在线客服

高一数学知识点总结实用13篇

引论:我们为您整理了13篇高一数学知识点总结范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

高一数学知识点总结

篇1

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?a和a?a,二者必居其一)、互异性(若a?a,b?a,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

2)集合的表示方法:常用的有列举法、描述法和图文法

3)集合的分类:有限集,无限集,空集。

4)常用数集:n,z,q,r,n*

2.子集、交集、并集、补集、空集、全集等概念。

1)子集:若对x∈a都有x∈b,则a b(或a b);

2)真子集:a b且存在x0∈b但x0 a;记为a b(或 ,且 )

3)交集:a∩b={x| x∈a且x∈b}

4)并集:a∪b={x| x∈a或x∈b}

5)补集:cua={x| x a但x∈u}

注意:①? a,若a≠?,则? a ;

②若 , ,则 ;

③若 且 ,则a=b(等集)

3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与 、?的区别;(2) 与 的区别;(3) 与 的区别。

4.有关子集的几个等价关系

①a∩b=a a b;②a∪b=b a b;③a b c ua c ub;

④a∩cub = 空集 cua b;⑤cua∪b=i a b。

5.交、并集运算的性质

①a∩a=a,a∩? = ?,a∩b=b∩a;②a∪a=a,a∪? =a,a∪b=b∪a;

③cu (a∪b)= cua∩cub,cu (a∩b)= cua∪cub;

6.有限子集的个数:设集合a的元素个数是n,则a有2n个子集,2n-1个非空子集,2n-2个非空真子集。

二.例题讲解:

【例1】已知集合m={x|x=m+ ,m∈z},n={x|x= ,n∈z},p={x|x= ,p∈z},则m,n,p满足关系

a) m=n p b) m n=p c) m n p d) n p m

分析一:从判断元素的共性与区别入手。

解答一:对于集合m:{x|x= ,m∈z};对于集合n:{x|x= ,n∈z}

对于集合p:{x|x= ,p∈z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以m n=p,故选b。

分析二:简单列举集合中的元素。

解答二:m={…, ,…},n={…, , , ,…},p={…, , ,…},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。

= ∈n, ∈n,∴m n,又 = m,∴m n,

= p,∴n p 又 ∈n,∴p n,故p=n,所以选b。

点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。

变式:设集合 , ,则( b )

a.m=n b.m n c.n m d.

解:

当 时,2k+1是奇数,k+2是整数,选b

【例2】定义集合a*b={x|x∈a且x b},若a={1,3,5,7},b={2,3,5},则a*b的子集个数为

a)1 b)2 c)3 d)4

分析:确定集合a*b子集的个数,首先要确定元素的个数,然后再利用公式:集合a={a1,a2,…,an}有子集2n个来求解。

解答:a*b={x|x∈a且x b}, ∴a*b={1,7},有两个元素,故a*b的子集共有22个。选d。

变式1:已知非空集合m {1,2,3,4,5},且若a∈m,则6?a∈m,那么集合m的个数为

a)5个 b)6个 c)7个 d)8个

变式2:已知{a,b} a {a,b,c,d,e},求集合a.

解:由已知,集合中必须含有元素a,b.

集合a可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

评析 本题集合a的个数实为集合{c,d,e}的真子集的个数,所以共有 个 .

【例3】已知集合a={x|x2+px+q=0},b={x|x2?4x+r=0},且a∩b={1},a∪b={?2,1,3},求实数p,q,r的值。

解答:a∩b={1} ∴1∈b ∴12?4×1+r=0,r=3.

∴b={x|x2?4x+r=0}={1,3}, a∪b={?2,1,3},?2 b, ∴?2∈a

a∩b={1} ∴1∈a ∴方程x2+px+q=0的两根为-2和1,

∴ ∴

变式:已知集合a={x|x2+bx+c=0},b={x|x2+mx+6=0},且a∩b={2},a∪b=b,求实数b,c,m的值.

解:a∩b={2} ∴1∈b ∴22+m?2+6=0,m=-5

∴b={x|x2-5x+6=0}={2,3} a∪b=b ∴

又 a∩b={2} ∴a={2} ∴b=-(2+2)=4,c=2×2=4

∴b=-4,c=4,m=-5

【例4】已知集合a={x|(x-1)(x+1)(x+2)>0},集合b满足:a∪b={x|x>-2},且a∩b={x|1

分析:先化简集合a,然后由a∪b和a∩b分别确定数轴上哪些元素属于b,哪些元素不属于b。

解答:a={x|-21}。由a∩b={x|1-2}可知[-1,1] b,而(-∞,-2)∩b=ф。

综合以上各式有b={x|-1≤x≤5}

变式1:若a={x|x3+2x2-8x>0},b={x|x2+ax+b≤0},已知a∪b={x|x>-4},a∩b=φ,求a,b。(答案:a=-2,b=0)

点评:在解有关不等式解集一类集合问题,应注意用数形结合的方法,作出数轴来解之。

变式2:设m={x|x2-2x-3=0},n={x|ax-1=0},若m∩n=n,求所有满足条件的a的集合。

解答:m={-1,3} , m∩n=n, ∴n m

①当 时,ax-1=0无解,∴a=0 ②

综①②得:所求集合为{-1,0, }

【例5】已知集合 ,函数y=log2(ax2-2x+2)的定义域为q,若p∩q≠φ,求实数a的取值范围。

分析:先将原问题转化为不等式ax2-2x+2>0在 有解,再利用参数分离求解。

解答:(1)若 , 在 内有有解

令 当 时,

所以a>-4,所以a的取值范围是

篇2

注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?a和a?a,二者必居其一)、互异性(若a?a,b?a,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

2)集合的表示方法:常用的有列举法、描述法和图文法

3)集合的分类:有限集,无限集,空集。

4)常用数集:n,z,q,r,n*

2.子集、交集、并集、补集、空集、全集等概念。

1)子集:若对x∈a都有x∈b,则a b(或a b);

2)真子集:a b且存在x0∈b但x0 a;记为a b(或 ,且 )

3)交集:a∩b={x| x∈a且x∈b}

4)并集:a∪b={x| x∈a或x∈b}

5)补集:cua={x| x a但x∈u}

注意:①? a,若a≠?,则? a ;

②若 , ,则 ;

③若 且 ,则a=b(等集)

3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与 、?的区别;(2) 与 的区别;(3) 与 的区别。

4.有关子集的几个等价关系

①a∩b=a a b;②a∪b=b a b;③a b c ua c ub;

④a∩cub = 空集 cua b;⑤cua∪b=i a b。

5.交、并集运算的性质

①a∩a=a,a∩? = ?,a∩b=b∩a;②a∪a=a,a∪? =a,a∪b=b∪a;

③cu (a∪b)= cua∩cub,cu (a∩b)= cua∪cub;

6.有限子集的个数:设集合a的元素个数是n,则a有2n个子集,2n-1个非空子集,2n-2个非空真子集。

二.例题讲解:

【例1】已知集合m={x|x=m+ ,m∈z},n={x|x= ,n∈z},p={x|x= ,p∈z},则m,n,p满足关系

a) m=n p b) m n=p c) m n p d) n p m

分析一:从判断元素的共性与区别入手。

解答一:对于集合m:{x|x= ,m∈z};对于集合n:{x|x= ,n∈z}

对于集合p:{x|x= ,p∈z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以m n=p,故选b。

分析二:简单列举集合中的元素。

解答二:m={…, ,…},n={…, , , ,…},p={…, , ,…},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。

= ∈n, ∈n,∴m n,又 = m,∴m n,

= p,∴n p 又 ∈n,∴p n,故p=n,所以选b。

点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。

变式:设集合 , ,则( b )

a.m=n b.m n c.n m d.

解:

当 时,2k+1是奇数,k+2是整数,选b

【例2】定义集合a*b={x|x∈a且x b},若a={1,3,5,7},b={2,3,5},则a*b的子集个数为

a)1 b)2 c)3 d)4

分析:确定集合a*b子集的个数,首先要确定元素的个数,然后再利用公式:集合a={a1,a2,…,an}有子集2n个来求解。

解答:a*b={x|x∈a且x b}, ∴a*b={1,7},有两个元素,故a*b的子集共有22个。选d。

变式1:已知非空集合m {1,2,3,4,5},且若a∈m,则6?a∈m,那么集合m的个数为

a)5个 b)6个 c)7个 d)8个

变式2:已知{a,b} a {a,b,c,d,e},求集合a.

解:由已知,集合中必须含有元素a,b.

集合a可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

评析 本题集合a的个数实为集合{c,d,e}的真子集的个数,所以共有 个 .

【例3】已知集合a={x|x2+px+q=0},b={x|x2?4x+r=0},且a∩b={1},a∪b={?2,1,3},求实数p,q,r的值。

解答:a∩b={1} ∴1∈b ∴12?4×1+r=0,r=3.

∴b={x|x2?4x+r=0}={1,3}, a∪b={?2,1,3},?2 b, ∴?2∈a

a∩b={1} ∴1∈a ∴方程x2+px+q=0的两根为-2和1,

∴ ∴

变式:已知集合a={x|x2+bx+c=0},b={x|x2+mx+6=0},且a∩b={2},a∪b=b,求实数b,c,m的值.

解:a∩b={2} ∴1∈b ∴22+m?2+6=0,m=-5

∴b={x|x2-5x+6=0}={2,3} a∪b=b ∴

又 a∩b={2} ∴a={2} ∴b=-(2+2)=4,c=2×2=4

∴b=-4,c=4,m=-5

【例4】已知集合a={x|(x-1)(x+1)(x+2)>0},集合b满足:a∪b={x|x>-2},且a∩b={x|1

分析:先化简集合a,然后由a∪b和a∩b分别确定数轴上哪些元素属于b,哪些元素不属于b。

解答:a={x|-21}。由a∩b={x|1-2}可知[-1,1] b,而(-∞,-2)∩b=ф。

综合以上各式有b={x|-1≤x≤5}

变式1:若a={x|x3+2x2-8x>0},b={x|x2+ax+b≤0},已知a∪b={x|x>-4},a∩b=φ,求a,b。(答案:a=-2,b=0)

点评:在解有关不等式解集一类集合问题,应注意用数形结合的方法,作出数轴来解之。

变式2:设m={x|x2-2x-3=0},n={x|ax-1=0},若m∩n=n,求所有满足条件的a的集合。

解答:m={-1,3} , m∩n=n, ∴n m

①当 时,ax-1=0无解,∴a=0 ②

综①②得:所求集合为{-1,0, }

【例5】已知集合 ,函数y=log2(ax2-2x+2)的定义域为q,若p∩q≠φ,求实数a的取值范围。

分析:先将原问题转化为不等式ax2-2x+2>0在 有解,再利用参数分离求解。

解答:(1)若 , 在 内有有解

令 当 时,

所以a>-4,所以a的取值范围是

变式:若关于x的方程 有实根,求实数a的取值范围。

解答:

点评:解决含参数问题的题目,一般要进行分类讨论,但并不是所有的问题都要讨论,怎样可以避免讨论是我们思考此类问题的关键。

三.随堂演练

选择题

1. 下列八个关系式①{0}= ② =0 ③ { } ④ { } ⑤{0}

⑥0 ⑦ {0} ⑧ { }其中正确的个数

(a)4 (b)5 (c)6 (d)7

2.集合{1,2,3}的真子集共有

(a)5个 (b)6个 (c)7个 (d)8个

3.集合a={x } b={ } c={ }又 则有

(a)(a+b) a (b) (a+b) b (c)(a+b) c (d) (a+b) a、b、c任一个

4.设a、b是全集u的两个子集,且a b,则下列式子成立的是

(a)cua cub (b)cua cub=u

(c)a cub= (d)cua b=

5.已知集合a={ }, b={ }则a =

(a)r (b){ }

(c){ } (d){ }

6.下列语句:(1)0与{0}表示同一个集合; (2)由1,2,3组成的集合可表示为

{1,2,3}或{3,2,1}; (3)方程(x-1)2(x-2)2=0的所有解的集合可表示为 {1,1,2}; (4)集合{ }是有限集,正确的是

(a)只有(1)和(4) (b)只有(2)和(3)

(c)只有(2) (d)以上语句都不对

7.设s、t是两个非空集合,且s t,t s,令x=s 那么s∪x=

(a)x (b)t (c)φ (d)s

8设一元二次方程ax2+bx+c=0(a<0)的根的判别式 ,则不等式ax2+bx+c 0的解集为

(a)r (b) (c){ } (d){ }

填空题

9.在直角坐标系中,坐标轴上的点的集合可表示为

10.若a={1,4,x},b={1,x2}且a b=b,则x=

11.若a={x } b={x },全集u=r,则a =

12.若方程8x2+(k+1)x+k-7=0有两个负根,则k的取值范围是

13设集合a={ },b={x },且a b,则实数k的取值范围是。

14.设全集u={x 为小于20的非负奇数},若a (cub)={3,7,15},(cua) b={13,17,19},又(cua) (cub)= ,则a b=

解答题

15(8分)已知集合a={a2,a+1,-3},b={a-3,2a-1,a2+1}, 若a b={-3},求实数a。

16(12分)设a= , b= ,

其中x r,如果a b=b,求实数a的取值范围。

四.习题答案

选择题

1 2 3 4 5 6 7 8

c c b c b c d d

填空题

9.{(x,y) } 10.0, 11.{x ,或x 3} 12.{ } 13.{ } 14.{1,5,9,11}

解答题

15.a=-1

16.提示:a={0,-4},又a b=b,所以b a

(ⅰ)b= 时, 4(a+1)2-4(a2-1)<0,得a<-1

篇3

2.学生的学习态度不适合高中阶段的要求。有些孩子一进入高中后,还像初中那样对老师有很强的依赖心理,跟随老师惯性运转没有掌握学习的主动权,不知道高中的知识该如何自学,该掌握什么。还有些学生不重视基础,好高骛远轻视基本知识、基本方法、基本技能的训练,经常是知道怎样做就算了很少演算书写而对于难题很感兴趣,以展示自己的水平,重质而轻量。到真正考试时不是演算出错就是思路中断。

3.学习方法不得法。老师上课一般是讲知识的来龙去脉剖析概念的内涵,分析重点难点突出思想方法。而好多学生没能专心听讲或者是记笔记了结果题目只听了一部分,笔记记了一大本却不知道自己记了点什么。结果事倍功半。

4.教师的观念意识的负面影响。高一的第一学期学习的是新课标的必修1的第一、第二、第三章的内容。而刚接触的第一、二章的内容概念就多达三十多个,性质法则定理就多达二十多个。而且在这两张中渗透了高中必须掌握的数学思想和数学方法。如集合和对应、分类讨论、数形结合、等价转化等数学思想及配方法、换元法、反证法、待定系数法等数学方法。而且内容抽象。如函数、集合、增减函数等概念都很难以理解。另外还要掌握大量的数学符号和数学术语。

这些对于高一新生学起来已经非常吃力了,而一些老师瞄准高考要求,力求一步到位。还有一些老师不注意初中学生在知识水平、学习习惯、思考方法上和高一新生的差异,教学速度快,起点高,难度大,让学生在心理上形成了一个坎。不少学生学习越来越困难,信心愈来愈差,以至于成绩一蹶不振。

高一数学学习方法

加强学法指导,培养良好的学习习惯。作为一个老师不仅要有一个好的教学方法更重要的是要教给学生好的学习方法,真正的实现教是为了不教这一目的。

精心组织教学,搞好初高中的衔接。初中教材的概念大多是具体的,以形象的思维为主。而高一的第一章就是非常抽象的集合,第二章又是难度很大的函数,所以在授课的时候一定要多举一些实例,帮助学生逐步形成抽象概念。二次函数在高中阶段有着非常重要的作用,例如可以判断函数的单调性,求值域等,而我学生在初中时对二次函数的学习可能就是不很到位,所以我们应跟学生首先回忆一下一次函数,这样更有利于传授新知识。

夯实基础,阶段提高。高中教材起点高,内容多,知识深拓展空间大,时间紧,进度快。学生感觉知识点零散,无章可寻,没有现成的模子课套用,还有些学生不注重基本概念公式的理解和记忆,轻视课本,不注重基本演算,到考试时经常会出这样那样的问题,所以我们平时应多注意双基的教学。学生只有基础牢固了才有提高的资本。

加强辅导。辅导是学生对新知识的理解和掌握的一个很重要的环节,它不仅仅是帮助孩子解决疑难问题,还能帮助学生巩固知识。

从初中到高中的过渡是需要一个过程的,更需要老师在教学过程中探索教学策略,完善自己的教学艺术同时还要完善个别的教学方法,不断的提高学生的学习兴趣激发学习的动机。我坚信:只要教者有法,学者有心高一学生会度过难关一步步向高中数学的巅峰前进。

 

初三升高一数学注意事项相关文章:

1.高一数学学习应注意的问题

2.初三提高数学成绩技巧

3.初三数学培优补差计划

篇4

1.搞好入学教育

通过入学教育提高学生对初高中衔接重要性的认识,增强紧迫感,消除松懈情绪。这里主要做好四项工作:一是给学生讲清高一数学在整个中学数学中所占的位置和作用;二是结合实例,采取与初中对比的方法,给学生讲清高中数学内容体系特点和课堂教学特点;三是结合实例给学生讲明初高中数学在学法上存在的本质区别,并向学生介绍一些优秀学法,指出注意事项;四是请高年级学生谈体会讲感受,引导学生少走弯路,尽快适应高中学习。

2.摸清底数,规划教学

在教学实际中,一方面通过进行摸底测试和对入学成绩的分析,了解学生的基础;另一方面,认真学习和比较初高中教学大纲和教材,以全面了解初高中数学知识体系,找出初高中知识的衔接点、区别点和需要铺路搭桥的知识点,以使备课和讲课更符合学生实际,更具有针对性。

二、优化课堂教学环节,搞好初高中数学知识衔接教学

1.立足于大纲和教材,尊重学生实际,实行层次教学

高一数学中有许多难理解和掌握的知识点,如集合、映射等,对高一新生来讲确实困难较大。因此,高一数学教学中,在速度上,放慢起始进度,逐步加快教学节奏。在知识导入上,多由实例和已知引入。在知识落实上,先落实"死"课本,后变通延伸用活课本。在难点知识讲解上,从学生理解和掌握的实际出发,对教材作必要层次处理和知识铺垫,并对知识的理解要点和应用注意点作必要总结及举例说明。

2.重视新旧知识的联系与区别,建立知识网络

数学知识相互联系的,高中的数学知识也涉及初中的内容。如函数性质的推证,求轨迹方程中代数式的运算、化简、求值。立体几何中空间转化为平面问题。初中几何中角平分线、垂直平分线的点的集合,为集合定义给出了几何模型。可以说高中数学知识是初中数学知识的延拓和提高,但不是简单的重复,因此在教学中要正确处理好二者的衔接,深入研究两者彼此潜在的联系和区别,做好新旧知识的串连和沟通。

3.重视展示知识的形成过程和方法探索过程,培养学生创造能力

高中数学较初中抽象性强,应用灵活,这就要求学生对知识理解要透,应用要活,不能只停留在对知识结论的死记硬套上,这就要求教师应向学生展示新知识和新解法的产生背景、形成和探索过程,不仅使学生掌握知识和方法的本质,提高应用的灵活性,而且还使学生学会如何质疑和解疑的思想方法,促进创造性思维能力的提高。

4.重视培养学生自学能力,变被动学习为主动学习

在教学中培养自学能力要注重“导”与“学”,“导”就是教师在自学中起好引导、指导作用,开始教师列出自学指导提纲,引导学生阅读教材,怎样读,怎样疑点和难点,怎样归纳,教师逐步放手,学生逐步提高;“学”就是在阅读教材的基础上,使学生课前做到心中有数,上课着问题专心听讲,课后通过复习,落实内容才做习题,作业错误自行做好“红笔”订正,这样能使学生开动脑筋,提高成绩,而学生有了自学习惯和自学能力,就能变被动为主动学习。

5.重视培养学生自我反思自我总结的良好习惯,提高学习的自觉性

高中数学概括性强,题目灵活多变,只靠课上听懂是不够的,需要课后进行认真消化,认真总结归纳。这就要求学生应具备善于自我反思和自我总结的能力。为此,我们在教学中,抓住时机积极培养。在单元结束时,帮助学生进行自我章节小结,在解题后,积极引导学生反思:思解题思路和步骤,思一题多解和一题多变,思解题方法和解题规律的总结。由此培养学生善于进行自我反思的习惯,扩大知识和方法的应用范围,提高学习效率。

篇5

分析

数学后进生最主要的表征是把数学看成是一门令人讨厌的学科,缺乏学习数学的兴趣.在行为上,他们不愿意上数学课,懒于做题,不愿积极主动地获取数学知识.上课时不能进入角色,经常开小差,降低对自己的要求,另外,完成作业缺乏紧迫感,总是希望老师提示或抄袭同学的答案.

在心理上,很大一部分数学后进生缺乏学习和取得进步的自信,有着较强的自卑心理.每当数学课听不懂、作业做不出、计算出现错误、证明遇到阻力或考试成绩不好时,他们便会怀疑自己的学习能力,情感上心灰意冷,失去了学习的动力.同时,他们也存在着焦虑、犹豫,甚至厌倦、逃避的心理,高中数学是抽象性很强、延续性很强、趣味性相对较低的课程,很多后进生在数学学习时缺乏对模糊状态的承受力,对不能一下子就能看到希望和成功的问题或事情缺乏等待的耐心,在他们看来数学似乎不能在短时间内补习上来,也就不愿冷静分析、继续探索,以至于数学成绩一直提升不了,造成恶性循环.

二、高一数学后进生的成因分析

1.初中数学基础不够牢固,造成新旧知识的断链

一部分数学后进生初中数学基础就没有打好,甚至没有掌握基本的运算法则和定理、公式.数学课程是极具逻辑性和连续性的课程,学生初中基础未打好,升入高中后又没有及时地查漏补缺,很容易造成新旧知识的断链,接受新知识就会残缺不全,在新旧知识之间不能形成连通的网络,这是后进生中存在的普遍现象.

2.缺乏科学的学习方法与习惯,阻碍了其认知水平的发展

科学的学习方法和习惯能帮助学生达到事半功倍的学习效果.部分后进生的形成是因为在进入高中后,没有认识到高中数学在内容、难度和逻辑性要求的加大,在上课之前不进行预习,课后不对知识点进行加深巩固,甚至抄袭同学的作业.这使得后进生从高一开始就没有掌握学习的主动权,缺失了认识数学知识点之间的联系、总结教材各要点与实际习题之间的联系的机会.

3.教师教学方法脱离学生实际,家庭教学环境的缺失

与初中数学相比,高中数学的语言更加抽象化,更多的是运用符号语言、函数语言等,加之知识内容的增加,使得高一学生理解起来比较困难.而在应试教育体制的影响下,很多教师仍然持有灌输式教学的错误观点,不注重学生的个体特征和主动性,要求全体学生在相同时间内接收同样多的内容,这将造成后进生失落、自责、焦虑的心理,不利于后进生的学习和进步.

另外,某些家庭教育环境的缺失和教育方式不当,家长与子女、学校沟通较少,也是造成后进生数学成绩恶化的原因.

三、高一数学后进生的转化教学

策略分析

1.控制教学的难度和进度,防止入学初期学生分化

在高一入学初期,教师应该及时了解全体学生的基础状况,要注重新旧知识的内在衔接教学.在处理教学内容时,尤其是抽象性较强、知识含量较大的内容时,应该做一定的具象处理,如作表格、作类化等,让学生的思维水平通过情景化的课堂逐步从形象向抽象递进.

2.引导学生掌握科学的学习方法,培养学习兴趣

从高一开始,教师应提倡后进生认真预习和复习,在习题讲解时启发后进生养成思考解题方向与方法的习惯,同时鼓励学生通过记笔记或做错题本的方式总结自己的难点和重点.在教学中,教师要精心创设教学情境,适度开展数学应用问题的教学,让后进生感受到数学课堂的趣味性,从而产生对数学学习的兴趣.

篇6

高中阶段的数学课程相对于初中数学来讲,知识点独立性较强,并且作为高等数学的基础,起着承上启下的过渡作用。高中数学所涉及的数量关系和空间图形关系较为复杂,具有高度抽象性,本文笔者对高中三年数学科目的整体框架进行了分析,并概括出以下三方面特点:

1.高中数学知识具有高度抽象性

学生在初中数学的学习中已经开始接触抽象数学知识,如函数映射等。但高中数学抽象知识的逻辑复杂程度更高,在这一阶段,数学这一学科也将逐渐完成由具体到抽象的过渡,这需要学生充分发挥自身想象力来理解知识点。

2.高中数学知识点密度大

随着学生年龄的增长,其接受知识的能力以及分析理解问题的能力也不断增强。高中数学正是适应了学生这一思维发展过程,每单元涵盖知识点数量大,内容庞杂,课堂上需要介绍的知识点也很多,这就迫使教师要大大提高课容量。除此之外,高中数学对学生知识点的掌握要求也相应地提高了,这就更增加了知识点的复杂程度。

3.高中数学知识独立性强

高中数学知识较之初中数学知识独立性更强,很多知识都是入门介绍,并无之前的学习基础作为铺垫,因而独立性很强。除此之外,高中数学各部分知识之间的独立性也较强,他不同于初中数学知识章节关联性、系统性强的特点,其各章之间相对独立,函数与几何两大部分也相对独立。高中数学独立性强的特点要求学生要建立多式思维,要能够在不同知识间快速转换思路。

二、高中数学的学习方法

1.高中数学的日常学习方法

高中阶段学生的沟通交流能力不断增强,在平时的学习过程中,教师要积极引导学生养成“四多”的习惯――多听、多做、多思、多问。在高中数学学习中,“听”是“学”的基础,“做”是“学”的手段,学生在学习过程中要把二者统一到实际问题解决中,遇到难题首先要多“思”,要充分调动大脑思维运算所学知识点,如果自身还不能解决就要多“问”,务必要将难题弄懂、弄会,破除学习障碍和知识盲点。

高中数学除了要求学生养成良好的学习习惯外,也讲求一定的学习套路。具体来说,首先学生要善于听讲,会听讲,除了单纯的“听”以外,还要做好记录,将无法完全弄懂的知识点做好笔记,然后课下多做相关练习。尤其是教材后的练习题,这些都是高中数学中最为典型的题目,学生一定要做懂、做熟。同时,针对高中数学知识较为复杂的特点,学生还需要加大练习量,不断强化巩固所学知识。而后,学生要对练习中不会做以及做错的习题进行系统分类与整理,对于仍旧无法解答的,及时向教师提问。最后,学生经过了听讲、练习、整理这一整套学习循环后,对知识点已经有了较为清晰的脉络,此时教师要协助学生对所学知识进行总结与梳理,以建立知识点之间的整体思路。

2.高中数学的分阶段学习方法

在为期三年的高中数学学习中,学习重点以及学习方法各有侧重,下面笔者就分阶段介绍高中数学学习的策略。

(1)高一数学是高中数学与初中数学的过渡阶段,是整个高中数学学习的基础,若是不能打牢基础,整个高中阶段的数学学习都会非常吃力。高一数学开始逐渐引入各类复杂、抽象的函数概念,如三角函数、反函数等代数概念,平面向量、立体几何等空间概念。这就要求学生要充分调动想象力去理解这些抽象的知识,做到既要明白概念本身的含义,又要理解概念所包含的的深层次的思路。例如,学生在理解反函数这一概念时既要明白函数y=f(x)与y=f1(x)的图像关于直线y=x对称的,还要理解函数y=f(x)与x=f1(y)有着相同的图像。又如,在理解函数对称轴这一概念时,既要清楚当f(x-1) =f(1-x)时,函数y=f(x)的图像是关于y轴对称,还要能通过平移得出y=f(x-1)与y=f(1-x)的图像关于直线x=1对称。学生在认识这些抽象概念时要结合象限图形来理解,并充分调动形象思维理解抽象理论,这样才能把基础概念记牢、用熟。

(2)高二阶段是整个高中阶段数学的理论升华阶段,也是重点、难点最为集中的阶段。这一阶段的学习是数学方法的学习,在高一掌握概念的基础上,学生要将概念转化为解题思路,理清各知识点之间的关系。高二知识点涉及数列、不等式直线和圆、圆锥曲线、立体几何、排列组合、概率与统计、极限、导数、复数等复杂问题,这时需要大量辅助练习来强化知识点,以帮助学生找到适合自己的解题技巧。

(3)高三阶段是高中数学的收尾阶段,此时学生要应战高考,所需掌握的知识点已经全部学完,知识的串联也基本完成。这时学生需要进行大量的综合练习,以提高解题速度。但值得注意的是,习题的选取要适当,不要以多为胜,要以质取胜,尽可能开发新方法,这样方便学生在考场时灵活选取,不至于应考时头脑放空。

三、结语

学的知识是有限的,但人的思维能力是无限的,在高中阶段的数学学习中,我们只要学好了相关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付无限的题目。虽然高中数学充满了挑战,但只要学生树立起信心,把握住学习重点,努力提高自身能力,学好高中数学并不是问题。

参考文献:

1.李建华.TIMSS2003与美国数学课程评介[J].数学通报,2005(03).

2.徐文彬,杨玉东.英国国家数学课程标准的确立与变革及其启示[J].数学教育学报,2002(03).

篇7

对高一新生来讲,环境是全新的,还面临着新教材、新同学、新教师、新集体……学生必须经历一个由陌生到熟悉的适应过程。另外,经过紧张的中考复习,考取了自己理想的高中,有些学生产生了“松口气”想法,入学后无紧迫感。也有些学生有畏惧心理,他们在入学前,就听说过高中数学很难学。高中数学一开始也的确是有些难理解的抽象概念,如映射、集合、异面直线等。以上这些因素都严重影响高一新生的学习质量。

2.教材的变化。

初中数学教材内容通俗具体,多为常量,题型少而简单;而高中数学内容抽象,多研究变量、字母,不仅注重计算,而且注重理论分析,这与初中相比难度增加了。

3.课时的变化。

在初中,由于内容少,题型简单,课时较充足。因此,课容量小,进度慢,对重难点内容均有充足时间反复强调,对各类习题的解法。这样教师有时间进行举例示范,学生也有足够时间进行巩固。而到高中,由于知识点增多,灵活性加大和新工时制的实行,使课时减少,课容量增大,进度加快,对重难点内容没有更多的时间强调,对各类型题也不可能讲全讲细和巩固强化。这也使高一新生因不适应高中学习而影响成绩的提高。

4.学法的变化。

在初中,教师讲得细,归纳总结得全面,练得熟。考试时,学生只要记准概念、公式及教师所讲例题类型,一般均可取得好成绩。因此,学生习惯于围着教师转,不注重独立思考和对规律的归纳总结。到高中,由于内容多时间少,教师不可能把知识应用形式和题型讲全讲细,只能选讲一些具有典型性的题目,以落实“三基”培养能力。

二、搞好初高中衔接所采取的主要措施

1.做好准备工作,为搞好衔接打好基础。

(1)搞好入学教育。这是搞好衔接的基础工作,也是首要工作。应通过入学教育提高学生对初高中衔接重要性的认识,增强紧迫感,消除松懈情绪,初步了解高中数学学习的特点,为其他措施的落实奠定基础。我们主要应做好以下四项工作:一是给学生讲清高一数学在整个中学数学中的地位和作用;二是结合实例,采取与初中对比的方法,给学生讲清高中数学内容体系特点和课堂教学特点;三是结合实例给学生讲明初高中数学在学法上存在的本质区别,并向学生介绍一些优秀学法,指出注意事项;四是请高年级学生谈体会讲感受,引导学生少走弯路,尽快适应高中学习。

(2)摸清底数,规划教学。为了搞好初高中衔接,教师首先要摸清学生的学习基础,然后以此来规划自己的教学和落实教学要求,以提高教学的针对性。在教学实际中,我们一方面通过进行摸底测试和对入学成绩的分析,了解学生的基础。另一方面,认真学习和比较初高中教学大纲和教材,以全面了解初高中数学知识体系,找出初高中知识的衔接点、区别和需要铺路搭桥的知识点,以使备课和讲课更符合学生实际,更具有针对性。

2.优化课堂教学环节,搞好初高中衔接。

(1)立足于大纲和教材,尊重学生实际,实行层次教学。高一数学中有许多难理解和掌握的知识点,如集合、映射等,对高一新生来讲确实困难较大。因此,在教学中,应从高一学生实际出发,采用“低起点、小梯度、多训练、分层次”的方法,将教学目标分解成若干递进层次逐层落实。

(2)重视新旧知识的联系与区别,建立知识网络。初高中数学有很多衔接知识点,如函数概念、平面几何与立体几何相关知识等,到高中,有的加深了,有的研究范围扩大了,有些在初中成立的结论到高中可能不成立。

(3)重视展示知识的形成过程和方法探索过程,培养学生创造能力。高中数学较初中抽象性强,应用灵活,这就要求学生对知识理解要透,应用要活,不能只停留在对知识结论的死记硬套上。还要求教师向学生展示新知识和新解法的产生背景、形成和探索过程,不仅使学生掌握知识和方法的本质,提高应用的灵活性,而且使学生学会如何质疑和解疑的思想方法,促进创造性思维能力的提高。

(4)重视培养学生自我反思自我总结的良好习惯,提高学习的自觉性。高中数学概括性强,题目灵活多变,只靠课上听懂是不够的,需要课后进行认真消化,认真总结归纳。这就要求学生具备自我反思和自我总结的能力。

(5)重视专题教学。利用专题教学,集中精力攻克难点,强化重点和弥补弱点,系统归纳总结某一类问题的前后知识、应用形式、解决方法和解题规律。并借此机会对学生进行学法的指导,有意识地渗透数学思想方法。

3.加强学法指导。

高中数学教学要把对学生加强学法指导作为教学的重要任务之一。指导以培养学习能力为重点,狠抓学习基本环节,如“怎样预习”、“怎样听课”等。具体措施有三:一是寓学法指导于知识讲解、作业讲评、试卷分析等教学活动之中,这种形式贴近学生学习实际,易被学生接受;二是举办系列讲座,介绍学习方法;三是定期进行学法交流,同学间互相取长补短,以共同提高。

篇8

数学知识体系的综合性特点要求学生必须具备一定的基础知识和基本技能,其思维品质要有一定的广度和深度,这样才能在后续的数学学习中顺势而为,向上快速发展思维。从初中到高中,由于九年制义务教育教材与现行高中教材有一定的脱节现象,加之高中教学内容突然增多,高中一年级整体教学内容远超过初中三年的教学内容。另外高中的数学语言更抽象,要求学生思维方式发生质变,思维方法向理性层次迁移。

此外,学生学习环境变化、基础知识的差异、学习方法的不同步等原因,致使相当一部分学生陷入困境,顿感前途渺茫,认为数学深奥、高不可攀、不可接近,久而久之,学生便产生了厌学心理。为了使每个学生很快适应高中阶段的数学学习,培养他们的抽象思维能力和逻辑推理能力,初高中数学衔接教学问题值得数学老师研究探索。因为这将有助于初中高中教材脱节现象早日得到解决,有助于解决初中、高中数学教师在教育观念、目的和教学方法等方面统一认识,有助于减少学生的年龄、心理、智力、习惯等个性特征对学习带来的负面影响,因此有着广泛的现实意义。

二、初高中数学衔接存在的主要问题

(一)从学习态度和方法上看

初中生依赖性较强,习惯于教师传授知识。但是,到高中,由于内容多时间少,教师不可能把知识应用形式和题型讲全讲细,只能选讲一些具有典型性的题目,以落实“三基”培养能力。

(二)从培养学生思维能力看

在整个中学阶段,学生的思维处于经验型向理论型过渡的阶段。初中生的思维与高中生的思维有所不同。初中生的思维在很大程度上属于经验型,他们往往要借助生活中的亲身感受或习惯观念等进行思维活动。而高中生的思维则要形成抽象思维,属于理论型的。对他们的要求是能够利用理论做指导,来归纳综合各种材料信息,通过一定的逻辑思维程序,利用判断推理等手段扩大其知识领域,并形成一定的知识体系。而高一阶段就是学生思维的转型的关键期。

(三)从教学内容上看

首先,初中数学是九年义务教育阶段的素质教育,教学内容通俗具体,多为常量,题型少而简单;而高中数学是在九年义务教育的基础上实施的较高层次的基础教育,教学内容抽象,多研究变量、字母,不仅注重计算,而且还注重理论分析,这与初中相比增加了难度。其次,在初中,由于内容少,题型简单,课时较充足,教师有时间进行举例示范,学生也有足够时间进行巩固。而到高中,由于知识点增多,灵活性加大,课容量增大,进度加快,对重难点内容没有更多的时间强调,对各类型题也不可能讲全讲细和巩固强化。这也使高一新生开始不适应高中学习而影响成绩的提高。

三、解决初高中数学衔接教材问题的几点对策

(一)做好初高中数学教学的基础工作

笔者认为,做好初高中数学教学的基础工作主要包括以下几个方面:

一方面做好学生的入学教育。第一,要让学生懂得高一数学课程在整个中学数学知识体系中所占据的位置是十分重要的;第二,通过列举实例的方式使学生认识到高中数学与初中数学存在本质上的差异,同时向学生引入一些比较科学的学习方法。

(二)创新课堂教学方式,加强初高中知识的衔接

笔者认为,创新课堂教学方式,加强初高中知识的衔接,应当做好以下几方面的工作:

1.充分联系学生实际,采用分层教学的方式。在高中数学教学过程中,应当充分考虑到高一学生的具体学习实际,采用低起点、小梯度、多训练、分层次的教学方法,使得课堂教学的目标能够逐级逐层的进行落实。在教学伊始,在课堂节奏方面,应当采取比较缓慢的教学节奏;在知识导入环节,应当多采用实例以及已掌握知识进行导入;在知识讲解环节,应当首先进行教材上知识点的讲解, 然后再进行课外知识点的延伸。

2.重视培养学生自我反思自我总结的良好习惯,提高学习的自觉性。高中数学概括性强,题目灵活多变,只靠课上听懂是不够的,需要课后进行认真消化,认真总结归纳。这就要求学生应具备善于自我反思和自我总结的能力。所以,在教学过程中,要抓住时机对学生进行积极培养。在一个单元结束之后,帮助学生进行自我章节小结。

3.关注新旧知识点之间的联系与区别,构建中学数学知识体系。初高中数学教材中有许多能够进行衔接的知识点,比如,函数的概念、平面几何以及立体几何等的相关知识,在高中数学的学习阶段,这些内容有的难度增加了,有的谈论范围扩大了等等,基于以上分析,我们可以看到,在进行新知识的讲解过程中,教师应当有意识的引导学生联系旧知识、复习旧知识、 注意把新知识同旧知识相联系、 相区别,尤其是要注重对那些易错易混的知识加以分析、 比较和区别。只有这样才能够达到温故知新、 温故而探新的教学目的。

四、讨论与建议

总而言之,在高一数学的起步教学阶段,抓好初高中数学教学衔接,分析清楚学生学习数学困难的原因,便能使学生尽快适应新的学习模式,从而更高效、更顺利地接受新知识和发展能力。不容置疑,正确处理好这个衔接问题终将推动和促进高中数学教学的发展,并最终全面提高高中数学教学质量,这点对教师来说任重而道远。

参考文献:

[1] 黄光荣,浅析高中数学教学中问题情境的创设与运用[J],黑龙江科技信息,2011年22期

篇9

1.教材的原因

目前,“九年制义务教育”新课改教材,其教学内容作了较大程度的压缩和删减,教材叙述方法比较简单,语言通俗易懂,直观性、趣味性强,结论容易记忆,学生掌握比较方便。教材内容“浅、少、易”,通俗具体,多为常量,题型少而简单,每一新知识的引入都与日常生活实际很贴近,具体形象,并遵循从感性认识上升到理性认识的规律,学生都容易理解、接受和掌握。虽然“九年制义务教育”课程标准倡导“不同的学生在学习上得到不同的发展”,但是家长的愿望、升学的压力以及学校之间、班级之间的竞争,驱使初中数学教学普遍执行的是课程标准的基本要求,即“课程标准中明确规定的要求”,有的甚至在执行中考必考的要求。我们看到了初中新课程带来的普及性教育成果,也看到了中考“指挥棒”选的数学成绩,每个学生几乎都是三位数,校校之间、班班之间平均分差距也不大。高中教材内容概念抽象,定理严谨,逻辑性强,教材叙述比较严谨、规范,抽象思维和空间想象明显提高,知识难度加大,且习题类型多,解题技巧灵活多变,计算繁冗复杂,比如对数、二次不等式、解斜三角形、分数指数幂等内容“起点高、难度大、容量多”。进入高中以后,“高中课程标准实验教材”内容多,课时少,例题和练习简单,习题、复习参考题特别是B组题难度大,题目偏、怪、难,直接导致了学生学习困难、学习兴趣下降、上课不专心听讲、作业不认真做,长时间不解决问题,学生成绩下滑,教师将无法继续开展有效的教学。可以发现,高一学生对高中学习的适应不是很理想,入学和统考之间的相对距离在扩大。

2.教法的原因

初中数学教学中,教师有充裕的时间反复讲解、多次演练,能充分体现课堂教学中的师生互动。但高中数学知识点增多,灵活性加大,课时少,新课标要求通过学生的自主学习培养学生的创造性思维,因此,高中教学中往往会通过设导、设问、设陷、设变,启发引导,开拓思路,然后由学生自己思考、解答,比较注意知识的发现过程,倾向于对学生思想方法的渗透和思维品质的培养。这使得刚入高中的学生不容易适应这种教学方法,听课时就存在思维障碍,不容易跟上教师的思维,从而产生了学习障碍,影响到数学的学习。

其次,我们要帮助学生适应学习数学的“困难期”。

1.做好准备工作

要给学生指出高一数学在整个中学数学中所占的位置和作用,结合实例采取与初中对比的方法,给学生讲清高中数学内容体系特点和课堂教学特点,并向学生介绍一些优秀学法,指出注意事项。

2.优化课堂教学环节,搞好初高中数学知识衔接教学

高一数学中有许多难理解和掌握的知识点,要放慢起始进度,重视新旧知识的联系与区别,建立知识网络。高中数学知识是初中数学知识的延拓和提高,但不是简单的重复,因此在教学中要正确处理好二者的衔接,深入研究二者彼此潜在的联系和区别,做好新旧知识的串连和沟通。要重视展示知识的形成过程和方法的探索过程,培养学生的创造能力。高中数学较初中抽象性强,应用灵活,这就要求学生对知识理解要透、应用要活,不能只停留在对知识结论的死记硬套上;这就要求教师应向学生展示新知识和新解法的产生背景、形成和探索过程,不仅使学生掌握知识和方法的本质,提高应用的灵活性,而且还使学生学会如何质疑和解疑的思想方法,促进创造性思维能力的提高。

篇10

在教学实际中,一方面通过进行摸底测试和对入学成绩的分析,了解学生的基础。另一方面,认真学习和比较初高中教学大纲和教材,全面了解初高中数学知识体系,找出初高中知识的衔接点、区别点和需要铺路搭桥的知识点,使备课和讲课更符合学生实际,更具有针对性。

3.立足于课标和教材,尊重学生实际,实行分层次教学

高一数学中有许多难理解和掌握的知识点,如集合、映射等,对高一新生来讲确实难度较大。因此,在高一数学教学中,放慢起始进度,逐步加快教学节奏。在知识导入上,多由实例和已知引入。在知识落实上,先落实课本,后变通延伸用活课本。在难点知识讲解上,从学生理解和掌握的实际出发,对教材做必要的层次处理和知识铺垫,并对知识的理解要点和应用注意点做必要的总结及举例说明。

4.根据学习的难易度调整教学内容

学习的难易度,对于学习初中数学知识而言是相对的,又是绝对的。初中学生在学习数学时,直观性较强的知识易于理解掌握,而抽象性概念和公式较难以理解往往死记硬背,难以提高应用能力和综合能力,因此,先直观后抽象,先分析性认识后综合性认识,先化繁为简、再由简到繁,依此教学策略可以有效改进教材、合理整合教材内容。

5.采用互动启研教学法

高中数学中的“互动启研教学法”以数学教学促进学生成长发展为着眼点,立足学生主体地位,发挥教师主导作用,以沟通、互动、启发、研究为特点,旨在构建新型的数学课堂。教师是课堂教学的组织者和实施者,是教学方法的运用者,所以教师的观念和行为直接影响教学方法运用的效果。启研互动教学法对教师有如下要求:一是树立新型师生观,充分尊重学生在学习中的主体地位,建立相互信任、民主平等的师生关系,以组织者、引导者、参与者的新角色面向全体学生,关注学生的整体发展。二是真正理解学生,认识到学生是学习的主体,只有真正了解学生的未知、未能和未有,了解学生的认知程度、接受能力、学习动机及兴趣爱好等,才能进行有效“启发”。三是善抓“启发”时机,能够于教学的关键点、疑难点、衔接点、含蓄点处启发,于思维受局限时、疑惑不解时、有新发现时、跃跃欲试时启发。四是恰用“启发”方法,适时“进退散敛”。华罗庚说过,复杂的问题要善于“退”,足够的“退”,退到最原始而不失去重要性的地方,是学好数学的诀窍。在达到基本目标的基础上,不失时机地引导学生多想一步,养成“进”一步思考问题的习惯和不断探究的精神。“散”就是要善于引导学生“同中求异”、“正向求反”、“多向辐射”,培养创造性思维结构的重要组成要素――发散思维(又叫求异思维、逆向思维、多向思维)。“敛”就是要注意引导学生透过表象发现本质,从纷繁的思路中发现共性,培养收敛思维(也称聚合思维或集束思维),训练学生在已有的众多信息中寻找最佳解决问题方法的思维能力。

6.利用思维导图

篇11

1 分析初中数学与高中数学的关系及差异

首先是知识内容的差异:初中阶段,特别是初中三年级,通过大量的练习,可使你的成绩有明显的提高,这是因为初中数学知识相对比较浅显,更易于掌握,通过反复练习,提高了熟练程度,即可提高成绩。高中知识是在初中知识基础上的提高和扩充,其显著特点是知识量增大、理论性增强、系统性增强、综合性增强;其次是数学能力的差异:数学能力包括:思维能力、运算能力、空间想象能力、实践能力和创新意识。初中以前两种为主,高中在此基础上将全面培养和发展。初中考试题绝大部分是知识的直接应用;高考最简单的题也要求是2-3个知识点的综合,重点知识重点考,热点知识一定考;函数与方程、数形结合、等价转化、分类讨论的数学思想,换元、配方等数学方法,逆向思维、创新能力,应用知识解决实际问题等是高考的必考内容,要通过不懈的学习掌握有关的知识和提高有关的能力;再次是自学能力的差异:初中学生自学那能力低,大凡考试中所用的解题方法和数学思想,在初中教师基本上已反复训练,老师把学生要学生自己高度深刻理解的问题,都集中表现在他的耐心的讲解和大量的训练中,而且学生的听课只需要熟记结论就可以做题(不全是),学生不需自学。但高中的知识面广,知识要全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。另外,科学在不断的发展,考试在不断的改革,高考也随着全面的改革不断的深入,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展。最后是思维习惯上的差异:初中学生由于学习数学知识的范围小,知识层次低,知识面笮,对实际问题的思维受到了局限,就几何来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格的逻辑思维和判断。代数中数的范围只限定在实数中思维,就不能深刻的解决方程根的类型等。高中数学知识的多元化和广泛性,将会使学生全面、细致、深刻、严密的分析和解决问题,也将培养学生高素质思维,提高学生的思维递进性。

2 如何利用“四步十二法”让高一学生学好数学?

2.1 学好数学的关键是学会预习。

预习就使学生在老师讲课之前独立地自学新课的内容并完成导学案,做到初步理解并为上课做好知识准备和心理准备。学会预习是尽快适应高中学习的关键一步,是高一新生对新知识的理解和运用,提高学习效率。

2.1.1 学会预习的前提是明确意义。

学会预习是高一新生的基本素质,预习意义在于培养良好的学习习惯,学会自觉学习,掌握自学的方法,为以后的学习打下基础;预习有助于了解新课的知识点、重点和难点,能为上课扫除部分障碍;预习有助于提高听课效果,预习时不懂的或模糊的问题,在上课老师讲解的时候,容易将问题搞懂,真正达到预习的目的。

2.1.2 预习的基本方法是“读、划、写、查”。

“读”是指先将教材精读一遍,以领会教材大意,然后根据学科特点,在反复细读,如:数学概念、规律、例题推导等逐条阅读。“划”就是划大意、划重点、划难点,将一节内容的重点、难点、规律、概念等划下来分别标上记号,以帮助上课听讲时的记忆。“写”是将自己的看法、体会和避免忘记的解释写在书边相应的位置。“查”是自我检查预习的效果。最好合上书本思考刚才看过的内容,哪些一看就懂,哪些模糊没懂和做课后练习,以起到检查预习的效果的作用。

2.2 学好数学的基本环节是作好笔记。

学好高一数学在学习方法上要有所转变和改进,而作好数学笔记无疑是非常有效的环节。善于作笔记,是一个学生善于学习的反映,为此数学笔记主要应该记好以下内容:

(1)记疑难问题。将课堂上未听懂的问题及时记下来,便于课后有针对性的请同学或老师把问题弄懂,避免导致知识断层。

(2)记思路方法。对老师在课堂上介绍的解题思路方法和分析思想及时记下来,课后加以消化,如有疑问课后及时问老师或同学。

(3)记归纳总结 。记下老师的课堂小结,这对于浓缩一堂课知识点的来龙去脉,使学生容易掌握本堂课各知识点的联系便于记忆。

(4)记错误反思。学习过程中不可避免的犯这样或那样的错误,“聪明人不犯或少犯同样的错误”,记下自己所犯的错误,并用色笔加以标注,以警示自己避免再犯类似的错误,在反思中提高。

2.3 学好数学的反馈是做好作业。

做好数学作业是学生对书本知识的运用和巩固。在课堂、课外练习中培养良好的作业习惯也很有必要.在作业中不但做得整齐、清洁,培养一种美感,还要有条理,这是培养逻辑能力的一条有效途径,必须独立完成。同时可以培养一种独立思考和解题正确的责任感。在作业时要提倡效率,应该十分钟完成的作业,不要拖到半小时完成,拖泥带水的作业习惯使思维松散、精力不集中,这对培养数学能力是有害无益的。抓数学学习习惯必须从高一年级主动抓起,无论从年龄增长的心理特征上讲,还是从学习的不同阶段的要求上讲都应该进行学习习惯的培养。

2.4 给高一学生的几点建议。

篇12

(1)使所学知识系统化、结构化、让学生将一学期来的数学知识连成一个有机整体,更利于学生理解;

(2) 少讲多练,巩固基本技能;

(3)抓好方法教学,归纳、总结解题方法;

(4)做好综合题训练,提高学生综合运用知识分析问题的能力。

二、 明确复习范围及重点

范围:必修1与必修4

重点:必修1:函数的基本性质,指数函数,对数函数;必修4:三角函数,平面向量。

三、复习要求

1、重点复习掌握核心概念、基础知识、强调作图、解题规范;

2、围绕综合卷加强对差生的个别辅导、面批,争取提高合格率。

四、复习要点:

掌握各章知识结构和要点、知识点、澄清概念、解决疑难问题。

习题归类,解题思路、方法,从解题中对知识加深理解、掌握,提高分析问题,解决问题的能力

五、具体课时安排

由于教学时间紧,按照计划估计要到12月31号才能结束新课,复习时间大约8天左右,巩固练习主要是让学生在课下完成,上课讲评。具体安排如下:

2014年元月1日前结束新课;

2日------6日复习必修1:集合(1天)、函数(2天);

7日------8日复习必修4:三角函数(1天)、平面向量(1天); 9日------10日必修1、4综合训练。

六、复习方法

篇13

初中数学和高中数学的教材不同之处:一是初中教材是九年制义务教育用书,倡导全面提高学生素质, 二是初中内容“浅、少、易”,与学生生活贴近,简单、具体形象只要求学生了解的内容多,只要按照一定的步骤就可以解决; 高中内容“起点高,容量多,难度大”,概括性、抽象性、逻辑性明显增强。高中数学的思维方法更多的向理论层次跃进,解题过程更加复杂,需要学生多角度多方面进行思考

所以在新的学习中,学生可能会产生如下问题中的几种:

一、高中数学与初中数学特点的变化

1.数学语言在抽象程度上突变

初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、符号语言、逻辑运算语言、函数语言、图像语言等。

2.思维方法向理性层次跃迁

高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,从直观、形象、具体事例出发,概括出一般结论,然后老师讲解典型例题,学生反复练习,直至掌握为止;很多老师为学生将各种题建立了统一的思维模式。因此,初中学习中习惯于这种机械的,便于操作的定势方式,学生思维单一、解题缺乏严密的逻辑性,推理能力差,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了很高要求。这种能力要求的突变使很多高一新生感到不适应。

3.知识内容的整体数量剧增

高中数学在知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。

4.知识的独立性大

初中知识的系统性是较严谨的,给我们学习带来了很大的方便。便于记忆,又适合于知识的提取和使用。高中数学是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。

5.依赖性较强

有的学生会比较依赖初中学习模式,比如教师会列出中考各类型题目进行反复练习,学生容易养成依赖教师的习惯,甚至是套用题型模式。教师牵着学生走,教师怎么教,学生怎么学,学生缺乏自主性,缺乏自学能力;学生上课或听、或思、或练,不会边听边做笔记,更不会自我归纳、总结;而到了高中,这种模式一般来说不适合新的学习水平。

6.难度加大

小学、初中高中知识内容难度逐步增大。虽然有这么多的不同,但是对于即将到来的高中数学也不需要产生多大的恐惧感。因为初中数学的学习与高中数学的教学还是从本质上有着内在的必然联系的。高中数学是以初中数学为基础的,新知识的引入都是在初中数学的基础之上发展而来,这就要求我们在学习高中课程的时候,需要注意把握初中和高中的异同之处、探寻思维上的层进关系。从内在联系上真正读懂初、高中课程标准和教材内容,就能够从全局上把握初、高中数学知识的体系,全盘梳理初、高中教材内容衔接的知识点,并且在这些知识点上适当拓展,补充间断点,使初、高中数学知识有机地结合起来,成为一体。

二、如何学好高中数学

1.转变观念,化被动学习为主动学习

初中阶段,特别是初中三年级,老师通常采用的学习方式是被动式的学习也叫题海战术,学生只是简单的接受数学知识,并且知识相对比较浅显,学生很快就能掌握。高中数学的学习不只是单纯的做题就可以掌握其知识,而是要弄得其所以然才行,这样就需要学生自己去主动发掘知识的内涵,在老师的指导下把数学知识进行扩展,达到触类旁通。要做到这样就需要学生本身更加主动的学习。

2.学会听课,尽可能掌握更多的知识

数学的学习是需要老师的引导,在引导下,学生根据自己的情况做一些相应的练习来掌握知识,巩固知识,要想提高学习效率,就需要学生做到学会听课。

3.课后巩固

很多学生在学习过程中没有重视课后的巩固,高中数学的知识很多,并且不像初中数学那么浅显,而是有很多的内涵,如果不能进一步挖掘其内涵,那么只是掌握这个知识的表面,于是在自己做练习时就不知道如何去解了,也不能运用这个知识的。

其实,我们还应该把这个练习中使用到的知识串起来,这样我们就能明白那些知识在运用,也能掌握更多的知识。也同样能发现那个知识点是重点,也能发现难题是如何把相关知识串起来的。

4.重视测试