在线客服

水利枢纽工程实用13篇

引论:我们为您整理了13篇水利枢纽工程范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

水利枢纽工程

篇1

海勃湾施工供水系统由11口水源井、3座加压泵房、3座水池及供水管线组成,水池总容量为2800m3,井泵与水泵的实用总功率为826kW。右岸施工供水分系统由4口水源井、1座加压泵房、1座水池及供水管线组成,水池容量为1000m3;砂石加工厂施工供水分系统由5口水源井、1座加压泵房、1座水池及供水管线组成,水池容量为1000m3;左岸施工供水分系统有2口水源井、1座加压泵房、1座水池,水池容量为800m3。

右岸施工供水分系统主要用水点为大坝、施工营地、混凝土生产系统、钢筋加工厂、木材加工厂、混凝土预制厂、施工机械保修厂、汽车保养厂、中心仓库等,系统供水规模为400m3/h。水源井井位高程为1078~1080m,每口井配置1台井泵,井泵选用250QJ125-16×8型深井潜水泵,其单台井泵流量为150~125~90m3/h,扬程为95.2~128.0~150.0m,电机功率为75kW。井泵将地下水抽至井边水池,井边水池附近设加压泵房,泵房内设XA65/16型单级单吸离心泵5台,其中1台备用。单台离心泵流量为100m3/h,扬程为35m,电机功率为18.5kW。水由加压泵房提升后经输水管线输送至各用水点。右岸施工供水分系统的实用总装机容量为299kW。

篇2

 

水利工程由于受到地形、地质以及气候、气温等条件的影响,所以赋予了其不可重复的施工特性.也因此,通常在进行水利工程建设的时候,都会选择枯水季来进行工程的建设施工,并且要求必须保证在枯水季节内完成整个工程的施工,以此来降低工程施工的难度和工程建设的成本.

 

所以在进行水利枢纽工程建设时,应该根据当地的季节特点来进行项目工程的施工安排,将施工中的各种要素进行切实的安排,如"人力、财力、物力"等,从而保证施工的进度要求.然而由于自然条件的限制,水利工程在进行建设时,通常会采用分期围堰的导流方法来进行导流,而其中最为常用的一种分期围堰导流方法就是两期围堰导流法.然而由于特殊河段的自然生态环境不同,在一些河流量较大、河面较宽的流域建设低水径流式电站时,会采用三期导流的方法进行导流.

 

2 导流系统的施工技术应用

 

2 . 1 导流系统的开挖

 

2.1.1 覆盖层的开挖

 

在进行覆盖层开挖时,通常会使用推土机来进行覆盖层开挖的集料,然后利用装载机以及液压正铲来进行装料,最后人工使用自卸车将其运输至弃料场.注意在进行覆盖层开挖时要人工修正一个预留0.5 m的边坡.

 

2.1.2 土方的开挖

 

在进行水利枢纽工程建设时,除了覆盖层之外还有土方的开挖.土方开挖的施工工序有"松动、破碎、挖装、运输出渣"等.作为施工初期和整个施工过程中关键的工序,土方开挖在施工前就需要对整个工程的规模、特点、地形、水文、地质、气象等相关自然数据进行整合处理,然后按照导流、进度等施工的条件和状况进行开挖方式确认.

 

土方开挖同城都是采用明挖的方式,由分为"全面开挖、分部位开挖、分层开挖、分段开挖"等.其中全面开挖适合深度浅及范围较小的工程项目;而分部位开挖则适用于范围较大的工程项目;针对开挖深入较大的项目工程,则通常采用分层开挖的方式;如果是进行长度较大的溢洪道、渠道等项目工程的开挖,最为适合的开挖方式就是分段开挖.

 

2 . 2 导流系统的混凝土施工

 

2.2.1 处理混凝土与建基面的施工缝

 

在混凝土施工中,基岩和混凝土的接触面是一个非常关键的工序,首先要利用人工与机械配合的方法对岩块进行处理,然后再用高压风枪、水枪来对其进行吹干处理,而后通过地质监理的编录确定其是否有问题,有问题就需要对其进行及时的处理,如果没有问题,则直接对其进行打锚杆孔,之后再进行质量确认,确认合格后将砂浆锚杆正确安装.

 

在进行混凝土施工时,一定要注意施工缝的处理,并在进行凿毛处理之后对其进行高压风枪、水枪的洗净处理,处理后首要任务就是再次对其进行质量确认,确认无误以后再展开下一工序的建设施工.

 

2.2.2 结构施工和质量控制

 

(1)钢筋施工和质量控制

 

在进行导流系统的施工中,钢筋是必不可少的材料之一.因此针对钢筋施工,通常是从"进口段、洞身段、出口段"三个部分进行施工制作和安装的.而在进行钢筋施工时,必须要求钢筋加工厂派遣专属技术人员进行施工跟踪,负责解决相应的质量施工问题.而施工中的设备通常有"钢筋切断机、钢筋弯曲机、砂轮切割机"等.

 

而且针对施工中所使用的钢筋要进行严格的质量监测,以确保材料的质量,并且严格按照施工设计的标准来进行下料和施工.而在进行钢筋结构安装时,必须对断面线和高程进行测量控制,并由专业的技术人员对其进行安装.除了渐变段以外,导流洞的安装通常都是由钢筋台车来完成的.

 

(2)模板施工和质量控制

 

在进行模板加工时,首先要注意的就是表面平整度以及相应的施工要求,与此同时还要保证模板的整体刚度和相应的加固方案都能满足于浇筑的受力要求.为了提高整体的施工速度,在进行混凝土浇筑时,可以选用可行走的钢模台车,与此同时还可以携带两套可以进行整体拆卸的钢模板,从而令施工质量得到了相应的保障.

 

2 . 3 质量控制与常规条件下混凝土的浇筑

 

混凝土在浇筑施工中,需要混凝土拌合站与微机系统相配合的手段,来实现配料的自动控制.3座混凝土拌合站便可以达到90 m3/h的混凝土生产速度,需要6辆搅拌车同时进行混凝土搅拌,才能保持混凝土的水平运输.然后利用人字形溜槽来完成分料的任务,利用插入式振捣器对混凝土进行振捣,采用拖式泵将其送入仓内.

 

而在混凝土进行浇筑的过程中,首先需要对其进行监理检验,确认合格后才能进行开仓浇筑.在浇筑的过程中,要对外加剂进行适量的掺加,并对合理配比进行严格的控制.而且还要对其进行随机取样检查,在现场对混凝土浇筑坍落度展开精确的检测, 以做到适量的调整添加的水量,与此同时对其含气量进行有效测定,从而实现监理对混凝土浇筑的全面控制,使其在浇筑过程中出现的不规范行为得到有效纠正,最后还要对混凝土浇筑设立专人进行养护管理,保证整个浇筑过程的施工质量.

 

3 结语

 

总体来说,随着我国经济的发展,我国水利工程也得到了极大的进步.然而伴随着水利工程的发展,水利枢纽工程中施工导流的相关问题也逐渐浮现在了我们的眼前.然而由于施工导流在水利枢纽工程中的重要地位,使得我们必须对其提高重视.

 

而且由于其受生态环境的影响极为严重,所以"不重复性"的施工特点,令每次在进行导流施工时,都需要具体问题具体分析,所以更需要我们针对这一问题加大重视力度,从而保证工程的实施质量.

 

参考文献

 

[1] 广西梧州水利电力设计院.下福水利枢纽工程初步设计报告[R].梧州:梧州水利电力设计院,2003.

 

[2] 纪勇,王晓明.浅谈水利工程施工的总体布置[J].中小企业管理与科技(上旬刊),2010(4).

 

[3] 王旭东,宋国良.水利工程施工质量管理与控制措施浅析[J].中小企业管理与科技(上旬刊),2010(4).

 

[4] 吴晔.浅谈过芸溪流域综合治理工程施工导流与排水[J].知识经济,2009(11).

 

篇3

邵武市东关水利枢纽工程是一座集改善环境、蓄水发电、旅游开发为一体的综合利用水利工程,工程采用分期导流、分期施工方式;工程于1999年9月28日开工,一期工程于2000年6月28日完成,二期工程于2004年10月10日完工;工程投入运行以来已产生了良好的经济、社会和环境效益。

东关水利枢纽工程位于邵武市东关大桥下游180m处的富屯溪干流上。坝址以上流域面积2748km2,多年平均流量106m3/s,多年平均年径流量33.4亿m3;水库正常蓄水位189.5m,校核洪水位193.41m,总库容935万m3;电站装机容量4.8MW,保证出力900kW,年利用4217h,多年平均发电量2024万kWh。电站接入福建省电网,主要向邵武地区供电,电站建成后进一步促进了地方经济发展。工程为低水头径流式水电站,枢纽主要由活动坝、河床式厂房、升压站等组成。

枢纽工程位于城区,为降低邵武城关的防洪压力,经分析比较和论证,采用活动坝为本工程的泄洪建筑物。活动坝是采用一定开度的翻板闸门作为主要挡水结构的一种坝型,共有8孔,安装8扇尺寸为25×5.0m(闸门宽度×挡水高度)的翻板闸门,平时通过闸门不同开度的控制来调节下泄流量,或保持上游库水位在正常蓄水位189.50m;洪水时翻板闸门全部开启,近于消失(当洪水大于设计洪水时活动坝处于水下),保持了天然河道的过水断面,使枢纽具有足够的泄洪能力(坝址处20年一遇洪水位较天然状态仅壅高0.23m),较有效的解决了城区枢纽工程挡水与防洪的矛盾。

工程的建成,美化了邵武市区,正常蓄水位189.5m时,相应水库面积1.2km2,枯水期回水长度5.4km,市区河床景象不复存在,形成一个宽阔优美的人工湖。

2枢纽布置

根据东关水利枢纽工程所处地形、地质、水流条件,施工条件以及运行管理等因素,发电厂房布置在河床左岸,河床中部及右岸布置溢流闸(翻板门活动坝),左、右岸采用混凝土挡墙与岸坡连接,坝顶全长284.9m。

拦河坝为低堰溢流闸,坝顶高程191.80m,坝高12.80m,溢流闸全长238.9m,分8孔,每孔净宽25.0m,闸墩内设两个冲淤积导水孔;为使溢流堰不影响行洪,堰顶高程比下游河床略低,采用宽顶堰,高程确定为184.50m;下游消能采用跌流及底流消能,坝顶不设交通桥。

溢流闸采用8孔平板翻板工作闸门挡水,翻板工作闸门尺寸25.0×7.07m(宽×高),每扇翻板闸门用2×2000kN液压启闭机操作。工作门上游采用浮式闸门作为检修设施。活动坝闸墩内导水孔闸门尺寸为1.2×1.2m,采用手电二用闸阀进行动水启闭,导水孔进口设拦污栅和检修闸门。翻板闸门在门顶过流时,门顶后侧挂有一道水帘,为使闸门与水帘之间的空间能够补气和排气,在闸门上设有破水器,在闸墩边墙设有通气孔。

主厂房总长46.0m,总宽度32.9m,主机段长33.5m,装配场段长12.5m。厂房内安装3台竖井贯流式水轮发电机组,单机容量1.6MW,机组间距11.0m。进水口布置拦污栅、事故检修闸门及进人孔,每台机组设2个进水口,其中拦污栅一道,事故闸门两扇,进水口平台高程190.0m,布置了起吊拦污栅和事故检修闸门的电动葫芦门型构架。

3工程主要技术及特点

3.1活动坝

3.1.1坝体构造

(1)坝顶高程:由于活动坝坝顶可以过水和坝顶无交通桥布置要求,考虑在设计洪水标准下技术廊道内不进水,并减少行洪影响,坝顶高程以设计洪水位191.71m加一定超高确定,最终为191.80m。

(2)坝内技术廊道:为解决技术廊道液压启闭机油管布置、左右岸交通、检修、通风、排水等,在活动坝底设技术廊道。技术廊道尺寸为2.0×2.7m(宽×高),位于中心桩号为坝下0+014.2m,底部高程181.0m,其下游侧布置排水沟,集水井尺寸3.0×2.0m×1.95m(长×宽×深)。水泵和通风机室设在右岸,翻板闸门液压启闭机的泵站设在左边墩194.6m高程的平台上。

(3)冲砂孔:由于溢流堰堰顶及闸门支铰高程较低,堰后较易淤积,为便于翻板闸门开启,在每个活动坝闸墩均设有冲砂孔(孔口尺寸1.2×1.2m),取压力水通过冲砂孔将堰后底坎沉积淤积物冲掉。

(4)坝体分缝止水:考虑活动坝坝体高度及底板厚度不大,基础约束较弱,为降低闸门设计、制造安装难度,降低止水要求和工程造价,借鉴有关工程经验,在溢流闸八孔中部设一道伸缩缝,解决基础不均匀沉降问题。厂坝间、右边墩与集水井之间结构缝、坝体伸缩缝各设一道止水铜片和一道橡胶止水带。

3.1.2坝体断面设计

(1)坝体基本断面:溢流闸活动坝坝体断面除满足稳定与应力要求外,主要受金属结构布置控制。溢流闸共8孔,每孔净宽25m,闸室底板长26.5m,上下游侧设防渗齿墙,左边墩因启闭机布置要求宽度为5.0m,中墩和右边墩均为4.0m。

(2)溢流闸孔口确定:考虑本工程处于城区,洪峰流量大,库区洪水位雍高受限的特点,根据洪水流量,河床地质条件选定具有泄洪能力大的混凝土溢流闸(活动坝、翻板闸门)为泄洪建筑物,洪水全部由溢流闸渲泄。由于本工程处于邵武市区,上游淹没和市区防洪是确定闸孔总净宽的主要影响因素,计算闸孔总净宽时,上游淹没要小,上、下游水位差一般在0.1~0.3m,同时兼顾允许过闸单宽流量、水工建筑物布置和工程造价。通过7种孔口方案的比较,最终选定大孔口方案,布置8孔溢流闸,每孔净宽25m,堰顶高程184.5m(低于原河床高程),在下泄20年一遇设计洪水时,上下游水位差为0.23m。

(3)坝后消能防冲:由于翻板闸门的运行特点,活动坝泄洪时,下游流态变化形式与一般闸门不同,且更为复杂;参照国内相关工程经验,按翻板闸门不同开度,下游流态由按跌流与底流相互演变进行消能设计,消力池长15.4m,底板高程180.68m;在跌流不同开度工况下,计算冲坑深度均小于消力池水深,不会影响溢流坝安全。闸门泄水运行中采取合理的调度方式,保证在任何情况下水跌发生在消力池内。

3.1.3闸墩拉锚筋

活动坝中水荷载通过翻板闸门传至闸墩上,受力点为油缸支座、锁定梁处,而闸门检修时需固定浮动门,此时荷载主要受力点为闸墩上游两侧面的浮动门吊耳,这些部位由于承受荷载较大,在闸门全开时,油缸支座拉力达2130kN,因此上述闸墩局部受拉区须配置扇形受拉钢筋(拉锚钢筋)。

3.1.4闸墩侧面翻板门扇形运行区处理

翻板门底铰在底坎上,闸门从关闭至卧倒全开的运行轨迹在闸墩侧面形成一扇形区。为了使闸门在不同开度情况下均能正常工作,并保证闸门两侧水封能紧密与闸墩表面接触,以达到止水效果,此扇形区进行一定处理;扇形区闸墩表面要求光滑垂直,表面磨光,喷涂903聚合物改性水泥砂浆,垂直度2/1000,平整度3mm/m,粗糙度2μm。3.1.5基础处理及防渗型式

东关水利枢纽坝高较低、水头较小,建基面基岩为强风化顶板,坝基稳定与应力小满足规范要求,坝基设置上下游齿墙后,坝基抗渗也满足要求,坝基不进行固结、帷幕灌浆处理,仅在上下游坝脚处抛填大块石保护,防止水流冲刷和掏空。

右坝头采用连续防渗墙防渗,墙顶高程193.47m,延伸长度9.51m;同时在右坝头开挖后,回填一定比例的粘性土以增加坝头的防渗能力。2003年为了进一步防止绕坝渗流危及下游防洪堤基础,在东关大桥至坝址段布置防渗孔,加强防渗处理措施。

3.2活动坝段金属结构

(1)挡水闸门及启闭

挡水闸门布置:活动坝挡水闸门为翻板平面钢闸门,采用向下游倾斜55°角布置方式,为使正常蓄水位时,闸门操作设备不浸水,其操作用的2支液压缸中心线成水平布置在高程190.0m孔口两侧闸墩上,闸门宽度方向两端上游侧设置了两个垂直于面板的三角形支臂,闸门即通过该支臂与液压缸相连接。液压启闭机最大启闭力2×2000kN,最大持住力2×1300kN,工作行程6.3m。每扇翻板闸门均在闸墩上设机械锁定装置,该锁定装置的爪式锁定块通过在闸门三角形支臂上端的一个锁定挡头对闸门进行锁定。活动坝上游采用浮式闸门作为检修设施,其支承跨度25.75m。

翻板闸门结构设计:闸门孔口净宽25m,具有闸门跨度大、启闭力大,底部支承和变形控制要求高的特点。为保证闸门整体变形小,运行安全可靠,设计时充分考虑底部支承和闸门启闭时两吊点启闭力差异等情况。每孔闸门底部采用多铰支承布置,共设5个圆柱铰;对闸门进行抗扭计算,使闸门整体具有足够的抗扭刚度。

翻板闸门的启闭:闸门开启依靠水压力和闸门重产生的倾倒力矩,此时液压缸只用于持住闸门,泵站的输出压力仅用于开启液压锁定阀,闸门的开启速度采用调节液压系统的调速阀来控制。闸门关闭采用启动液压泵站,通过液压缸提起闸门,关闭孔口,一般情况下分两批交替关门。

液压系统的布置:除液压缸为露天布置外,液压泵站和电气设备均设在大坝1#闸墩194.6m高程的启闭房内,油管从泵站经竖井和活动坝底板下的技术廊道通向各液压油缸。

(2)导水孔闸门:每个活动坝闸墩均设有冲淤积导水孔,导水孔的进口处设置了一道固定式拦污栅,孔口尺寸为1.9×1.9m,设计水头3m,拦污栅重量约0.4t。导水孔设一道检修门,孔口尺寸为1.2×1.2m;导水孔工作闸门为手电两用蝶阀,直径Ф1.2m,开启压力0.6MPa,重量约3.25t,该蝶阀可进行动水启闭。一般情况下,在开启活动坝翻板闸门时,均应先开启导水孔阀门进行冲淤,以利于翻板闸门的正常运行。

3.3水轮发电机组

电站为低水头径流式水电站,水头范围为2.1~5.6m,根据工程经验,此水头段宜采用贯流式水轮机,通过灯泡贯流式、轴伸贯流式和竖井贯流式3种机型的技术经济比较,最终选用利于枢纽布置、运行检修、经济合理的竖井贯流式机组,型号为GZSK114-WS-290。水轮机转轮直径2.9m,额定水头4.1m,额定转速125rpm,额定出力1737kW,额定点效率87%;机组安装高程181.3m,吸出高度-2.8m。

篇4

1.2规划思路

规划在优化和完善三峡水利枢纽工程原有的生产发电功能的基础上,发展旅游功能和生态景观功能,吸引游客驻留,将其建设成为世界级的现代水电基地、生态示范基地、爱国主义教育基地、科普展示培训基地及旅游休闲度假基地,发挥其生产保障、培训会议、旅游科普和休闲娱乐的综合效益。

1.3规划策略

(1)策略一:保护工业遗产,突出水电文化。三峡水利枢纽工程是我国水电事业建设的一项重大的标志性工程,从侧面展示了我国改革开放以来各项经济建设取得的成效,其建设过程中遗留下来的各类工业遗址具有相当重要的历史价值,在规划建设中应突出对工业遗址的保护与开发。

(2)策略二:完善配套设施,满足发展需要。三峡水利枢纽工程管理区主要为三峡的各项施工建设提供生活配套设施,现在工程的建设已基本结束,未来工程管理区还将承担各类旅游接待、会议培训等功能。同时,由于管理区内部分建筑建设年代较早,建筑质量较差,已经不能满足未来坝区发展的需要,所以急需完善管理区内的各项配套设施。

(3)策略三:融入“绿色、低碳”的开发理念,恢复生态环境。三峡水利枢纽工程的建设对周边的自然环境造成了一定的负面影响,因此在未来的规划建设中需要重点考虑生态环境的保护,使工程建设对周边环境的影响降到最低,恢复生态环境。

2规划内容

2.1城市设计与风貌更新

(1)空间结构。规划将三峡坝区分为左岸片区和右岸片区两部分,并以大坝为核心,结合现状功能,合理调整坝区两岸片区的空间结构,形成“一环、两带、五区、八核、多点”的空间布局,打造眺江生态园、三峡水电博物馆、酒店群、水电培训中心和体育公园等节点,并通过合理的交通流线将左岸片区与右岸片区串联起来,形成环状功能流线(图1)。

(2)功能布局。根据现状交通条件和基础设施的布局,左岸片区与右岸片区在功能上也有一定的区分:左岸片区作为三峡坝区的入口区域,对进入三峡坝区的游客起着重要的分流与集散作用,规划将交通换乘中心人流量较大的商业设施、医院、体育馆及经济商务酒店等服务配套设施布置在左岸片区(图2);右岸片区主要为功能复合型区域,与左岸片区的功能适当进行区分,主要包含教育培训、会议接待、休闲游憩和参观游览等功能。

(3)风貌更新。三峡坝区现有建筑主要集中在左岸片区,多建于20世纪末21世纪初,建筑比较陈旧,也无明显风貌特色。规划充分考虑三峡大坝主体及周边村镇的建筑风貌,融入三峡水利工程元素和当地文化元素,确定坝区建筑风貌主要为带有中式韵味的现代风格,同时兼具水电文化特色及地域文化特色。坝区内除了酒店、博物馆等标志性建筑以外,其他建筑风格形式相对统一,形成具有整体性的建筑风貌。结合现状建筑,规划对其立面和屋顶进行改造,并添加材质,在改造过程中注重三峡大坝主体与周边环境的协调,使规划区内的建筑风格与形式相对统一,以保持规划区内建筑风貌的整体性,达到融景、透绿的目的(表1)。

2.2旅游体系规划

(1)旅游产品开发。三峡水利枢纽工程是一项巨大的工程,宏伟工程本身就对游客具有天然吸引力,再加上依托三峡品牌,使库区旅游具有较大的市场空间。三峡水利枢纽工程竣工后,三峡库区还将出现更多可供旅游开发的湖泊、岛屿等新的资源,“高峡平湖”的新形象已经在业内逐步树立起来[2]。为了发挥三峡坝区及其周边的旅游资源优势,充分挖掘三峡坝区的价值,进行系统的旅游开发显得尤为重要。随着国内旅游需求的逐渐成熟,个性化、多元化旅游趋势的逐渐形成,三峡坝区旅游业应针对不同客户需求细分市场,根据自身资源条件设计、开发和销售优势突出、特色鲜明的旅游产品,在体现特色中实现产品的多元化,实现与东部地区的互补,为实现跨地区旅游经济体系的点线联合、客源分享及联合促销等创造条件。在实现旅游产品多元化的同时,要努力提高旅游产品的科技含量和附加值,实现旅游产品的绿色化、精品化,优化三峡坝区旅游产品的结构,提高三峡坝区旅游产品的市场竞争力[2]。规划重点提出“泛博物馆”和“大旅游区”的概念。“泛博物馆”主要以参观游览大坝为特色,结合博物馆、多处工业遗址公园和截流公园,打造一个具有浓郁水电文化气息的水电泛博物馆。“大旅游区”在整合坝区自身旅游资源的基础上,上溯奉节白帝城,下至宜昌葛洲坝,打造片区式的发展格局,突出坝区旅游中心集散地的作用,构建富有特色的生态文化旅游区。规划以大坝为核心,设置三峡水电博物馆、演艺中心和珍稀鱼类保护中心等,提升坝区旅游的综合吸引力;同时,结合现状自然山体和环境,打造截流公园、坛子岭公园和185观景台等景点,与大坝形成视线通廊,使游客能便利地观察到作为旅游核心景点的三峡大坝。围绕大坝组织环形旅游游线,将坝区两岸景点串联起来,构建由工业旅游、生态旅游和休闲旅游项目组成的复合立体的旅游体系,提升坝区对游客的吸引力。

(2)三峡文化特色提升。三峡地区跨越重庆、湖北两地,素有“川鄂咽喉”之称。一方面,这里山高坡陡、地势险峻、景观雄奇,从古至今吸引了无数游人到此探险猎奇、游憩赏景;另一方面,历史上的三峡地区作为连接巴蜀与湖广的交通枢纽,不仅长期成为东西移民的主要通道,更是巴、楚、蜀及中原各个民族交融的区域,各种异质文化在此交流、碰撞、融合与涵化,文化的多元性三峡水利枢纽工程的建设,对周边的生态环境造成了一定的负面影响,同时水位的上升对坝区内动植物的生存造成了威胁。为推动坝区生态环境的可持续发展,规划以生态园林建设为主题,开展了截流公园和坛子岭眺江公园等园林工程,改善了坝区的生态环境,同时注重恢复与保持长江两岸的水土。此外,在建设中尽量避免地形改造,充分利用乡土植物品种,合理配置植物景观,减少人工雕琢的痕迹。

篇5

本设计以O 江流域的水文、地形、地质为基础,通过调洪演算确定了坝型及枢纽布置、大坝设计、泄水建筑物设计和施工组织设计等方面进行简略的计算。在设计中对经济、技术及安全等方面进行了详细分析与比较,拟定相应的斜心墙土石坝设计方案。

本设计以O 江流域的水文、地形、地质资料为基础,通过调洪演算确定了水库的特征水位,进行了枢纽布置;对大坝、泄水建筑物进行了比较详细的设计。通过编制施工组织计划,确定了枢纽工程各主体部分的进度。设计中考虑了经济、技术及安全等方面的因素,并对各部分可行的方案进行了比较,确定了最优方案。

O江水利枢纽工程毕业设计计算书.zip

篇6

二级坝水利枢纽工程维修养护管理制度体系主要应用于维修养护内控管理,这里从维修养护项目管理角度对其主要内容加以介绍和阐述。(1)管理体制与职责:水利工程维修养护实行统一管理与分级负责相结合的管理体制。主要对上级单位、主管单位和水管单位的职责进行了界定。职责内容主要包括贯彻落实制定相关规章制度、维修养护设计方案、维修养护经费预算、监督检查、项目验收、培训、总结应用和安全生产监督等方面。(2)设计方案及预算项目实施方案:水利工程维修养护经费实行部门预算管理,纳入年度项目支出预算。主要对设计方案及预算项目实施方案编报时间、编制原则、主要内容、项目确定和定额标准等作出了规定。(3)项目实施:主要对合同签订、示范文本、任务下达、实施、检查考核、价款结算、预算调整和安全生产等进行了细化。(4)监督检查:水利工程维修养护实行经常性经查与专项监督检查相结合的制度。主要对检查主体、检查对象、检查内容、检查时间和意见反馈等作出了规定。(5)技术资料管理:主要对技术资料的收集、整理、移交等作出了规定,同时通过制定实施细则对技术资料管理标准作出了示范性规定。(6)验收:主要对验收类别、验收主体、验收对象、验收时间、验收程序以及格式文件等方面进行了规定,同时通过制定实施细则对验收标准作出了示范性规定。(7)责任制度:为建立水利工程维修养护经费使用管理分级负责制和岗位责任制,保证维修养护经费合法、有效使用,提高维修养护经费的使用效益,制定管理责任制度。主要制度包括:项目管理与预算管理责任、资金申请与支付责任、资金使用管理责任、会计核算责任、合同管理责任、决算和验收责任、监督审计与考核责任、维修养护企业责任以及责任追究制度等。(8)管理细则:根据《水闸设计规范》、《水闸技术管理规程》、《水闸工程管理设计规范》以及上级工程管理制度办法等制定《水闸工程管理实施细则》,从运行管理角度对水闸工程管理的任务和职责、水闸工程控制运用、水闸工程检查观测和水闸工程维修养护等作出了规定。根据上级维修养护管理办法,制定《维修养护项目管理实施细则》,从维修养护角度对管理职责、设计方案及预算项目实施方案、项目实施、经常性检查与月考核、技术资料管理、价款结算和验收等作出了规定。以上两个细则分别从工程运行管理和维修养护两个方面,对相关工作作出了规定,是水管单位日常管理的主要依据,也是考核工程运行管理和维修养护成果的重要标准。(9)技术图表:主要包括水闸平、立、剖面图、电气主结线图、启闭机控制图、主要技术指标表、主要设备规格和检修情况表等。(10)其他技术规定:水利工程维修养护属于水利工程建设领域,但其项目安排和施工技术有别于水利工程基本建设。目前,很多水利工程维修养护项目尚无专门的国家或行业统一的技术标准,因此有必要针对具体情况制定相应的技术规定。目前,已初步制定并试行的技术规定仅适用于单项水利工程维修养护,主要包括标志标牌、工程观测、工器具维修养护等。

篇7

Keywords: water conservancy hub. The diversion tunnel; design

关闭全屏阅读

中图分类号:TV6 文献标识码:A 文章编号:

1.导流洞工程概况

导流泄洪洞肩负导流、泄洪以及水库放空的综合功能,洞线为直线布置,方位角为NE85°,导流洞进口位于河道转弯处的上游,下游出口距大坝约800m。导流洞全长1425.85m,由明渠段、进口段、洞身段、出口段组成。隧洞进口采用竖井式,进口高程2902m,出口高程2881.23m,采用挑流消能。导流洞在工程导流期结束后,改为泄洪放空洞。孔口尺寸由7×8.5m(宽×高)导流孔口改造为5×6m泄洪孔口。

1.1工程地质条件

底洞进口段主要位于元古界第二岩性段的角闪片麻岩中,围岩以Ⅳ类为主,部分卸荷岩石为Ⅴ类。桩号0+038~0+044m(地质桩号0+88~0+094m)段为卸荷岩体,张性裂隙发育,削坡时,将其清除。桩号0+044m后为弱风化岩体,岩体较完整。竖井位于第三岩性段角闪片麻岩中,岩体较完整,Vp小于2350m/s,为Ⅳ类岩体,竖井基础位于第二岩性段的角闪片麻岩弱风化岩体上,基岩承载力为9MPa。

洞身穿越元古界第二岩性及第一岩性段,洞室围岩为弱~微风化,岩体较完整,洞顶围岩40~300m,以Ⅲ类围岩为主,岩层走向与洞线夹角50º,对洞室稳定性较有利。洞线共穿越F39、F40、F41、F42、F43、F100、F101、F104等8条断层,断层宽度小于4m,受其影响,断层及断层影响带为极不稳定的Ⅴ围岩类。

出口段自然边坡坡角45°,受裂隙切割影响,边坡岩体表层风化破碎,需清坡喷护。出口段洞室岩体较完整,为Ⅲ类围岩。

出口采用挑流消能,消能区现代河床宽约90m,左岸漫滩高出河床7~10m,岸坡平缓,台地宽约300m,地形平坦,微向河谷方向倾斜。组成物质主要为冲积及冰碛的块石,漂卵砾石,夹杂砂或碎石,多呈松散~半松散状,堆积厚度200多米。

2导流泄洪洞工程布置及分段设计

泄洪洞位于河道右岸,底洞由进口压力段、竖井、洞身、出口挑流鼻坎组成。隧洞进口底高程2902m,出口挑坎底高程2881.25m,建筑物全长1425.847m。

压力进口段由喇叭口及压顶段组成。进口底板高程2902m,桩号0+000~0+045m为引渠段,纵坡降i=0。桩号0+027.3~0+045m段为洞进口前的扭曲面段。桩号0+045~0+052段为进口喇叭口,采用顶部和两侧墙三面收缩的椭圆曲线。喇叭口进口断面为11.0×11.0m的矩形断面。0+052~0+100m段为7×8.5m的矩形断面。

桩号0+100~0+126为竖井闸室段。0+112.74m前洞底高程为2902m,其后底坡i为为0.0163,顶部高程为2966m。竖井内设事故检修闸门和工作闸门各一扇。事故检修闸门位于0+103.6m处,孔口尺寸为7×8.5m,为平板钢闸门。导流结束后泄洪洞工作弧门前采用椭圆压顶和侧收缩形式,孔口尺寸为5×6.3m。

桩号0+126~1+385.847m为洞身段,底坡i为0.0163。其中0+126~0+418.19m段为底洞洞身段,0+418.19~1+385.847m为底洞、表孔共用段。

桩号1+385.847~1+425.847m为出口明槽及挑流鼻坎段,采用矩形扩散鼻坎,底宽从7m扩散为10m。鼻坎反弧半径r=45m,挑射角26°17′2″,鼻坎中心线坎顶高程2885.25m。

3高速流区抗空蚀设计

根据水工模型试验结果可知,导流洞洞内最大流速为30m/s,所以在抗空蚀和抗冲磨方面采取如下措施:

3.1选择合适的体形

选择合适的体形是导流洞防止空蚀破坏的首要环节,而防空蚀破坏的关键是导流洞高流速段洞内过流面压力分布正常而且不能产生超过混凝土允许的负压力,对此问题经过分析、计算及比较并参照流速和泄量相近同类工程的经验选确定了择导流洞体形尺寸,经过水工模型试验表明导流洞在宣泄各种工况泄量时导流洞压力分布正常,无负压产生说明导流洞体形选择是合理的。

3.2控制水流边壁局部不平整度

由于导流洞内高流速,混凝土表面任何凸凹不平体都可能造成混凝土表面的空蚀破坏,因此严格控制导流洞高流速段过流面的不平整度,要求混凝土施工时留下来的接缝错台、模板印痕、混凝土残渣或局部混凝土脱皮和剥落时留下来的坑穴、局部放线不准或模板走样造成的凹凸面,以及其它凸体、跌坎等其突起高度不得超过3mm,并在允许的高度范围内一律按顺水流方向1/50、垂直水流方向1/30进行缓坡处理。

3. 3设置掺气槽

根据其它工程经验对高流速隧洞设置掺气槽向水流中掺气是解决空蚀破坏的有效手段之一,结合导流洞洞内高流速特点,为了防止高速水流在跌落段、反弧段及平洞段交接部位附近产生空蚀破坏,分别在反弧段上、下游端设置掺气槽,以向水流中掺气减少过流面的负压力,而达到防止空蚀破坏的目的。上、下掺气槽的体形是经过水工模型试验反复优化后确定的,而且经过水工模型试验验证在导流洞在渲泄不同工况泄量时均能形成稳定的空腔,掺气充分、连续,通气良好,导流洞过流面压力分布正常,无负压产生。

3. 4选用高强抗蚀耐磨混凝土

为了防止导流洞过流面空蚀破坏,一方面采取措施减少负压防止空蚀破坏的发生,另一方面要采区相应的措施提高导流洞抗空蚀能力。抗冲耐磨混凝土种类很多,通过价格、施工可操作性、施工后混凝土出现裂缝情况、以及国内、外已建水利水电工程高流速水工遂洞抗空耐磨材料应用实例,参照《水工混凝土抗冲磨防空蚀技术规范》并在水工试验的基础上对导流洞高流速区选用HF高强抗蚀耐磨混凝土。试验结果表明在水泥用量增加很小(约10%)的情况下,即可将C30普通混凝土提升为抗空耐磨C45特种混凝土,与普通混凝土相比抗空蚀耐磨性能得到很大提高。

3.5挑流消能

根据隧洞出口段的地形地质条件,隧洞出口选用挑流式消能工。出口消能区要以保证下游边坡及挑流鼻坎稳定为主要目的,合理控制水舌落点,尽量分散射流入水点能量,防止回流产生大的淘刷。通过降低局部水域入水能量的集中程度,减少单位面积冲刷能量,进而减小冲刷坑深度,达到消能防冲的效果。泄洪洞出口渲泄设计洪水时Fr=1.8,表孔单独下泄校核洪水时Fr=2.1;洞身末端底高程为2991.086m,下游水位为2879.2m~2880.2m。由于水流佛氏数低,出口与下游河道落差又小,因此消能工不具备高挑角大挑距的纵向分散消能的条件,宜采用横向扩散消能的型式,使水流与下游河床平缓衔接。

篇8

一、工程概况

兴隆水利枢纽工程位于汉江下游湖北省潜江、天门市境内,上距丹江口大坝378.3m,下距河口273.7km,是南水北调中线汉江中下游四项治理工程之一,同时也是汉江中下游水资源综合开发利用的一项重要工程。兴隆水利枢纽主要任务是枯水期抬高河道水位,改善库区沿岸灌溉和河段的航运条件,兼顾发电。枢纽正常蓄水位36.20m,最大水头7.15m,水库总库容4.85亿m3,规划灌溉面积327.6万亩,规划航道等级为Ⅲ级。

兴隆枢纽为I等工程,枢纽主要建筑物包括56孔泄水闸、一线1000t级船闸和布置4台机组、装机容量40MW的电站。

兴隆水利枢纽由泄水建筑物、船闸、电站厂房、鱼道、两岸滩地过流段及泄水建筑物和船闸上空的连接交通桥等建筑物组成,为平原区水闸枢纽工程。主体工程包括泄水闸、船闸、电站、鱼道、交通桥、二期截流及左右岸滩地回填等,临时工程主要包括导流明渠开挖、围堰防渗墙及一期围堰填筑工程。计划于2009年开工,2013年6月工程全部完工,总工期4.5年。

二、投资主要指标

兴隆水利枢纽工程初步设计静态投资水平为31.97亿元(2008年3季度价格水平,其中工程部分投资24.21亿元,移民环境投资6.28亿元,耕地占用税1.48亿元)。工程部分投资中建筑工程7.48亿元(价差2.02亿计入独立费用中);机电设备及安装工程3.10亿元;金属结构设备及安装工程2.21亿元;临时工程5.88亿元;独立费用4.18亿元;基本预备费1.36亿元。

主体工程主要工程量:土方开挖2179.38万m3,土方填筑664.5万m3,混凝土68.19万m3,钢筋27319t,钻孔灌注桩8978m,搅拌桩67.78万m。

三、投资控制难点

兴隆水利枢纽工程特点一是分项工程多:涉及建筑工程、机电设备及安装工程、金属结构设备及安装工程、安全监测设备及安装工程、消防系统、附属工程、库区治理等多项工程;二是工程范围广:主体工程跨天门、潜江两市,库区治理工程涉及天门、潜江、钟祥三市和沙洋县;三是工期紧;四是交叉施工工程多。兴隆枢纽工程特点,决定了其投资控制难点:

1、前期招标分标规划复杂,增加投资控制难度。兴隆水利枢纽工程的特点主要表现在:(1)、建筑工程类别多。永久性主要建筑物泄水闸、电站厂房、两岸滩地过流希及鱼道闸首为Ⅰ级建筑物,次要建筑物电站副厂房、开关站、鱼道除闸首外的其他部位、闸顶交通桥及左右岸交通桥为3给建筑物,临时建筑导流明渠、围堰为4级建筑物,船闸通航级别为Ⅲ级,上闸首为1级建筑,闸室的下闸首则为2级建筑物,船闸导航墙、靠船墩等为3级建筑物。(2)工程交叉施工多。如导流明明渠工程施工和左岸交通桥基础施工、电站厂房与泄水闸右岸门库搭接等;加之时间紧(工程总工期4.5年),因此兴隆枢纽工程前期招标分标规划相当复杂,而科学进行分标规划,正是优化施工组织设计,科学合理配置建设资源的前提。

2、评标过程重评分轻评审,造成投资控制隐患。要真正评好一个标,需要评委认真地阅读招投标文件和投标文件,认真审查、确认、处理投标文件中存在的问题,如工程量清单符合性检查、计算错误检查、报价合理性检查及分析。这些工作需要花费很长的时间,香港评标一般都需要一周到一个月时间。而目前我国大部分项目的评标时间只有半天,在这么短的时间内,让评委以传统方式去评审投标文件,难度非常大。所以目前评委评标时基本都是对涉及重大偏差的内容进行评审,如是否有投标人授权代表签字和加盖公章、规定费率的取费是否正确等。而对其中的细微偏差,对工程造价产生影响的内容则很少评审。由于评审中这种重评分轻评审,投标人在投标报价时采用明显的不平衡报价投标策略,比如船闸标段中标单位通过实地踏勘现场发现土方开挖清单项的工程数量明显偏高了,而堤身加高培厚(粉质粘土回填)的工程数量明显偏低了,所以中标人明显降低挖土方清单项的报价,相应提高堤身加高培厚(粉质粘土回填)的报价以平衡总报价。评标时由于没有进行仔细的评审,投标单位中标后,后期结算时工程数量只得进行调整,即堤身加高培厚(粉质粘土回填)清单项的工程数量由招标时17854m3上调到80376m3,而土方开挖工程量由招标时408万m3下调到了289万m3,引起低价中标高价结算现象。

3、初设深度不够,工程变更多导致投资失控。兴隆水利枢纽因建筑工程变更增加投资约1.25亿,与中标合同价相比增加投资约14%。兴隆水利枢纽工程招投标是在初步设计经国家发改委等批准后进行,此阶段兴隆水利枢纽工程采用的设计图纸并不是施工详图,而是在初步设计基础上略为细化,即扩大初步设计,由于勘察设计工作不细,以致在施工过程中发现招标文件中没有考虑或估算不准确的工程量或工程做法不明确,因而不得不改变施工项目或增减工程量,致使工程投资控制难度增大。在本工程实际施工中就出现了在细部增加工序,造成工程量分项的增加,如施工图中砼浇筑时均在浇筑前铺设一层牛皮纸,铺设牛皮纸的目的是为了防止砼浇筑时出现漏浆影响施工质量,施工方认为该项目为增加项目,应该增加工程投资,引起业主和施工方之间的矛盾纠纷,从而影响到工程施工进度。又如招标图中泄水闸下游海漫为柔性砼海漫,但施工蓝图出来时为绞链排式预制柔性砼海漫,该项目变更后实际工程量为11500m3,增加投资248万元。

船闸工程钻孔灌注桩直径和长度发生改变增加投资,招标设计中上游钻孔灌注桩均为一台四桩(钻孔灌注桩桩径1.0m,上游单桩长13m下游单桩长20m)。施工图设计中上游靠船墩部分钻孔灌注桩桩径变更为上游0.8m,单桩长23m。下游部分灌注桩桩径1m,桩长21m;部分桩桩径变更为0.8。船闸工程因钻孔灌注桩桩径长度改变投资由招标时的379万元增加到663万元,增加投资约284万元。

还有因为工程条件发生改变引起的变更,如粘土回填因料源不足变更为水泥砂回填、船闸下游滩地冲刷引起下引航道开挖变为模袋砂回填等等。

4、图纸提供不及时影响工程造价量价审核时间,造成投资价格变化。南水北调工程为政府全额投资工程,抓进度、抢工期导致施工图纸在业主和监理方手上审核时间过短,图纸下达施工单位前双方往往没有时间核定蓝图工程量与清单工程量的差别及投资差额,导致工程施工后才能发现工程造价的增加。如泄水闸启闭机房2012年3月下达图纸,将原设计图中砼强度等级由C30改为C25、上下游矩形梁改为异形梁,增加现浇砼女儿墙等。当时施工单位已按原设计图制作安装完钢筋和模板,且已搭设好脚手架,因此必须拆除钢筋和模板、脚手架,造成投资损失,且延误了工期。

5、不确定因素导致索赔,增加投资控制难度。由于兴隆枢纽工程勘测设计深度不够、地质条件变化以及水雨情的不确定、各标段间工程节点搭接、外部施工环境等原因,造成不可确定因素增多,形成多于其他工程的索赔。兴隆工程施工过程中因征地拆迁等问题,致使工地多次出现停工,前期导流工程、防渗墙施工中因村民阻工,出现长达2月多的停工,仅防渗墙1标就要求索赔费用248万元。因电站土建工程交面不及时,导致电站机电设备安装标段窝工超过8个月时间,致工期索赔和近200万元的费用索赔。还有主体标段工程进度滞后,导致闸门、发电机组等金结机电设备无法按时到场交货,增加了采购单位的仓库保管费用等。

6、签证单的不规范,造成投资增加。(1)签证不负责任。兴隆枢纽实行量价分离的管理模式,现场签证由工程部门人员负责,项目成本管理由合同部门人员负责。工程部门人员只对质量、进度和安全负责,而忽略对施工项目成本的考虑。由于现场管理人员对预(决)算和有关规定知之不多,对投标包干的项目或者不应该签证的项目进行大量的签证,只要施工单位填写,建设单位不认真核实就签字。如兴王路维修就出现了大量的级配碎石回填,实际现场为碎石和石屑回填等。(2)签证不及时。施工单位对一些工程不及时办理签证,特别是计日工项目不及时办理签证,等施工单位后期补签时,已经时过境迁了。如船闸标段2010年防汛抢险计日工,2012年签证时监理人员和建管单位现场人员均已不在现场,致使现场签证难以落实。

7、监理单位对施工方案批准的随意性,容易导致投资失控。监理单位人员批准工程施工方案时往往只注重方案是否可行,而忽视施工方案工程投资成本。如船闸标段管线栈道由钢结构变更为钢筋砼结构,施工方上报《模板承重支架专项措施方案》,方法为在管线栈道下设置型钢悬挑梁作为管线栈道模板支撑结构,埋设间距为0.55m的16#工字钢。因采用该施工方案致管线栈道砼单价增加743元/m3。

四、投资控制对策

尽管存在的上述投资控制难点,湖北省南水北调局、兴隆枢纽工程建设管理局采取相应对策,尽力控制投资。

1、科学分标。省南水北调局参考《汉江兴隆水利枢纽初步设计报告》,委托长江水利委员会长江勘测规划设计研究院针对兴隆水利枢纽工程施工进行分标规划。分标规划遵循实现招标的目的、界线明确、方便实施作业、便于管理和协调、标的适宜和合理使用资金的基本原则。根据工程特点,合理进行分标,尽量考虑专业综合实力,引进专业技术水平较高的施工队伍。通过分标规划,科学合理地制订招标投标,控制工程单价。兴隆枢纽工程公开招标51个(含3个监理标、1个工程保险标、移民环境投资中的3个库区浸没治理标、2个环保水保标)。在进行招标过程中,节省投资1.45亿元(详见表1),其中机电设备采购概算为2.8亿元,招标为2.1亿元,节省投资约 0.7亿元、建筑安装工程概算为9.38亿元,招标为9.05亿元,节省投资约0.33亿元。

表1 兴隆工程招标合同价与概算价对比表(均含概算价差)

2、控制工程量和优化施工方案。工程量变化是影响静态投资变化的重要因素,初步设计概算审批后,建设管理单位应该研究如何在保证工程建设符合设计要求、工程质量和工程安全的前提下,有效控制并减少工程量,这必须依靠设计单位和评审专家把关,可通过与设计单位签订限额设计合同,鼓励设计单位优化设计方案,控制和减少工程量等措施。如泄水闸结构缝由沥青杉板(2cm厚)变更为YL-600聚乙烯闭孔泡沫塑料板(2cm厚),投资减少70万元。其次,优化施工方案也是有效控制和减少工程静态投资的重要措施,如船闸上下闸首砼浇筑施工时采用。

3、严格执行概算。兴隆水利枢纽工程主要是采用招投标法将投资控制在投资概算内。水利工程招标投标定价程序是我国用法律方式规定的一种定价方式,是由招标人编制招标文件,投标人进行报价竞争,中标人中标后与招标人通过谈判签订合同,以合同价格为建设工程价格的定价方式,这种定价方式属于市场调节价,也是企业自主定价。因此,严格衡量和审定投标人的投标报价,是水利工程招标工作能否达到预期目标的关键,也是对工程造价进行有效控制的关键。在本阶段建设方必须做到:

(1)严格审查施工单位资质,必要时进行实地考察,了解和熟悉投标人工程投标报价的形成和计算方法,防止施工质量差、财务状况差、信誉差的施工单位参加投标;

(2)建设方对项目的合理低价应做到心中有数,避免投标单位以低于成本价恶意竞标;对于明显的不平衡报价策略,评标时,筛选出投标文件中价格过高的清单项,并把这些项进行记录作为施工合同的一部分。在实际工程结算时,如果某清单项实际完成工程量大于招标文件中的工程量,招标文件工程量以内的投标文件中的单价进行结算,超出部分按照评标时此清单项的基准价进行结算,而不是投标人的报价。这样能有效的回避明显的不平衡报价对招标人引起的损失。

(3)在评标时要重视评审环节,把投标文件中存在的问题尽可能都暴露出来,并且把评审及处理结果写入施工合同条款中,作为后期结算及处理纠纷的依据。

(4)签订合同时,合同条款格式要规范、文字要严谨,避免留下日后扯皮、索赔的伏笔,以利于工程建设的投资控制工作。

4、慎用价差调整。工程价差是指在工程建设所需的人工、设备、材料等费用,因价格变动对工程造价产生的变化。水利水电工程项目因施工工期长,在工程建设期间因物价上涨引起工程投资增加。兴隆水利枢纽工程工期4.5年,建设期间人工工资大幅上涨,湖北省住房和城乡建设厅以鄂建文[2011]80号文和鄂建文[2012]85号文“关于调整我省现行建设工程计价依据定额人工单价的通知”对人工单价进行了两次调整。南水北调办也了文件《关于南水北调工程价差调整有关意见的通知》(国调办投计[2012]207号文)对人工费调差,采用以2004年为基期按全国居民消费价格数(90%)与全国城镇单位就业人员平均工资指数(10%)加权综合价格指数,对生产工人工资调差。兴隆枢纽材料调差均严格按合同条件执行,对生产工人因各工程标段开工时段不同,执行的工程定额不同,不能生搬硬套国调办和省建设厅相关文件。因此项目法人采用多种方法比选,选择最合适和可行的调差办法,尽可能的切合工程实际情况,最终采用参照中线局和国调办批准项目法人的人工价差指数进行调差。

5、控制工程签证及变更

(1)注意掌握合同文件中关于工程量及费用的规定。工程费用包括完成该工程项目的直接费、间接费、利润、税金、政策性文件规定费用等所有费用。所以不属于合同文件中的工程量及费用不能签证。

(2)重视合同的条款措辞。施工合同一旦签订,就具有一定的法定效力。因此,在施工合同的条款上应斟酌推敲措辞,做到详细周到,不留活口,不出分歧。工程价款的调整、材料人工的调整办法、工程变更部分是否下浮这方面尤其注重。

(3)重视施工图设计审计,减少因设计不合理进行的变更签证。工程结算主要是依据施工设计图纸、实物工程量等进行编制的。为保证工程量完整、严谨,应进一步加强设计质量和技术管理,明确建筑施工图纸各个方面的要求,为实物工程量清单的实施提供技术保障,减少因图纸的错、漏、缺等现象而产生的计价失误和变更签证。

(4)制定公平公正的工程签证管理制度,实行“分级控制,限额签证”。对于费用较大的签证项目可以现进行商务谈判,不要先签证、后算账,结果越算越多。应该先算帐,后签证,不留尾巴。对于原本让利的项目应该谨慎变更,否则施工单位的让利一变更就成了空头支票。

(5)以合同和招投标文件为依据,严格审核变更项目单价。对于合同报价中已有单价项目执行合同单价,对于合同中没有适用单价或合价的,引用合同报价中类似单价或价格修正调整后执行。合同报价中单价明显不合理或不适用的,按合同报价原则和编制依据重新编制后报送审核与批准。如尾水渠防冲槽上游侧的浆砌石护底改为干砌石护底,施工单位认为其投标时块石材料单价为59.35元/m3,现市场采购价格一般均达到49/t,折算为83.28元/m3,应重新报价,但业主严格依据合同条款39.2变更处理原则3)本合同《工程量清单》中无类似项目的单价或合价可供参考时,则根据投标报价的基础价格和取费标准编制补充单价,经审核后该项目单位由施工单位上报的331.36元/m3下调为112.05元/m3,节省投资近20万元。

6、做好索赔和反索赔的工作。对施工单位提出的索赔报告,对索赔理由和引证依据,根据合同条款对其进行分析、取证及审查。同时对各标段工期延误、管理人员、施工设备到场情况作好记录,为反索赔提供依据。如主体标段项目经理、副经理、技术负责人每月必须到场22于,项目经理每差1天支付违约金1万元,项目副经理、技术负责人每差一天支付违约金0.5万元;工期延误1天支付违约金10万元人民币;承包人按投标文件所列设备按期如数进场,如有延误每台套1万元/天进行处罚等措施。

篇9

工程是由挡水坝、溢流坝、河床式发电厂房、船筏道及升压开关站等建筑物组成。

本工程的主要消防对象是水电站建筑物及其机电设备。其中水电站建筑物的消防设计含主厂房、副厂房、主变压器场(开关站)、高压开关室、厂用屏配电室、油库、机修车间和坝区等。除检修期外,水电站及其机电设备一般都处于生产运行状态。

1.2消防设计依据和设计原则。

本工程消防设计依据国家、行业颁布的下列现行规程规范进行:

(1)水利水电工程设计防火规范(SDJ278-90)

(2)火灾自动报警系统设计规范(GB50116-98)

(3)建筑设计防火规范(GB50016-2006)

(4)自动喷水灭火系统设计规范(GB50084-2005)

(5)建筑灭火器配置设计规范(GB50140-2005)

(6)二氧化碳灭火系统设计规范(GB50193-93)(99年版)

(7)电力系统设备典型消防规程(GB5027-93)

(8)采暖通风与空气调节设计规范(GB50019-2003)

(9)水力发电厂机电设计技术规范(DL/T5186-2004)

(10)中华人民共和国消防法(1998-04-29)

(11)火灾报警控制器通用技术条件(GB4717-93)

(12)水库工程管理设计规范(SL106-96)

为贯彻“预防为主,防消结合”和确保重点、兼顾一般、便于管理、经济实用的方针,并结合居龙滩水利枢纽工程的具体情况,确定了如下基本设计原则:

在消防区内,按规范要求统一规划畅通的安全通道,设置安全出口及其标志;

以生产重要性和火灾危险性设置消防设施和器材,特殊部位按防火规范采取其它消防措施;

在电站设置消防控制中心(计算机房旁)和火灾报警系统,消防电源采用双可靠独立电源;

采取消防车、消火栓、CO2灭火和干粉灭火器四种灭火方式,消防用水取自可靠而充足的水源;

设置通风排烟系统;

选用阻燃、难燃或非燃性材料为绝缘介质的电气设备或采取其它保护措施以防止或减少火灾发生;

有火灾危险性设备之间,采用耐火材料制成的墙或门隔离,孔洞用耐火材料封堵以防止火灾的漫延与扩散。

1.3消防总体设计方案。枢纽总体配备一辆消防水车,若遇重大火灾时,则由县消防部门支援扑救。工程消防系统按其生产及防火功能要求分为主厂房、副厂房、开关站、高压开关室、油库、机修间及大坝(含启闭机室、坝区用电变房)七个区,其中主厂房、副厂房采用自动灭火与灭火器具结合的灭火方式,开关站、高压开关室、油库、机修间、大坝则采用灭火器具灭火。

为确保消防区灭火要求,本工程消防水源及电源均按双水源、双电源设置,互为备用。当其中之一停止工作时,备用水源及备用电源均能自动切换投入。二台消防水泵从上游水库取水或下游取水,水泵扬程为52m,作为消火栓消防备用水源,两台消防水泵布置在技术供水设备室;另外,由两台深井泵从水井取水给高位水池(V=100m3)供水,作为消防水源及生活用水,为保证消防水源的可靠性,应经常检查消防水泵是否能正常运转。

在主、副厂房等建筑物设计中,防火设计要求:

(1)建筑物的耐火等级为二级。

(2)重点火警防护区,按消防要求设置防火隔墙、防火门或防爆门。

(3)建筑物层间不少于两座楼梯(含爬梯)。每片消防分区不少于两个安全疏散出口通道。

(4)开关站及绝缘油库设车道,供消防车通行的消防车道宽度为5m。

2.工程消防设计

2.1生产厂房火灾危险性分类及耐火等级。厂房各主要生产场所火灾危险性分类及耐火等级要求见表1。

2.2主要场所和主要机电设备的消防设计

2.2.1主、副厂房消防。居龙滩水利枢纽工程采用灯泡贯流式机组,厂区主要由主厂房和安装间、电气副厂房、中控室、机修间和室外绝缘油库等部分组成,厂区机修门外、绝缘油库门外设室外SS100-1.6型消火栓2个、开关站设SS100-1.6型室外消火栓2个。

电站主厂房长66.70m,宽19m,高约50.0m,共分运行层(高程112.20m)、中间层(高程103.20m)、水轮机层(高程84.70m)。

运行层主要布置有调速器和油压装置等设备,在每个机组段(运行层、中间层)上游侧各设1个SN65(带报警)型消火栓箱和2个MT3型手提式CO2灭火器。

考虑发电机水喷雾灭火装置的要求,在运行层每个机组段上游侧各设一个发电机消火栓箱为发电机内部消火提供水源,手动报警装置1个,发电机内部灭火及火警装置由制造厂家设计提供。

建筑物危险性分类及耐火等级表生产场所名称火灾危险性类别耐火等级类别主厂房丁类二级透平油库丙类二级绝缘油库丙类二级户外开关站丙类二级中央控制室、微机房丙类二级坝区用电变室、厂用变室丁类二级高压开关室丁类二级电缆、电缆道丙类二级发电机设备小间、资料室丙类二级空压机及贮气罐室丁类二级水清测报站丁类二级载波通信室丁类二级大坝监测室丁类二级高压试验室丁类三级机修车间丁类三级其它戊类三级水轮廊道层主要布置有轴承回油箱,调速系统漏油箱等,每机组段拟设MT3型CO2灭火器2个,另在与该层相通的渗漏排水泵房设MT3型CO2灭火器2个,手动报警装置1个。

为扑灭厂内桥机电器设备引起的火灾,在桥机上设置MT3型CO2型灭火器2个。

电站安装间位于厂房右侧(从上游往下游看),长28m,宽19m,安装间上、下游侧各设SN65型消火栓1个和MT3型CO2灭火器4个。

空压机室设在安装间的下层,在该室油处理室上游侧设SN65消火栓1个及MT3型CO2灭火器4个,空压机室布置两个灭火器设置点。布置两个离子型感烟探测器,手动报警装置1个。

在副厂房的电缆层(高程107.70m)入口处设MT3型CO2灭火器4个,即每个进人门布置一个灭火器安置点(各2个MT3型CO2灭火器);每个入口门设自动控制防火门,手动报警装置1个;此外还配置若干个防毒面具、呼吸器,电缆穿过楼板或进入各屏柜的孔洞均须用耐火材料封堵以防止火灾漫延,耐火极限不小于1小时。结合设备与电缆布置情况,每隔一定距离集中布置MT3型CO2灭火器2个,在电缆桥架每层均敷设缆式线型感温探测器。

技术供水层位于副厂房的100.40m高程处。其门外布置MT3型CO2灭火器4个。

在高程112.20的微机房及中控室拟设置固定CO2灭火系统,采用固定管网消防,即组合分配系统,共用一套CO2储藏装置,保护这两个防护区的消防灭火系统,其设计用量按其中最大的中控室需要量设置,不考虑备用,经计算选用20个70L储存钢瓶,同时在每个地方均设置有烟温复合探测器,当感温感烟探测器同时报警时,控制器将立即停断该区风机与空调,声光报警器鸣响,提醒人员迅速撤离,延时30秒(可调)后,关闭防火门,启动灭火装置灭火,30秒全部喷完,另外门口设手动报警装置1个,进人门口设气体放气信号灯,声光报警器,布置MT3型CO2灭火器4个。

固定CO2自动灭火系统,既可在现地手动操作,也可与火灾自动报警系统相连。

2.2.2水轮发电机组消防。水轮发电机组安装在密闭的灯泡体内,其消防措施由制造厂解决,电站提供水源,相应在机组段布置发电机消火栓箱,采用固定式水喷雾灭火装置。灯泡体内同时设置感温、感烟探测装置及其控制装置,发电机内部管路设备均有机组制造商按规程规范配套供应。

2.2.3油库和机修间消防

2.2.3.1油库消防。居龙滩水利枢纽油库分为厂内透平油库和厂外绝缘油库,油库采用防火墙与其他房间分隔,油罐室设有两扇门与外界相通,出口门为向外开启的甲级防火门,油库内设有可靠的防雷接地装置和挡油槛,室内立式油罐之间间距大于2.0m。油罐与墙之间的距离大于油罐半径,油处理室与油罐室相接部位用防火墙隔开,烘箱电源开关和插座设在小间外,油库内灯具和电器设备均采用防爆的灯具和电器设备。透平油库设在安装间下面(高程103.20m),内有20m3的立式油罐2个,并设油处理室等,采用消火栓灭火,设置感烟探测器,油处理室设置手动报警装置1个。

绝缘油库布置在室外,靠近厂房公路边,发生火灾时,消防车能顺利抵达现场救火。绝缘油库内布置有15m3立式油罐2个,30m3立式油罐1个,油库设有油处理室、滤纸烘箱室。

根据有关规范,在绝缘油罐和透平油罐室各设置2台MFT35型推车式磷酸铵盐干粉灭火器和1个100×100×60cm3砂箱,每个砂箱配2把铁锹;两个油处理室各设3个MF3型磷酸铵盐干粉灭火器,同时在透平油处理室与空压机室联接处设SN65型消火栓1个,在绝缘油库室外设SS100-1.6型地面消火栓1个。

油库内防火门自动关闭,风机停止排风并可自动启动消防泵,为了预防和控制火灾,火灾报警后,并确认火灾位置后,在中控室手动关闭厂房内相应部位的排风机,此时防火阀连动关闭。火灾结束后,重新开启排风机进行排烟,然后通风系统恢复正常。

2.2.3.2机修间消防。机修间靠近安装场布置,面积为15×20m2,内设小型机修设备,机修间除设置1个SN65型消火栓外,另配MF3型磷酸铵盐干粉灭火器8个,分二个设置点,每个设置点配置4个。在机修间外设SS100-1.6型地面消火栓1个。

设置感温、感烟探测装置及手动报警装置1个,自动向消防控制中心报警。

2.2.4高压开关柜室和厂用电变消防,坝用电变消防。两个高压开关柜室共设置开关柜16面,低压开关柜室设置低压柜10面,以上两个高压开关柜室内均设置1台MTT35型推车式CO2灭火器和4只MT3型CO2灭火器并设置向外开启的防火门。

坝用电配电室、厂用变室、柴油发电机房,布置在独立的小间内,小间配置3只MT3型CO2灭火器,并配置1台MFT35推车式磷酸铵盐干粉灭火器。

同时在每个地方均设置有烟温复合探测器,另外口门设手动报警装置1个,进人门口设气体放气信号灯,声光报警器。

2.2.5主变和户外开关站消防。主变露天布置,2台主变间距离大于10米,与建筑物距离大于12米以满足防火要求,每台主变均设置可储存一台变压器油量和20min消防水量之和的事故储存坑,坑内装设金属栅格(其净距不大于40mm)并铺设粒径50~80mm,厚度为250mm的卵石层。事故时,变压器油可迅速由排油管排至设置在厂房右侧的事故集油池内。另外,每台主变附近均设置2台MFT35推车式磷酸铵盐干粉灭火器和2个砂箱(100×100×100cm3)。另设置专门房间放置灭火器具。户外开关站附近设SS100-1.6型地面消火栓2个。户外110kV开关站,设置4只MT3型CO2灭火器。

2.2.6坝区消防。坝区内溢洪道8座液压泵房,每座配置2个MF3型磷酸铵盐干粉灭火器,坝顶每50米设置SS100-1.6型地面消火栓1个,计3个。每座液压泵房设置1个感烟探测装置。

2.3消防给水设计。居龙滩水利枢纽水库水质清晰、泥沙含量较少,可以作为消防水源。设四个消防取水口,为防止取水口堵塞可以用吹扫气管供气对水泵取水口进行吹扫;根据电站所配置的消防设备供水压力及消防用水量的要求,选用二台XBD5.2/30-125-200型水泵,扬程为52m,流量为108m3/h,两台水泵互为备用;消防水泵可与火灾自动报警系统相连,以便及时发现并经确认后能尽快消灭火灾。消防水泵及附属设施均布置在技术供水设备室(高程100.40m)。另外,由两台深井泵从水井取水给高位水池(底部高程160.00米,V=100m3)供水,作为消防主水源及生活用水,消防水泵供水作为备用水源。

2.4消防电气和监测报警系统

2.4.1消防电气。本电站设专用消防动力盘,并标有明显消防标志,由双电源供电,以保证消防设备由2个可靠的电源。消防用电设备采用单独的供电回路并穿管敷设,当发生火灾时,仍能保证消防用电。

厂房内主要疏散通道、楼梯间及安全出口处,均设置火灾事故照明及疏散指示标志。正常时,事故照明由交流电源供电,交流电源失去时,通过交直流切换装置自动切换为蓄电池直流供电。疏散用的事故照明其最低照度不低于0.5lx,疏散指示灯正常时由交流电源供电,交流电源失去时,通过其自配的备用电源供电,其连续供电时间不少于20分钟。

事故照明灯和疏散指示标志灯,均设置非燃烧材料制作的保护罩。

2.4.2火灾自动报警及灭火控制系统。本电站的火灾自动报警及灭火控制系统采用控制中心报警系统的形式,电站的消防控制中心设于消防控制房。

消防控制中心内设有火灾自动报警及联动控制屏,对厂内的火灾报警设备及消防灭火设备进行集中控制,并对发电机组设备火灾报警及联动控制器进行重复显示及控制。火灾自动报警控制系统选用总线编码智能型。火灾自动报警控制屏接收来自设备火灾报警控制器、厂内各部位安装的点式感烟、感温探测器、缆式定温探测器、手动报警按钮及输入模块传送来的信号,自动或手动发出灭火指令;向控制模块发出控制信号,控制风机、防火阀、固定式CO2灭火系统等消防灭火设备的运行;同时经通信接口自动启动工业电视监控系统进行跟踪及录像,并显示、记录、打印产生报警或故障信号的时间、地点及有关火灾信息,发出声光报警。并将所有火警或故障信息经通信接口送给全厂计算机监控系统。

主要设备布置区如中控室、计算机室、1G10.5kV开关柜室、2G10.5kV开关柜室、400V厂用配电屏室、透平油库、油处理室、空压机室、高压试验室、柴油发电机房、400V大坝用电配电室、电缆层、技术、消防供水泵层等地均设置有点式感烟探测器;在主厂房运行层及安装场和中间层设置有红外光束感烟探测器;在安装有固定式CO2灭火系统的设备区(即中控室、计算机室),电缆层及电缆廊道均另外设置有点式感温探测器或缆式定温探测器。在厂内各重要通道、走廊均安装手动报警按钮及声光报警器。

上述区域,按其重要性和所配置的消防灭火设备的要求选择报警、报警及手动灭火、报警及自动灭火等不同的处理方式。

一旦发生火灾,任何一个探测器探测到火警信号,控制器发出火灾报警声光信号,通知运行值班人员,值班人员根据火灾自动报警控制屏显示的报警地址到现场证实或经工业电视监控系统证实后,即可采用干粉灭火器或手动启动消火栓、固定式CO2系统,指挥救火。固定式CO2系统的远方手动操作在火灾自动报警控制屏上进行。火灾自动报警控制屏也可以设定为自动灭火方式,如果CO2灭火保护区域内同时有感温、感烟两种类型的探测器报警或手动报警按钮按下后,经控制器分析判断后自动停断对应区域内的风机、关闭对应区域内的防火阀、投入灭火装置。无论是在手动方式还是在自动方式下,控制器在发出火警信号的同时都自动启动工业电视监控系统对相关部位进行跟踪、显示及录像,以备日后事故分析。

根据规范及电站的实际布置进行探测器、手动报警按钮的配置;根据灭火设备的自动控制要求配置联动模块。

篇10

进行水利枢纽工程施工的过程中,必须加强对水利枢纽施工过程的管理,保证工程质量,加快工程进度,保障施工安全。

1.1加强对水利枢纽工程施工质量的控制

工程施工建材的质量是保障工程施工质量的关键因素之一,为此,在进行水利枢纽工程施工之前,必须加强对工程所需建材的控制和管理,工程队伍要安排专人,按照工程建设相关标準及规范对水泥、钢筋、砂石等建材的质量进行检验,履行检验的各项手续。在检验过程中必须完整保存建材的各项数据材料。与此同时,还要严格控制建材进场,不合格的建材一律不準进场,对于进场的建材还要按照建材的性质、形态等因素进行分类储存。此外,进行水利枢纽工程施工的过程中,必须严格按照施工工序展开施工:从开挖土石方、基础验收、垫层铺设、钢筋制安、模板支固、砼拌合、运输、建筑施工到养护,都必须依据工程施工的相关规范以及工程的设计来进行。同时还要加强对每道工序的检验,在一道工序验收后再进行下一道工序的施工,并对各项施工环节的施工质量进行记录,记录要详细,不仅要包括施工建材的相关数据、施工工序和检验结果,同时还要对最终产品的形成进行记录。记录必须具有真实性和完整性。

1.2加强对水利枢纽工程施工工期的管理

在建设水利枢纽工程的过程中,必须加强对其施工工期的管理,才能保证工程竣工时间不超过工程合同所规定的日期,保证合约的顺利履行。为此,笔者对加强工程施工工期管理的途径进行了思考,针对施工过程中比较花费时间的环节,认为可以通过以下办法减少施工过程中时间的浪费:一是利用吊塔进行运输,或是从拌和站直接入场,以此减少砼拌合后运输要花费的时间,从而加快工程工期的进度;二是加强对建材的管理,制定出详细的建材计划,保证工程施工现场建材的及时供应,对于工程施工的主要建材采用专车进行配送,以此减少建材供应不足而造成的延误工期的情况发生;三是加强对机械设备的应用,对施工现场现有的机械设备进行合理的调配,优化施工现场设备的资源配置,利用机械设备的高效加快工程工期的进度;四是合理利用激励和评价的方式,提高工程施工人员的积极性和热情。

1.3加强对水利枢纽工程施工安全的管理

对于施工安全的管理是工程施工管理中最重要的部分。随着市场经济的不断发展,市场竞争也逐渐向白热化演变,工程施工的安全管理水平对工程施工质量的好坏有着直接影响,为此,工程施工单位要想在建筑施工行业中占有一席之地,就必须加强对工程施工安全的管理。可以成立以水利枢纽工程安全体系,选派专人对项目工程的安全进行管理,并在各施工小组的施工任务中增加一项与工程施工安全相关的任务,例如工程巡检、上下岗位时进行工作交接等,为保证工程施工安全防患于未然。

2.对于水利枢纽工程施工材料及施工设备的管理

2.1对水利枢纽工程施工建材的管理

对于水利枢纽工程施工中,所使用的各种不同类型的建材,根据需要可能性,具体地可以分为设计量(S)、预计损耗量(Y)和额外发生量(E)。这三项构成了最终发生量(Z),其中设计量(s)是满足结构特点和保证质量的必须量,是必须按照设计实施的;预计损耗量(y)是用于其他结构构件的连接、支撑和架立的;外发生量(E)是由于实践施工与预算计划有落差造成的。建材管理就是尽量使(S+Y+E)/S 的比值最小化,从而达到经济效益的目标。为此,在施工过程中有效地控制建材的使用,是非常重要的一步。一是加大建材管理力度,根据施工现场对建材的使用情况,对木材、钢材、管材和模板归类,通过领用量、实际量和预计量的比较,形成一个数字化的管理。二是对现场领用量和实际使用量进行比较,核对每一种建材的正常损耗,超出有效适用范围的量,造成的建材浪费,对造成原因进行科学的分析,查缺补漏;三是综合各类因素,合理计划分层,从长远利益考虑,在保证质量、进度和安全的前提下尽量减少架立支撑和连接所用的辅助建材,更要避免超高架支撑。四是加大模板、排架等周转性建材的次数降低周转费用。五是要将拆卸后的建材妥善保管,合理放置,便于利用,使每一种建材都能发挥它的最大功用;六是要制定合格的建材管理制度,防止建材的丢失,乱用和人为浪费,能利用的建材绝不能随意堆放和四处丢失,做到活完场清;最后还要在施工中选用最优方案,在相关标準及规范允许的范围内,合理安排建材布置,实现建材使用的最省、最快、最优目标。

2.2对水利枢纽工程施工设备的管理

在进行水利枢纽工程施工的过程中,必然会用到许多现代化的高科技设备,这些设备的使用不仅提高了工程施工的效率,减轻了施工人员的负担,同时也在一定程度上提高了水利枢纽工程的施工质量。随着经济科技的不断发展,越来越多的高新技术设备被引进到水利枢纽工程施工之中,这就要求施工单位为加强对高新施工设备的管理。一是要加强对机械设备的使用,减少设备的閑置,从而有效提高工程施工效益;二是要对设备进行定期的检修和养护,及时发现设备存在的问题,从而延长设备的使用寿命;三是加强对设备操作人员的培训,提高相关人员对设备的了解和掌握,并制定与设备操作使用相关的规章制度或标準,减少因操作人员操作不当或操作失误造成的设备损坏的情况发生。总而言之,施工单位要加强对其施工设备的管理,才能保证水利枢纽工程的如期竣工,保证工程的施工质量,才能在激烈的市场竞争中取胜。

3.有关完善水利枢纽工程施工阶段规章制度的建议

完善的规章制度是保证水利枢纽工程施工顺利进行的重要条件,同时也是保证水利枢纽工程施工质量的可靠依据。为此,在进行水利枢纽工程施工的过程中,必须不断完善水利水流工程施工阶段的规章制度,提高工程施工的管理水平,促进工程管理向科学化、规范化过渡。

3.1加强工程施工阶段用人制度的完善

人是水利水流工程施工中必不可很少的因素,为保证施工质量,有效进行施工管理,就必须“选好人、用好人”,这就需要通过加强用人制度的完善来实现。施工单位可以制定一系列考核措施,对施工人员的综合素质进行考评,同时也可以通过加强培训的方式来提高施工人员的综合素质,从而保证工程施工的顺利进行。

3.2加强工程施工“自检”体系的建立和完善

篇11

在工程实际开始建设之前,首先需要对施工导墙进行建立。在混凝土防渗墙建设中,其导墙以及平台通常都为钢筋混凝土结构,而在我们实际开展施工时,也应当能够及时的联系防渗墙上下水游等条件对导墙顶的施工高程参数以及导墙平台结构进行确定。而在对结构以及参数确定完毕之后,则可以进行槽段以及槽孔的划分。在墙段连接方面,可以使用接头管法,在初期浇筑的过程中以两端头孔下设的方式接入头管,并随着浇筑过程中混凝土面的不断上升,则可以根据情况及时的拔起头管来使两端头孔保证为空,从而使其能够快速的成为二期槽段的端部主孔。

1.2施工工艺流程

在施工工艺方面,如果面对的是同一个槽孔,我们则可以使用冲击钻以跳打法的方式进行施工:首先,我们需要对槽段的主孔进行钻凿,并在主孔钻凿完毕之后钻凿副孔。而在对副孔钻凿的过程中,则需要及时的将主副间所具有的障碍物比如小墙打掉,并在两个孔都完成之后再正式进入到施工的后续工序。而由于在实际施工过程中,不同槽孔都需要依次的穿过其中的砂层以及洪积层等,对此,就需要在实际施工的过程中多准备部分接砂斗来协助施工,从而更好的保障施工的顺利开展。

1.3清孔换浆

当对终孔进行验收并合格之后,则可以正式开始清孔换浆的工作。在方式的选择上,我们选择了抽筒的方式,即首先将抽筒沉入到孔的底部来抽取其底部的沉渣,并在抽取的同时向孔内以持续不断的方式注入浆液,并保证施工过程中的总换浆量为槽孔内泥浆总量的三分之一至一半。而当二期槽孔换浆工作完成之前,我们也需要通过刷子钻头的使用以分段的形式对一期槽孔的低层残留物以及泥皮等等进行洗刷,并在洗刷直至刷子钻头位置不存在泥屑、且孔底位置的淤泥不再增加为止。而在我们处理该步骤的过程中,需要注意的一点是由于我们之前对于浇筑导管、预埋管等等所消耗的时间往往比较长,而为了能够在此情况下也保证孔内部的淤泥不会在这个安装的时间内大规模的增加、保证槽壁的稳定,就需要在开展清孔换浆工作之后能够保证孔内具有充足的粘度以及密度,并保证其中的含沙量被控制在一定的数值之内。

1.4预埋灌浆管下设

在对于灌浆管进行下设的过程中,通常都需要保证孔底节的长度要控制在6m以内,并在实际设置之前对其中的不同节点进行调整,从而能够根据情况在接口位置处树立几根具有等间距的钢筋来对其进行焊接以及固定。而在下设过程中,也需要借助吊车的使用在孔口位置处对其进行焊接、并以整体的形式下设。在实际对接的过程中,也需要通过水平尺的使用对两节之间的垂直情况进行校核,从而使整个预埋管工作的铅直度能够得到保证。

1.5混凝土浇筑

在混凝土浇筑的环节,所使用的是泥浆下直升导管法进行浇筑。在实际浇筑之前,各项的准备工作需要做好,比如浇筑器具的准备、施工记录以及相关的仪器等等,并需要重点对浇筑导管自身的长度、质量以及布置情况进行设置,从而以此来保障相关设备器具能够满足实际技术要求。而在浇筑的过程中,则需要在对水泥砂浆进行搅拌时对于每一套导管都做好下料以及注浆工作,并当储料槽中的混凝土达到一定量时正式开展浇筑工作。在浇筑过程中,需要保证工作人员能够严格根据相关技术规范进行,并重点对混凝土浇筑过程中的上升速度以及导管拆卸方面进行管理。

1.6接头管下设与起拔

在本次混凝土防渗墙施工过程中,使用了接头管的方式同墙段进行连接。在初期槽孔清浆工作结束之后,我们在槽孔端头下设了一定数量的接头管,并在浇筑过程中根据混凝土浇筑的初凝情况通过液压拔管机的使用对这部分接头管进行逐步的起拔,并以此将初期施工的槽孔端头都逐渐形成为圆弧形接头孔。

篇12

1 两种防渗结构设计

1.1 二级配碾压混凝土加变态混凝土防渗结构

根据《碾压混凝土坝设计规范》(SL314-2004)并参考国内类似坝高的工程,上游二级配碾压混凝土厚度大于1/5的坝面水头,并因坝前作用水头而变化,沿高度呈台阶状布置。

本水利枢纽工程坝体二级配碾压混凝土厚度自坝顶高程745.50~706.50m为4.0m,高程706.50~672.00m为6.0m,672.00m坝底从6.0m厚度渐变至8.0m。

变态混凝土的厚度规范定宜为30~50m,最大厚度不宜大于100cm。本工程坝体迎水面变态混凝土厚0.6~1.0m,变态混凝土与二级配碾压混凝土同步浇筑。二级配碾压混凝土层面均采取铺水泥粉煤灰净浆,缝面铺标号为M25、厚度为1~1.5cm的水泥砂浆,以加强层面及缝面结合的可靠性。

1.2 “金包银”式防渗结构

参考国内类似坝高的工程,一般混凝土厚度自坝顶745.50~675.0m高程厚度为3.0m,675.0m坝底厚度为4.0m,675m高程以上一般混凝土强度标号为R90200,抗渗等级W10,抗冻等级F300;675m高程以下一般混凝土强度标号为R90200,抗渗等级W10,抗冻等级F100;坝体内部采用三级配碾压混凝土,防渗层横缝间距与坝体分缝间距一致,为15m。在一般混凝土下游侧设置排水廊道及排水管。

下游坝面655.0高程以下设置厚2.0m的一般混凝土,强度标号为R90200,抗渗等级W10,抗冻等级F300,并在内侧设横缝排水及坝体排水管。

2 两种防渗形式比较

两种材料的防渗效果都较好。通过试验以及正式开工后的效果都能够说明,两者在质量,受力强度承重能力,抗剪切等地方都符合标准,能够用于实践。为了将此工艺的状态更为可靠,以及取得更好的发展状态,以下强调工艺的对于水体,裂缝,温度,投资的适应性等方面进行分别比较,找到每种材料最为合适的部分。

2.1 抗渗性

2.1.1 二级配碾压混凝土的抗渗性

上游防渗体采用富胶凝材料的二级配碾压混凝土,并在上游面辅以变态混凝土,经工程实践证明是非常有效的,碾压混凝土各项指标均能达到设计要求,混凝土很密实,层面结合良好,其防渗标号可以达到W8~W12(相当于渗透系数2.6×10-9cm/s~1.3×10-9cm/s),甚至更高。

2.1.2 “金包银”防渗结构的抗渗性

金包银工艺与一般砼坝体工艺具有较高的相似性,也是利用一般混凝土作为防渗层。通常上游的砼质量防渗层就能够成为全系统的唯一屏障也是坚固可靠的屏障。

一般形态的混凝土的防渗效果就很好,通过振捣工艺能够得到较为可靠的密度和状态。用两种混凝土同时上升的工艺能够消除薄层面,而由升程面造成的缝隙作为代替,随着对于缝隙的办法日趋完善,所以能够被认可使用,取得较好的防渗效果,在这种情况下更应当注意温度对混凝土的影响。所以说金包银工艺是能够取得与一般的混凝土相似的甚至更好的效果。

2.2 抗冻性

2.2.1 二级配碾压混凝土的抗冻性

碾压混凝土与正常混凝土之间在抗低温性能方面相似,其取值都在于混凝土本身的合成状况以及内部状态。通过提升等级和硬度并减少渗透的工艺可以明显增强抗低温能力,不过这项工作不是提升抗低温能力的主要方面,目前较为重点使用的是引气剂的加入。

碾压混凝土在水泥的比例上要低于一般的混凝土,显示的状态也较为干燥坚硬。这将带来的效果是放入引气剂后的气泡密度较小,效果不明显,而掺入粉煤灰成分之后就更加严重,只能通过增加引气剂的方法来得到充足的气泡。通常这个加大量能够扩展到原来含量的9倍左右,才能达到和平常混凝土加入引气剂后相同的效果。

一般认为4%左右的含气量是碾压砼工艺应当具备的最激昂状态,这已经经过严格的试验。这种工艺出来后的混凝土抗低温等级能够与F300相媲美,甚至更高。成为合格的抗低温混凝土材料,并投入使用。

2.2.2 “金包银”防渗结构的抗冻性

一般的混凝土对引气剂的接受比较容易,很少的气量就能达到想要的效果。并且在搅拌过后得到均匀合理的气泡分布,所以抗冻性能进而提升。

2.3 施工

2.3.1 二级配+变态混凝土防渗方案施工 采用单一的碾压混凝土坝施工方法,使得施工的扰动变得很少,并给完全砼断面提供了机会。变态砼防渗工艺是在上游实施,利用摊铺施工,垫铺恰当数量的泥浆,将该部分的混凝土转换,使其形状看起来类似于一般混凝土的性状,之后利用振捣设备完成振捣工艺。

2.3.2 “金包银”防渗方案施工

“金包银”防渗形式推荐的施工方案为:把一般的混凝土和碾压工艺混凝土同时进行浇注。两种混凝土的浇筑厚度都在0.3m左右。先浇筑一般混凝土再浇筑碾压混凝土。一点点上升,尽管这种方法可能带来操作的难度,但保证两种材料的同时上升,带来交界处的更稳定,贴合程度更好。

2.4 投资

同一个工程队对于两种防渗结构同时进行运用测量以及经济分析,能够得出二级配碾压砼比金包银的方法节省大量费用,所以从价格方面考虑应当选用后者作为使用优先选择。

3 比较结论

从抗渗性来看,“金包银”具有较好的防渗能力;对于二级配碾压混凝土防渗,根据目前的实验成果及工程实践,已经建成的几座碾压混凝土坝气钻孔混凝土芯样的渗透系数均达到了10-9~10-10cm/s,甚至更高,完全能够满足高坝的防渗要求。

从防渗层与坝体内部这两种混凝土的结合来看,两种防渗结构型式均能实现两种混凝土结合良好,但“金包银”施工干扰太大,施工工艺复杂。

从抗冻性来看,两种防渗结构均能满足建筑物的抗冻设计要求,但一般混凝土粉煤灰掺量相对较少,且经拌和机搅拌,气泡分布均匀,抗冻性能相对较优;掺加引气剂的二级配碾压混凝土可以达到4%~5%的最佳含气量,也具有良好的抗冻性。需要其他的方法配合使用。操作起来程序也很多,比一般砼坝工艺要困难和复杂很多,对于碾压砼工艺的影响也很大,阻碍其优势的发挥,速度因此变慢,所以选择时应当注意考虑这些因素。二级配碾压砼工艺在流程上较简便,如果速度要求较高者可以选用这种方法。

参考文献

[1]李接龙.水利工程防渗处理技术探讨[J].民营科技,2011-12-20.

篇13

目前,国内外碾压混凝土坝的防渗型式主要有“金包银”式防渗结构,常态混凝土薄层防渗结构、钢筋混凝土面板防渗结构、薄膜防渗结构、沥青混合料防渗结构和碾压混凝土自身防渗结构等几种。

就厚常态混凝土(金包银)防渗结构和碾压混凝土自身防渗结构做重点比较。

2 两种防渗结构设计

2.1二级配碾压混凝土加变态混凝土防渗结构

根据《碾压混凝土坝设计规范》(SL314-2004)并参考国内类似坝高的工程,上游二级配碾压混凝土厚度大于1/5的坝面水头,并因坝前作用水头而变化,沿高度呈台阶状布置。

本水利枢纽工程坝体二级配碾压混凝土厚度自坝顶高程745.50~706.50m为4.0m,高程706.50~672.00m为6.0m,672.00~坝底从6.0m厚度渐变至8.0m。

675m高程以上二级配碾压混凝土强度标号为R180200,抗渗等级W10,抗冻等级F300;675m高程以下二级配碾压混凝土强度标号为R180200,抗渗等级W10,抗冻等级F100;坝体内部采用三级配碾压混凝土,防渗层横缝间距与坝体分缝间距一致,为15m,缝内设置横缝排水管。在二级配碾压混凝土下游侧设置水廊道及坝体排水管。

变态混凝土的厚度规范定宜为30~50m,最大厚度不宜大于100cm。本工程坝体迎水面变态混凝土厚0.6~1.0m,变态混凝土与二级配碾压混凝土同步浇筑。二级配碾压混凝土层面均采取铺水泥粉煤灰净浆,缝面铺标号为M25、厚度为1~1.5cm的水泥砂浆,以加强层面及缝面结合的可靠性。

2.2“金包银”式防渗结构

参考国内类似坝高的工程,常态混凝土厚度自坝顶745.50~675.0m高程厚度为3.0m,675.0~坝底厚度为4.0m,675m高程以上常态混凝土强度标号为R90200,抗渗等级W10,抗冻等级F300;675m高程以下常态混凝土强度标号为R90200,抗渗等级W10,抗冻等级F100;坝体内部采用三级配碾压混凝土,防渗层横缝间距与坝体分缝间距一致,为15m。在常态混凝土下游侧设置排水廊道及排水管。

下游坝面655.0高程以下设置厚2.0m的常态混凝土,强度标号为R90200,抗渗等级W10,抗冻等级F300,并在内侧设横缝排水及坝体排水管。

3 两种防渗型式比较

就两种防渗结构物理学性能而言,实验室及工程实践均能证明常态混凝土和二级配碾压混凝土在密度、抗拉强度、抗压强度、弹模、极限拉伸值和抗剪断参数等方面均能很好地满足设计要求。

本工程就两种防渗型式从防渗体的抗渗性、抗裂性、抗冻性、施工、投资等方面进行比较、以选择适合本工程特点的防渗型式。

3.1抗渗性

3.1.1二级配碾压混凝土的抗渗性

上游防渗体采用富胶凝材料的二级配碾压混凝土,并在上游面辅以变态混凝土,经工程实践证明是非常有效的,碾压混凝土各项指标均能达到设计要求,混凝土很密实,层面结合良好,其防渗标号可以达到W8~W12(相当于渗透系数2.6×10-9cm/s~1.3×10-9cm/s),甚至更高。

3.1.2“金包银”防渗结构的抗渗性

“金包银”是在坝体的上下游面设1.5~4.0m厚的常态混凝土作为防渗体,这种防渗型式类似于常态混凝土坝,上游常态混凝土防渗层是整个坝体的防渗屏障。

常态混凝具有很好的抗渗性,混凝土经振捣后各项性能容易达到设计要求,其结构密实;常态混凝土浇筑与碾压混凝土同步上升,常态混凝土中没有薄层面,只有升程之间的缝面(施工缝),而施工缝处理方法渐渐成熟,因而防渗层混凝土的强渗透各向均一。只要控制好防渗层常态混凝土的温控防裂问题,“金包银”防渗效果与常态混凝土坝相似,防渗性能良好。

3.2抗冻性

3.2.1二级配碾压混凝土的抗冻性

碾压混凝土的抗冻性与常态混凝土一样,主要取决于硬化混凝土的强度及混凝土内部的气泡性质,提高混凝土的强度等级,降低混凝土的渗透性,可以提高其抗冻性,但不是主要措施。掺用引气剂是提高混凝土抗冻性的有效措施。

与常态混凝土相比,碾压混凝土水泥浆含量少,较为干硬,加入相同引气剂掺量时,不容易形成大量致密、稳定的气泡,加上粉煤灰具有消泡作用,混凝土达不到所要求的含气量,但是通过加大引气剂掺入量可以使含气量达到最佳含气量(经验表明:当粉煤灰掺量达到30~50%时,为达到4%~5.5%的含气量,引气剂的掺量是常态混凝土的8~10倍)。

室内试验以及石门子、龙首工程实践证明,通过加大引气剂掺量可以使碾压混凝土的含气量4%~5%(最佳含气量),可以配制出抗冻等级大于等于F300的混凝土,以满足工程需求。

3.2.2“金包银”防渗结构的抗冻性

就常态混凝土而言,产掺加一定的引气剂很容易达到要求的含气量,混凝土经过搅拌气泡分布均匀,抗冻性相对较好。

3.3施工

3.3.1二级配+变态混凝土防渗方案施工

采用单一的碾压混凝土坝施工方法,减少了施工干扰,为实现全断面碾压混凝土创造了条件,变态混凝土防渗是在坝体上游面一定的范围内,碾压混凝土摊铺施工中铺洒适量的水泥浆,使该处的混凝土变成具有坍落度的类似常态混凝土,然后用人工插入式振捣器振捣。

3.3.2“金包银”防渗方案施工

“金包银”防渗形式推荐的施工方案为:常态混凝土与碾压混凝土同步浇筑,先浇筑一层厚0.3m的常态混凝土,在浇筑碾压混凝土,碾压混凝土层厚为0.3m。两种混凝土均采用薄层同步上升,虽然施工干扰较大,但由于实现两种混凝土同步上升,不会形成交界薄弱或是冷缝面,有利于坝体的安全。

3.4投资

本工程队两中国防渗结构分别计算工程量,并进行投资分析,“金包银”防渗结构坝体直接费比二级配碾压混凝土防渗结构坝体直接费多出920万元,而且“金包银”尚未计施工干扰引起的费用增加。

4 比较结论

从抗渗性来看,“金包银”具有较好的防渗能力;对于二级配碾压混凝土防渗,根据目前的实验成果及工程实践,已经建成的几座碾压混凝土坝气钻孔混凝土芯样的渗透系数均达到了10-9~10-10cm/s,甚至更高,完全能够满足高坝的防渗要求。

从防渗层与坝体内部这两种混凝土的结合来看,两种防渗结构型式均能实现两种混凝土结合良好,但“金包银”施工干扰太大,施工工艺复杂。

从抗冻性来看,两种防渗结构均能满足建筑物的抗冻设计要求,但常态混凝土粉煤灰掺量相对较少,且经拌和机搅拌,气泡分布均匀,抗冻性能相对较优;掺加引气剂的二级配碾压混凝土可以达到4%~5%的最佳含气量,也具有良好的抗冻性。

从施工来看,“金包银”施工干扰太大,需要增加工序,施工工艺相对复杂,施工工序甚至超过了常态混凝土坝,对碾压混凝土施工干扰大,难以充分发挥碾压混凝土快速施工的优势;二级配碾压混凝土防渗型式施工方法单一,有利于快速施工。

从投资来看,二级配碾压混凝土防渗型式较省。