引论:我们为您整理了13篇网络管理技术范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
篇1
随着Web技术的不断发展,它的网络管理功能也日趋成熟。主要技术职能涉及配置管理、性能管理、安全管理、计费管理、故障管理等技术。
2.1网络配置管理
配置管理是网络管理的基础,其目的是为用户提供更多服务,比如网络拓扑结构服务、资源提供、业务提供等。配置管理主要是对网络中的配置参数进行设置或调整[1]。现如今,互联网技术实时更新,互联网运行环境实时变动。我们必须走在技术前沿,随着互联网环境的变动不断更新网络配置,这样才能满足用户个性化的使用需求。
2.2网络性能管理
基于Web网络管理技术的监测和控制实施网络性能管理,目的是对网络设备的性能进行优化和调整。而性能监测则是通过采集和整理网络运行的基本信息来掌握网络性能的变动方向,深度挖潜风险点,以便更加科学地实施网络管理[3]。
2.3网络安全管理
保证网络资源安全是实施网络安全管理的主要目的。在Web运行阶段实施网络安全管理,目的是阻断非法事件入侵,深度检测并追踪锁定入侵点,对遭受攻击的文件进行恢复,同时获取相关数据。这要求网络管理中心必须分析、记录所采集的数据参数,针对网络入侵事件展开防御,确保网络安全运行[4]。
2.4网络计费管理
统计网络资源利用率,合理计算和收取用户使用网络服务的费用,核算网络成本效益,这是网络计费管理的主要内容。计费管理包括使用率度量过程、计费处理过程和账单管理过程。但在实际使用过程中,对于不同的用户需要使用不同的计费管理方式。
2.5网络故障管理
在Web下的互联网技术,不仅要对各种网络软、硬件资源进行合理配置,还需要降低网络的故障率,确保网络安全稳定的运行。基于Web的网络管理技术主要是动态跟踪、检测、诊断、隔离、校正和记录网络运行中的异常事件,以便进一步优化调整网络运行环境,确保网络服务稳定、持续[2]。
3基于Web的网络管理技术的实现模式
基于Web的网络管理系统主要是允许通过Web浏览器管理网络运行过程,可以通过两种方法去实现基于Web的网络管理模式:一种是嵌入方式,是在网络设备中嵌入Web功能,每个设备的Web地址是唯一的,以便于管理员直接访问并进行设备管理。网络管理软件与网络设备集成在一起,所有的管理信息都是通过协议传送,所以在这种方式下网络管理软件无须完成协议转换。由于它具有远程操作和对不同设备的图像进行处理的特点,适合应用于小规模的环境中。结构如图1所示。第二种是方式,是在一个服务站中加入Web服务器,使其成为浏览器用户的网络管理的者,服务站通过SNMP与被管设备通信,同时可通过协议端口与用户建立联系。这种管理模式把管理系统和设备的优点都集于一身,还可以灵活地进行访问网页。它类似于网络中的虚拟网,但可以在简单的网络协议上进行,因此,这种方式大多应用于传统的网络设备中。
4基于Web的网络管理技术的实现方法
基于Web的网络管理技术经过多年的发展已渐趋成熟,要实现这种管理方案,可以采用以下技术手段和方法:
4.1采用CORBA集成型分布式技术
CORBA是一种面向对象的分布式中间件技术,所有服务都以对象方法的形式提供,通过向提供服务的对象发请求来实现。集成CORBA和Web技术,并对网络管理系统进行封装,采用CORBA、Java和Web技术相结合的三层网络管理体系结构,如图3所示。实现步骤为:首先,基于IDL来描述接口,编译文件进,通过多种路径来实施程序,信息接收可通过自动创建组件对象来实现,服务器程序生成并成功注册后,结合使用分布式的组件种类库、主程序以及IDL码桩,对操作进程中的CPU、IP、流量、内存以及空间环境实施监控。基于HTTP协议和Web服务器支持JavaApplet,最终达到网络管理的目的[5]。
4.2移动Agent分布式网络管理技术
它基于网络管理要求通过动态形式进行。系统在即将结束网络管理任务时,会自动创建具备资源访问功能的Agent来取代客户和服务器。移动Agent网络管理模型主要由网管站、移动Agent和被管节点三个部分组成。工作原理如图4所示。其中,网管站负责生成它收集到的数据并派遣移动Agent进行处理。移动Agent在各被管节点间迁移并进行网管操作和收集数据,但完全按照网管站预先指定的路线和策略,并且与系统Agent交互完成网管站交给它的网管任务。
4.3集成式的网络管理技术
这种技术综合了Web、CORBA和Agent三种技术的管理应用,实现了网络管理系统的可集成性和可扩展性,同时拥有可移植性、灵活性、智能性、互操作性和跨平台操作性能优势。在网络管理服务器层,可以利用Java实现CORBA服务器程序,最大限度地实现分布式网管的扩展性和伸缩性,还可以利用Java实现移动Agent最大限度地利用网络计算资源。层可分为无Agent执行环境的被管设备和提供Agent执行环境的被管设备两类。
篇2
VLAN(VirtualLocalAreaNetwork)也就是虚拟局域网,是一种建立在交换技术基础之上的,通过将局域网内的机器设备逻辑地而不是物理地划分成一个个不同的网段,以软件方式实现逻辑工作组的划分与管理的技术。VLAN的作用是使得同一VLAN中的成员间能够互相通信,而不同VLAN之间则是相互隔离的,不同的VLAN间的如果要通信就要通过必要的路由设备。
二、VLAN的优点
(一)可以控制网络广播
在没有应用VLAN技术的局域网内的整个网络都是广播域,这样就使得网内的一台设备发出网络广播时,在局域网内的任何一台设备的接口都能接收到广播,因此当网络内的设备越来越多时,网络上的广播也就越来越多,占用的时间和资源也就越来越多,当广播多到一定的数量时,就会影响到正常的信息的传送。这样就能导致信息延迟,严重的可以造成网络的瘫痪、堵塞,严重的影响了正常的网络应用,这就是所谓的网络风暴。
在应用了VLAN技术的局域网中,缩小了广播的广播域,在一个VLAN中的广播风暴也不会影响到其他的VLAN,从而有效地减少了广播风暴对局域网网络的影响。
(二)增强了网络的安全性
在局域网中应用VLAN技术可以把互相通信比较频繁的用户划分到同一个VLAN中,这样在同一个工作组中的信息传输只在同一个组内广播,从而也减轻了因广播包被截获而引起的信息泄露,增强了网络的安全性。
(三)简化网络管理员的管理工作
在应用VLAN技术后网络管理员就可以轻松的管理网络,灵活构建虚拟工作组。用VLAN可以划分不同的用户到不同的工作组,同一工作组的用户也不必局限于某一固定的物理范围,网络构建和维护更方便灵活。
三、VLAN的划分方法
(一)根据端口来划分VLAN
许多VLAN厂商都利用交换机的端口来划分VLAN成员。被设定的端口都在同一个广播域中。例如,一个交换机的1,2,3,4,5端口被定义为虚拟网AAA,同一交换机的6,7,8端口组成虚拟网BBB。这样做允许各端口之间的通讯,并允许共享型网络的升级。但是,这种划分模式将虚拟网限制在了一台交换机上。
第二代端口VLAN技术允许跨越多个交换机的多个不同端口划分VLAN,不同交换机上的若干个端口可以组成同一个虚拟网。
以交换机端口来划分网络成员,其配置过程简单明了。因此,从目前来看,这种根据端口来划分VLAN的方式仍然是最常用的一种方式。不足之处是不够灵活,当一台机器设备需要从一个端口移动到另一个新的端口,但是新端口与旧端口不在同一个VLAN之中时,要修改端口的VLAN设置,或在用户计算机上重新配置网络地址,这样才能使这台设备加入到新的VLAN。
(二)根据MAC地址划分VLAN
这种划分VLAN方法的最大优点就是当用户物理位置移动时,即从一个交换机换到其他的交换机时,就无需对它进行重新配置,自动把它添加到相应的VLAN中。所以,可以认为这种根据MAC地址的划分方法是基于用户的VLAN。这种方法的缺点是不够便捷,初始化时,所有的用户都必须进行配置,如果有几百个甚至上千个用户的话,配置工作就显得相当的繁琐,并且由于需要跟踪设备内的MAC地址进行跟踪,导致了交换机执行效率的降低。另外,对于使用笔记本电脑的用户来说,他们的网卡可能经常更换,这样,VLAN就必须不停地配置。超级秘书网:
(三)根据网络层划分VLAN
这种划分VLAN的方法是根据每个主机的网络层地址或协议类型(如果支持多协议)划分的,虽然这种划分方法是根据网络地址,比如IP地址,但它不是路由,与网络层的路由毫无关系。这种方法的优点是用户的物理位置改变了,不需要重新配置所属的VLAN,而且可以根据协议类型来划分VLAN,这对网络管理者来说很重要,还有,这种方法不需要附加的帧标签来识别VLAN,这样可以减少网络的通信量。这种方法的缺点是效率低,因为检查每一个数据包的网络层地址是需要消耗处理时间的。
(四)根据IP组播划分VLAN
IP组播实际上也是一种VLAN的定义,即认为一个组播组就是一个VLAN,这种划分的方法将VLAN扩大到了广域网,因此这种方法具有更大的灵活性,而且也很容易通过路由器进行扩展,当然这种方法不适合局域网,主要是效率不高。
(五)基于规则的VLAN
也称为基于策略的VLAN。这是最灵活的VLAN划分方法,具有自动配置的能力,能够把相关的用户连成一体,在逻辑划分上称为“关系网络”。网络管理员只需在网管软件中确定划分VLAN的规则(或属性),那么当一个设备加入网络中时,将会被“感知”,并被自己地包含进正确的VLAN中。同时,对设备的移动和改变也可自动识别和跟踪。
采用这种方法,整个网络可以非常方便地通过路由器扩展网络规模。有的产品还支持一个端口上的主机分别属于不同的VLAN,这在交换机与共享式Hub共存的环境中显得尤为重要。自动配置VLAN时,交换机中软件自动检查进入交换机端口的广播信息的IP源地址,然后软件自动将这个端口分配给一个由IP子网映射成的VLAN。
四、公司内部进行VLAN的划分实例
五、结论
VLAN技术的应用,不但使得网络更加的安全,快速,并且也减轻了网络管理员的工作,保证了各个部门不同的要求和信息的安全。
篇3
Network Monitoring Techniques Study in Network Management
Xu Linlin,Mei Tongtong
(Civil Aviation of China Air Traffic Management Station of Dalian,Dalian116033,China)
Abstract:This paper on network management network monitoring techniques are discussed.First introduced the two-sided nature of network monitoring;Second,the definition describes the network monitoring and basic principles;again,the network monitor the use of the analysis;Finally,some of the current analysis of network monitoring tools.
Keywords:Network monitoring;Intrusion Detection
在网络安全上,网络监听一直被认为是一个比较敏感的话题,作为一个已经发展相对成熟的技术,网络监听在协助管理员进行网络数据检测、网络故障排除等方面都具有不可替代的作用,从而深受广大网络管理员的青睐。但是,从另外一个方面来讲,网络监听也给网络安全带来了巨大的隐患,在网络监听行为的同时往往会伴随着大量的网络若亲,从而导致了一系列的敏感数据被盗等安全事件的发生。
一、网络监听的定义
网络监听(英文名称Sniffer)是通过利用计算机的网络接口将网络上的传输数据进行截获的一种工具。我们一般认为网络监听是指在运行以太网协议、TCP/IP协议、IPX协议或者其他协议的网络上,可以攫取网络信息流的软件或硬件。网络监听早期主要是分析网络的流量,以便找出所关心的网络中潜在的问题。网络监听的存在对网络系统管理员是至关重要的,网络系统管理员通过网络监听可以诊断出大量的不可见模糊问题(如网络瓶颈、错误配置等),监视网络活动,完善网络安全策略,进行行之有效的网络管理。
二、网络监听的工作原理
Internet是由众多的局域网所组成,这些局域网一般是以太网、令牌网的结构。数据在这些网络上是以很小的称为帧(Frame)的单位传输的,帧通过特定的网络驱动程序进行成型,然后通过网卡发送到网线上。由于以太网等很多网络(常见共享HUB连接的内部网)是基于总线方式,物理上是广播的,同一物理网段的所有主机的网卡都能接收到这些以太网帧。当网络接口处于正常状态时,网卡收到传输来的数据帧,网卡内的芯片程序先接收数据头的目的MAC地址,根据计算机上的网卡驱动程序设置的接收模式判断该不该接收,如果认为是目的地址为本机地址的数据帧或是广播帧,则接收并在接收后产生中断信号通知CUP,否则就丢弃不管,CUP得到中断信号产生中断,操作系统就根据网卡驱动程序中设置的网卡中断程序地址调用驱动程序接收数据,驱动程序接收数据后放入信号堆栈让操作系统处理。通过修改网卡存在一种特殊的工作模式,在这种工作模式下,网卡不对目的地址进行判断,而直接将它收到的所有报文都传递给操作系统进行处理。这种特殊的工作模式,称之为混杂模式。网络监听就是通过将网卡设置为混杂模式,它对遇到的每一个帧都产生一个硬件中断以便提醒操作系统处理流经该物理媒体上的每一个报文包。网络监听工作在网络环境中的底层,它会拦截所有的正在网络上传送的数据,并且通过相应的软件处理,可以实时分析这些数据的内容,进而分析所处的网络状态和整体布局。
三、网络监听的用途
在网络安全领域中,网络监听占有极其重要的作用。网络监听程序通常有两种形式:一是商业网络监听,二是黑客所使用的。商业网络监听用于维护网络,对于网络管理者,监听也是监控本地网络状况的直接手段,监听还是基于网络的入侵检测系统的必要基础。具体来说就是:
1.把网络中的数据流转化成可读格式。2.进行性能分析以发现网络瓶颈。
3.入侵检测以发现外界入侵者。4.生成网络活动日志和安全审计。
5.进行故障分析以发现网络中潜在的问题。例如,假设网络的某一段运行得不是很好,报文的发送比较慢,而我们又不知道问题出在什么地方,此时就可以用嗅探器做出精确的问题判断。借助于网络监听,系统管理员可以方便的确定出多少的通讯量属于哪个网络协议、占主要通讯协议的主机是哪一台、大多数通讯目的地是哪一台主机、报文发送占用多少时间、或者相互主机的报文传送间隔时间等等,这些信息为管理员判断网络问题、管理网络区域提供了非常宝贵的信息。对于黑客攻击而言,网络监听是一种有效信息收集手段,并且可以辅助进行IP欺骗,如收集科技情报、个人资料、技术成果、系统信息、用户的帐号和密码,一些商用机密数据等,目的是为进一步入侵系统做准备,或者是为了其他不可告人的目的。
四、常用的网络监听工具
Network General:Network General开发了多种产品。最重要的是Expert Sniffer,它不仅仅可以sniffing,还能够通过高性能的专门系统发送/接收数据包。还有一个增强产品Distributed Snuffer System,可以将UNIX工作站作为Sniffer控制台,而将Sniffer Agents分布到远程主机上。
Microsoft’s Net Monitor:对于某些商业站点,可能同时需要运行多种协议如NetBEUI、IPX/SPX、TCP/IP、802.3和SNA等。这时很难找到一种Sniffer帮助解决网络问题,因为许多Sniffer往往将某些正确的协议数据包当成了错误数据包。Microsoft的Net Monitor可以解决这个难题。它能够正确区分诸如Netware控制数据包、NetBios名字服务广播等独特的数据包。这个工具运行在MS Windows平台上。它甚至能够按MAC地址(或主机名)进行网络统计和会话信息监视。只需简单地单击某个会话即可获得tcpdump标准的输出。过滤器设置也是最为简单的,只要在一个对话框中单击需要监视的主机即可。
WinDump:最经典的Unix平台上的tepdump的Windows移植版,和tepdump几乎完全兼容,采用命令行方式运行。
Tcpdump:最经典的网络监听工具,被大量的Unix系统采用。
Dsniff:作者设计的出发点是用这个东西进行网络渗透测试,包括一套小巧好用的小工具,主要目标放在口令、用户访问资源等敏感资料上。
篇4
1.2网络管理技术
网络管理作为当前网络技术应用重要部分,其包含了故障管理、性能管理、配置管理、计费管理以及安全管理等几个方面。通过网络管理协议实现管理者与被管理者之间的数据交换,并且定义了协议数据单元的基本种类、格式以及功能等。从网络管理的操作和控制角度来看,管理工作站可以拥有很多,而每个可以维护自身的本地MIB,并且控制着多个管理工作站为MIB提供服务。网络管理进行控制的时候必须要具备授权服务、委托服务和访问策略等几个重要功能。网络管理其实就是一个委托管理服务,委托服务的时候将每个请求转化为设备使用的管理协议,当委托受到回复之后,将其命令译为SNMP报文发送给管理工作站,进而实现网络管理[2]。
2传统网络管理面临着的问题
由于网络规模不断扩大,传统模式采用集中式的网络管理缺陷已经越发严重,甚至出现了不能够适应当前网络管理的需求状况。基于SNMP集中式网络管理面临着巨大挑战,其主要表现在通信瓶颈、带宽浪费、时效性低、主动性不足等方面[3]。
2.1通信瓶颈
网络管理工作站主要进行网络数据收集以及处理,针对被管理的对象要开展相应管理,造成了网络管理工作站负担过重,极易在管理端形成通信瓶颈。通信瓶颈也就成为了当前网络管理工作的巨大难题。
2.2带宽浪费
网络管理中必须处理大量数据,针对收集出来的设备数据开展分析,其中大量的冗余数据造成了带宽浪费。网络管理所产生的垃圾数据将会浪费大量带宽,这将影响网络管理效率[4]。
2.3时效性低
集中式网站管理模式采用NMS的中心节点向网络其他管理节点轮询机制,以获取设备的状态变量。当前网络规模不断增大,设备数量也不断增多致使网络集中式管理过程中的轮询站点增多,这样就要求轮询密度大幅度增加,网络开销也大幅度增加,从而引起网络管理执行命令的时候出现延时问题。集中式网络管理模式出现的延时问题,将会大幅度降低网络管理的时效性。
2.4主动性差
传统集中管理模式中会涉及,而这些系统进程被视作消极实体,其主要在管理者和管理信息库之间提供一个统一的接口,被动接受轮询然后再去访问设备的MIB,在一定时间间隔上传输数据。进程不能够直接向NMS发送报告,但是出现异常事件则是由NMS预先设定的[5]。
3主动网络技术在网络管理中的应用与实现
3.1构建主动网络技术在网络管理中的实验环境
采用链路层模式在局域网中搭建主动网络环境,利用扩展的ANTS-EANTS主动网络执行环境构建网络节点。主动节点构建之中,EANTS和Janos在Linux操作系统机器之上运行。非主动节点运行主要在Windows操作系统上完成。构建网络管理实验环境以求为达成主动网络技术的网络管理系统实现提供基础运行保障。
3.2主动节点实现
主动节点在系统中的实现过程中主要通过Channel、Node、CodeCache等来完成(如图1所示)。其中Node类属于单个网络节点的实时运行环境,其具有软状态Cache,开发中实现了代码分发机制。当主动节点收到一个主动报文时,便可执行主动报文程序,其中主动报文程序通过Capsule子类实现,通过执行Capsule类中的Evalu-ate()方法为主动节点提供访问服务[6]。Channel类主要实现通信功能,该类为一个抽象类,具体的通信协议可通过重载实现,因此Channel类的主要方法为Receive和Send类,通过Receive实现轮询,然后通过ChannelThread线程实现轮询。Channel类接收到消息之后便交由Receive方法进行处理。Capsule主要为各种Capsule类的父类,增加一个应用的时候需要重载该类,除了编码之外需要构造和解析各种类包,其中最为主要的类包就是Capsule类中的Evaluate()方法。Node类作为主动节点上最为重要类,Node表示一个主动节点,通讯过程中始终处于Channel和Application之间,而在Channel类和Application对象之中均有Channel实例[7]。CodeCache则主要起到了一个缓冲作用,其缓冲的对象为CodeGroup,CodeCache类通过Delete、Movetofront、Lookup、fastlooup、enter、set以及retrieve等对缓冲对象进行管理。
3.3主动报文实现
主动报文通过Capsule类实现,抽象类却定义了所有的主动报文发送方法和集合。通过直接执行报文可以对代码进行封装,主动节点收到代码之后通过定义的加载器进行加载,加载成功之后调用该类中的方法,从而创建一个实例,并使用相应方法进行执行。AppCapsule类的主要方法有:Byete[]getCapsuleID()表示该方法的功能为主动获取报文;Byete[]getGroupID()表示该方法的功能为获取代码组号;Byete[]getProtocollID()表示其功能为获取协议号;IntGetSrc()该方法为获取报文源地址;IntGetSDst表示该功能为获取报文目的地址;IntSetDst()表示该方法为设置报文的目标地址;intgetCapsuleType()此方法表示获取报文的类型。主动应用报文的实现则主要通过被定义的主动应用报文方法和属性来进行调控,主动应用报文通过利用ANTS代码分发机制获取必要代码。获取的新代码需要通过编写独立的Java程序,分别利用Capsule类、协议类以及Application类来完成。使用相关类来构造应用程序,提供相应注册Capsule的API,可以实现在网络管理过程中主动接收报文和发送报文。
篇5
现在计算机主流模式的网络管理是以C/S(client/server)集中式管理,计算机网络管理系统子在SNMP协议的基础上,网络整个集体控制点是网络工作站NMS,它想要读取管理目标MIB中的全体变量值要经过轮流被管理设备,因此整体的获得当前的网络设备状态,并明确其控制行为,SNMP协议构成的网络管理适合处理网络流量不足的状况[1]。本问对网络技术和管理策略技术进行结合,制定出了基于网络管理的分布式网络管理体系结构。
2 与其相关技术研究
2.1 主动网络技术
主动网络(AN:Active Network)是可以计算的一种网络模型。它区别与传统网络的特点主要是:它带领了数据和可行动的主动代码,具有计算能力的主动节点,用户可以依据管理运用的要求对网络进行程序编写,网络运用迅速增的需求在这里得到了实现,人们最开始对主动网运用的目的是使新的协议得到很好的派发,只是最近,主动网的概念才被运用到了网络管理的相应领域,它在实现网络分布式管理的同时又灵活、便捷的分部了新的网络管理功能[2]。
主动网落工作组总结出主动网络节点的主要由三部分构成其逻辑体系:对AA(Active Application)的主动应用,环境EE(Execution Environment)的实行和对节点系统NodeOS的操作,三部分具有相应的联系,具有自身的独特性。他们具有的作用分别是:
一个自行主动运用(AA)由一系列程序代码(主动代码)和主动代码有关的数据、状况参数等组合二成。AA经过EE的调节和实行来实现用户制定的网络服务,它是具有流动性主动网络,在网络运用中,它就可一成为有具体管理功能服务。
执行网络环境(EEs)确定了一个可调节的编程接入口来定义虚拟机和主动网络用户,用户发送编码指示是通过数据包向节点EE,用此来对虚拟机进行控制,大体来讲,指令的实施会致使EE更新和主动节点的信息状态,也有可能会使EE即可传送其他的数据包。体系框架的结构容许众多EE共同存在每个单个节点之中。
节点Node为执行环境所依靠的生存环境提供其基本功能,它对主动节点的资源进行管理,而且在传输、计算、存储等资源间进行了协调。所以,节点NodeOS把EE从资源管理的细节管理中分离出来,EE则与末端用户的互相影响的节奏中独立出来。
EE(MEE)管理负责提供一个可编程的接口作为众多EE、AA的硬件与软件资源,用户应用MEE对其主动节点的众多状态信息进行集体的收集和管理实施。
2.2 对策略的网络管理
人工首先制定了传统网络管理系统中的所有管理策略,依据收集的网络管理信息进行判断和执行来对网络管理的功能进行实施,因为设施的众多繁杂性的交错,经常只能对某种设施的局部进行专门性的实现。从而管理策略的困难性随之复杂。依据管理策略系统实现面向服务质量安全的QoS的目标,自动化的系统管理任务。它经过策略的规定、评定和实行对网络只能化进行管理。
如图1所示,策略执行点(PEP)和策略决定点(PDP),处于节点上的PEP主要是对执行管理策略进行负责,针对网络进行实质的管理;PDQ则大都被存在服务器上,主要对仲裁方案进行检查,即进一步确定应用那项方案,其中两个组成部分的相互链接过程主要是:PEP在接受到管理任务的致使消息时将其消息进行相应的策略仲裁,PDP通过相应信息的检查和评价,从对应的服务器中获得相应方案返还到PEP;PEP对接受到的方案进行回应并制定出相应的管理任务,每个网络节点上都可以配置一个和其相对应的PEP和当地的策略决定点LPDP,于此同时,有关大局的策略决策点GPDP要在策略服务器上加以配置,针对PEP发出的请求要先经过LPDP进行处理,如果不能得到足够的信息,就要由GPDP来进行处理。
策略请求
策略应答
图1 策略服务的结构示意图
3 策略管理的主动式网管
根据上述内容可知,现如今计算机的解决方案是由策略管理它提供的,为更好地解决QoS和其安全的、系统管理职责的自动化提供了强有了的条件,但其中存在的问题还需要进一步解决:
(1)此结构重点在PSVP协议的路由器的实行网络管理的状况上做了考虑,但,在对服务器Diff-serv类型的服务技术质量检测时,不涉及PEP的调节实现功能。(2)从结构图上观看,在PEP实施管理的时候,都要求PDP从策略库中提取风适合的策略信息,这对具有众多共同性质的网络功能管理来谈,众多的时间和网络宽带资源在屡次的获得信息策略中浪费掉了。(3)可以突出的实现管理控制策略冲突,怎样评判策略和解决策略的突出,该结构没有具体的说明。
从主动的节点体系不难看出,主动网络技术是可以针对网络中的节点实施对应程序编写、计算机相应技术。而具有主动解析代码、主动执行代码和对管理完成控制的功能都由EE来解决,并且EE协议相关的只是封装的主动代码、而具体状况下的主动代码主要支持服务器Diff-Serv的区分,这就是主动网络技术的其中优点的体现。
从具体的意义上来说,一段应用程序就包含一些主动代码,根据管理的角度看,一系列主代码和其有关的数据状态参数为一种管理方略,因此,存储众多主动代码的服务器事实上是策略管理结构中的策略服务器,它是策略的主要来源。主动代码通过分发机制进行管理输送来的网络节点,因此实现用户网络服务机制,支持网管在新的应用快速扩大。
4 仿真模拟实验结果
我们应用仿真的模拟实验对上述的论述进行响应,实验中利用内部局域网作为网络环境,被观节点用PC机模拟。在实验进行中,我们网络上传输遵循ANEP封装格式的主动包,如图2所示,“ANEP包头”是按照ANEP协议进行封装的。
ANEP报头 主动代码指针 数据
图2 主动信包格式
“主动代码指针”总是显示需要调整的主动代码,其中“数据”包含了主动代码调用所需的数据和返还给NMS数据结果,因此,我们应用主动包发送“Ping”,所有节点的IP地址和Ping的状态标志都会在返回结果中显示。
首先我们进行节点和NMS间均匀跳动数M进行分析,别管节点的具体个数N对整个系统的影响,分别设置M为1、5、10的情况分析,结果如图3所示。
图3 跳数和节点个数对相应时间的影响
本实验证明,模拟有30个最大的节点数N,X0为78byes是NMS输出的最原始的主动包的大小,X为6bytes是节点在别处理后的结果,10Mbps为网络的传送速率。
从图3中显示,当跳动次数M一定时,节点数N有较大的时间影响,当N达到一定的数目时,对应时间增加形式加速。
5 结语
本文总结出一种主动网技术和策略管理有机结合的网络管理体系,使其高效的分布式网络管理得到更好的实现。
篇6
网络管理技术主要有以下三种:(1) SNMP。简单网络管理协议(Simple Network Management Protocol SNMP)首先是由Internet工程任务组织(Internet Engineering Task Force)(IETF)的研究小组为了解决Internet上的路由器管理问题而提出的。许多人认为 SNMP在IP上运行的原因是Internet运行的是TCP/IP协议,然而事实并不是这样。(2)CMIP。通用管理信息协议(Common Management Information Protocol ,CMIP)是在OSI制订的网络治理框架中提出的网络治理协议。与其说它是一个网络治理协议,不如说它是一个网络治理体系。这个体系包含以下组成部分:一套用于描述协议的模型,一组用于描述被管对象的注册、标识和定义的治理信息结构,被管对象的具体说明以及用于远程治理的原语和服务。CMIP与SNMP一样,也是由被管和治理者、治理协议与治理信息库组成。在CMIP中,被管和治理者没有明确的指定,任何一个网络设备既可以是被管,也可以是治理者。(3)CORBA 。公共对象请求体系结构(Common Object Request Broker Architecture,CORBA)是由OMG组织制订的一种标准的面向对象应用程序体系规范。或者说 CORBA体系结构是对象管理组织(OMG)为解决分布式处理环境(DCE)中,硬件和软件系统的互连而提出的一种解决方案;OMG组织是一个国际性的非盈利组织,其职责是为应用开发提供一个公共框架,制订工业指南和对象管理规范,加快对象技术的发展。CORBA,SNMP,CMIP相结合成为基于CORBA的网络管理系统是当前研究的主要方向。
二、网络管理的体系结构
决定网络管理性能的重要因素之一就是网络管理的体系结构,即网络拓扑。网络体系结构一般情况下可分为集中式和非集中式两类。集中式网管体系结构的工作模式通常以平台为中心,此模式把管理者分成管理平台和管理应用两部分。管理平台主要是进行信息收集及简单的计算,管理应用则是利用管理平台提供信息,并进行决策和执行。非集中方式的体系结构则包括层次方式和分布式。层次方式以“域”为单位,每个域有一个管理者,它们之间的通讯通过上层的MOM,而不直接通讯。层次方式相对来说具有一定的伸缩性:通过增加一级MOM,层次可进一步加深。分布式是端对端(peer to peer)的体系结构,整个系统有多个管理者,几个对等的管理者同时运行于网络中,每个管理者负责管理系统中一个特定部分“域”,管理者之间可以相互通讯或通过高级管理者进行协调。对于选择集中式还是非集中式,这要根据实际场合的需要来决定。而介于两者之间的部分分布式网管体系结构,则是近期发展起来的兼顾两者优点的一种新型网管体系结构。
三、网络管理技术的发展趋势
(一)基于Web的网络管理
方式和嵌入式是基于Web的网络管理的实现的两种方式。方式,即在一个内部工作站上运行Web服务器。在这种方式下,网络管理软件作为操作系统上的一个应用,它介于浏览器和网络设备之间。嵌入式将Web功能嵌入到网络设备中,管理员可通过浏览器直接访问并管理该设备。根据管理功能,其结构可分为三层:层、管理服务器层及客户端。(1)层:层主要完成被管资源或业务的功能。目前.许多网络设备都支持SNMP协议的内嵌系统,如路器、交换机、工作站等设备。(2)管理服务层:管理服务层分为网管服务器和Web服器两大子层。网管服务器为网络和系统进行全面有效的管理提供各种服务.如网络拓扑结构发现、网络配置、系统性能监控、故障检测和恢复、安全保障、账户计费等传统的网络管理功能。
(二)面向业务的网管
面向网络设备的管理向面向网络业务的管理过渡是新一代网络管理系统的表现。这种新的网观思想的网管对象是网络服务和业务,通过实时监测与网络业务相关的设备,通过模拟客户实时测量网络业务的服务质量,通过收集网络业务的业务数据,实现全方位,多视角监测网络业务运行情况的目的,从而实现网络业务的故障管理、性能管理和配置管理。
(三)基于CORBA技术的网络管理
CORBA技术是对象管理组织OMG推出的工业标准,其将分布计算模式和面向对象思想结合在一起为其主要思想。CORBA的主要目标是解决面向对象的异构应用之间的互操作问题,并提供分布式计算所需要的一些其他服务。CORBA的一般结构,基于CORBA的网络管理系统通常按照Client/Server的结构进行构造。其中,服务方是指针对网络元素和数据库组成的被管对象进行的一些基本网络服务。客户方则是面向用户的一些界面,或者提供给用户进一步开发的管理接口等。从网络元素中获取的网络管理信息通常需要经过CORBA/SNMP网关或CORBA/CMIP网关进行转换。这一部分在有的网络管理系统中被抽象成CORBA的概念。在网络管理和系统管理中CORBA占有越来越重要的地位。
参考文献:
[1] 张文华. 关于计算机网络管理技术的研究[J].广西轻工业, 2008,(07) .
篇7
通常,一个网络由许多不同厂家的产品构成,要有效地管理这样一个网络系统,就要求各个网络产品提供统一的管理接口,即遵循标准的网络管理协议。这样,一个厂家的网络管理产品就能方便地管理其他厂家的产品,不同厂家的网络管理产品之间还能交换管理信息。
在简单网络管理协议SNMP(Simple Network Management Protocol)设计时,就定位在是一种易于实施的基本网络管理工具。在网管领域中,它扮演了先锋的角色,因OSI的CMIP发展缓慢同时在Internet的迅猛发展和多厂商环境下的网络管理解决方案的驱动下,而很快成为了事实上的标准。
SNMP的管理结构如图1所示。它的核心思想是在每个网络节点上存放一个管理信息库MIB(Management Information Base),由节点上60(agent)负责维护,管理者通过应用层协议对这些进行轮询进而对管理信息库进行管理。SNMP最大的特点就是其简单性。它的设计原则是尽量减少网络管理所带来的对系统资源的需求,尽量减少agent的复杂性。它的整个管理策略和体系结构的设计都体现了这一原则。
SNMP的主要优点是:
·易于实施;
·成熟的标准;
· C/S模式对资源要求较低;
·广泛适用,代价低廉。
简单性是SNMP标准取得成功的主要原因。因为在大型的、多厂商产品构成的复杂网络中,管理协议的明晰是至关重要的;但同时这又是SNMP的缺陷所在——为了使协议简单易行,SNMP简化了不少功能,如:
·没有提供成批存取机制,对大块数据进行存取效率很低;
·没有提供足够的安全机制,安全性很差;
·只在TCP/IP协议上运行,不支持别的网络协议;
·没有提供管理者与管理者之间通信的机制,只适合集中式管理,而不利于进行分布式管理;
·只适于监测网络设备,不适于监测网络本身。
针对这些问题,对它的改进工作一直在进行。如1991年11月,推出了RMON(Rernote Network Monitor)MIB,加强SNMP对网络本身的管理能力。它使得SNMP不仅可管理网络设备,还能监测局域网和互联网上的数据流量等信息,1992年7月,针对SNMP缺乏安全性的弱点,又公布了S-SNMP(Secure SNMP)草案。到1993年初,又推出了SNMP Version 2即SNMPv2(推出了SNMPv2以后,SNMP就被称为SNMPv1)。SNM-Pv2包容了以前对SNMP的各项改进工作,并在保持了SNMP清晰性和易于实现的特点以外,吸取了CMIP的部分优点,功能更强,安全性更好,具体表现为:
·提供了验证机制,加密机制,时间同步机制等,安全性大大提高;
·提供了一次取回大量数据的能力,效率大大提高;
·增加了管理者和管理者之间的信息交换机制,从而支持分布式管理结构,由位于中间层次(intermediate)的管理者来分担主管理者的任务,增加了远地站点的局部自主性。
·可在多种网络协议上运行,如OSI、AppleTalk和IPX等,适用多协议网络环境(但它的缺省网络协议仍是UDP)。
·扩展了管理信息结构的很多方面。特别是对象类型的定义引入了几种新的类型。另外还规范了一种新的约定用来创建和删除管理表(management tables)中的“行”(rows)。
·定义了两种新的协议数据单元PDU(Protocol Data Unit)。Get-Bulk-Request协议数据单元允许检索大数据块(large data blocks),不必象SNMP那样逐项(item by item)检索; Inform-Request协议数据单元允许在管理者之间交换陷阱(tran)信息。
CMIP协议是在OSI制订的网络管理框架中提出的网络管理协议。CMIP与SNMP一样,也是由管理者、、管理协议与管理信息库组成。
CMIP是基于面向对象的管理模型的。这个管理模型表示了封装的资源并标准化了它们所提供的接口。如图2所示了四个主要的元素:
·系统管理应用进程是在担负管理功能的设备(服务器或路由器等〕中运行的软件:
·管理信息库MIB是一组从各个接点收集来的与网络管理有关的数据;
·系统管理应用实体(system management application entities)负责网络管理工作站间的管理信息的交换,以及与网络中其它接点之间的信息交换;
·层管理实体(layer management entities)表示在OSI体系结构设计中必要的逻辑。
CMIP模型也是基于C/S结构的。客户端是管理系统,也称管理者,发起操作并接收通知;服务器是被管系统,也称,接收管理指令,执行命令并上报事件通知。一个CMIP操作台(console)可以和一个设备建立一个会话,并用一个命令就可以下载许多不同的信息。例如,可以得到一个设备在一段特定时间内所有差错统计信息。
CMIP采用基于事件而不是基于轮询的方法来获得网络组件的相关数据。
CMIP已经得到主要厂商,包括IBM、HP及AT&T的支持。用户和厂商已经认识到CMIP在企业级网络管理领域是一个比较好的选择。它能够满足企业级网管对横跨多个管理域的对等相互作用(peer to peer interactions)的要求。CMIP特别适合对要求提供集中式管理的树状系统,尤其是对电信网(telecommunications network)的管理。这就是下面提到的电信管理网。
二、电信管理网TMN
电信管理网TMN是国际电联ITU-T借鉴0SI中有关系统管理的思想及技术,为管理电信业务而定义的结构化网络体系结构,TMN基于OSI系统管理(ITU-U X.700/ISO 7498-4)的概念,并在电信领域的应用中有所发展.它使得网络管理系统与电信网在标准的体系结构下,按照标准的接口和标准的信息格式交换管理信息,从而实现网络管理功能。TMN的基本原理之一就是使管理功能与电信功能分离。网络管理者可以从有限的几个管理节点管理电信网络中分布的电信设备。
国际电信联盟(ITU)在M.3010建议中指出,电信管理网的基本概念是提供一个有组织的网络结构,以取得各种类型的操作系统(OSs)之间、操作系统与电信设备之间的互连。它采用商定的具有标准协议和信息的接口进行管理信息交换的体系结构。提出TMN体系结构的目的是支撑电信网和电信业务的规划、配置、安装、操作及组织。
电信管理网TMN的目的是提供一组标准接口,使得对网络的操作、管理和维护及对网络单元的管理变得容易实现,所以,TMN的提出很大程度上是为了满足网管各部分之间的互连性的要求。集中式的管理和分布式的处理是TMN的突出特点。
ITU-T从三个方面定义了TMN的体系结构(Architecture),即功能体系结构(Functional Architecture),信息体系结构(Information Architecture)和物理体系结构(Physical Architecture)。它们分别体现在管理功能块的划分、信息交互的方式和网管的物理实现。我们按TMN的标准从这三个方面出发,对TMN系统的结构进行设计。
功能体系结构是从逻辑上描述TMN内部的功能分布。引入了一组标准的功能块(Functional block)和可能发生信息交换的参考点(reference points)。整个TMN系统即是各种功能块的组合。
信息体系结构包括两个方面:管理信息模型和管理信息交换。管理信息模型是对网络资源及其所支持的管理活动的抽象表示,网络管理功能即是在信息模型的基础上实现的。管理信息交换主要涉及到TMN的数据通信功能和消息传递功能,即各物理实体和功能实体之间的通信。
物理体系结构是为实现TMN的功能所需的各种物理实体的组织结构。TMN功能的实现依赖于具体的物理体系结构,从功能体系结构到物理体系结构存在着映射关系。物理体系结构随具体情况的不同而千差万别。在物理体系结构和功能体系结构之间有一定的映射关系。物理体系结构中的一个物理块实现了功能体系结构中的一个或多个功能块,一个接口实现了功能体系结构中的一组参考点。
仿照OSI网络分层模型,ITU-T进一步在TMN中引入了逻辑分层。如图3所示:
TMN的逻辑分层是将管理功能针对不同的管理对象映射到事务管理层BML(Business Management Layer),业务管理层SML(Service Management Layer),网络管理层NML(Network Management Layer)和网元管理层EML(Element Management Layer)。再加上物理存在的网元层NEL(Network Element Layer),就构成了TMN的逻辑分层体系结构。从图2-6可以看到,TMN定义的五大管理功能在每一层上都存在,但各层的侧重点不同。这与各层定义的管理范围和对象有关。
三、TMN开发平台和开发工具
1.利用TMN的开发工具开发TMN的必要性
TMN的信息体系结构应用OSI系统管理的原则,引入了管理者和的概念,强调在面向事物处理的信息交换中采用面向对象的技术。如前所述,TMN是高度强调标准化的网络,故基于TMN标准的产品开发,其标准规范要求严格复杂,使得TMN的实施成为一项具有难度和挑战性的工作;再加上OSI系统管理专业人员的相对缺乏,因此,工具的引入有助于简化TMN的开发,提高开发效率。目前比较流行的基于TMN标准的开发平台有HPOV DM、SUN SEM、IBM TMN平台和DSET的DSG及其系列工具。这些平台可以用于开发全方位的TMN管理者和应用,大大降低TMN/Q3应用系统的编程复杂性,并且使之符合开放系统互连(OSI)网络管理标准,这些标准包括高级信息模型定义语言GDM0,OSI标准信息传输协议CMIP,以及抽象数据类型定义语言ASN.1。其中DSET的DSG及工具系列除了具备以上功能外,还具有独立于硬件平台的优点。下面将比较详细论述DSET的TMN开发工具及其在TMN开发中的作用。
2.DSET的TMN开发工具的基本组成
DSET的TMN开发工具从功能上来讲可以构成一个平台和两大工具箱。一个平台:分布式系统生成器DSG(Distributed System Generator);两个工具箱:管理者工具箱和工具箱。
分布式系统生成器DSG
DSG是用于顶层TCP/IP、OSI和其它协议上构筑分布式并发系统的高级对象请求0RB。 DSG将复杂的通信基础设施和面向对象技术相结合,提供构筑分布式计算的软件平台。通信基础设施支持分布式计算中通信域的通信要求。如图4所示,它提供了四种主要的服务:透明远程操作、远程过程调用和消息传递、抽象数据服务及命名服务。借助于并发的面向对象框架,一个复杂的应用可以分解成一组相互通信的并发对象worker,除了支持例如类和多重继承等重要的传统面向对象特征外,为了构筑新的worker类,DSG也支持分布式对象。在一个开放系统中,一个worker可以和其它worker进行通信,而不必去关心它们所处的物理位置。
DSG提供给用户用以开发应用的构造块(building block)称为worker。一个worker可以有自己的控制线程,也可以和别的线程共享一个控制线程,每个Worker都有自己的服务访问点SAP(Service Access Point),通过SAP与其它worker通信。Worker是事件驱动的。在Worker内部,由有限状态机FSM(Finite State Machine〕定义各种动作及处理例程,DSG接受外部事件并分发到相应的动作处理例程进行处理。如图5所示,独占线程的此worker有三个状态,两个SAPs,并且每个SAP的消息队列中都有两个事件。DSG环境通过将这些事件送到相应的事件处理程序中来驱动worker的有限状态机。
Worker是分布式的并发对象,DSG用它来支持面向对象的特点,如:类,继承等等。Worker由worker class定义。Worker可以根据需要由应用程序动态创建。在一个UNIX进程中可以创建的Worker个数仅受内存的限制。
管理者工具箱由ASN.C/C++编译器、CMIP/ROSE协议和管理者代码生成器MCG构成,如图6所示。
其中的CMIP/ROSE协议提供全套符合Q3接口选用的OSI七层协议栈实施。由于TMN在典型的电信环境中以面向对象的信息模型控制和管理物理资源,所有被管理的资源均被抽象为被管对象(M0),被管理系统中的帮助管理者通过MO访问被管理资源,又根据ITU-T M.3010建议:管理者与之间通过Q3接口通信。为此管理者必须产生与通信的CMIP请求。管理者代码生成器读取信息模型(GDMO文件和ASN.1文件),创立代码模板来为每个被定义的MO类产生CMIP请求和CMIP响应。由于所有CMIP数据均由ASN.1符号定义,而上层管理应用可能采用C/C++,故管理者应用需要包含ASN.1数据处理代码,管理者工具箱中的ASN C/ C++编译器提供ASN.1数据到C/C++语言的映射,并采用“预处理技术“生成ASN.1数据的低级代码,可见利用DSET工具用户只需编写网管系统的信息模型和相关的抽象数据类型定义文件,然后利用DSET的ASN C/C++编译器,管理者代码生成器即可生成管理者部分代码框架。
工具箱包括可砚化生成器VAB、CMIP翻译器、ASN.C/C++ Toolkit,其结构见图7。用来开发符合管理目标定义指南GDMO和通用管理信息协议CMIP规定的应用.使用DSET独具特色的工具箱的最大的好处就是更快、更容易地进行应用的开发。DSET在应用的开发上为用户做了大量的工作。
一个典型的GDMO/CM1P应用包括三个代码模块:
·、MIT、MIB的实施
·被管理资源的接口代码
·后端被管理资源代码
第一个模块用于处理与MO实施。工具箱通过对过滤、特性处理、MO实例的通用支持,自动构作这一个模块。DSET的这一部分做得相当完善,用户只需作少量工作即可完成本模块的创建。对于mcreate、m-delete、m-get、m-cancel-get、m-set、m-set-confirmed、m-action、m-action-confirmed这些CMIP请求,第一个模块中包含有缺省的处理代码框架。这些缺省代码都假定管理者的CMIP请求只与MO打交道。为了适应不同用户的需求,DSET工具箱又提供在缺省处理前后调用用户程序的接入点(称为User hooks)。当某CMIP请求需与实际被管资源或数据库打交道时,用户可在相应的PRE-或POST-函数中加入自己的处理代码。例如,当你需要在二层管理应用中发CMIP请求,需望获取实际被管资源的某属性,而该属性又不在相应MO中时你只需在GDMO预定义模板中为此属性定义一PRE-GET函数,并在你自己的定制文件中为此函数编写从实际被管设备取到该属性值的代码即可。DSET的Agent代码在执行每个CMIP请求前都要先检查用户是否在GDMO预定义文件中为此清求定义了PRE-函数,若是,则光执行PRE-函数,并根据返回值决定是否执行缺省处理(PRE-函数返回D-OK则需执行缺省处理,否则Agent向管理者返回正确或错误响应)。同样当Agent执行完缺省处理函数时,也会检查用户是否为该请求定义了POST-函数,若是则继续执行POST-函数。至于Agent与MO之间具体是如何实现通信的,用户不必关心,因为DSET已为我们实现了。用户只需关心需要与设备交互的那一部分CMIP请求,为其定制PRE-/POST函数即可。
第二个模块实现MO与实际被管资源的通信。它的实现依赖于分布式系统生成器DSG所提供“网关处理单元”(gateway)、远程过程调用(RPC)与消息传递机制及MSL语言编译器。通信双方的接口定义由用户在简化的ROSE应用中定义,在DSG中也叫环境,该环境定义了双方的所有操作和相关参数。DSG的CTX编译器编译CTX格式的接口定义并生成接口表。DSG的MSL语言编译器用以编译分布式对象类的定义并生成事件调度表。采用DSG的网关作为MO与实际被管资源间的通信桥梁,网关与MO之间通过定义接口定义文件及各自的MSL文件即可实现通信,网关与被管设备之间采用设备所支持的通信协议来进行通信,例如采用TCP/IP协议及Socket机制实现通信。
第三个模块对被管理资源进行实际处理。这一模块根据第二个模块中定义的网关与被管设备间的通信机制来实现,与工具没有多大联系。
四、TMN开发的关键技术
电信管理网技术蕴含了当今电信、计算机、网络通信和软件开发的最新技术,如OSI开放系统互连技术、OSI系统管理技术、计算机网络技术及分布式处理、面向对象的软件工程方法以及高速数据通信技术等。电信管理网应用系统的开发具有巨大的挑战性。
工具的引入很大程度上减轻了TMN的开发难度。留给开发人员的最艰巨工作就是接口(interface)的信息建模。尤其是Q3接日的信息建模问题。
Q3接口是TMN接口的“旗舰”,Q3接口包括通信模型和信息模型两个部分,通信模型(0SI系统管理)的规范制定的十分完善,并且工具在这方面所作的工作较多,因此,当我们设计和开发各种不同管理业务的TMN系统时,主要是采用一定的方法学,遵循一定的指导原则,针对不同电信领域的信息建模问题。
为什么说建模是TMN开发中的关键技术呢?从管理的角度而言,在那些先有国际标准(或事实上的标准),后有设备的情况下,是有可能存在一致性的信息模型的,例如目前SDH和七号信令网的TMN系统存在这样的信息模型标准。但即使这样,在这些TMN系统的实施过程,有可能由于管理需求的不同而对这些模型进行进一步的细化。在那些先有设备而后才有国际标准(或事实上的标准)的设备,而且有的电信设备就无标准而言,由于不同厂家的设备千差万别,这种一致性的信息模型的制定是非常困难的。
例如,近年来标准化组织国际电信联盟(ITU-T)、欧洲电信标准组织(ETSI)、网络管理论坛(NMF)和ATM论坛等相继颁布了一些Q3信息模型。但至今没有一个完整的稳定的交换机网元层的Q3信息模型。交换机的Q3信息模型提供了交换机网元的一个抽象的、一般的视图,它应当包含交换机的管理的各个方面。但这是不可能的。因为随着电信技术的不断发展,交换机技术也在不断的发展,交换机的类型不断增加,电信业务不断的引入。我们很难设计一个能够兼容未来交换机的信息模型。如今的交换机已不再是仅仅提供电话的窄带业务,而且也提供象ISDN这样的宽带业务。交换机趋向宽带窄带一体化发展,因此交换机的Q3信息模型是很复杂的,交换机Q3信息建模任务是很艰巨的。
五、TMN管理者和的开发
下面结合我们的开发工作,探讨一下TMN管理者和的开发。
1.管理者的开发
基于OSI管理框架的管理者的实施通常被认为是很困难的事,通常,管理者可以划分为三个部分。第一部分是位于人机之间的图形用户接口GUI(Graphical User Interfaces),接收操作人员的命令和输入并按照一种统一的格式传送到第二部分——管理功能。管理功能提供管理功能服务,例如故障管理,性能管理、配置管理、记费管理,安全管理及其它特定的管理功能。接收到来GUI的操作命令,管理功能必须调用第三部分——CMSI API来发送CMIP请求到。CMIS API为管理者提供公共管理信息服务支持。
大多数的网管应用是基于UNIX平台的,如Solaris,AIX and HP-UX。若GUI是用X-Window来开发的,那么GUI和管理功能之间的接口就不存在了,从实际编程的的角度看,GUI和管理功能都在同一个进程中。
上面的管理者实施方案尽管有许多优点,但也存在着不足。首先是费用昂贵。所有的管理工作站都必须是X终端,服务器必须是小型机或大型机。这种方案比采用PC机作客户端加上UNIX服务器的方案要昂贵得多。其次,扩展性不是很好,不同的管理系统的范围是不同的,用户的要求也是不一样的,不是所有的用户都希望在X终端上来行使管理职责。因此,PC机和调终端都应该向用户提供。最后由于X-Window的开发工具比在PC机上的开发工具要少得多。因此最终在我们的开发中,选择了PC机作为管理工作站,SUN Ultral作为服务器。
在实际工作中我们将管理者划分为两个部分——管理应用(management application)和管理者网关(manager gateway)。如图8所示。
管理应用向用户提供图形用户接口GUI并接受用户的命令和输入,按照定义好的消息格式送往管理者网关,由其封装成CMIP请求,调用CMIS API发往。同时,管理者网关还要接收来自的响应消息和事件报告并按照一定的消息格式送往管理应用模块。
但是这种方案也有缺点。由于管理应用和管理者网关的分离,前者位于PC机上,后者位于Ultral工作站上。它们之间的相互作用须通过网络通信来完成。它们之间的接口不再是一个参考点(Reference Point),而是一个物理上的接口,在电信管理网TMN中称为F接口。迄今为止ITU-T一直没能制定出有关F接口的标准,这一部分工作留给了TMN的开发者。鉴于此,我们制定了管理应用和管理者网关之间通信的协议。
在开发中,我们选择了PC机作为管理工作站,SUN Ultral作为我们的管理者网关。所有的管理应用都在PC机上。开发人员可以根据各自的喜好来选择不同开发工具,如Java,VC++,VB,PB等。管理者网关执行部分的管理功能并调用CMIS API来发送CMIP请求,接收来自的响应消息和事件报告并送往相应的管理应用。
管理者网关的数据结构是通过编译信息模型(GDMO文件和ASN.1文件)获得的。它基于DSG环境的。管理者网关必须完成下列转换:
数据类型转换:GUI中的数据类型与ASN.1描述的数据类型之间的相互转换;
消息格式转换:GUI和管理者网关之间的消息格式与CMIP格式之间的相互转换;
协议转换:TCP/IP协议与OSI协议之间的相互转换。
这意味着管理者网关接收来自管理应用的消息。将其转换为ASN.1的数据格式,并构造出CMIS的参数,调用CMIS API发送CMIP请求。反过来,管理者收到来自的消息,解读CMIS参数,构造消息格式,然后送往GUI。GUI和管理者网关之间的消息格式是由我们自己定义的。由于管理应用的复杂性,消息格式的制定参考了CMIS的参数定义和ASN.1的数据类型。
管理者网关是采用多线程(multi-thread)编程来实现的。
2.的开发
的结构如图9所示。
为了使部分的设计和实现模块化、系统化和简单化,将agent分成两大模块——通用模块和MO模块——进行设计和实现。如图所示,通用agent向下只与MO部分直接通信,而不能与被管资源MR直接进行通信及操作,即通用agent将manager发来的CMIP请求解析后投递给相应的M0,并从MO接收相应的应答信息及其它的事件报告消息。
的作用是代表管理者管理MO。利用工具的支持,采用面向对象的技术,分为八个步骤进行agent的设计和实现,这八个步骤是:
第一步:对信息模型既GDMO文件和ASN.1文件的理解,信息模型是TMN系统开发的基础和关键。特别是对信息模型中对象类和其中各种属性清晰的认识和理解,对于实际的TMN系统来说,其信息模型可能很复杂,其中对象类在数量上可能很多。也就是说,在设计和实现agent之前,必须作到对MO心中有数。
第二步:被管对象MO的定制。这一部分是agent设计和实现中的关键部分,工具对这方面的支持也不是很多,特别是涉及到MO与MR之间的通信,更为复杂,故将MO专门作为一个模块进行设计和实现MO和MR之间的通信以及数据和消息格式的转换问题,利用网关原理设计一个网关来解决。
第三步:创建内置的M0。所谓内置MO就是指在系统运行时,已经存在的物理实体的抽象。为了保证能对这些物理实体进行管理,必须将这些被管对象的各种固有的属性值和操作预先加以定义。
第四步:创建外部服务访问点SAP。如前所述,TMN系统中各个基于分布式处理的worker之间通过SAP进行通信,所以要为agent与管理者manager之间、agent与网关之间创建SAP。
第五步:SAP同内置MO的捆绑注册。由于在TMN系统中,agent的所有操作是针对MO的,即所有的CMIP请求经解析后必须送到相应的M0,而基于DSG平台的worker之间的通信是通过SAP来实现的。因而,在系统处理过程中,当进行信息的传输时,必须知道相应MO的SAP,所以,在agent的设计过程中,必须为内置MO注册某一个SAP。
第六步:agent配置。对agent中有些参数必须加以配置和说明。如队列长度、流量控制门限值、agent处理单元组中worker的最大/最小数目。报告的处理方式、同步通信方式中超时门限等。
第七步:agent用户函数的编写,如agent worker初始化函数、子函数等的编写。
第八步:将所有函数编译,连接生成可运行的agent。
MO模块是agent设计中的一个重要而又复杂的部分。这是由于,一方面工具对该部分的支持不是很多:另一方面,用户的大部分处理函数位于这一部分;最主要的还在于它与被管资源要跨平台,在不同的环境下进行通信。MO模块的设计思想是在MO和MR之间设计一个网关(gateway),来实现两者之间的消息、数据、协议等转换。
MO部分的主要功能是解析,执行来自管理者的CMIP请求,维持各MO的属性值同被管资源的一致性,生成CMIP请求结果,并上报通用agent模块,同时与MR通信,接收和处理来自MR的事件报告信息,并转发给通用agent。
MO部分有大量的用户定制工作。工具只能完成其中一半的工作,而另一半工作都需要用户自己去定制。用户定制分为两大类;
第一类是PRE-/POST-函数。PRE-/POST-函数的主要功能是在agent正式处理CMIP请求之前/之后与被管资源打交道,传送数据到MR或从MR获取数据并做一些简单的处理。通过对这些PRE-/POST-函数的执行,可以确保能够真实地反映出被管资源的运行状态。PRE-/POST-函数分为两个层次:MO级别和属性级别。MO级别层次较高,所有对该对象类的CMIP操作都会调用MO级别的PRE-/POST-函数。属性级别层次低,只有对该属性的CMIP操作才会调用这些函数。DSET工具只提供了PRE-/POST-函数的人口参数和返回值,具体的代码需要完全由用户自己编写。由于agent与被管资源有两种不同的通信方式,不同的方式会导致不同的编程结构和运行效率,如果是同步方式,编程较为简单,但会阻塞被管资源,适合于由大量数据返回的情况。异步方式不会阻塞被管资源,但编程需要作特殊处理,根据不同的返回值做不同的处理,适合于数据不多的情况,在选择通信方式时还要根据MO的实现方式来确定。比如,MO若采用Doer来实现,则只能用同步方式。
第二类是动作、事件报告和通知的处理,动作的处理相对比较容易,只需考虑其通信方式采用同步还是异步方式。对事件报告和通知的处理比较复杂。首先,需要对事件进行分类,对不同类别的事件采用不同的处理方法,由哪一个事件前向鉴别器EFD(Event Forwarding Discriminator)来处理等等。比如,告警事件的处理就可以单独成为一类。其次,对每一类事件需要确定相应的EFD的条件是什么,哪些需要上报管理应用,哪些不需要。是否需要记入日志,这些日志记录的维护策略等等。
除了这两类定制外,MO也存在着优化问题。比如MO用worker还是Doer来实现,通信方式采用同步还是异步,面向连接还是无连接等等,都会影响整个的性能。
如果MO要永久存储,我们采用文件方式。因为目前DSET的工具只支持Versant、ODI这两种面向对象数据库管理系统OODBMS,对于0racle,Sybase等数据库的接口还需要用户自己实现。MO定制的工作量完全由信息模型的规模和复杂程度决定,一个信息模型的对象类越多,对象之间的关系越复杂(比如一个对象类中的属性改变会影响别的类),会导致定制工作的工作量和复杂程度大大增加。
者agent在执行管理者发来的CMIP请求时必须保持与被管资源MR进行通信,将manager传送来的消息和数据转发给MR,并要从MR获取必要的数据来完成其操作,同时,它还要接收来自MR的事件报告,并将这些事件上报给manager。
由上述可知,与被管资源MR之间的通信接口实际上是指MO与MR之间的通信接口。大部分MO是对实际被管资源的模拟,这些MO要与被管资源通信。若让这些MO直接与被管资源通信,则存在以下几个方面的弊端:
·由于MO模块本身不具备错误信息检测功能(当然也可在此设计该项功能,但增加了MO模块的复杂性),如果将上向发来的所有信息(包括某些不恰当的信息)全部转发给MR,不仅无此必要,而且增加了数据通信量;同理MR上发的信息也无必要全部发送给MO。
·当被管资源向MO发消息时,由于MIT对于被管资源来说是不可知的,被管资源不能确定其相应MO在MIT中所处的具置,从而也就无法将其信息直接送到相应的MO,因而只能采用广播方式发送信息。这样一来,每当有消息进入MO模块时,每个MO都要先接收它,然后对此消息加以判断,看是否是发给自己的。这样一方面使编程复杂化,使软件系统繁杂化,不易控制,调试困难;另一方面也使通信开销增大。
·MO直接与被管资源通信,使得系统在安全性方面得不到保障,在性能方面也有所下降,为此,采用计算机网络中中网关(gateway)的思想,在MO与被管资源建立一个网关,即用一个gateway worker作为MO与被管资源通信的媒介。网关在的进程处理中起到联系被管资源与MO之间的“桥梁”作用。
六、总结与展望
篇8
从网络安全管理员的角度来说,最直接的需求就是在一个统一的界面中监视网络中各种安全设备的运行状态,对产生的大量日志信息和报警信息进行统一汇总、分析和审计;同时在一个界面完成安全产品的升级、攻击事件报警、响应等功能。 但是,一方面,由于现今网络中的设备、操作系统、应用系统数量众多、构成复杂,异构性、差异性非常大,而且各自都具有自己的控制管理平台、计算机网络管理员需要学习、了解不同平台的使用及管理方法,并应用这些管理控制平台去管理网络中的对象(设备、系统、用户等),工作复杂度非常之大。另一方面,应用系统是为业务服务的;企业内的员工在整个业务处理过程中处于不同的工作岗位,其对应用系统的使用权限也不尽相同,计算机网络管理员很难在各个不同的系统中保持用户权限和控制策略的全局一致性。所以网络管理的需求决定网管系统的组成和规模,任何网管系统无论其规模大小如何,基本上都是由支持网管协议的网管软件平台、网管支撑软件、网管工作平台和支撑网管协议的网络设备组成。
网管软件平台提供网络系统的配置、故障、性能以及网络用户分布方面的基本管理。目前决大多数网管软件平台都是在UNIX和DOS/WINDOWS平台上实现的。目前公认的三大网管软件平台是:HPView、IBMNetview和SUNNetmanager。虽然它们的产品形态有不同的操作系统的版本,但都遵循SNMP协议和提供类似的网管功能。
不过,尽管上述网管软件平台具有类似的网管功能,但是它们在网管支撑软件的支持、系统的可靠性、用户界面、操作功能、管理方式和应用程序接口,以及数据库的支持等方面都存在差别。可能在其它操作系统之上实现的Netview、Openview、Netmanager网管软件平台版本仅是标准Netview、Openview、Netmanager的子集。例如,在MSWindows操作系统上实现的Netview网管软件平台版本NetviewforWindows便仅仅只是Netview的子集。
网管支撑软件是运行于网管软件平台之上,支持面向特定网络功能、网络设备和操作系统管理的支撑软件系统。
篇9
Analysis of Computer Network Management Technology
Yang Jun
(Fujian Fuzhou Haixia Voice Radio,Fuzhou 350001,China)
Abstract:The large-scale application of computer network,making network management systems in computer networks is becoming increasingly important.This paper outlines the basic concepts of network management and network management technology development status,architecture,and management agreements,and then describes several common network management technology,the last of the development trend of network management technology was predicted.
Keywords:Network management;Simple Network Management Protocol;Internetwork Control Message Protocol
随着人们对计算机网络依赖性的增强,网络管理越来越受到人们的重视。网络管理本身是一项极其复杂的工作,它对网络上的各种设备进行管理、监视和控制,及时地向管理人员报告网络状态,确保一定范围内的网络及其网络设备能够稳定、可靠、高效地运行,提高网络的服务质量和效率。尽管网络管理技术在不断地发展,但不论到何时都不会出现让网络管理人员一劳永逸的网管工具,这些网络管理工具也仅仅让网络管理变得容易一些,而不会全部代替人的工作。
一、计算机网络管理概述
网络管理就是指监督、组织和控制网络通信服务以及信息处理所必需的各种活动的总称。网络管理技术是指网络管理员使用网络管理工具对存在于网络上的资源进行操作,对网络资源进行监视、测试、配置、分析、评价、控制、分配和调度等活动的统称。他们的目的是确保一定范围内的网络及其网络设备能够稳定、可靠、高效地运行,保证网络系统正常高效运行,满足用户需求。根据国际标准化组织对网络管理的定义,一个网络管理系统需要定义系统功能、网络资源的表示形式、网络管理信息的表示和系统的结构。
计算机网络管理功能有五大类,分别为故障管理、配置管理、性能管理、安全管理、计费管理;网络管理协议有两种主要的,分别为SNMP和CMIP,SNMP是由IETF提供的网络管理协议,CMIP是ISO提供的公共管理信息协议;网络管理系统主要由管理员、管理、管理信息数据库、服务设备构成。网络管理系统的体系结构通常分为集中式和非集中式两类体系结构。非集中方式的网络管理结构体系又分为分布式与层次式这两类。网络管理技术有:SNMP、SNMPv1及SNMPv2、CMIP,主要的网络管理技术为CORBA,其综合了以上几种管理技术的优点。
二、计算机网络管理技术发展现状
计算机网络管理技术的发展是与Internet发展同步的,自二十世纪八十年代起网络管理技术逐渐引起重视。一系列国际标准化组织、论坛和科研机构开发的网络管理标准陆续出台,也使得网络系统在结构上存在着或大或小的差异,随着网络管理系统日趋复杂化和差异化,直至目前还未有一个统一的技术标准。现在使用最多的有以下三种标准:Internte的SNMP、CMIP和CORBA。其中SNMP是专用于Internet,具有管理简单适用等特点,是网络管理技术现实标准,但SNMP只适用于TCP/IP网络,Internet本身发展的不规范性,使SNMP难以用于复杂的网络管理,且安全系数不高。CMIP是ISO提供的公共管理信息协议,本来是作为SNMP的替代者被推出的。CMIP可实现全面支持一个完整的网络,并提供相应的管理方案,在技术和标准上比较成熟。因其过于复杂,话费过大,推广起来有一定的难度。CORBA采用了分布对象技术,将所有的管理应用和被管元素都看作分布对象,这些分布对象之间进行交互,从而实现网络管理,很好的解决了CMIP、SNMP中管理者需要采用轮询的方式不断地访问者的缺点,降低了网络的业务量负荷,加强了网络管理的实时性,但其结构依然庞大,短期内取代不了SNMP和CMIP。SNMP、CMIP和CORBA三者相结合发展才是当前计算机网络管理技术研究的主要方向。
三、计算机网络管理技术分析
(一)基于Web的网络技术管理模式
作为全新的建立在Web上的网管模式,自从出现伊始就表现出强大的生命力。Web易操作性和灵活性的特点使得其具有巨大的潜力和发展的空间,它具有易操作性和灵活性的特点。许多技术专家和用户称其将对用户网络管理方式的变革起到革命性的作用。Web网络管理实现方式分两种。一是方式,二是嵌入式。前者在一个内部工作站上运行Web服务器,此时网络管理软件作为操作系统上的一个应用,运行于浏览器和网络设备之间。后者将Web功能嵌入到网络设备中,管理员可通过浏览器直接访问并管理该设备。
基于Web的网络技术管理结构主要由层、管理服务器层及客户端3层构成。其中层主要完成被管资源或业务的功能;管理服务层分为网管服务器和Web服务器两个子层,其中网管服务器为网络和系统进行全面有效的管理提供各种服务;客户端管理功能是提供一个基于Web的人机界面,用于完成具体的网管操作功能。
随着网络结构日益复杂和异构化,Web技术正在悄悄地改变着网络管理的方式,传统的网络管理系统发展到基于Web的网络管理系统已经是时代不可逆转的潮流。但Web真正实现取代传统的网络管理模式,还需要网络管理系统供应商、网络设备供应商和国际标准组织做大量的基础工作。
(二)分布式网络管理技术
分布式管理指通过将管理任务分布到多个网点的多个服务器及多个人身上,而使管理信息系统部门能够管理好大型网络环境。分布式网络与中央控制式网络相对应,其核心思想是将信息和智能分布到网络各处,使得管理变得更加自动。它没有中心,不会出现整体出现崩溃的局面。在分布式网络上,节点之间互相连接,数据可以选择多条路径传输,不必考虑网络的拓扑结构。使得在问题源或更靠近问题源的地方能够做出基本的决策,因而具有更高的可靠性。分布式管理为网络管理员提供了更加有效地管理手段,其一直是推动网络管理技术发展的核心技术。CORBA技术是分布式网络管理技术的一种。
CORBA即公共对象请求体系结构,是由OMG组织制订的一种标准的面向对象应用程序体系规范。CORBA在分布式处理中,通过对象请求ORB接收客户端发出的处理请求,并为客户端在分布环境中找到实施对象,令实施对象接收请求,向实施对象传送请求的数据,对实施对象的实现方法进行处理,并将处理结果返回给客户。CORBA是一个把所有的管理应用和被管元素都看作分布对象的计算平台,它允许不同的程序之间透明地进行相互操作,这些分布对象之间的相互作用成就了网络管理,而不用关心对方位于何地、由谁来设计、运行于何种软硬件平台以及用何种语言来实现等。但是由CORBA管理技术单独实现计算机网络,需要的资金、时间、和人力资源将是十分巨大的。
四、网络管理的未来趋势
目前广泛采用的基于Client/Server技术的集中式平台模式,具有组织结构简单,学习容易,使用快捷的特点。但在实际的应用过程中发现中心网络管理技术站点会超负荷运行,造成通信瓶颈,影响信息处理效率,另外功能不利于扩展。
分布式管理具有共享状态、监视、及拓扑映像信息的能力。能在不同层级和不同地方集成不同的方案,支持不断变化的、不断增长的网络环境,能够在更接近问题源的地方将问题加以处理。具有降低网络管理费用、节省网络带宽、减少当机时间和高的可靠性。
网络技术和网络模式逐渐向可扩展性、高可靠性、时效性和灵活性方向发展,分布式网络管理技术可以很好的解决集中式技术存在的问题,具有良好的发展前景。
参考文献:
[1]马腾.计算机网络管理技术研究应用[J].电脑知识与技术,2008
[2]胡铮.网络与信息管理[J].电子工业出版社,2008
篇10
从网络安全管理员的角度来说,最直接的需求就是在一个统一的界面中监视网络中各种安全设备的运行状态,对产生的大量日志信息和报警信息进行统一汇总、分析和审计;同时在一个界面完成安全产品的升级、攻击事件报警、响应等功能。
但是,一方面,由于现今网络中的设备、操作系统、应用系统数量众多、构成复杂,异构性、差异性非常大,而且各自都具有自己的控制管理平台、计算机网络管理员需要学习、了解不同平台的使用及管理方法,并应用这些管理控制平台去管理网络中的对象(设备、系统、用户等),工作复杂度非常之大。另一方面,应用系统是为业务服务的;企业内的员工在整个业务处理过程中处于不同的工作岗位,其对应用系统的使用权限也不尽相同,计算机网络管理员很难在各个不同的系统中保持用户权限和控制策略的全局一致性。所以网络管理的需求决定网管系统的组成和规模,任何网管系统无论其规模大小如何,基本上都是由支持网管协议的网管软件平台、网管支撑软件、网管工作平台和支撑网管协议的网络设备组成。
网管软件平台提供网络系统的配置、故障、性能以及网络用户分布方面的基本管理。目前决大多数网管软件平台都是在unix和dos/windows平台上实现的。目前公认的三大网管软件平台是:hpview、ibmnetview和sunnetmanager。虽然它们的产品形态有不同的操作系统的版本,但都遵循snmp协议和提供类似的网管功能。
不过,尽管上述网管软件平台具有类似的网管功能,但是它们在网管支撑软件的支持、系统的可靠性、用户界面、操作功能、管理方式和应用程序接口,以及数据库的支持等方面都存在差别。可能在其它操作系统之上实现的netview、openview、netmanager网管软件平台版本仅是标准netview、openview、netmanager的子集。例如,在mswindows操作系统上实现的netview网管软件平台版本netviewforwindows便仅仅只是netview的子集。
网管支撑软件是运行于网管软件平台之上,支持面向特定网络功能、网络设备和操作系统管理的支撑软件系统。
篇11
一、计算机网络管理技术模式的创新应用
计算机网络管理技术模式主要有分布对象网络管理技术模式和基于 WEB 的网络管理模式。其中分布对象网络管理技术模式是一种集中式平台管理技术模式。它是基于 Client/Server 技术创立的,具有组织结构简单、透明性强、操作方便等优点,在计算机网络中运用的比较广泛。
随着 Internet 的高速发展,计算机网络管理技术的集中式在各个方面都有很大的局限性,很难够适应计算机网络的发展。因此我们在对计算机网络管理技术模式进行创新应用的时候首先要解决这些问题。基于 WEB 的网络管理模式是随着 Internet 不断发展,并且逐步的将企业内部的局域网取代而产生的一种计算机网络管理模式。WEB 的网络管理模式能够在很大程度上降低软件开发和维护过程中的费用消耗,能够缩短管理人员的培训时间,其灵活、简单易操作、高效方便等优点使得其运用相对比较广发。WBM 网络管理系统可以允许网络管理人员使用任何一种 Web 浏览器,在网络任何节点上方便迅速地配置、控制以及存取网络和它的各个部分。WEB 的设计融合了各个网络管理模式的优点,其特点是能够使得用户随意的驻留在网络设备和浏览器之间,能够实现后台运行程序,能够随意的将SNMP 和 HTTP 之间的协议进行转换。
二、计算机网络管理技术面临的问题
Internet 与计算机网络管理技术是共同发展的 ,在 1980 年开始 ,计算机网络管理逐渐在社会的发展中受到重视 ,计算机网络管理技术在很早时期便已在外国发展,获得了较好的成果。上个世纪 80 年代开始 ,有很多国际化的组织已经开始开展网络管理专题以及网络运营活动等对计算机网络技术的发展前景进行研究。随着全球化以及 Internet 的不断发展 ,计算机网络管理技术已经以多种形式呈现在社会的发展中并且极为广泛的运用 ,但是由于网络管理技术在结构上有着不相同的地方,导致在计算机网络的应用中存在着越来越多的恶意攻击、非法访问等网络安全威胁。
从计算及网络管理工作人员方面来说 ,在计算机网络管理工作进行的过程中,分析出现的报警信息以及日志信息,并且根据计算机网络技术的应用需求以及网络管理技术的新型发展,通过相应的管理平台去对网络管理中的用户、系统以及设备等各方面进行控制,有着非常大的工作难度。网络管理工作人员需要掌握极为广泛的技能以及知识,在进行计算机网络管理时管理人员有着自己需要管理控制的平台,这就要求计算机网络管理人员在同一时间并且相同的界面内完成升级安全产品等各种功能,因此,在计算机网络管理技术中面临着急需等待解决的一些问题。
三、计算机网络管理技术的发展趋势
1、集成化的计算机网络管理技术
随着计算机网络的快速进步,网关监控协议变成网络管理的基本标准,根据 Internet 以及 IP/TCP 网关监控协议容易实现以及简单的特点,因此在计算机网络管理中网关监控协议将自身的作用充分发挥出来,并且取得了很多计算机供应商的使用。其实,将系统管理以及网络管理互相结合是比较良好的发展前景,网关监控协议的互通以及共享的特点则是分别根据 SNMP以及CMIP集成化的方法。倘若将这两者互相进行集成化处理,对于投资计算机网络管理技术有着重要的保护作用,计算机网络协议共享以及互通的方式是能够共存以及互通的,能够形成一个统一并且完美的计算机网络管理策略。随着 Web 形式的计算机网络管理技术逐渐面世,根据 Web 计算机网络管理技术的基本特点实现的模式分别有嵌入式以及式两种。一方面,网络管理人员可以根据 Web 的网络管理技术嵌入式的密实通过计算机网络浏览器管理并且直接访问计算机设备,嵌入式的管理模式把Web的主要功能在网络设备中全面嵌入,在计算机网络整个管理体系中,将网络设备以及计算机管理软件统一集成,通过超文本传送协议进行传送数据;另一方面,在计算机网络管理的模式中 ,网络管理员的主要职责是把在网络管理系统中收集到的相关信息往计算机浏览器上进行传送,并且变成网关监控协议。并且,对于计算机网络管理技术中的功能应用以及功能开发等部分,在计算机网络管理的进步中仍然需要不断研究以及发展。
2、智能化的计算机网络管理技术
随着计算机网络规模以及结构的迅猛发展,对计算机网络管理人员也有了更高的要求,不仅要求计算机网络管理工作人员要拥有专业性很强的计算机网络管理知识,管理人员同样还要具有解决计算机网络问题的能力以及管理计算机网络的丰富经验等整体素质。因为计算机网络管理有着瞬变性、动态性以及实时性的基本特征,随着信息时代的快速进步,在计算机网络管理工作中复杂程度以及专业技术含量也不断变高,计算机网络管理技术正在逐渐往智能化网络管理技术等方面发展 ,智能化的计算机网络管理技术在确保计算机网络安全有效运行的发展道路 ,智能化的计算机网络管理技术对网络管理系统调整自身功能起到支持的作用 ,适当的监控牵扯网络资源下降的相关性能,并且能够进行重要的执行操作。
3、层次化的计算机网络管理技术
随着信息化技术的应用在社会发展中的普及,在信息时代中计算机网络技术已经逐渐变成应用最广泛的技术,企业渐渐在管理、经营以及生产过程中应用计算机网络技术 ,计算机网络技术的复杂性以及不断扩大规模变成了当今市场发展以及竞争的重要原因,由于企业应用计算机网络技术有着不相同的地方,导致了现今的计算机网络管理技术呈现以下的发展趋势。不同层次计算机网络管理技术在运行时都要找到适合的硬件以及软件,运行时是依靠“服务访问点”的接口进行支持服务的提供。随着计算机网络规模的不断进步,在传输大量的的数据时,网络管理的效率会变得很低,这样不但会造成宽带的浪费,还会导致计算机网络CPU运行的实践被严重消耗,层次化的计算机网络管理技术能够有效的避免该问题的出现,其在进行通信时,把网管架构集中的模式转变成比较具有层次化的模式,促进计算机相互的信息交换功能可以通过层次化的服务进行反应,每个层次化的功能都能够通过与其相近的另一个层次化功能要实现整体的功能。采取中间层管理者增加的方法,全面实现了层次化的计算机管理技术,减少了计算机网络维护人员以及网络管理操作人员在工作时的困难。
四、结论
总而言之,计算机网络管理技术对于当前社会发展以及工作开展都有着十分重要的影响意义。当前的技术水平虽较之前有了很大的提升,但依然存在诸多问题。所以,需要在计算机网络管理技术的应用研究以及推广的基础上,适当的与自主开发模式相结合,使计算机网络技术在我国发展中的作用以及应用效率得到有效的提高,推动计算机网络管理技术网开放以及智能模式快速发展。
参考文献:
[1]罗小芬. 当前计算机网络管理技术应用探究[J]. 信息与电脑(理论版),2011,05:111-112.
篇12
一、网络管理软件技术热点
网络管理系统多年的发展,目前网络管理软件技术的热点有以下几个方面:
1.开放性。随着用户对不同设备进行统一网络管理的需求日益迫切,各厂商也在考虑采用更加开放的方式实现设备对网管的支持。
2.综合性。通过一个控制和操作台就可提供对各个子网的透视、对所管业务的了解及提供对故障定位和故障排除的支持,也就是通过一个操作台实现对互联的多个网络的管理。此外,网络管理与系统管理正在逐渐融合,通过一个平台、一个界面,提供对网络、系统、数据库等应用服务的管理功能。
3.智能化。现代通信网络的迅速发展,使网络的维护和操作越来越复杂,对操作使用人员提出了更高的要求。而人工维护和诊断往往花费巨大,而且对于间歇性故障无法及时检错排除。因此人工智能技术适时而生,用以作为技术人员的辅助工具。由此,故障诊断和网络自动维护也是人工智能应用最早的网络管理领域,目的在于解释网络运行的差错信息、诊断故障和提供处理建议。
4.安全性。对于网络来说,安全性是网络的生命保障,因此网管软件的安全性也是热点之一。除软件本身的安全机制外,目前很多网管软件都采用SNMP协议,普遍使用的是SNMP v l、SNMPv2,但现阶段的SNMP?v?l、SNMPv2协议对于安全控制还较薄弱,也为后续的SNMP协议发展提出挑战。
5.基于Web的管理。基于Web的管理以其统一、友好的界面风格,地理和系统上的可移动性及系统平台的独立性,吸引着广大的用户和开发商。而目前主流的网络管理软件都提供融合Web技术的管理平台。
二、网络管理技术发展趋势
通过现阶段网络管理软件中的一些技术热点,我们可以去展望今后在网络管理中出现的一些新的技术,以期带动网络网络管理水平整体性能的提升:
1.分布式技术。分布式技术一直是推动网络管理技术发展的核心技术,也越来越受到业界的重视。其技术特点在于分布式网络与中央控制式网络对应,它没有中心,因而不会因为中心遭到破坏而造成整体的崩溃。在分布式网络上,节点之间互相连接,数据可以选择多条路径传输,因而具有更高的可靠性。
基于分布式计算模式推出的CORBA是将分布计算模式和面向对象思想结合在一起,构建分布式应用。CORBA的网络管理系统通常按照Client/Server的结构进行构造,运用CORBA技术完全能够实现标准的网络管理系统。
2.XML技术。XML技术是一项国际标准,可以有效地统一现有网络系统中存在的多种管理接口。其次XML技术具有很强的灵活性,可以充分控制网络设备内嵌式管理,确保管理系统间,以及管理系统与被管理设备间进行复杂的交互式通信与操作,实现很多原有管理接口无法实现的管理操作。
利用XML管理接口,网络管理系统还可以实现从被管理设备中读取故障信息和设备工作状态等多种管理数据的操作。新管理接口的采用可以大大提高管理软件,包括第三方管理软件与网络设备间进行管理信息交换的能力和效率,并可以方便地实现与网络管理系统的集成。
而且由于XML技术本身采用了简单清晰的标记语言,在管理系统开发与集成过程中能比较简便地实施,这样新管理接口的采用反而还会降低整个管理系统的开发成本。
3.B/S模式。B/S模式是基于Intranet的需求而出现并发展的。在B/S模式中,最大的好处是运行维护比较简便,能实现不同的人员,从不同的地点,以不同的接入方式接入网络。其工作原理是网络中客户端运行浏览器软件,浏览器以超文本形式向Web服务器提出访问数据库的要求,Web服务器接受客户端请求后,将这个请求转化为SQL语法,并交给数据库服务器,数据库服务器得到请求后,验证其合法性,并进行数据处理,然后将处理后的结果返回给Web服务器,Web服务器再一次将得到的所有结果进行转化,变成HTML文档形式,转发给客户端浏览器以友好的Web页面形式显示出来。
在B/S模式下,集成了解决企事业单位各种网络问题的服务,而非零散的单一功能的多系统模式,因而它能提供更高的工作效率。B/S模式借助Internet强大的信息与信息传送能力,可以通过网络中的任意客户端实现对网络的管理。而且B/S模式结构可以任意扩展,可以从一台服务器、几个用户的工作组级扩展成为拥有成千上万用户的大型系统,采用B/S网络管理结构模式从而实现对大型网络管理。
4.支持SNMP v3协议。SNMP协议是一项广泛使用的网络管理协议,是流传最广,应用最多,获得支持最广泛的一个网络管理协议。其优点是简单、稳定和灵活,也是目前网管的基础标准。
SNMP协议历经多年的发展,已经推出的SNMP v3是在SNMP v1 、SNMP v2两个版本的基础上改进推出,其克服了SNMP v1 和SNMP v2两个版本的安全弱点,功能得到来极大的增强,它有适应性强和安全性好的特点。
尽管新版本的SNMP v3协议还未达到普及,但它毕竟代表着SNMP协议的发展方向,随着网络管理技术的发展,它完全有理由将在不久的将来成为SNMP v2的替代者,成为网络管理的标准协议。
三、结语
随着计算机技术的日新月异,网络管理技术也会随着各种新技术的运用而不断向前进步,从而为众多的网络提供方便、快捷和有效的管理。
参考文献:
篇13
The Search of Network Manage Based on Cluster
ZHAO Kai
(Beijing Electronic Science and Technology Vocational College, Beijing 100016, China)
Abstract: It is easy to enter internet now so it is not mystical and complicated to build the net. In old process,the net's structure is start, compose of switch, router and computer etc. but the computer stand alone each other, it is not concentrate on manage, so it is hard to finish the complicated task. the data flow is more and complex. The transparent to user thatmake up a powerful system by some common computer use Cluster, it must be raise the net's efficiency
Key words: net manager; cluster; net performance
1 网络管理的定义及功能
网络管理是指通过某种方式对网络进行管理,使网络能正常高效地运行,对网络进行管理的目的是更加有效的利用网络资源,维护网络的正常运行,常见的网络管理模型如图1。
网络管理的功能主要体现在网络故障管理、网络计费管理、网络配置管理、网络性能管理和网络安全管理五个方面,基本上覆盖了整个网络管理的范围。
1) 故障管理(fault management)
故障管理是网络管理中最基本的功能之一,此功能主要体现为检测、定位和排除网络硬件和软件中的故障。当出现故障时,通过该功能可以确认故障,并记录故障,找出故障的位置并尽可能地排除这些故障。
2) 计费管理(accounting management)
此功能用于记录网络资源的使用情况,控制和监测网络操作的费用和代价。通过计费管理,限制用户可使用的最大费用,防止用户过多占用、使用网络资源,从而提高网络的效率,常用于对某个特定的网络或网段进行运行成本的控制。
3) 配置管理(configuration management)
此功能用于初始化网络、配置网络并使其提供网络服务,通过配置管理功能可以掌控网络的状态、自动发现网络拓扑结构,构造和维护网络系统的配置。监测被管设备的状态,完成网络关键设备配置的语法检查并自动配置备份系统,从而实现某个特定功能或使网络性能达到最优。
4) 性能管理(performance management)
此功能主要用于评估系统资源的运行状况及通信效率,通过采集、分析网络对象的性能数据,对网络设备及线路质量进行分析。同时,统计网络运行状态信息(如吞吐率、响应时间、网络的可用性等),对网络的使用发展做出评测,为网络进一步规划与调整提供依据。
5) 安全管理(security management)
此功能可以约束和控制对网络资源及其重要信息访问,包括验证网络用户的访问权限和优先级、检测和记录未授权用户企图进行的不应有的操作,结合用户认证、访问控制、数据传输、存储的保密与完整性机制,以保障网络管理系统本身的安全,维护系统日志,使系统的使用和网络对象的修改有据可查。
这五个基本功能之间既相互独立,又存在着千丝万缕的联系。在这些网络管理功能中,故障管理是整个网络管理的核心;配置管理则是各管理功能的基础,其他各管理功能都需要使用配置管理的信息;性能管理、安全管理和计费管理相对来说具有较大的独立性,特别是计费管理,由于不同的应用单位的计费政策有着很大的差别,计费应用的开发环境也千差万别,因此计费管理应用一般都是依据实际情况专门开发。
2 集群技术介绍
集群技术是指用特定方法将两台或多台互联的计算机构成并行或分布系统,从而实现对多台计算机资源进行统一协调管理的目的。此技术可以应用在服务器或普通计算机上,通过集群技术可以使用多台计算机组成一个整体,在群中的每台计算机都分担着一部分计算任务,由于集合了多台计算机的性能,整体的计算实力大大增加,与此同时,每台计算机还承担一些容错任务,当其中某台计算机出现故障时,系统会在软件的支持下将这台计算机从系统中隔离出去,通过各计算机之间的负载均衡机制完成新的负载分担,同时向网络管理人员发出警报,对内表现为一个网络,对外表现为一台计算机,通过集群技术可以对外提供高性能的连续的服务,从而实现超级计算机所能实现的功能。集群系统模型如图2所示。
1)集群技术的特点
计算机集群技术具有高度的可用性、伸缩性与易管理性等特点。
高度的可用性:集群具有避免单点故障发生的能力,能够将发生故障的计算机隔离出去,实现并行运算与故障恢复,并提供高的可用性。
可伸缩性:当现有计算机能力有限时,可以通过增加计算机的硬件如CPU、内存等,也可以增加一台或几台计算机来扩展系统的性能,新增加的计算机将与原有的计算机紧密地集成在一起,对外提供高性能的应用服务。
易管理性:集群对外表现为一个单一的系统,管理员可以通过简单的指令进行远程管理。
2)集群的分类
科学集群:科学集群是并行计算的基础,用以解决复杂的科学问题。科学集群对外就好像一个超级计算机,这种超级计算机内部由很多独立处理器组成。
负载均衡集群:负载均衡集群使负载可以在计算机集群中尽可能平均地分摊任务。负载通常包括应用程序处理负载和网络流量负载,每个节点都可以承担一定的处理负载,并且可以实现处理负载在节点之间的动态分配,以实现负载均衡。负载均衡集群在多节点之间分发计算处理负载,大多数情况下,负载均衡集群中的每个节点都是运行单独软件的独立系统。
高可用性集群:其目的是提高整个系统的可用性,当集群中的一个系统发生故障时,集群软件迅速做出反应,将该系统的任务分配到集群中其它正在工作的系统上执行。如果高可用性集群中的主节点发生了故障,次节点会取而代之。次节点通常是主节点的镜像,因此系统环境对于用户是一致的,而且对于用户而言,集群永远不会停机。
3)集群系统的构建原则
构建集群系统时首先要考虑系统及网络管理的需要,其次是成本。对于某些运行关键业务的企业,如电信行业是无法承担服务器意外停机损失的,高性能的集群系统可以满足这些企业的需求,集群的性能越高造价也就越高。集群的可用性能分为以下几个等级:①系统可靠性和品质;②增加的故障恢复;③部件冗余;④系统级和应用程序级冗余;⑤容错。
其中“系统可靠性和品质”等级最低,成本也最少,可通过数据备份,更新内存,使用不间断电源和服务器自动重启等方法实现,如果想得到更高级别的可用性等级就需要增加更多的硬件设备冗余如增加双控制器、RAID等,“容错”的可用性等级最高,可用性等级与成本的关系如图3所示。
3 在网络中实现集群的关键技术
随着计算机虚拟化技术的发展,大大推动了网络管理技术的进步,集群技术作为网络管理中的重要技术手段也得到了广泛的应用。虚拟化技术使用集群系统在结构上对于用户而言变成了一个透明的系统,终端用户面对虚拟服务器操作,而虚拟服务器则控制着通过高速的LAN或WAN相连的物理服务器,从而实现资源最大化,性能最优等特点,所以虚拟化技术是实现集群的关键。
目前主流的实现服务器虚拟化的技术有以下三种:
1)通过NAT技术实现虚拟服务器:即VS-NAT(Virtual Server via NAT),由于目前网络中使用的IP地址版本为IPV4,地址资源有限,并相应的保留了几个私有网段,这些私有网段可以在不同的局域网内部重复使用,需要访问外网时通过NAT技术将私有IP地址转换为公有IP地址。此方法的优点是节省IP 地址,能对内部进行伪装;缺点是效率低,进行地址转换的数据会重复占用转换器的资源。在VS-NAT结构中需要有一台管理机对网内的服务器进行管理,用户通过虚拟IP访问服务器,管理机会建立虚拟IP与真实IP间的对应关系,以保证数据的正确传输。
2)通过IP隧道技术实现虚拟服务器:即VS-TUN (Virtual Server via IP Tunneling),当真实服务器数量较多时,管理机将成为整个集群系统的瓶颈,响应报文会占用管理机的大量资源,造成网络吞吐量下降,使用VS-TUN技术可以很好地解决这个问题。由于应答报文的数据量要远远大于请求报文,最好的方法就是将请求报文与应答报文分开处理,在管理机与每一台真实的服务器之间都创建一个IP隧道,利用IP隧道技术将请求报文封装转发给后端真实服务器,响应报文也能从后端真实服务器直接返回给客户,这样就减轻了管理机的负担,从而实现集群系统性能的提升。
3)通过直接路由实现虚拟服务器:即VS-DR(Virtual Server via Direct Routing),此种方法的实现思路与VS-TUN相似,目的是减少管理机对应答报文的处理,但要求参与集群的计算机和作为控制管理的计算机在同一个网段,控制管理的计算机接收到请求包时直接送到参与集群的节点。
上述三种方法各有优缺点,具体见表1。
4 结束语
本文主要从网络管理的功能、集群技术的特点以及实现集群系统的关键技术等几个方面进行了论述,在当前的网络环境中,用于网络管理的手段是非常多的,技术也非常复杂,对网络性能、安全方面的要求也越来越高,集群技术在当前网络管理中占有重要的地位,通过这种技术可以使多个分散的PC机或服务器间建立联系,使它们协同工作,从而提高网络管理的水平及网络的性能,虚拟化技术的出现推动了集群技术的发展,根据结构不同可分为VS-NAT、VS-TUN、VS-DR三种方案,其中后两种方案具有较强的可伸缩性,更适合在大型网络中应用。
参考文献:
[1] 王达.网管员必读:网络管理[M].2版.北京:电子工业出版社,2007.
[2] 秦智,网络系统集成[M],.北京:北京邮电大学出版社,2010.