端部署而提供与平台无关的、可移植的、多用户的、安全和标准的企业级平台。
Java具有平台无关性,可以运行在Windows、Linux、Unix等不同的操作系统上,Java的跨平台是通过Java虚拟机(JVM)来实现的,Java源代码被编译成一种结构中立的中间文件格式,只要有Java运行系统的机器都能执行这种中间代,Java源程序被编译成一种与机器无关的字节码格式,在Java虚拟机上运行。
J2EE标准制定了一个开发者编写企业应用时必须遵守的标准,也制定了各种应用系统服务商必须提供的基于标准的服务,这样企业应用程序就可以在不同平台间统一地使用这些服务。就像J2EE是一个工业支持开放标准一样,应用开发者要确信由应用服务器以统一方式在不同平台和不同供应商之间提供下层支持服务,这就允许应用开发商集中于业务逻辑的开发而不用在他们的应用代码里执行这类系统级服务。
另外,一旦建立一个基于Java的组件,就可以在多个软件系统上重复使用,也可以移植到不同系统上。重用已经建立的组件,企业不需要拥有编写整个应用系统所需要的所有技术装备,可以从不同的专门研究某一领域的供应商处购买组件,把这些组件充分利用到自己的应用系统中,这不仅使应用系统开发速度快速增长,而且减少了处理各种技术集的花费。
正是由于诸如以上的众多优点,J2EE平台堪称集成信息系统的“强力粘合剂”,它依靠WEB层和业务层的组件处理事务及安全和扩展性,降低了访问不同系统的难度。J2EE平台的架构由客户层、WEB层、业务层、集成层、数据库层构成(如图1):
客户层是系统的用户界面,呈现出适当的视图,以收集查询,显示最终结果,它可以是瘦客户端,胖客户端这些非浏览器的客户端,也可以是基于浏览器的客户端。客户层将信息和数据呈现给最终用户,应用程序用户与客户端应用程序交互,客户端应用程序与企业应用程序的其他组件相连。用户接口/提供了客户与信息进行交互的工具和相关的支持服务,它使客户与系统的交互变得简单、快捷。J2EE支持的Java客户端包括Applet、Java应用客户端、J2ME移动客户端或MIDlet,浏览器是一个瘦客户端,在J2EE系统的客户端中应用最广。客户端类型多种多样,容器必须提供组件支持,为客户端组件提供运行时环境,JVM提供了Java运行时环境,个人桌面系统、工程工作站、Applet和应用客户端等组件都支持JVM,而MIDlet要求对JVM进行稍加修改。
由于业务需求瞬息万变,WEB层成了一个动态层,WEB层主要有两种职责:接收客户层组件的要求,处理请求,然后将请求路由到业务层的适当组件;接受业务层传来的结果,计算一个适当的视图,然后将视图路由到对应客户端。客户层使用浏览器应用程序与WEB层组件交互,J2EEWEB层的重要组件有Servlet,ServletFilter和JSP,这些组件部署在高端服务器上,Web服务层和容器提供了事务、命名、目录和JDBC等服务。其中,MVC模式分开了表示逻辑,业务逻辑和数据。
业务层负责执行必需的业务逻辑,它根据客户请求计算业务逻辑,但最好将这些组件隐藏起来,不将业务逻辑直接呈现给客户端。J2EE业务层包括业务逻辑,数据访问逻辑和相关服务。EJB是运行在业务层的业务组件,EJB具有分布特点,面向事务,其中会话Bean负责创建和维护客户与服务器组件的对话,实体Bean以适当方式实现数据的持久层,消息驱动的Bean可将J2EE应用程序与基于JMS的中间件集成到一起。业务组件部署在业务服务器上,业务服务器为业务组件提供各种“校准”服务,如事务、命名和目录等。
EIS层将前端业务逻辑层的组件与后端数据库层连接起来,这一层的组件应尽量确保数据库不同资源与业务逻辑层组件的无缝集成。很多信息系统有规模大、技术难度大的特点,若巧妙集成这些信息系统,将能保护现有投资,并有效“重用”信息,流程和工作流。EIS层的集成不是单纯的数据集成,还涉及信息集成,对JDBC、JMS、J2EE连接器架构、JNI和JNDI等技术能起到帮助作用,其中J2EE连接器架构对企业最重要,能给J2EE平台带来“可插入”行为,厂商的资源适配器允许将信息系统插入J2EE平台,以实现近乎零障碍的集成。
三、Siebel-基于J2EE平台的CRM集成解决方案
Siebel是CRM理念与技术应用的最初实践者,为后来不断涌现的CRM软件厂商提供了业界的标准,可以毫不夸张的认为其是CRM的先驱与开创者。到目前为止,Siebel的CRM系统在CRM3个关键领域,即销售、营销及服务3者之间的数据/流程整合度最高,各种应用界面最为统一。Siebel产品功能齐全,企业更能根据自己的需要选择相应模块,有利于系统的集成,并为今后系统的功能扩展提供充足的前提条件。SiebelCRM应用引擎的多层体系如图2所示:
用户界面提供个性化用户界面,管理用户交互行为,从目标定义库(SRF)读取有关用户界面定义子集并解释执行。目标管理器(ObjectManager)为Siebel所有企业管理逻辑目标(BusinessObjects)提供完整一致的目标行为,从SRF读取与企业管理逻辑有关的目标定义子集并解释执行。数据管理器管理一个独立于RDBMS逻辑数据映像(DataView),从而使目标管理器功能独立,企业管理逻辑定义无需因不同的RDBMS而有所改变,并激发实时SQL语句,读取并解释SRF中有关数据关系链(DatabaseSchema)的定义,与数据交换层(DataExchange)通讯以访问存于RDBMS的物理数据。数据交换层直接处理与RDBMS相关的交互信息,作为数据管理器和RDBMS的中介桥梁。
客户端接口提供了用户界面的简单整合,利用COM、CORBA、ACTIVEX、XML等技术可以在客户端进行客户化整合。服务端的接口为企业逻辑定义目标提供了实时连接,利用COM、CORBA、XML、MQSeries可在服务器端进行整合。数据管理器的接口提供了数据库与数据库之间的数据迁移工具,利用数据库工具在不同的RDBMS之间进行大容量数据交换。
Siebel的企业数据整合管理(EIM)是专门为系统实施所提供的数据整合管理工具,它用来处理Siebel数据库和企业其他数据库之间的数据交换。EIM利用系统中介数据库表(InterfaceTables)暂时存储输入输出数据,开发人员只需直接读写中介数据库表的内容,中介表与Siebel数据库之间的数据交换与转换由Siebel服务器的EIM批作业自动完成。使用EIM可以对数据进行批量输入、输出、数据整合和删除。在需要数据输出到别的应用系统场合,可以用EIM从Siebel数据库输出数据供其他系统使用。必要时可以根据对定义对数据库的纪录进行整合处理,消除重复纪录。可以根据定义进行数据删除工作,EIM将根据要求将各相关的纪录删除。
Siebel服务器采取逻辑体系(如图3):
篇3
传统的教学模式在目前的教育教学体系中仍然占据着重要的地位,但其仍存在着一些局限性。远程教育利用网络技术实现教学方式在空间层面上的跨地域性,可以利用网络进行实时交互,更可以通过把优秀的教育资源置于网络服务器上,达到资源共享。远程教育是网络教育的重要组成部分,所谓实时双向交互式远程教学,就是利用计算机网络通信技术和多媒体技术,以网络作为载体,进行教学工作,克服地理区域和时间上的限制,使任何地方的用户都能够通过网络进行学习,使师生双方能进行实时的、双向交互的教与学的活动。
二、系统设计的理论依据
(一)设计的理论基础
随着Internet技术的普及,远程教育正经历由“远”到“近”的转变过程。虽然物理距离仍然存在,然而学生之间的实际学习“空间”更近了。网络教学可以传统教室里获得更好的交互性,不仅如此,Internet和WWW的应用和推广,还使得远程教育从行为注意学习理论逐渐向建构注意学习理论转变。由皮亚杰(J.Piaget)提出的建构主义(Constructivism)学习理论认为:知识不是通过教师传授得到,而是学习者在一定的情境即社会文化背景下,借助他人的帮助,利用必要的学习资料,通过意义建构的方式而获得。
通过Internet进行远程教学,在教学上不受时间和地点的限制,教师和学生可以在适合自己的时间、地点上网,能够提供给教师与学生之间、学生与学生之间通过网络进行实时的交互。因此,基于Internet的远程教学更能为学习者提供一个建构主义的学习环境,充分体现学生的首创精神,学生有更多的机会在不同的情境下去运用他们所学的知识,而且学生能根据自身行动的反馈信息来形成对客观事物的认识和解决实际问题的方案。
(二)系统的设计原则
系统的设计目标是在最大程度上满足实时双向交互式远程教学活动的需要,在Internet上实现教学活动的各个环节。系统的基本设计原则有:交互性、开放性、实用性、可扩展性、安全性等。
远程教学的方式是多样化的,信息的交流具有实时性和异步性,比如可以利用流媒体技术把事先录制好的课堂教学视音频信息或事先制作好的多媒体教材,通过网络供学生随时点播学习,这是远程教学方式的异步性体现。远程教学的重点在于教学活动的实时互动性上,而双向实时交互式又是当前采用的先进方式,如数字化的会议电视或视频会议技术,利用视音频交互、文字交互、白板及图片图形等共享,可以让参与到远程教学的师生就像传统的课堂上那样进行实时的互动交流,这也比使用BBS、E-mail、留言板要便捷得多。
系统既要根据国内的网络环境适用不同的带宽,同时也要适应国内信息化教育的总体水平。远程教学系统在结合网络教室中实用的、优秀的功能基础上,应增加大量易操作、实用的功能,如同步浏览课件、网页功能等。系统既要考虑信息资源的充分共享,更应注意信息的保护和隔离,如系统安全机制、数据存取的权限控制等。
三、系统功能设计
要形成基于Internet实时双向交互式远程教学系统,学生和教师拥有一台计算机便可以通过软件进行远距离教学活动,实现实时互动。系统的功能主要分为课件教学功能和交互教学功能。
(一)课件教学功能
1、课件列表。教师可将所需的图片、各种office文档、网页课件等多媒体资源装入课件列表,在上课时实现主控式的同步浏览。
2、课件同步。系统能将课件自动压缩上传服务器,教师和学生可以同步以网页的方式浏览。此外,系统也可以让学生自动下载课件到本地,教师与学生同步浏览时,直接打开本地文件,不用访问,这样可以提高课件访问速度,节省网络带宽。
3、录制播放。教师和学生都能根据自己的需要进行现场课程制作,教师端还支持已录制的课件再次广播。教师可以允许或禁止学生录制课件。
(二)交互教学功能
在这样的系统中,学生可以进行学习、考试、讨论等,学生和教师之间可以传输图像、文字、图形、声音等各种信息。系统的主要功能包括:视音频交互、文字交互、白板交互、文件交互等。
1、视音频交互系统。本系统的用户截面最多可以同时显示八路视频端,用户可以根据自己的需要随时对需要显示的界面进行切换;教师可以将授课内容及教学情景实时的传送到网络教室中去,或者也可以播放某个学生的视频;在教师广播自己视频时,也可以监视某个学生的视频。教师能把自己的声音广播出去,同时可以允许某个学生说话,或者同时允许两个学生广播声音;在系统没有开启语音广播时,教师、学生之间可以私聊,可以一对一,也可以一对多。教师端有学生举手状态的显示框,教师可以选择举手的学生并允许发言。学生在被允许发言时,系统会弹出一个对话框,提醒学生发言。
2、文字交互系统。在文字讨论区,教师可以与全体学生,也可以与某个学生进行文字交流,教师一旦在人员列表中选定对一个人发送信息时,进行一对一的交流,其他教师成员则看不到。文字交互系统中还有关于教师操作信息的系统提示和公告等,如教师允许某人发言,录制课件等。另外,系统还有词典过滤功能,可以过滤那些出现的不文明用语。
3、白板交互系统。教师和学生可以同时在白板上作图、写字、编辑或粘贴现有的图形和图片等。教师可以对白板的使用权限进行控制,允许或禁止其他人使用白板,选择是否显示白板上的对象的创建者,还可以对白板上所创建对象的颜色、字体等属性进行设置。本系统目前支持十页白板,可根据需要加以扩充。
4、文件共享系统。本系统的文件共享系统是基于服务器的FTP服务器的基础之上,各个用户端连接上服务器时,教师批准了文件共享后,FTP服务器中的FTP文件夹中的各种资源就显示在文件的共享区域内,供参加网络教学的学生上传或下载。
四、系统结构设计
本网络课堂教学系统采用客户机/服务器结构,使客户端具有相当的稳定性和易操作性。实现工具采用Microsoft公司的VisualC++,VisualC++是一种非常完善和全面的程序集成开发环境,它采用面向对象的程序设计方法,在多媒体图形处理方面功能强大。VisualC++的核心是Microsoft基本类库(MFC),它一方面用类封装了WindowsAPI,另一方面使用称为“消息映射”的机制把Windows消息和命令传递到窗口、文档、视图及其对象,MFC能成功的把面向对象和事件驱动编程联系起来。在对参与系统的用户的用户名及密码信息的控制是通过与XML(ExtensibleMarkupLanguage)文档中的数据的交互来实现的。
远程交互式教学系统主要由多媒体授课室、多媒体听课室、多点控制器、信道(传输网络)及控制管理软件组成,基本结构如图1所示。教师在授课室通过电子白板、视音频设备、传输网络将授课内容及教学情景实时传送到远端听课室,同时学生可以在远端听课室现场回答教师提出的问题或向教师提出疑问,教师在授课室可以看到和听到听课室的全貌,还可以看到发问、回答问题的学生的表情和动作,并和学生进行现场交流,可以取得比较好的教学效果,尤其是那些需要学生参与的课程,比如外语教学。
授课室和听课室也即课堂终端包括教师端和学生端,主要功能包括:视音频信息的采集、传输、显示输出,数字信号的压缩编码和解码,最后将符合国际标准的压缩码流经线路接口传送到信道,或从信道上将标准压缩码流经线路接口送到终端中。在课堂终端还可以进行文字、文件、图片信息等输入输出操作。目前,计算机硬件设备基本上可以满足系统的要求,在教师端,对计算机设备、视音频采集设备的要求相对要高些,如尽量采用较高像素的摄像头等采集设备。
多点控制器(MultipointControlUnit,MCU)是一种桥接设备,是网络课堂教学系统中的关键部分,它的主要作用是对视频、音频、数据信号等数据流进行切换。
五、系统界面设计及系统实现
系统的用户界面设计直观,具有良好的操作性,包括文字、图标、图形、色彩和其他视觉方面的设计。屏幕的界面设计考虑到学习者的视觉心理特点,突出整体,具有统一的界面风格。同时注重了界面内容的交互性和可控制性,以及教学内容超级连接的有序性。界面区域工包括五大控制板块:视频显示区、电子白板、课堂成员列表、文件共享区域、文字交互。用户可以根据自己的需要对各板块自由拖动、改变大小,移动板块改变其在界面中的相对位置,选择或隐藏板块等。
远程多媒体实时交互教学系统,通过压缩教师教学现场的视频、音频流结合同步浏览课件命令,形成教学资源流,利用网络实时传送到远端学生的电脑上,学生可以及时通过举手提问、共享教师端程序、文字交流等方式实现远程互动教学。本系统可运行在Internet、Intranet、卫星网、校园网、局域网,提供文字、音视频、课件、电子白板、互动广播教学的平台,并在虚拟现实中的教室打破时空限制,让异地师生通过音视频实时交互,如同置身于同一课堂之中。
六、结束语
随着Internet的普及和在教育领域中的应用,Internet将会在远程教育中发挥巨大的作用。基于Internet的远程教育,实现了全球信息资源的共享,使教育和科技逐步走向国际化和全球化,这正是远程教育发展的方向和追求的目标。当然远程网络教学需要大量使用各种多媒体信息,而目前视频多媒体的传输受网络传输速度的影响较大,成为了网络教学的瓶颈,尤其是如何实现异地交互式教学是需要解决的关键问题。同时,目前网络安全也是制约Internet发展的一个因素,如何保证信息的安全,怎样做好安全保障,同样也是需要解决的关键问题。
参考文献:
1、李玉海.电子商务网络建设[M].华中师范大学出版社,2002.
2、陈信年,朱贻盛,龚丽等.第三代远程教育系统的研究和设计[J].计算机工程,2003(11).
篇4
2、宽带电力线通信技术
简单地说,宽带电力线通信技术指的是利用电力线传输信息,无需重新布置线路就能够传输数据和视频等信息,在终端接入电源就能够拨打电话、实现网络的接入接收等。在实际应用中,能够有效节省资源是这一技术的最大优点,这样就可以避免资源出现浪费现象,同时还能够实现科学合理地配置低压配电网资源、充分利用基础设置及线路等资源,这就能够大大的节省物力及人力资源,降低了投资成本,还有效地降低了通信工程技术的难度。还有,这种技术传播信息的速度相对较快,并且拥有相对较广的网络覆盖面积,还能够保证稳定性和安全性。
3、移动网络通信技术
现阶段,3G技术在移动通信中还是比较常见的,它有效地结合了无线和网络等多媒体通信技术,是时代不断发展的产物,而且在不断的实践中继续更新和发展,如当前出现的4G技术。这种技术不管在传输速度上还是在传输效果上都有明显的提高,提高了图像和视频传输的质量,这种技术也同样拥有较为广泛的覆盖范围,其传输速度不会被频带、地区和无线平台限制,而且其已经实现了集成化和综合化的功能。此外,在一定程度上这种技术不仅增强了电网供电的可靠性和使用效率,同时还增强了网络的安全性和防御效果,促使网络实现稳定的发展。
4、光纤通信技术
光纤通信技术利用光导纤维传输信号。这种技术在实际的使用中会使用相对较多的光纤很多光纤聚集起来就会形成光缆,相对而言,这种技术的拥有较快的传播速度,也正是因为拥有这一优势使其拥有了广泛的应用范围。目前,超大容量、超长距离以及超高速度就是这种技术的发展方向,当然这也是传输系统的未来研究方向。
二、通信工程信息技术的主要发展趋势
1、宽带化的通信工程信息技术
因为CDMA在技术上具备一定的优越性,因此在移动通信中,宽带WCDMA将会成为一种非常具有发展前途的通信手段,并且这种通信手段已经成为当前移动通信发展的热点内容。此外,因为用户也提出了多业务的使用需求,这也促使宽带化一定成为通信信息技术的主要发展趋势。
2、综合化的通信信息技术
综合传送文字、语言以及图片等信息能够促使通信信息技术满足用户多功能和多业务的使用需求。当然这也已成为发展通信信息技术的关键所在,综合多种业务形式能够快速实现业务资源信息的共享。今后的通信信息网络也需要对这种多业务综合的思想加以采用,从而对人们不断增长使用需求形成满足。
3、大众化的通信信息技术
信息技术需要面对的是广大的群众,要有效实现信息资源的共享,在国家信息基础结构中,信息源是一个十分重要的组成部分。为了让信息技术能够面向广大群众,并逐步对人们的需要形成满足,那么在进行全业务接入网建设的同时,还需要注意对各种形式的信息源进行挖掘,作为关键部分的全业务接入网未来的主要发展方向是要实现文字、图片、语言的综合。
4、个人化的通过信信息技术
信息技术虽然需要面向广大群众,但是也应该具备自身的独特性。针对不同的使用者需要呈现出不同的特色,利用这种差异性来对每个个体进行区别,这样就更加方便了不同用户的使用,能够对不同用户的不同需求形成满足。
篇5
(2)诊断功能类
配置NANDFLASH存储器,具有本地存储功能;具有重要数据本地存储和服务器双重备份功能;支持远程监控系统模拟诊断仪对整车CAN网络进行诊断;支持在整车设计过程中对发动机标定数据检测与上传,配合整车设计功能。
2硬件设计
(1)单片机
在该方案设计中使用Cortex-M3内核的单片机STM32F207VCT6。ARM的CORTEX-M3处理器是新一代的嵌入式ARM处理器,它为实现MCU的需要提供了低成本的平台、缩减的管脚数目、降低的系统功耗,同时提供卓越的计算性能和先进的中断系统响应。STM32F207VCT6拥有内置的ARM核心,它与所有的ARM工具和软件兼容。
(2)通信模块
通信模块目前采用SIMCOM公司GPRS模块SIM800A。SIM800A模块单元支持两频GSM900/1800。最大发射功率为EGSM900Class4(2W),DCS1800Class1(1W)。正常上电后,GSM模块基本在20s连上GSM网络,30s连上服务器,连上服务器就能建立与服务器的正常数据链路。模块接口方式简单,使用TTL串口,操作方便。单片机串口与模块串口连接,即可通过发送AT指令控制GSM模块,实现GPRS网络的数据发送。
(3)CAN单元
CAN单元包含两路CAN接口,一路作为标准车身CAN通信接口,波特率125Kbps,另一路预留。CAN收发器选用NXP公司的车载级收发器TJA1042-3,适用于12V和24V系统,工作温度-40~125℃。最大传输速度为1Mbps。支持SAEJ1939标准的CAN数据接口。芯片内部带过压保护,CANH、CANL管脚耐压值范围-27V~40V,抗瞬态脉冲电压范围达到-200V~200V。
3软件设计
系统软件架构为典型的前后台式架构,整体采用模块化的软件设计方法,将系统功能分解为多个子模块,每个模块对应一个状态机,系统在初始化完成之后,即进入主循环,各状态机依据在程序中的前后位置依次获得CPU时间循环运行。系统软件的主要部分分为GSM模块管理,GPS模块,电源管理模块,SAEJ1939协议处理模块。GSM管理模块主要处理的内容包括:GSM模块的电源控制,建立移动网络的链接,与服务器建立数据链接,应用层数据包的打包与发送处理,数据包重发处理机制等。GPS模块主要处理的内容是:GPS模块的电源控制,NMEA2000GPS数据协议解析,获取GPS的位置信息、速度信息与时间信息等。电源管理模块负责管理系统的电源,处理系统不同的工作模式还有各个工作模式之间的切换。SAEJ1939协议处理模块,包含了SAEJ1939的数据链路层、传输层、网络管理层、应用层和故障诊断层的协议的全部内容。
(1)数据链路层
STM32F207VCT6集成的CAN控制器芯片基本实现了数据链路层的全部内容,但是SAEJ1939对数据链路层进行了重新定义,对CAN扩展帧的29位标识符进行了重新编码。数据链路层需要完成29位标识符的编码和解码工作。
(2)传输层
传输层是整个SAEJ1939网络协议最复杂的一层,主要实现分段传输功能。在J1939中要传输大于8个字节的报文时,需要采用分段传输功能,分段传输功能可以拆分为两个主要的功能块:报文的分包、重组以及连接管理。分包、重组用于传输长度大于8的报文,报文必须被拆分为若干个小书架包,然后使用数据帧将报文逐一传送。而接收方必须能够接收这些数据帧,然后解析并且重组成原始的报文。连接管理的功能包括基于连接模式的点对点报文传输和基于未连接模式的广播报文传输。在点对点模式下,连接管理用于处理节点间的虚拟链接的打开、使用和关闭。而基于未连接模式的广播报文传输,则只要处理数据超时,当超时时间到了,而没有收到后续数据包,则直接放弃此连接就可以了。
(3)网络管理层
在本系统中,车辆的各个CAN总线节点的地址已经分配好了,所以未使用网络管理的功能。这样简化了系统的设计与软件复杂度。
4功能设计使用
SAEJ1939的总线应用层协议,在系统中主要实现的功能包括以下几个方面。
(1)远程车辆控制
因为重型卡车价格高昂,客户普遍会选择贷款购车。为了防止客户有欠款不还的情况出现,要保证系统可以实现对客户车辆的远程控制。远程控制的实现要求是要保证发动机要预留有操作接口,要支持各种运行模式,比如跛行模式,此模式可以限制车速,保证基本的行车安全,但是车辆的速度很低,小于30km/h,这样就能在不影响安全的情况下实现对有些不遵守合约的客户的约束。实现的原理是这样的,远程诊断系统定义了一个SAEJ1939的报文,此报文通过车身控制模块从低速车身CAN总线转发到高度的动力CAN总线。在车辆点火的时候,发动机管理系统就检测此报文,如果总线上没有此报文,则发动机点火失败;如果检测到此报文,才允许点火。如果远程诊断系统被恶意破坏了,则发动机管理系统接收不到远程诊断系统的报文,则车辆就不能点火了。在车辆使用中,可以通过从发服务器端发送命令来对车辆进行锁定、解锁、跛行等模式的设定。当设定不同的工作模式时,远程诊断系统把对应的设定模式发送到发动机管理系统,由发动机管理系统实现对车辆的实际控制功能。
(2)诊断信息收集
SAEJ1939应用层诊断协议定义了系统诊断相关的协议,包含:当前活动的诊断故障码(DM1)、历史活动的诊断故障码(DM2)、历史故障码清除(DM3)、停帧参量(DM4)、当前故障码清除(DM11)等。可以通过服务器向远程诊断系统配置诊断的操作模式,可以实时收集各个CAN总线节点的当前活动的诊断故障码,收集到的诊断故障信息可以先存储在系统的NANDFLASH存储器中,当与服务器建立数据链路后就可以发送到后台服务器。这样从服务器端就可以知道当前的车辆实时状态,也可以对车辆的安全状态有个基本了解。
篇6
1.2显示器
Parker的显示器包括支持CANJ1939协议、ISOBUS协议、配置大型液晶屏、触控屏、多仪表板等多种类型。多年以来的应用,证明了产品的技术及稳定性完全符合各种工况需求。例如运用了完全集成型高亮度的IQAN-MD4显示器,可在IQANdesign环境中快速进行配置,用户可编程的全新触摸显示屏为工业车辆提供了直观的界面。MD4显示器分为5.5英寸、7英寸和10英寸三种型号,支持摄像头视频信号输入与显示,使驾驶操作更加简便智能。
1.3传感器
Parker具有广泛的传感器系列,包括压力、温度、接近,速度、转角及倾角等。产品的先进技术及稳定性完全符合各种工况需求,经过不断研发创新,设备精度在同类产品中处于领先水平。
1.4手柄等附件
Parker的手柄设计紧凑、质量轻、安装尺寸小、操作力小,具有耐候性和安全性等特点,特别适用于精确控制。手柄通过CAN总线与其他模块连接,大量的输入接口使基座成为很好的输入模块。Parker的手柄主要有LC5系列、LC6系列、LSL系列和LST系列。LC5系列是大型多轴向手柄,任意方向的全行程力达到100Nm,具备较大的抗扭强度,适用于户外使用。LC5手柄内部采用非接触霍尔型双路传感器,为高安全性和可靠性提供保证。此外,手柄的基座、壳体、波纹套、按键数量、滚轮数量、触发开关等都可以根据用户需求进行定制,以满足用户的不同控制要求。LC6系列手柄作为LC5系列的升级版,增加了手柄自由度,从而增加了模拟量输入接口,减少了复杂系统操控时的手柄复用。同时其安装更加简化,具有更强的抗噪能力和更长的使用寿命。LSL系列是单轴手柄,有中位止动、手柄顶部开关、电磁止动几种选配,用于液压比例控制。LST系列是一款微型手柄,安装在工程机械的座椅扶手或仪表板上,用于液压比例控制。此外,Parker还有电子油门踏板、USB-DLA数据服务工具、诊断和网关模块、线束接插件等产品,以供用户进行选配。
1.5应用案例
为基于Parker控制器的挖掘机电控系统硬件解决方案。该方案的核心控制器是CM3620主模块,它拥有36个输入和20个输出,具有2路CAN/J1939接口和1路RS232通信接口,可满足用户的控制需求。该系统还使用了显示器和G1诊断网关,同时配备了与上位机软件进行交互的DLA数据服务工具。使用的传感器主要有电子油门旋钮、压力传感器、温度传感器、速度传感器、液位传感器等。
2软件开发平台
Parker电控系统基于IQAN、VMM、Raptor三种开发平台。IQAN平台是基于模块化编程的开发平台,用户无需具备编程经验,可以直接设计所期望的机器功能。它包含了IQAN-design、IQAN-Simulate、IQAN-run等软件。IQAN-design是高级的图形设计工具,它简化了行走机械应用程序的开发,从而缩短了开发时间。该工具提供了大量的预定义模块,如闭环控制,信号处理,数学计算,通讯协议和系统诊断等,主要用于系统布局和机器功能设计。IQAN-simulate是仿真工具,能够仿真IQAN应用程序中的所有硬件模块,在应用程序中可方便地使用屏幕上的拖动条对所有输入量进行仿真。在仿真输入的同时可以测量结果(输出值),也可以进行FEMA(失效模式分析)。软件仿真比在实际机器上测试新应用程序更安全。仿真运行和实际状态一样,可以查看显示界面,调整参数,观察记录,测试用户界面等内容。IQAN-run可以在开发阶段运用“高级图形测量”和“机器统计数据收集”功能优化机器性能。IQAN-analyze是通用的CAN总线分析仪。用户可以通过简便的方式观察CAN总线上的通讯,也可以记录所观察的数据并进行保存供日后使用。是基于梯形图编程的软件开发平台。该平台采用多路复用技术,将控制模块通过J1939屏蔽双绞线互联,允许模块可以接收输入、驱动输出,并将输入输出信息通信给系统中的其他部件。梯形逻辑中的输入和输出可以来自通过J1939网络连接到一起的一个或多个模块。Raptor平台是基于Matlab/simulink编程的开发平台。该平台是CAN协议图形化定义工具,拥有图形化的应用程序界面,而且具有Motohawk到Raptor的自动转化脚本。为基于IQAN平台开发的小型液压挖掘机电控系统。根据硬件选型结果拖拽到编译系统中进行逻辑连接,对各模块进行参数设置,并对主模块进行编程。主程序包括“Joysticks”、“Engine”、“Diagnostics”、“Blade”、“Excavator”六个功能组,通过对输入输出的设置以及内部通道的逻辑和算法,实现对整机性能的精确控制。
3系统仿真
系统仿真主要通过IQAN软件自带的“IQAN-Run”和“IQAN-Simulate”进行。IQAN-Run用来对程序进行运行和调试,主要包括调参数、设置比较、设置权限、上传/下载程序以及日志管理等功能;IQAN-Simulate用来对应用程序进行虚拟仿真,以及系统的演示和验证。所示为小型液压挖掘机电控系统的仿真。将编写好的小挖程序进行参数设置,并手动调节手柄的模拟量输入,可以得到显示模块中相应参数值的变化。还可将其中的参数值设为可调恒。
篇7
2雨水量计算。
根据建设发〔2008〕89号文,查得德清的暴雨强度公式为。雨水量计算公式:Q=ψQF;室外道路重现期:P=2年;室外雨水管道设计降雨历时:t=15-20min;室外综合径流系数ψ=0.65;经计算,重现期都为2年,雨水量详见下列:一期东区:汇水面积为1.78(hm2),降雨历时为16(min),雨水量为284(L/s)。一期西区:汇水面积为1.24(hm2),降雨历时为16(min),雨水量为245(L/s)。二期东区:汇水面积为2.31(hm2),降雨历时为16(min),雨水量为368(L/s)。二期西区:汇水面积为3.08(hm2),降雨历时为20(min),雨水量为450(L/s)。
3工程设计。
根据各区域的设计雨水量,构筑物及排水泵的设计见表1。
4电气设计。
电气设备有动力盘及操作控制盘。控制系统采用全自动控制设定。现场控制柜设“手动-停-自动”控制选择开关;自动时,由液位开关进行控制;手动时,在现场控制柜上进行手动控制;就地时,可在现场按钮箱上进行控制。为减少人员操作,本处理系统可采用远程集中控制。本工程总装机容量为232kW。
篇8
可行性研究是在项目建议书被批准后,对项目在技术上和经济上是否可行所进行的科学分析和论证。这一阶段包括工程概述、工程方案、工程投资估算及资金筹措、工程近远期结合问题、工程效益分析、工程进度安排、存在问题及建议以及附图附件等内容。在这一系统中,用最优化分析解决问题,即在本系统的运筹中,控制策略要使工程净效益最大,而费用尽可能地小(可视为负效益)。为了尽可能地减少这种负效益,必须在一定的工程规律和条件的约束下,按照最优化原则,结合工程分析考虑工程方案必选优化,对整个工程系统进行科学的管理,不求负效益最小,而只要求负效益尽可能减少。这是由于在环境工程设计中,最优解并不一定是最理想的。[7]
3工程设计阶段的系统控制理论
在此阶段,环境工程设计可分为方案设计、初步设计、施工图设计三个阶段,每个阶段都是一个复杂系统,可将系统控制的重点分别集中在组织系统的输入、转换过程和输出3个阶段,由此形成3种不同的控制类型:前馈控制、同步控制和反馈控制。[8]
3.1前馈控制
前馈控制也称预先控制,是指在整个过程中预先集中于系统输入端的控制,其目的是通过事前考虑各种可能的功能障碍来预测并预防偏差的出现。其在环境工程设计的方案设计阶段起着重要作用,主要体现在以下几方面:
3.1.1环境工程概况分析
环境工程涉及水、气、声、渣、辐射等多个方面,涵盖内容非常丰富,工程特征千差万别。因此,掌握具体项目的工程概况是搞好设计的必须前提,主要包括:(1)工程一般特征简介。包括工程名称、建设性质、建设地点、建设规模、车间组成、产品方案、辅助设施、配套工程、储运方式、占地面积、职工人数、工程总投资及发展规划等。(2)工艺路线与生产方法。用流程图表述说明生产工艺过程,必要时列出主反应式和副反应式,并关注副反应中可能潜在的危害因素。(3)物料及能源消耗定额。包括主要原料、辅助原料、材料、助剂、能源以及用水等的来源、成分和消耗量,特别是要综合对比单位产品的物耗、能耗指标、新水用量指标以及排污系数。(4)主要技术经济指标。包括生产率、效率、回收率和放散率等。除了主产品的总回收率之外,还应高度重视资源的综合利用率和综合总回收率。
3.1.2污染源及污染源强分析
污染源分布和污染物源强是环境工程设计的基础资料,必须按建设工程、生产过程和服务期满后三个时期的工程全过程做认真调查、详细统计,力求完善。对于污染源分布调查要求按专题绘制污染流程图,标明污染物排放部位,然后列表逐点统计各种污染因子的排放强度、浓度及数量。另外,鉴于近年来环境风险事故呈频发、高发态势,应高度关注环境工程风险排污的源强统计及分析,包括事故排污和异常排污两种工况。事故排污的源强统计应计算事故状态下的污染物最大排放量,作为风险预测的源强;异常排污的源强应统计工艺设备或环保设施达不到设计规定指标的超额排污。
3.1.3环保方案分析
分析工程总图布置方案,根据气象、水文等自然条件分析工厂和车间布置的合理性,与周围环境保护目标所定防护距离的安全性。分析工程既定环保方案所选工艺及设备的先进水平和可靠程度,采用资源节约型模式、资源综合利用、物能良性循环、产业生态、清洁生产、循环经济等方面的可行性,处理工艺有关技术经济参数的合理性,并分析环保设施投资构成及其在总投资中占有的比例。
3.2同步控制
同步控制也称实时控制,是指活动进行过程中所实施的控制。在环境工程设计中,同步控制的关键是严把设计质量关,实现初步设计的标准化,由仅控制排放标准向全面的设计质量标准过渡。积极引导环境工程设计单位贯彻国家制定的《建筑企业贯彻ISO9000系列标准实施细则》《建设项目环境保护管理条列》《中华人民共和国环境影响评价法》《三废处理工程技术手册》等相关标准,使环境工程设计单位质量管理工作进入程序化、标准化、规范化的轨道。各单位的质量保证体系,要在当地设计质量监督机构备案审查,把贯标工作与单位资质、工程招标投标和企业创优工作结合起来,实现质量的单位自控。在推行设计资格审查和管理制度的基础上,进一步制定重大工程的设计方案图纸审查、批准制度,发现问题,及时追朔设计存在的问题,系统解决,防止问题的再次发生,并追踪审查以前的可能事故点。
3.3反馈控制
反馈控制也称事后控制,控制作用发生在行动之后,目的在于改进,以预防将来发生偏差。在缺乏任何预见手段的情况下,反馈控制是比较实用的控制方式。在施工设计中,反馈控制的关键是引入工程环境监理,通过具有相应资质的监理企业,接受建设单位的委托,承担其建设项目的环境管理工作,并代表建设单位对承建单位的建设行为对环境的影响情况进行检查,对污染防治和生态保护的情况进行检查,确保各项环保措施落到实处。对未按有关环境保护要求施工的,应责令建设单位限期改正,造成生态破坏的,应采取补救措施或予以恢复。通过监理这一反馈控制,可提供设计效果的真实信息,并使设计人员获得评价其绩效的信息,从而提高设计水平,对于下一步或日后工作的实践指导作用非常巨大。
4竣工环境保护验收阶段的系统控制理论
为监督落实环境保护设施与建设项目主体工程同时投产或者使用,以及落实其他需配套采取的环境保护措施,防治环境污染和生态破坏,实施建设项目竣工环境保护验收。[9]该阶段是对整个环境工程设计系统的最后一个核查关卡,涉及验收范围、验收标准、验收工况、验收监测(调查)结果、验收环境管理、现场验收检查、风险事故环境保护应急措施检查及验收结论等部分。可用如下系统流程图简述其验收工作程序。
篇9
工作过程系统化课程设计模式主要有以下几个优点:
(一)有利于提高学习者的学习主动性
传统的教学以教师为中心,所有的教学要素围绕教师展开,教学内容主要根据学科体系决定,学生只是被动地接受教师知识的灌输,教学对于学生职业能力的提升作用不明显。现代教育教学理念提倡以学习者为中心,在职业教育中更是如此。工作过程系统化课程设计模式,秉承学以致用的理念,能使高等职业教育院校的学生对课程内容更感兴趣,有利于提高学习者的学习主动性。
(二)有利于专业核心能力的培养
专业核心能力是专业的核心培养目标,尤其是在职业教育中,学习者希望通过接受职业教育,能无缝对接职业岗位,实现就业目标。因此,依据工作过程进行课程内容设计,可使各级职业院校的学生通过学习,了解职业的工作过程,掌握各项职业技能,实现学做一体化的教育目标,有利于专业核心能力的培养。
(三)有利于职业核心能力的培养
“所谓职业核心能力,不针对某种具体的职业和岗位,也并非指具体的专业技能和专业知识以外的能力,而是对劳动者未来发展起关键性作用的,从事任何一种职业的劳动者都应具备的能力。”基于工作过程系统化课程理论设计的职业教育课程,除了重视对学生职业技能的传授外,还通过对工作过程的关注,强调在完成工作任务过程中的职业态度、合作精神;通过行动导向教学法、项目教学法等,培养学生独立解决问题的能力;通过一个个真实的工作任务培养学生的职业核心能力。
三、以《Flas设计》为例的课程设计
笔者以《Flas设计》课程的设计为例,通过介绍该课程的职业定位、分析其对应职业的工作过程及学习领域、设计课程的学习情境及学习任务,阐释基于工作过程系统化理论的具体课程设计模式。
(一)课程的职业定位
《Flas设计》是我院高等职业教育计算机应用技术专业(多媒体方向)一门重要的课程。该专业在迎接教育部高等职业教育评估专家检查的自评报告中指出:基于学院22年的办学经验,融合学院外语、艺术之优势,计算机应用技术专业(多媒体方向),招收应届高考毕业生,实行全日制三年大专教育,强调技术与艺术相结合,以技术制作为主,艺术设计为辅进行专业定位。培养德、智、体、美全面发展,既掌握多媒体专业基础理论又精通艺术,面向企事业单位及相关市场亟需的多媒体领域培养高素质技术技能人才。根据《Flas设计》的内容以及劳动和社会保障部职业技能鉴定中心已经颁布的国家职业标准,《Flas设计》这门课程对应的是高级多媒体制作员这一职业。当然,成为高级多媒体制作员需要掌握的知识绝不仅仅是《Flas设计》。
(二)高级多媒体制作员的工作过程及学习领域
劳动和社会保障部职业技能鉴定中心颁布的“多媒体作品制作员国家职业标准”中指出,多媒体作品制作员是指利用多媒体计算机技术,从事多媒体作品制作的人员。本职业共设三个等级,分别为:多媒体作品制作员(国家职业资格四级)、高级多媒体作品制作员(国家职业资格三级)和多媒体作品制作师(国家职业资格二级)。
篇10
3.系统架构。从部署和维护及技术成熟度等方面综合考量,系统采用目前最为通用的B/S模式,用户通过Web浏览器,即利用Web服务器实现浏览器的信息查询与检索及其他的各项功能。
B/S架构是一种对C/S架构变化或改进的架构,用户界面完全通过Web浏览器实现,一部分事务逻辑在前端实现,但是主要事务逻辑在服务器端实现,形成所谓的3层结构。其优点有开发成本低,部署和维护集中化,操作不受时间和地点的限制,数据集中管控等。
篇11
随着计算机视觉技术以及图像处理技术的不断发展,计算机视觉和视频检测技术已经广泛应用于工业控制、智能交通、设备制造等很多领域。传统的视频检测往往采用工控机作为其视频处理器来实现其功能。这种方法往往由于工控机处理速度的问题,无法实现对各个不同方向同时进行视频检测,而且由于视频检测处理过程需要占用大量的处理时间,因而无法实现实时的远程控制功能。
目前在远程控制和通信方面,基于DOS和Windows操作系统的通信平台得到普遍的引用,但是DOS操作系统作为单任务操作系统,无法实现多任务功能和实时处理的要求;而Windows操作系统作为视窗操作系统,其系统的稳定性和实时性也无法与实时多任务嵌入式操作相比拟。
本文提出一种以DSP作为视频检测处理芯片,以Linux为操作系统的嵌入式系统设计方法。
1系统结构
本系统的开发主要包括视频检测卡和x86通信平台的设计2个部分。视频检测卡主要包括模拟图像采集、转换、DSP视频检测3个部分,每块交换参数检测卡扩充PCI总线接口,插在通信开发平台的PCI总线插口上,通过PCI总线同通信平台交换数据。通信平台处理多块交通参数检测卡的通信问题,将视频检测卡通过PCI总线传送过来的视频检测数据实时通过网络传送给控制中心。系统的功能方框图如图1所示。
根据系统设计要求,视频检测卡功能主要分为:模拟图像采集、模拟图像A/D转换、数据缓存以及DSP视频检测5个部分。视频检测卡流程如图2所示。
本系统采用Philips公司的SAA7111A来实现模拟图像A/D转换。该芯片可实现多路选通、锁相与时序、时钟产生与测试、ADC、亮色分离等功能。其输出可以具有如下格式:YUV4:1:1(12bit)、YUV4:2:2(16bit)、YUV4:2:2(CCIR-656)(8bit)等。由于DSP处理芯片和SA7111A的时序不同,可以通过CPLD进行逻辑控制FIFO来完成数据缓存的功能。
DSP是实时信号处理的核心。本系统采用TI公司DSP芯片——TMS320C6211。该芯片属C6000的定点系列,C6211在这个系列中是性价比最高的一种。C6211处理器由3个主要部分组成:CPU内核、存储器和外设。集成外设包括EDMA控制器、外存储器接口(EMIF)、主机口(HPI)、多通道缓冲接口(McBSP)、定时器、中断选择子、JTAG接口、PowerDown逻辑以及PLL时钟发生器。通过EMIF接口扩充SDRAM,而PCI总线控制芯片的扩展通过HPI接口。
PCI总线的接口芯片PCI9050,主要包括PCI总线信号接口和本地总线(LOCALBUS)信号。在硬件设计时,只需将本地总线信号的接口通过电平转换连接到DSP的HPI接口,同时扩展PCI接口就可以完成其硬件电路设计。
2通信开发平台的嵌入式系统设计
通信开发平台以x86为核心器件,扩充PCI总线,通过Modem拨号,实现x86与Internet的连接。
2.1PCI总线设备驱动
PCI设备有3种物理空间:配置空间、存储器空间和I/O空间。配置空间是长度为256字节的一段连接空间,空间的定义如图3所示。在配置空间中只读空间有设备标识、供应商代码、修改版本、分类代码以及头标类型。其中供应商代码用来标识设备供应商的代码;设备标识用来标识某一特殊的设备;修改版本标识设备的版本号;分类代码用来标识设备的种类;头标类型用来标识头类型以及是否为多功能设备。除供应商代码之外,其它字段的值由供应商分配。
命令字段寄存器用来提供设备响应的控制命令字;状态字段用来记录PCI总线相关事件(详细的命令控制和状态读取方法见参考文献4)。
基地址寄存器最重要的功能是分配PCI设备的系统地址空间。在基地址寄存器中,bit0用来标识是存储器空间还是I/O地址空间。基地址寄存器映射到存储器空间时bit0为“0”,映射到I/O地址空间时bit0为“1”。基地址空间中其它一些内容用来表示PCI设备地址空间映射到系统空间的起始物理地址。地址空间大小通过向基地址寄存器写全“1”,然后读取其基地址的值来得到。
PCI设备的驱动过程主要包括下面几个步骤。
首先,PCI设备的查找。在嵌入式操作系统中一般提供相应的API函数,在Linux操作系统中通过函数pcibios_find_device(PCI_VENDOR_ID,PCI_DEVICE,index,&bus,&devfn)可以找到供应商代码为PCI-ID,设备标识为PCI-DEVICE的第n(index+1)个设备,并且返回总线号和功能号,分别保存于bus和devfn中。
第2步,PCI设备的配置。通过操作系统提供的API函数访问PCI设备的配置空间,配置PCI设备基址寄存器的配置、中断配置、ROM基地址寄存器的配置等,这样可以得到PCI的存储器空间和I/O地址空闲映射,设备的中断号等。在Linux操作系统中,访问PCI设备配置空间的API函数有pcibios_write_config_byte、pcibios_read_config_byte等,它们分别完成对PCI设备配置空间的读写操作。
第3步,根据PCI设备的配置参数,对不同的设备编写初始化程序、中断服务程序以及对PCI设备存储空间的访问程序。
2.2远程控制与通信链路的建立
与Internet连接的数据链路方式主要有Ethernet方式和串行通信方式。Ethernet连接方式是一种局域网的连接方式,广泛应用于本地计算机的连接。通过Modem进行拨号连接的串行通信方式,可以实现远距离的数据通信,下面详细介绍串行通信接口协议方式。
串行通信协议有SLIP、CSLIP以及PPP通信协议。SLIP和CSLIP提供一种简单的通过串行通信实现IP数据报封装方式,通过RS232串行接口和调试解调器接入Internet。但是这种简单的连接方式有很多缺陷,如每一端无法知道对方IP地址;数据帧中没有类型字段,也就是1条串行线路用于SLIP就不能同时使用其它协议;SLIP没有在数据帧中加上检验和,当SLIP传输的报文被线路噪声影响发生错误时,无法在数据链路层检测出来,只能通过上层协议发现。
PPP(PointtoPointProtocal,点对点协议)修改了SLIP协议中的缺陷。PPP中包含3个部分:在串行链路上封装IP数据报的方法;建立、配置及测试数据链路的链路控制协议(LCP);不同网络层协议的网络控制协议(NCP)。PPP相对于SLIP来说具有很多优势;支持循环冗余检测、支持通信双方进行IP地址动态协商、对TCP和IP报文进行压缩、认证协议支持(CHAP和PAP)等。图4为PPP数据帧的格式。
PPP的实现可以通过2个后台任务来完成。协议控制任务和写任务。协议控制任务控制各种PPP的控制协议,包括LCP、NCP、CHAP和PAP。它用来处理连接的建立、连接方式的协商、连接用户的认证以及连接中止。写任务用来控制PPP设备的数据发送。数据报的发送过程,就是通过写任务往串行接口设备写数据的过程,当有数据报准备就绪,PPP驱动通过信号灯激活写任务,使之完成对串行接口设备的数据发送过程。PPP接收端程序通过在串行通信设备驱动中加入“hook”程序来实现。在串行通信设备接收到1个数据之后,中行设备的中断服务程序(ISR)调用PPP的ISR。当1个正确的PPP数据帧接收之后,PPP的ISR通过调度程序调用PPP输入程序,然后PPP输入程序从串行设备的数据缓存中将整个PPP数据帧读出,根据PPP的数据帧规则进行处理,也就是分别放入IP输入队列或者协议控制任务的输入队列。
PPP现在已经广泛为各种ISP(InternetSeverProvider)接受,而Linux操作系统下完全支持PPP协议。在Linux下网络配置过程中,通过1个Modem建立与ISP的物理上的连接,然后在控制面板(ControlPanel)里面选择NetowrksConfiguration。在接口(Interface)里面加入PPP设备,填入ISP电话号码、用户以及密码,同时将本地IP和远端IP设置为0.0.0.0,修改/ETC/PPP/OPTION,加上DEFAULTROUE,由ISP提供缺省路由,这样就完成了设备的PPP数据链路设置过程,可以通过Internet实现远程控制。
结束语
篇12
本系统选择容量充足、性价比高的FPGA芯片VC4VFX60-10FF672I作为时序及数据交Fig.1Structurediagramofthesystem换控制芯片,具有352个IO,4176kbit的块RAM,41904个逻辑单元,用于并行处理大量耗时的乘加运算,实现复杂的时钟管理,能够满足系统要求且有较大的冗余量,可以进一步扩展新功能。采用两片TI公司的TMS320C6416为主处理器,具有1000MHz时钟频率及4800MI/s最高处理能力,丰富的外设和并行处理能力,性能优越,成本较低,能够满足本设计的要求[6]。2.1视频采集电路设计由成像器件输入的视频信号经过电缆传输及电路的交流耦合后,丢失了信号的直流分量,为了保证采集的图像不失真,必须将输入视频信号的直流电平恢复并箝位到原始图像的电平,因此输入的视频信号要经过去直流、直流恢复和放大使得输入的视频信号损失最小。本系统采用Elantec公司高性能单片视频“直流恢复”与“箝位”芯片EL4089。信号经放大后输入AD进行采样。采用同步分离芯片EL4583进行行、场等同步信号的分离,由FPGA根据同步信号产生控制信号和采样时钟给12位低功耗A/D芯片AD9224,保证每视频行间的采样有相同的相位关系,完成视频采集输入[7]。电路结构如图2所示。
2.2数字图像接收电路
数字图像接收发送采用上升沿锁定的LVDS芯片DS90LVDS215/216,具有低功耗、高速率的优良特性。数据位为21位,其中12位可以用做图像数据传输,其余位可用于同步信号及标志位的传输。控制时序简单,控制信号较少。FPGA只需根据不同时序,配置不同数据。具有很大灵活性。
2.3FPGA模块设计
FPGA主要完成时序及数据交换控制。包含图像采集、传输、预处理,下传图像数据的接收,视频输出、叠加,通讯接收、解析、发送及伺服数据的接收与转换等模块。图像采集部分利用输入同步信号来同步采集时钟。即利用FPGA生成的基准时钟进行计数,用场同步信号进行异步清零。通过多次异步清零来调整两者的相位关系。FPGA根据输入的行、场、奇偶等同步信号,产生采样时钟送至AD。在场有效期间,每一个行同步信号的上升沿开始行计数。根据ODD/EVEN信号决定计数的起始值,可根据系统要求取中间有效行数作为本系统处理部分。在每一行有效期间,以采集时钟进行计数,采集数据采取乒乓方式输入FPGA内部生成的两个双口RAM中。当一个RAM处于写状态时,另一个处于读状态,以满足实时性要求。图像预处理模块主要包括图像的滤波、校正等,算法结构简单但运算量大,对速度要求高,适合FPGA处理。在滤波运算中、一般会用到卷积运算,需对图像进行窗口处理。在FPGA中,可利用内部FIFO生成窗口,FIFO深度为一行数据,之后进行处理。系统中所用3x3窗口如图3所示。FPGA与DSP之间的数据传输通过DSP的外部存储器接口EMIFA口进行,将FPGA内部存储空间映射到DSP的CE0、CE1存储空间。分别用于接收预处理后的视频采集数据、DSP下传的回灌数据以及控制指令的接收和发送,实现DSP与FPGA的高速数据传输。利用FPGA内部IPcore生成双口RAM、来缓存数据。可以避免再外接存储器,降低了成本,减少了系统面积。图像上传采用中断方式,将每场图像分8次上传。当采集数据存满RAM时,向DSP发送中断,DSP响应中断,通过QDMA传输实现数据搬移。其硬件接口如图4所示。经过处理后的图像数据或回灌数据,相对于原始图像有一定延时。直接采用分离出的同步信号进行显示会造成时序错乱,因此需要需要进行视频合成,生成标准视频信号进行显示。本系统由FPGA内部时钟计数生成行、场同步信号及消隐信号、跟踪框并进行视频合成。其结构图及时序仿真结果如图5、6所示。RS-422模块采用串行通信协议,空闲时,数据线上一直为‘1’,开始发数据时,先发一位起始位‘0’,接着将并行数据按低位先出的方式连续串行发出,最后再发一位结束位‘1’。采用状态机进行收发。其发送仿真时序如图7所示。
2.4DSP模块设计
DSP完成FPGA上传图像的分割、检测识别、特征提取,并上传给上位机进行显示;接收上位机下传的回灌图像数据,送往FPGA;根据计算得到的目标信息,将图像处理结果及跟踪信息送至FPGA及上位机;接收RS422命令,并将发送命令下传给FPGA。上电复位后,DSP从FLASH中加载程序,并进行初始化,等待上位机下传控制指令及FPGA上传的中断信号,进入中断处理程序。通过EDMA控制器实现与FPGA、上位机的数据交互。每个DSP负责一路图像的处理。中断程序有行中断和场中断两种。场中断主要用于行计数清零,目标的检测识别跟踪,接收上位机回灌数据等功能。行中断主要用于接收FPGA送来的图像数据,进行图像分割,向上位机上传图像数据等功能。收到上位机命令后,根据上位机的命令选择相应的工作方式。根据上位机的命令,DSP可以选择不同的图像进行处理,图像的滤波,检测,跟踪等都可以选择不同的处理方法,也可多种方法同时使用[8][9][10]。
3上位机软件设计
上位机设计主要是为了完成人机接口、输入信号源选择、检测、识别算法设置、算法性能测定等功能。主要由主控单元、两路图像显示与控制单元三部分组成。主控单元主要是用来控制整个系统应用软件的运行、暂停和退出,设置图像数据的分辨率,显示DSP上传的伺服信息,同时还能够设置软件的工作模式,实现整个系统的自检功能。图像选择与控制单元主要用来控制图像的显示与存储,设置目标特征选取与滤波方式,接收并显示DSP上传的图像目标的跟踪坐标等。系统应用软件能够控制操作界面实时显示、采集、存储与回灌图像数据,接收并显示DSP上传的每一路目标的跟踪坐标,在目标位置加上跟踪框,设置软件的工作模式,实现系统板卡的自检功能。
篇13
水利工程管理围绕建设组织、社会群体(居民及企业)、政府部门三方面开展,本文以此为基点,提出基础设施层、数据资源层、业务应用层、服务层为主题的计算机水利工程管理信息化系统。
2.1基础设施层
基础设施层是信息化系统的基础,本文中基础设施层主要分为网络设备管理与公共设备管理。对其中具体功能要素进行统计。信息、远程登录管理、自动化办公、工程数据统计是基础服务层的主要功能类别,同时,为保证虚拟网络与可以将园区(施工地)网络与外部网络进行整合,在研究过程中,可以通信设备(外部网络)为中心建立通信设备与服务器、计算机设备的单向联系,在保证能接收信息的同时保证系统安全。
2.2数据资源层
数据资源层主要用于存储、管理系统中的各项数据资源,并通过数据管理系统,实现数据之间的交换、流通。数据资源层是提供数据支持、协调各项数据关系的关键,在最大程度上实现了资源共享。在建立数据资源层中,首先要对基础设施层提供的数据(网络资源、数据库硬件资源)进行物理集中,并在数据资源层将上述两者进行逻辑集中,通过结合两者建立独立的数据层;其次,当数据层建立之后,建立数据资源储备(备份)系统与在灾难恢复机制;最后,完善建立管理系统与数据交换系统的数据接口,为数据连接奠定基础。
2.3业务应用层
业务应用层属于集合应用系统,通过向用户提供需求数据,并提供可实现水利工程信息交换流通的工作平台实现业务的功能。在建立业务应用层过程中,应根据水利工程管理的实际业务要求,动态管理、升级应用系统。本次研究中业务系统主要由多个异构平台组成,其数据流通、共享主要由数据资源层实现。从业务应用层的具体功能来看,主要应用于设计勘察、施工进度监控、基础资源调控等与水利工程建设内容相关的内容。同时,质量监督、信息管理、跟踪管理等内容也可由业务应用层实现。
2.4服务层
服务层主要包括客户登陆窗口、流动信息服务管理、信息交流等内容。服务层主要功能为对应用系统身份识别信息、流通管理信息进行剥离、重构,为客户实现单点登录、多种应用提供可能。同时,对信息集成,向组织与合作伙伴信息,提供系统远程应用。办公自动化和工程案例知识管理等功能都可以基于此平台实现。