智能化变电站实用13篇

引论:我们为您整理了13篇智能化变电站范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

智能化变电站

篇1

一、智能变电站

随着社会的进步,城市的发展,智能电网作为城市智能化发展的客观需求,是城市发展的重要能源保障和先行者,也是城市智能化建设的一项重要内容,是城市智能化进程的必然选择。

智能变电站是指采用先进、可靠、集成、低碳、环保的智能设备,以全站信息数字化,通信平台网络化,信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和检测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能的变电站。其主要内容包括新建智能变电站,变电站智能化改造,变电站在线监控、变电站运行维护集约化等。

二、智能变电站的自动化系统

智能变电站自动化系统可以划分为站控层、间隔层和过程层三层。

(1)站控层包含自动化站级监视控制系统,站域控制、通信系统、对时系统等子系统,实现面向全站设备的监视、控制、告警及信息交互功能,完成数据采集和监视控制(SCADA)操作闭锁以及同步相量采集,电能量采集,保护信息管理等相关功能。

(2)间隔层设备一般指继电保护装置,系统测控装置、检测功能组的主智能电子设备(IED)第二次设备,实现使用一个间隔的数据并且作用于该间隔一次设备的功能。

(3)过程层包括变压器,断路器、隔离开关、电流/电压互感器等一次设备及其所属的智能组件一级独立的智能电子设备。

三、智能化变电站综合集成化智能装置及其功能结构

数字化变电站在运用集成技术之后,全站范围内的数据交互通过光纤以太网实现。变电站层与间隔层之间现场距离长,数据交换量大,实时性要求高,需要与外部电网互联互通。而间隔层与过程层之间数据交换,不同间隔之间的数据交换,都是局限于变电站内,数据交换多是点对点,瞬时性的。若所有的间隔层设备与过程层设备之间的联系完全依赖于光纤网络,一旦光纤网络出现故障或受到干扰,间隔层与过程层之间的联系将非常不可靠,全站的所有自动化功能都可能因此受到影响而不能正常工作。

为了进一步减少变电站内元件(节点)数量,降低间隔层自动化功能对光纤网络的依赖性,将间隔层与过程层之间的联系从对光纤网络的依赖中解放,同时也为了进一步简化变电站的结构,本文提出了一种将变电站内过程层与间隔层一二次设备进行一体化、智能化综合集成的构想,并以此提出智能化变电站的架构体系。通过分析,认为该综合集成构想以及智能化变电站架构体系的实现,具有先进性,能够满足未来智能电网发展的要求。

变电站一、二次设备的一体化、智能化集成,指除了过程层的测量与控制执行等功能外,将目前变电站结构中间隔层的保护、控制、监视等功能也综合集成到过程高压设备现场,由就地安装的综合集成化智能装置(Compositive Integrated Intelligent Device,CIID)一方面直接作用于一次设备,另一方面通过标准化的接日并入全站唯一的光纤总线,进行各CIID之间,及CIID与变电站层的功能之间的信息共享与优化协作。

智能化现场测控装置(模块)接受全网统一的同步时钟信号,实现对一次设备的模拟量、开关量与状态量的同步采集,按照全网统一的标准(如IEC61850)处理,为测得数据统一打上同步时间标签;也接受运行控制模块、继电保护模块等的控制命令,实现对一次设备操作的控制与执行。继电保护模块在所有的模块中享有最高优先级,可以直接从智能化现场测控装置获取所需信息,以最短的时间做出反应,并且在任何情况下其保护功能都不被闭锁,同时还可通过标准化接口与其它一次设备的CIID的保护功能交互、配合。统一数据存储模块是CIID的木地信息数据库,测量得到的所有的标准化模拟量、开关量与状态量信息都在此存储,提供给其它功能模块,并可按照时间轴、属性轴等对信息数据进行初步的归类与管理。同时,也可以记录并存储各个层次、各个模块所有的面向对应一次设备进行操控的命令,以备查询。运行控制模块从统一数据存储模块获取木地设备的状态信息,也可接受来自变电站层的指令或利用其它CIID的信息综合判断,实现对一次设备的自动控制、紧急控制,故障录波与事件记录,非正常状态与故障状态的恢复等功能。诊断监视模块实现对设备的状态监视和诊断。软件管理模块可以对所有的功能模块软件进行管理、更改和升级。CIID的硬件配置要求满足所有自动化功能所需,并考虑冗余度。今后对CIID功能的增加或提升,只需通过软件升级实现。

CIID内各个模块之间通过总线结构实现交互。对外经由通信模块,通过标准化的接口与变电站层和其它的CIID通讯交互。通信管理模块在综合集成化智能装置中处于“咽喉”的地位。装置内的各个功能模块,需要与其它CIID的功能模块进行交互和协作,也需要向变电站层报告信息,并接受变电站层的指令。通信管理模块需要对所有的功能模块的所有信息进行有效的组织和管理,以保证信息交互的可靠与高效。流经标准化接口的信息包括由变电站层向综合集成化智能装置的查询命令、控制指令、调用指令等,包括由CIID向变电站层的实时运行信息(包括模拟量、状态量、开关量等)、故障录波、事件报告等,以及各CIID间的互锁和调用信息。智能化测控装置是变电站基础信息的根本来源,通过综合集成化智能装置的标准化接口接入站内光纤以太网,可以构成全站乃至全网范围的标准化基础信息平台。

需要说明的是,上述功能模块不是将各自动化系统装置在安装位置上进行简单的捆绑和叠加,而是在将所有自动化功能进行全面综合考虑后的升级优化。优化的目标是:功能齐全、硬件冗余、实现功能的流程最简化和最有效化。

四、综合集成的智能化变电站的架构

综合集成的智能化变电站的架构,其结构和功能总体上分为两层,即智能设备层和变电站层。智能设备层主要由综合集成化智能装置(CIID)和高压一次设备构成,二者之间通过非常规电流互感器、非常规电压互感器以及各类传感器建立直接联系。除了高压开关设备之外,智能化变电站中的一次设备多了分布式电源接口和柔流输电装置(FACTS装置)。由于CIID内综合集成了各个变电站自动化系统的功能模块,因此可以实现并完成IEC61850标准提出的变电站分层结构中的过程层和间隔层的功能。可以认为智能设备层是对过程层和间隔层的集成。智能化变电站的变电站层的功能主要包括各个CIID在站级的管理和协调应用,站级的一体化数据管理以及与远方调度控制中心和其它智能化变电站的信息交互、协调控制的管理等。当多个智能化变电站实现标准化的互联时,即可构成支撑智能电网的重要节点。

在该架构中, 变电站中每个控制和监视设备都需要从过程输入数据, 然后输出控制命令到过程。而CIID是核心, 它将控制、保护、测量等功能集成在这个通用的平台上, 通过通用的硬件和软件采集各功能需要的数据和状态量, 实现数据共享。CIID 主要有以下几个模块:

(1) 智能化现场测控模块, 它接受全网统一的同步时钟信号, 实现对一次设备的模拟量、开关量与状态量的同步采集, 也接受运行控制模块、继电保护模块等的控制命令, 实现对一次设备操作的控制与执行。

(2) 继电保护模块, 它可以直接从智能化现场测控装置获取所需信息, 以最短的时间做出反应, 并且在任何情况下其保护功能都不被闭锁,因此它是优先级别最高的模块。

(3)通信模块, 通过标准化的接口与变电站层和其它的CIID通讯交互。

五、智能变电站的优势

智能变电站能够完成比常规变电站范围更宽、层次更深、结构更复杂的信息采集和信息处理,变电站内、站与调度、站与站之间、站与大用户和分布式能源的互动能力更强,信息的交换和融合更方便快捷,控制手段更灵活可靠。智能变电站设备具有信息数字化、功能集成化、节奏紧凑化、状态可视化等主要技术特征,符合易扩展、易升级、易改造、易维护的工业化应用要求。智能变电站与常规变电站相比,其优势见下图:

六、智能变电的发展趋势

第一次技术革命:18世纪60年代首先发生在英国,它开创了以机器代替收工工具的时代。这场革命是以蒸汽机的发明为标志的。第一次技术革命使工厂代替了手工场,机器代替了手工劳动。

篇2

智能变电站就是将信息技术、通信技术、计算机技术和原有的变电基础设施高度集成而形成的新型变电站,它具有提高能源效率、减少对环境的影响、提高供电的安全性和可靠性等多个优点。智能主要体现在:1)可 观 测-- 量测、传感技术;2)可控制--对观测状态进行控制;3)嵌入式自主处理技术;4)实时分析--从数据到信息的提升;5)自适应;6)自愈。本文在常规变电站智能化改造研究的基础上,实现常规变电站的智能化改造的实际应用。智能变电站以先进的信息化、自动化和分析技术为基础,灵活、高效、可靠地完成对输电网的测量、控制、调节、保护、安稳等功能,实现提高电网安全性、可靠性、灵活性的资源优化配置水平的目标。

1 国内外变电站的现状

国内变电站自动化技术经过数十年的发展,整体水平已经达到国际领先。新建变电站,无论电压等级高低,大多采用变电站自动化系统,许多老变电站也经过改造实现自动化。当前的数字化变电站从技术上来说,其突出成就是实现了变电站信息的数字采集和网络化信息交互,但是这对于智能电网的需求来说,还是远远不够的,一种新型的变电站—智能变电站应运而生。

智能变电站是采用先进、可靠、集成、环保的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,同时具备支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能的变电站。在智能电网技术的推动下,智能变电站将成为变电站建设的主流模式。

2 变电站智能化改造设计的内容

本文开展常规变电站智能化改造的可行性研究,着重解决在解决变电站综合信息化集成,光互感器、常规互感器匹配,常规变电站智能化过渡等智能化变电站发展过程中的核心问题,实现对常规变电站测控系统的全面智能化整合与提升。

常规变电站智能化改造主要包括以下内容:

2.1 数据的智能一体化集成

采用一体化技术,实现全站SCADA功能的全景展示,以模块化、开放化的设计思想,实现监控系统的智能化。将全站信息通过开放、规范的接口,进行统一建模,建立信息统一的存取平台,提供标准的DL/T860通讯功能(包括Server/Client通讯),为各种应用提供高效、可靠、稳定的一体化数据平台。依托该平台,系统除具备常规的SCADA功能外,还配置工具软件、状态检测可视化软件、报文分析等软件,具有一、二次系统顺序控制、智能告警、状态估计、故障综合分析、保信子站、电压无功控制、负荷优化控制等功能。

2.2 参数的智能化传输

采用模型映射与协议的无缝转换,实现远动装置由传统的实时数据上传向各种参数智能化传输的转变。一方面承担常规站的远动机功能,另一方面子站控制器实现与调度系统的无缝连接,完成IEC61850与IEC61970模型的自动映射管理,从而实现变电站与调度自动化主站系统的一体化建模。

2.3 数据建模及数据模板的智能转换

利用数据建模与数据模板转换技术,实现传统规约转换装置向智能型的转变。智能接口装置针对智能变电站内智能设备信息交互的功能需求设置,提供了将非标准的智能设备信息转换为符合DL/T 860(IEC61850)标准的信息模型的功能。对站内直流屏、电度表、巡检、电源、风机、空调、消防等子系统进行数据收集整合和IEC61850标准规范建模,实现变电站实时集成监控和优化管理,对外主要采用MMS通讯服务为其它站控系统提供数据,实现站内信息快速互动。

2.4 在线监测的智能集成

通过具备数据智能集成汇总功能的智能控制柜实现变压器顶层油温及油位、有载开关的测控、变压器在线监测相关数据以及(包括油中溶解气体分析、局部放电在线监测、铁芯接地电流监测等)智能集成;实现断路器、避雷器等设备在线监测数据(包括断路器分合闸线圈电流、时间、速度、行程曲线、SF6气体压力、避雷器泄漏电流、动作次数等),以及该区域的辅助系统数据(照明控制、振动告警等)的智能集成。

2.5 运行环境的智能监测

整合视频系统、变电站监控系统,实现运行环境远程监测与综合自动化系统、辅助系统等的智能联动,通过摄像头快速定位报警设备或报警区域,避免人为的现场定位不准确问题,同时能够确认火警及其严重程度;通过图像分析处理功能,发现变电设备漏油、异物缺陷,采集断路器、隔离开关的分合闸位置,对变电运行巡视及程序化操作提供智能辅助判断;同时实现视频系统与安防系统、照明控制系统的智能联动,实现人员非法入侵的全天候监视;集成户内外环境温湿度及气象监测功能,并与空调、排风、排水等系统智能联动,实现室内温湿度的自动控制、调节,并根据雨量及场区水位自动启动排水系统。

2.6 变电巡视智能化

通过在变电站三维模型上规划巡视路线的功能,充分调动巡视路线上的相关摄像头,根据巡视作业指导书所要求的巡视过程中的主要观察点,利用摄像头的预置位,实现在模拟线路上自动巡视的功能,并通过图像识别技术,发现一些明显的设备缺陷,起到辅助运行巡视的作用。

2.7 设备状态可视化

设备状态可视化就是基于自监测信息和经由信息互动获得的高压设备其它状态信息,通过智能组件的自诊断,以智能电网其它相关系统可辨识的方式表述诊断结果,使高压设备状态在电网中是可观测的。建立变电站变电设备三维全景展示模型,变电设备的主要技术参数、设备状态等均通过三维全景模型进行展示。变电站主要一次设备(变压器、断路器、避雷器、开关柜等)安装外置的在线监测装置,采集设备状态信息,同时结合设备运行信息(运行电压、电流、开断故障电流、动作次数等),通过在线监测中心专家系统分析,将设备状态在集控中心进行展示。

3 研究方案及难点

计划对需智能化改造的常规站设备、运行情况进行深入的调研,对国内的智能化变电站设备主流厂家及智能化变电站相关运行维护单位进行广泛调研,深入分析电网公司对变电站智能化的需求,研究智能化变电站的表达模式,并在此基础上建立一种智能化变电站系统架构,为智能化变电站实用化打下坚实的基础。

本文的实施方案如下:

4 预期成果和可能的创新点

计划对需智能化改造的常规站设备、运行情况进行深入的调研,对国内的智能化变电站设备流厂家及智能化变电站相关运行维护单位进行广泛调研,深入分析电网公司对变电站智能化需求,研究智能化变电站的表达模式,并在此基础上建立一种智能化变电站系统架构。

智能变电能够完成比常规变电站范围更宽、层次更深、结构更复杂的信息采集和信息处理,变电站内、站与调度、站与站之间、站与大用户和分布式能源的互动能力更强,信息的交换和融合更方便快捷,控制手段更灵活可靠。与常规变电站相比,智能变电站设备具有信息数字化、功能集成化、结构紧凑化、状态可视化等主要技术特征,符合易扩展、易升级、易改造、易维护的工业化应用要求。

5 结束语

变电站是电力系统中不可缺少的重要环节,它担负着电能转换和电能重新分配的繁重任务,对电网的安全和经济运行起着举足轻重的作用。尤其是现在大容量发电机组的不断投运和超高压远距离输电和大电网的出现,使电力系统的安全控制更加复杂,如果仍依靠原来的人工抄表、记录、人工操作为主,依靠原来变电站的旧设备,而不进行技术改造的话,必然没法满足安全、稳定运行的需要,更谈不上适应现代电力系统管理模式的需求。

篇3

智能化变电站在数字化变电站的基础上,结合了智能电网的需求,对已有的变电站自动化技术进行了充实,实现了变电站的智能化功能.可见智能化变电站是智能电网运行与控制的一个重要部分。智能化变电站是衔接智能电网发电、变电、输电、配电、调度和用电六大环节的一个关键部分。作为智能电网“电力流、业务流、信息流”汇集的一个焦点可见智能化变电站对于智能电网的发展有着非常重要的作用。

1.智能变电站系统结构

智能变电站系统可分为:站控层、间隔层和设备层这三层。他们之间均是由光缆来联系的。

1.1 站控层

站控层相当于计算机监控系统站控层,它通过光纤和间隔层进行通信。这一层主要包括站级计算机和人机设备、服务器和路由器等。变电站的监测和预报、操作闭锁、报警、记录和自动诊断的功能、变电站的远方控制、继电保护值变更、故障的分析等都是在站控层实现的。

1.2 间隔层

包括监测设备和继电保护设备等。它的母线采用的是分散安装的形式,按间隔来装设双重化母线以达到保护间隔层单元的目的,并且还通过光纤和母线来保护中心单元的连接。间隔层通过光纤互联达到与设备层的通信。

1.3 设备层

设备层是指断路器、接地开关、隔离开关、分压型VD、罗果夫斯基TA、复合传感器和信息处理接口等这些智能化一次设备。其中分压型VD、罗果夫斯基TA和复合传感器这些技术的应用是设备层智能化的关键。

2.智能化变电站的技术特点

智能化变电站在电网运行维护,设备的信息以及电力的调度方面实现了全面的互动。对基于状态检测的设备进行全寿命周期化进行优化管理;变电站自协调区域控制保护的实现是以智能化变电站通过实景广域信息同步进行采集的,这样智能化变电站达到使各级电网安全稳定的运行要求,还可实现智能电网的各种高级应用;智能化变电站的实现为智能电网提供了稳定可靠的设备基础。所以智能化变电站在硬件方面应该具有设备功能集成化,扩展方便接口规范和安装模块化的特点,软件方面应该具有通讯可靠、信息共享、控制灵活和网络一体化等特点,具体来说应包括下述内容:

2.1 设备智能化集成技术。

这里所说的设备集成指一次、二次设备的集成。其中包括变压器、输配电线路、开关设备及各种相关的配套设备、还有新型柔性电气设备(装置)这些电力系统的各种一次设备与保护、控制以及状态诊断等相关二次设备的智能化集成技术。上述设备实现智能化集成后,实体电网将是一个由面向自身具备完善保护、控制、诊断等功能,同时对面向整个系统具有标准化、数字化信息接口并在电网中发挥着不同功能作用的智能体的有机结合。这些智能体在智能化电网控制决策系统的协调和控制下,能够很好的进行合作,可以完成智能电网的运行目标。

2.2 全景信息采集及统一建模技术。

主要是变电站的一些基本信息的规范化、数字化以及一体化实现和这些信心有关技术的研究。智能电网三流一体化的基础是实现广域信息同步并且实时采集,即统一时标,统一模型,统一接口,统一规范和语义。全景信息采集包括与智能变电站有关的电源、线路、负荷、为电网等。当然标准信息及其交换技术,信息的管理,分析和应用的集成技术等也包括在内。

2.3 智能化变电站系统和设备系统模型的自动重构技术。

这一点所涉及到的是变电站自动化系统中的一些智能装置的自我描述和规范;也包括基于以太网技术的智能装置的即插即用技术:研究变电站自动化监控系统对智能装置的识别技术、自动建模技术;研究当智能装置模型发生变化时的系统自适应和系统模型重构技术;研究自动化系统对智能装置的模型进行校验,对智能装置的功能及其模件进行测试、检查的交互技术;研究当变电站运行方式发生变化时,智能测控和保护装置在线自动重构运行模型的方法,后台系统自动修改智能装置的功能配置和参数整定的技术;研究自动化系统在智能装置故障时对故障节点的快速定位、切除和模型自适应技术。

2.4 间歇性分布式电源接入技术。

由于太阳能、风能这些目前大力提倡使用的清洁能源,一般都具有在比较偏远的地区储量丰富而且还相对不顾集中即资源比较分散、受气象等不确定因素的影响较大,因此能量的波动很明显,用于发电则会呈现出间歇性波动特性等特点。由此可见若这些波动的电源直接并网,肯定会对电力系统运行造成很大的影响,包括电力供应最重要的安全、可靠、稳定电能质量等都会造成巨大的影响。以上这些就对电力系统的备用容量提出了一个新的要求。而且由于这些间歇性电源的发电装置设计投资时事按其峰值功率计算的,所以在其能量波动大的情况下就降低了装机容量的可利用率。间歇性电源发展和利用所面临的一个主要问题就是如何解决能量不稳定的问题。间歇性电源并入智能电网的接口――智能化变电站,此时就要求采取措施解决这个问题,发展对应的柔性并网技术,实现对这些清洁能源电源的实时监控、功率预测、并能做到灵活控制,尽量的减轻间歇性电源对电网冲击和影响,保证电网能安全稳定的运行。

2.5 智能化变电站广域协同控制保护技术。

篇4

智能化变电站的五防系统的设计是现代化的智能变电站发展的一种必备的技术手段,它的完善和建设不仅关乎变电站智能化的发展前景,更是现在社会经济发展的可持续性的要求,先进的智能化五防系统有利于发挥变电站的工程设计的进一步优化,落实“规范、巩固、完善、提高”总设计要求,不断的更新技术设备,此外,我国电力系统根据变电站的实际运行状况,提出了电气设备五防建设的要求,并且颁布法规对电气的管理、操作、和使用原则等进行规定,所遵循的原则是:凡有可能引起误操作的高压电气设备,均应装设防误装置和相应的防误电气闭锁回路。根据此项原则,进而提出了变电站中的五防系统构建。同时,对于变电站五防系统构建的重要性在《防止电力生产重大事故的二十五项重点要求》中也有明确规定:采用计算机监控系统时,远方、就地操作,均应具备防误闭锁功能。这对于促进智能化的变电站五防系统的构建都起到重要作用,对于促进我国电力事业的稳定发展、国民经济健康运行有着重要的现实意义。本文从智能化变电站五防系统设计的原则进行分析,以期能够为变电站智能化的五防系统构建做出理论上的探讨前提。

1 智能化变电站五防系统构建的原则

1.1 推广和使用现代最新的变电站设计标准技术

智能化变电站的五防系统构建要根据现在的变电站标准设计的要求,推广和使用先进变电站的防电气误操作的先进方案,在设计过程中,要注意借鉴以往工程的设计理念和技术,不断的吸取经验教训,不能局限于一套标准方案的设计,根据现实工程实施的实际情况,是的智能化变电站的技术手段进一步优化,创新标准设计。

1.2 不断地更新技术和设备,优化智能化变电站整体布局

随着科学技术的不断发展和更新,变电站智能化的装备以及技术同时也要跟随时代和科技的步伐不断优化,即使的采用和引进新的技术设备来充实变电站设备以及五防系统的调整,积极的改进布置优化方案,具体的在通讯设备、专用通信室、低压室、配电屏等改进更新,结合现代网络监控系统的发展,使得变电站智能化、网络自动化运行操作,减少人为事故的发生,最大限度的应用科技创新来使得智能化变电站总平面五防系统构建成为可能和一种必然趋势。

1.3 遵循“规范、巩固、提高、完善”的总设计方针

这是智能化变电站无非那个系统构建和设计时的总体要求的体现,遵循工程规范规章进行建设,不断巩固变电站设置的基础设施,加强建施工的力度,提高工程建设质量,保证建设的科学可持续发展性,完善总设计方案并且不断优化改进,及时的发现问题,提高防范意识,防患于未然,最大限度的提高变电站五防系统构建的合理性和环境适应性,对构建智能化、网络化的五防系统打好基础,促进变电站的良性循环发展。

1.4 将工程条件和规程规范协调统一

变电站电气操作和设计施工时,不但要严格遵守工程实施的规范规章制度要求,避免因人为因素导致的施工上的失误,规范管理程序和操作步骤的流程,同时,要根据具体的智能化变电站的环境条件特点,将工程施工规范规章和当地的环境条件想统一,做到因地制宜的建设开发,最大限度针对环境特点来构建五防系统的结构,做到人与自然环境发展协调统一。

2 智能化变电站五防系统的特点以及实现方式

智能化变电站的五防系统的构建是指防止带负荷分合刀闸、防止误入带电隔离区间、防止误分合断路器、防止带电挂接地线、防止带地线合刀闸等防止五项电气误操作。将变电站中的五防系统与网络自动化系统融为一体,通过对数据等信息的共享,完成自动化系统监测的功能的实现,监控一体化的五防系统具有几方面以下特点:

1)五防系统的工作站作为整个变电站监控系统的一个节点,具有灵活性和可操控性的特点,既可以作为系统运行的操作总站,也可以进行独立的系统配置,根据实际情况进行灵活的选择,以便于实现整个变电站系统的操控;

2)五防系统集监控和防误于一体,在变电站数据信息共享的基础上,五防监测不用采取任何通信手段,及时获取系统信息,进行整个操控系统的监测和防误排查,减少二次建模的中间程序以及系统维护的工作量,节省了许多复杂环节,具有便捷性和直接性,同时,也大大提高了数据信息的真实性和可靠性,是智能化变电站系统优化的可靠和必要的手段;

3)五防系统作为整个系统监控的一个智能化组成,在技术优化上不断改进和创新,与监测系统全方位的无缝融合,具有数据图形界面化的特点,并且同时支持UNIX/Windows/Linux等不同的操作系统,便于工作人员的操作,改变了以往复杂的操作程序,对整个监测系统进行优化,从而极大地减轻了操作人员的负担和工作量。

随着五防系统构建在变电站中的重要性日益提升,我国各个单位也在致力于研究五防系统技术的创新和改进,对智能化的变电站五防系统构建的实现创造了可能性,目前,不断探索在新技术条件下五防系统的具体实现方式主要有如下几方面:

1)电气防误闭锁。电气防误闭锁是变电站中进行防止电气设备系统故障的一种有效手段和实现方式,作为一种最基本的电气联锁技术在实际操作中经常用到,它主要是通过联接电力系统中相关设备的辅助触点方式来实现电气闭锁的目标。具有可靠性和直接性。在实际操作中,电气闭锁回路经过不断完善和经验总结,发展了一套有效的电力系统防误闭锁程序,具备操作方便、可靠等优点,但是同时,也存在回路复杂,耗费电缆等缺点,并且存在刀闸辅助触点不可靠、户外电磁锁机构易损坏等问题,需要我们在实践中不断完善和发展电气防误闭锁设备和技术的改进、创新,以实现五防系统的顺利构建;

2)机械防误闭锁。机械防误闭锁设备装置一种户内变电站中的常用方式。结合了户内35kV的手车式开关柜设备以及10kV的金属封闭型开关柜,把机械防误闭锁装置联合设计,在相关操作部位之间采用机械机构的有机联系来实现联动操作,这种闭锁方式结构简单、操作便捷,无需辅助设备,同时,机械闭锁设备具有防尘、防污染等功能,可以在污染严重的环境下装置,但是,机械闭锁装饰的环节较多,在运行当中易导致机构卡死的故障,不能有效防止误分、误合断路器,给变电站的智能化闭锁程序带来一定程度上的局限性,需要我们在实际中根据具体环境条件,进行分别设计统筹,趋利避害,以实现智能化变电站的五防系统构建;

3)程序锁。程序锁是一种简单便捷、易实现户外配电装置的一种实现方式,不受距离的限制,用钥匙传递和实现相关电力系统相关操作程序。同时,在操作上具有连续性的特点,从第一把锁开始,中间不能中断,这在一定程度上使得在使用上的安全性和可靠性降低,在实施过程中,要严格操作,防止操作中的卡涩现象或程序发生紊乱,防止带电合地刀及防止误入带电间隔的功能不完善,实现五防系统的顺利构建。

智能化变电站的五防系统的构建是电力系统中的重要基础,不仅关乎电力事业的安全稳定发展,更是现在社会主义经济发展的可持续发展观的理念和要求,科学高效的构建五防系统有利于我国变电站的工程设计的进一步优化,进一步落实“规范、巩固、完善、提高”变电站总设计要求,在不断的更新变电技术设备的前提下,加强变电站无非五防系统构建的方案的优化设计,是建立良性循环的高水平、高效率、高科技的智能化变电站。目前,随着科学技术与网络水平的高速发展,基IEC61850 规约基础上的智能化变电站已由技术研制阶段逐步进入工程试用阶段,智能化变电站已成为变电站自动化建设的发展方向。五防系统的构建是智能化变电站发展的必然趋势,基于IEC 61850 标准,按照过程层、间隔层、站控层三层结构体系分层构建,以智能化的光纤通信网络代替繁杂的二次电缆,并实现智能设备间信息共享和互操作的变电站优化做出进一步探索,建设科学、先进的变电站五防系统构建,优化变电站平面设计对于保证我国电力持续健康供应具有重要意义,有利于促进国民经济的健康稳定发展。

参考文献

[1]南方电网变电站标准设计第五卷110KV变电站标准设计[M].中国电力出版社.

篇5

中图分类号:TM411+.4 文献标识码:A 文章编号:

近年来,随着以太网技术、电子互感器、智能一次设备的不断发展和完善以及国际标准IEC61850的制定,给变电站智能化提供了充足的条件。在数字化变电站技术日趋成熟的同时,也给传统变电站自动化系统的应用瓶颈带来了技术上的重大突破,推广智能化变电站现已成为大势所趋。然而,若是大量新建智能化变电站前期资金投入非常可观,并且也无法解决传统变电站中存在的种种问题。为此,最佳的途径是对现有的变电站进行智能化升级改造,这样不仅节约了投资,而且还能进一步解决传统变电站中存在的问题,可谓是一举两得。借此,本文220kV变电站智能化改造策略展开探讨。

一、220kV变电站智能化改造的重要意义

现阶段,随着自动化、计算机以及通信等技术的不断发展和完善,为电力系统智能化的实现提供了必要条件。就智能化变电站而言,其属于一门包含多种专业学科的综合性技术。借助微型计算机,真正实现了对传统变电站中继电保护装置、测量方式、控制手段、通信、管理等全方位的技术改造,为我国电网运行管理带来了一次颠覆性的革命。对220kV变电站进行智能化改造具有如下几点意义:

(一)有利于提高设备运行的可靠性

220kV变电站智能化改造是以微机系统及其相关软件为基础进行设计,这种设计具有较强的分析和判断能力,可以有效地应对电力系统中各种复杂的故障,微机系统借助软件程序能够对相关硬件电路中的各个重要环节进行在线自检,这样可以进一步预防各种故障的发生,从而确保了变电站一、二次设备运行的安全性和可靠性。

(二)有利于提高供电质量

变电站智能化改造后,自动化系统中具有的电压无功自动控制功能,不仅可以进一步提高电压合格率,而且还有助于确保电力系统中各主要电气设备的安全性,从而使无功潮流变得更加合理,极大程度地降低了网损,供电质量随之显著提高。

(三)有利于提高故障处理速度

变电站智能化改造后,自动化系统能够收集更多的数据信息和信号,并在对此进行分析处理后,将结果反映给现场值班人员,同时还能提供相应的处理意见,这样一来,值班人员便可以及时准确地发现问题并处理问题,解决系统中存在的故障,以最快的速度恢复供电,有利于确保供电可靠性。

(四)有利于提高经济效益

变电站智能化改造后,电力系统中的测量数据与运行信息可以进行统一规划,并且获得的全部信息都能够由各个部分一同共享,这样大幅度节省了控制电缆。同时,由于采用的是计算机和通信技术,也使资源共享变为可能,加之硬件电路多以集成电路为主,其具有体积小、结构紧凑、功能强大等优点,极大程度地缩小了变电站的实际占地面积。此外,因市场中处理器和集成电路的价格不断下降,使总体投资有所减少,经济效益非常明显。

(五)为无人值守提供了条件

变电站智能化改造后,由自动化控制系统便可以对各种设备进行监视和控制,这样可以减少现场值班人员的数量,若是再配置与调度中心的通信功能,便可以实现四遥,即遥控、遥测、遥信和遥调,不仅为变电站无人值守创造了条件,而且还有助于确保变电站安全、稳定、可靠运行。

二、220kV变电站智能化改造应遵循的基本原则

在遵循国家电网公司制定的有关智能化变电站以及智能设备的技术规范和导则的基础上,应当做好统筹规划设计,以最小的投入获得最大的产出。在对220kV变电站进行智能化改造的过程中,不仅要充分应用先进的新技术,而且还要尽量保留原有的设备,同时还应兼顾智能电网未来一段时期内的技术发展,具体应遵循以下几点原则:

(一)经济性原则

变电站在进行智能化改造的过程中应当充分结合自身的重要程度、设备类型、场地布置情况以及运行环境等,并从发挥原有资产的使用效率和经济效益的角度出发,以提高运行管理效益为目标,务求做到经济、实用。

(二)可靠性原则

在对变电站进行智能化改造的过程中,必须严格按照国家电网公司制定的与安全生产运行有关的规定要求,在具体改造时,应确保变电站运行安全、稳定、可靠,不得因改造导致变电站安全性和可靠性下降,这是整个智能化改造中必须遵守的原则之一,如果违背这一原则,将会使智能化改造失去原有的意义。

(三)因地制宜、就地取材

变电站智能化改造应当在满足总体技术框架要求的基础上,尽可能做到因地制宜、就地取材,对原有的设备不要进行大改大换,应制定出科学合理、切实可行且具有一定针对性的改造方案,确保以最小的投入获得最大的产出,这样即可以提高经济效益,又可以确保变电站可靠运行。

(四)技术先进性原则

在对变电站进行智能化改造的过程中,所选择的技术应当是目前最为先进的技术,并且要确保其能够满足智能电网未来发展的需求,这样才能真正体现出变电站智能化改造的价值,进而发挥出其应有的功能和作用,推动电网向智能化方向发展。

三、220kV变电站智能化改造的具体策略

220kV变电站智能化改造应以IEC61850这一国际标准为基础进行建模及通信,其具有以下两个方面的特征:即一次设备智能化、二次设备网络化,主要的技术特征如下:采用数字化结构的智能开关和电子互感器、采用基于网络通信的保护与控制等二次设备、采用基于IEC61850这一国际标准的通信平台、采用光网二次回路技术等等。

(一)智能化变电站的改造目标

IEC61850这一国际标准的应用,有效地推动了我国变电站的标准化进程,站内所有的二次设备基本都能够以标准的方式进行通信,并在站内完成统一的信息交互。合并单元的引入以及电子互感器的应用实现了采样环节的融合、智能操作箱的应用使开关量采集与控制输出这两大环节有机地融为一体,这些都为站内二次设备的融合提供了条件。通过二次设备的融合,能够进一步促进由单个保护或测控单元实现多线路、多间隔保护及测控的可能,这一点完全符合资源节约型战略目标。

篇6

1、智能变电站的优势

智能变电站可分为过程层、间隔层和站控层。过程层包含了由一次设备和智能组件所构成的智能设备、合并单元和智能终端。其中,智能设备的选择比较注重安全可靠、低碳环保、技术先进和集成高效等特性,智能变电站的基本要求是基于通信平台网络化、全站信息数字化和信息共享标准化 ,基本功能是自动完成信息采集、测量、计量、保护、控制和监测等,并可根据实际需要,支持电网实时智能调节、自动控制、协同互动和在线分析决策等高级功能。

2、我国智能化变电站的现有模式

目前,我国农村35kV智能化变电站的建设引进了多种设计思路,以实现智能化的升级和提高经济效益,主要有数字化智能变电站典型建设和分布分散式智能变电站标准建设两种模式。

2 .1数字化智能变电站

根据EIC61850通信规范的要求,由智能化一次设备(智能化开关、电子式互感器等)和网络化二次设备(过程层、间隔层和站控层)分层构建而成,可以实现智能变电站内不同厂家的电气设备间的信息共享和互操作。同时 ,由于数字化变电站的每个间隔功能相互独立 ,以及计量、保护、电能质量分析和故障录波等功能也都相互独立,需要多台设备才能完成保护测控,由此带来的缺点是设备装置数量多,结构较为复杂 ,并增加了成本的投入,虽然在一定程度上实现了智能化变电站的功能,但不利于普及和推广。

2 .2 分布分散式智能变电站

分布分散的标准建设模式是国家电网公司面向110kV及以上变电站所推出的比较科学的建设模式 ,它的保护基于间隔,采样数据传送依据 EIC61850-9-2的标准 ,采用 “直采直跳”的方式 ,状态量的传输是以通用的面向对象的变电站的事件方式传输;设备在线监测位于间隔层,站级保护控制采用网络化数据。这种分布分散模式的特点是侧重于突出保护的依赖性,让整个自动化系统的间隔层形成保护测控自动化两套系统使保护可靠性不依赖网络。但该模式增加了投资 ,综合造价高,更适用于高电压等级变电站,因此难以在农网中加以推广。

3、新型集成式智能变电站建设模式

通过以上分析 ,我们可以看到,现有的智能化变电站建设模式不能适应当前35kV农网智能化变配电的需要,由此 ,我们积极探索新型的集成式建设模式 ,以求能实现智能变电站的功能,降低投资,提高效益,增加安全可靠性。

3.1设计思路

随着现代计算机科技的发展 ,独立装置已完全具备对整个变电站的信息进行系统化处理的能力 ,尤其是针对35kV及其以下的相对简单系统的变电站 ,集成式数字化智能综合保护装置完全有能力实现整个间隔层的功能。新型集成式智能变电站依照 EIC61850的通信规范:以功能服务为承载、以规范数据通信为途径、以构建信息模型为手段 ,采用系统的自动化功能建模方法 ,提供了变电站信息一体化建设的标准。集成式设计思路是在数字化信息化的基础上 ,对信息进行集中处理 ,以求实现原先独立的保护控制单元所无法实现的分布和集成式应用 ,进而实现智能化。对于重要 网络或设备采取双冗余的配置方式,控制单元、光纤、数据采集系统及智能综合保装置均采用的是双系统模式 ,起到互为热备用、互相校验的作用。

3 2集成式变电站结构精简功能强大 ( 如图1 )

过程层针对35kV变电站互感器和断路器等一次设备距离较近,且均为开关柜结构的特点,为便于接线选用智能控制单元和合并单元集成为一体的就地智能化装置 ,能节省投资并提高效率。间隔层处理所有过程层光纤上传的信息 ,设置一主一备两台保护 ,两台交换机 ,充分保证了所采用 的集成式数字化智能综合保护装置的安全可靠性,使其能顺利实现以前多台智能电子装置所实现的功能以及许多单台间隔层智能单元所无法实现的功能 ,包括完成更多的计算 ,接入更多的交流量。因此 ,需要有高可靠的硬件结构 、更快的运算能力和丰富的网络资源 ,完成面向对象的建模 ,实现智能化 ;站控层从单台集中式智能综合保护装置上通讯 ,另外来接其它智能设备 ,较为简单。

3.3集成式智能变电站的优势

其一 ,安全可靠 :不同间隔系统信息的集成度高 ,有效利用相邻元件间冗余广域信息来提高保护性能 ,增强可靠性 ,保证整个系统安全、稳定 的运行。如可以实现低周低压减载、站域系统保护、站域优化控制和小电流接地选线等功能。其二 ,简单 :根据农村电网的现实情况和需要对绝大部分功能和设备进行了整合 ,去繁就简 ,最大限度的减少设备数量和网络复杂程度。其三 ,降低成本 :在统一的软、硬件平台上运行变电站的智能设备 ,其特色在于可基于现场编程 ,增加或调整系统功能,灵活度高、稳定性强 ,方便快捷 ,从而有效的降低了调试成本、设备成本和培训成本。其四 ,系统优化 :采用光纤代替了电缆 ,电子式互感器取代了常规互感器 ,减少了设备占地 ,优化了电缆设计 ,改善了变电站的电磁环境 ,不仅降低了设备和施工成本 ,也大幅度的降低了对二次设备的功能及电磁兼容的要求 ,优化了智能化系统。

参考文献

篇7

前言:随着现代信息化进程逐渐加快,智能化变电站出现在电网工程项目当中。智能化变电站运用现代信息科技,实现全站数字信息化,提升变电站的工作效率。同时,随着电网用电负荷以及质量水平的提升,变电站扩展成为未来发展趋势。扩建当中的各项具体内容的调试成为重要内容,实现智能化变电站扩展调试技术的具体分析,对于智能化变电站发展具有重要意义。

一、智能化变电站的概念及其特点

1、智能化变电站的概念

智能化变电站采用低碳、环保的智能设备,通过对全站实现数字化、信息化以及网络化为发展基础,实现自动信息监测以及保护功能,弥补传统变电站的缺陷,实现了传统变电站的变革,逐渐向着智能化方向发展。智能化变电站的发展是数字化变电站的延伸,以信息化平台为变革基础,实现全站信息化互动形式的发展。传统变电站当中的各个子系统是信息孤岛,各个信息平台之间缺乏联系,导致信息化互动形式不强。通过现代信息化形式的逐渐发展,以及IEC61850统一标准的应用,使得变电站各个系统之间形成资源共享形式。

2、智能化变电站的特点以及特殊性

2.1智能化变电站的主要特点。

2.1.1一次设备智能化:随着光学以及电子学原理的各种设备仪器的使用,常规模拟信号以及控制电缆逐渐地转化成信号以及光纤控制,并且智能化实际运行过程中采用数字通信信号。现场采集数据以及状态信息能够实现全站范围内共享。

2.1.2全站信息数字化:对变电站实现一、二次设备进行实际控制,能够实现信号通信过程的双向性。通过变电站内信息进行实际管理,保证全站信息传输过程数字化。

2.1.3信息标准化:IEC61850标准的统一制定,实现全站信息共享。保证全站信息传播准确性,并通过统一方式,实现各个系统孤岛之间进行联系,保证站内信息的集中获取。

2.1.4应用互动化:主要体现在变电站之间的相互联系上,实现全站内数据连接。同时在日常维护过程中,同样应该建立联系,实现中心站与受控站之间的联络,对于用户的反馈信息应该及时处理。

2.2智能化变电站扩建特殊性。

2.2.1联动性:每扩建一个新间隔,SCD文件都需要进行修改,并针对该文件相应的智能装置进行重新配置。在已经投运的故障录波器、网络报文分析仪以及母

线保护等与新建相关的智能装置都需要考虑此特点。

2.2.2依赖性:现场二次电缆回路验证完毕后,需等待后台集成SCD(变电站配置描述),而SCD文件的集成需要相应保护装置、合并单元以及智能终端的配置文件,且现场装置版本并不固定为最新版本,厂家进场后可能需要进行升级,这使得调试工作进度更依赖于厂家,因此需要对各厂家进行提前控制,统一时间到现场进行SCD的集成和组网工作。

2.2.3一致性:如运行间隔母线保护停运后,应该对其配置进行备份,记录保护各个支路的电流数值以及相位、刀闸位置等信息,将新配置下装后,与记录信息核对保持一致,在调试过程中,需根据具体问题制定及时解决的对策。

二、智能化变电站扩建遇到的问题以及安全措施

1、智能化变电站扩建遇到的问题

1.1接火问题:对于交直流接火以及运行屏内接线1应该主要由运行方专业班组进行实际接线操作,禁止盲目私接。

1.2 运行屏柜问题:首先对二次线进行核对,保证其准确性,再与运行方保护班组进行二次回路的检查,如通流、通压、启动失灵和闭锁重合闸等,并及时做好安措。试验过程中二次线禁止接入运行屏,并且运行屏保护装置由保护班组进传动试验。

1.3 遥控操作问题:在进行新间隔遥控操作前,需要相关班组人员对其余间隔测控装置进行隔离安措,全部转至就地状态,保证操作的准确性和安全性。

1.4 母差传动问题:传动试验由运行方保护班组完成,为了避免误传运行间隔,需要对运行间隔直跳光纤进行隔离安措,并做好记录,传动结束后以此恢复,并检查各间隔智能终端有无报警,确保链路正常。

2、智能化变电站扩建安全措施

在进行变电站扩建过程中需要重视以下安全措施,保证扩建过程中安全性的有效提升:严格执行作业票程序,禁止无票作业;针对工作地点、带电部位、停电部位、安全事项以及工作内容进行详细交底;一次设备试验过程中需要保证接地线良好,明确接地端以及设备端的先后顺序;避免交叉作业,禁止吊臂下作业;运行变电站当中禁止打伞,避免雨中作业;梯子使用绝缘梯,进行搬运过程中应横向搬运;做好运行设备二次线安全措施并记录等。通过上述安全措施,保证智能化变电站运行安全性。

三、智能化变电站电气设备的安装

1、主变压器的安装

作为变电站系统设备的重要组成部分,主变压器安装质量好坏将对整个变电站能否安全运行有着直接作用,因此相关工作人员在安装主变压器时必须严格地以相关的安装规范作为操作依据,而且在安装之前,必须通读主变压器设备安装说明书,从而确保编制的主变压器设备安装技术具有科学性和合理性,并以此为基础完成主变压器的安装。

2、室外高压隔离开关的安装

在安装室外高压隔离开关设备前,相关的工作人员应首先全面检查设备内部的组件,以保证绝缘子的固定及瓷件完好,同时确定两个开关之间的距离误差保持在 10mm 以内,并确保安装高压隔离开关时保持杆位在同一水平线上,并将误差控制在2mm之内。其次,需要将绝缘子固定在支柱上,并保证三相V 型夹角具有一致性,位于同一侧的瓷柱在安装时应保持在同一水平线上。另外,开关的三相触头与主触头应该同时与其他设备进行接触,并将两者的相位差控制在 5mm 之内,同时需要注意的是要保证开关触头表面的平整度,以及开关两侧的压力也

要保持一致。完成导电部分的安装后,利用 10mm×0.05mm 塞尺可能会出现难以塞进去的情况,此时需要对其作出相应的调试,完成调试后将其进行固定。

3、无功补偿装置的安装

在无功补偿装置的安装中应选择具有较强的功能性与自动化功能的 DWZT 变电无功自动调节装置设备,由于其内部功能性较多,因此对其安装质量也提出了更高的要求。DWZT 变电无功自动调节装置设备在安装时所应用的电容器重量应保持在4.3吨左右,并将设备组高控制在3.2m以下,并在设备运输过程中合理控制设备的倾斜程度,一般来说不能超过 15 度,但由于电容器的门框高度在 2.5m,因而给电容器进入室内造成了一定的困难,为了解决这一问题,相关工作人员可根据实际情况采取适当的解决办法。

四、智能变电站安装调试关键技术分析

1、变压器的安装调试

变压器安装调试是变电站的核心部分,安装之前一定要检查相关证件是否齐全,并且认真检查外观是否有机械损伤和漏油现象,保证变压器能够长时间运行。安装调试过程中要注意高低压侧方向,装有气体继电器的变压器气流方向和高低压进线保持一定坡度,通常为 1%-2%,确保变压器基础和轨道相互吻合。装设高低压母线的时候,保证母线中心线和套管中心线重合,并且采用同时固定方式进行固定。变压器安装完成之后,应该进行调试试验:空载调试和负载调试,检查相关参数是否满足设计要求。此外,还应该进行绝缘测试,保证变压器正常运行,不会出现漏电情况。

2、互感器的安装调试

互感器包括两种:电流互感器和电压互感器,其中电流互感器安装调试过程中要保持电流互感器不会处于断路状态,而电压互感器不会处于短路状态。电压互感器在安装过程中,首先要检查套管没有出现裂缝,并且是否胶合牢靠,其次要检查附件是否齐全,并且保证二次接线板完整,绝缘性好。电流互感器要保证接线正确,如果必要可以进行升流试验用来保证回路接线正确,只有调试合格之后才能投入使用。

3、电力电容器的安装调试

电力电容器在安装前要检查套管芯棒是否出现弯曲、滑扣现象,并且确保外壳没有出现裂缝或者凹凸缺陷。电力电容器安装地面应该用砂浆涂膜压光,必要的时候可以铺沙。安装过程中按照铭牌标注进行分组,保证三项电容器差值达到最好状态。调试过程中,应该检查电容器温度和自检功能是否正常,确无裂纹、无遗漏。

4、二次设备系统的安装调试

智能变电站二次设备系统调试采用光纤介质连接,电流和电压调试首先要检测精度和零漂情况,采用一次升压和升流方法来进行同步调试。变电站启动调试主要调试二次设备内部接收功率和端口发出功率。二次侧光纤以太网是否连接良好可以通过检测光通道衰耗、误码率来确定。智能开关的调制可以通过故障模拟进行,即是人为制造故障来检测智能开关运行情况。

五、结束语

综上所述,智能变电站安装调试是一项系统化、综合化的工作,要求工作

人员具有过硬的专业素质。智能变电站作为变电站最新的发展方向,不仅能够大大提高变电站工作效率,而且能够最大限度的取得经济效益和社会效益,所以智能变电站的安装调试应该考虑多方面因素,比如变压器安装调试、互感器安装调试等等,做到未雨绸缪,提高工作效率的目的。

参考文献:

[1]孟庆东,周晓燕,李庆贺. 智能化变电站二次系统调试技术研究[J]. 中国电业(技术版),2013,06.

篇8

随着我国科技的飞速发展,变电站智能化技术已经达到了一定的水平。在我国城乡电网改造与建设中,不仅中低压变电站采用了智能化技术,在220kV以上的超高压变电站建设中也大量采用智能化新技术,从而有效提高了电网建设的现代化水平。科学技术的发展是永无止境的,随着相关变电站的技术日趋成熟,在实时系统中开发并应用计算机高速网络技术已经成为发展的必然。变电站智能化技术是一项具有高安全性、高稳定性的技术,同时能够有效降低运行、维护的成本,从而大大提高经济效益。

1 变电站智能化技术

变电站智能化技术就是采用先进、可靠、环保的智能设备,将数字信息化技术全面应用在变电站中,将通信网络化、信息共享作为基本要求,通过计算机自动完成信息的采集、测量、控制、保护、计量和监测等变电站正常运行的工作,同时智能化变电站可以根据实际需要,对电网实行自动控制、智能调节等高级功能。

2 变电站的基本结构

2.1 分散(层)分布式结构

分散(层)分布式结构就是将“面向对象”作为理念设计分布式结构[1]。“面向对象”就是指将电气一次回路设备或电气间隔设备作为面向对象,将设备中的数据单元、采集单元、控制单元和保护单元进行分散安装,同时,在一次设备附近安装通讯设备,通过通信网络之间相互连接,实现随时与监控主机通信的目的。

2.2 集中式系统结构

集中式系统结构就是以功能较强的计算机为主,通过扩展其I/O端口,统一对变电站的数据信息进行采集,然后由I/O端口进行直接输入计算机,由计算机进行计算和处理,通过微机监控、微机保护和自动控制等功能进行完善。由前置机完成数据的输入、输出、保护、控制及监测等作用,后台机完成数据处理以及后期工作[2]。该结构对监控主机的性能要求较高,但是其系统处理能力有限,开发手段少,在开放性、扩展性和可维护性等方面处理能力较差。

2.3 分布式系统结构

分布式系统结构就是将变系统功能分布的多台计算机连接到共享资源的网络中,然后对变电站的工作实现分布式处理。该结构具有的最大优点就是很好地利用了主、从CPU的作用,其系统各功能模块通常是多个CPU之间采用网络技术或串行方式进行数据通信,使用具有优先级的网络系统解决数据传输的问题,并且提高系统的实时性[3]。该结构系统在一定基础上能够方便系统的扩展和维护,系统的局部故障不会导致其他模块出现瘫痪的现象。在安装过程中,可以通过形成集中组屏或分层组屏的方式,有效帮助变电站的正常运行,这两种系统组态的结构,通常情况下使用于中、低压变电站。现阶段,该系统还存在抗电磁波干扰、信息传输的问题。

3 变电站智能化系统的综合运用

变电站智能化技术的实践运用体现在很多方面,下文对控制和操作闭锁、微机保护、数据采集、无功电压就地控制几个方面进行简介。

3.1 控制和操作闭锁

控制和操作闭锁就是指操作人员可以通过CRT屏幕随时对电容器组投切、断路器、变压器分接头、隔离开关进行远程控制[4]。从而能够有效避免了系统由于故障导致的无法操作的问题,同时在系统设计时,应该保留人工直接跳合闸的措施。

3.2 微机保护

微机保护就是利用智能化技术对变电站内的电气设备进行保护,其中包括母线保护、线路保护、电容器保护、变压器保护等,通过安全自动装置对变电站的正常运行实施保护。同时通过对故障进行记录、对设备的定值进行修改等工作,在各种设备的保护的工作中积累经验。

3.3 数据采集

数据采集大致包括三个方面。第一,状态量采集:通过对断路器状态,隔离开关状态以及设备信号进行采集工作,同时将采集的数据信号以光电隔离方式输入系统,确保数据采集的完整性。保护动作信号则是通过串行口(RS-232或RS485)或计算机局域网的方式进行采集。第二,模拟量采集:通常情况下,变电站采集的模拟量以线路电压、电流、功率值作为首要采集数据。除此之外,还包括馈线电流,电压、频率,相位等电量的采集,同时也包括变压器油温,变电站室温等非电量的采集。模拟量采集的精度需要满足SCADA系统。第三,脉冲量采集:脉冲量的采集主要是针对脉冲电度表的输出脉冲,其内部也采用光电隔离的方式与系统相连接,通过计数器对脉冲个数进行统计,从而实现脉冲量的采集工作[5]。

3.4 无功电压就地控制

通常情况下,无功电压就地控制采用调整变压器分接头、电抗器组、投切电容器组的方式。在操作的过程中,可手动可自动,人工操作可就地控制,也可以远程控制。专门的无功控制设备是用于实现控制工作,同时也可以作为监控系统对保护装置的电压进行监控。

4 结束语

综上所述,变电站智能化是未来变电站的发展方向,对变电站的监测系统集成以及变电站的信息平台进行智能开发,能够有效帮助变电站智能化技术的发展。该技术对于实现电网调度有着重要作用,对于电网的安全和经济运行水平的促进起到良好的保障作用,同时大大加强了电网的性能和可靠性,对保证电网的安全稳定具有重大的意义。

参考文献

[1]段日新.变电站自动化系统的前沿技术[J].西北电力技术,2010,10(03):156-157.

[2]吴沛东,王京阳.变电站自动化系统发展方向探讨[J].黑龙江电力,2011,05(02):149-151.

[3]董锴,赵敏,赵宏军.变电站信息管理技术的应用[J].科技信息(学术研究),2011,19(32):206-209.

篇9

文中对高压设备智能化进行了概述,提出了智能变电站高压设备的智能化需求,并主要从两个方面对其进一步探讨与说明。

一、智能变电站的概念及基本特征

随着人类社会的不断进步,全球经济及计算机网络的都得到了飞速的发展,电力系统与人们的切身生活和生产息息相关。智能电网首先在欧美国家试运行并取得了很好的收效,这就为全世界的智能电网的发展开辟了安全、高效和环保的全新的发展空间。智能变电站是指以全站信息数字化和网络化为基础,体现信息平台的共享,通过自动对信息进行采集、控制、分析、测量等实现自动调节控制与在线协同互动的一种先进可靠又低碳环保的高性能的变电站。智能变电站极大程度地提高了变电站的运行性能;智能变电站不仅有效地支持了电网的安全运行,而且实现了灵活接入和退出可再生能源。智能变电站的通信平台和全站信息采用数字化处理并实现了标准化及网络化管理,智能变电站的信息应用实现了很好地互动。智能变电站更好地体现了安全可靠、高效互动的特点。

二、智能变电站的发展背景和基本状况

随着国家电网公司智能电网规划的推行实施,综合自动化变电站被逐渐淘汰,取而代之的是伴随计算机技术飞速发展而兴起的数字化变电站。数字化变电站实现了数据信息的标准化和平台共享,使变电站的经济性能得到大幅提高,同时变电站更易于统一化管理和维护,变电站本身的各项功能也都得到了良好地提升,如变电站内部数据监测更加规范,其与外界建立的开放网络系统也更加科学。数字化变电站结合光电互感器的应用,在IEC61850(DL/T860)标准的规范指导下,已经渐渐在工程实践领域得以应用。然而数字化并不等同于智能化。随着在工程实际中人们对变电站功能要求的不断提升,高级智能变电站已经成为一种迫切的发展趋势。经过多年的积累应用,数字化变电站的很多效果还是值得推广的。智能变电站的提出正是建立在在数字化换变电站的基础之上。只不过,智能变电站的数字化程度更深,其所有设备(如二次设备及其辅助设备等)都经过了统一建模,此外,智能变电站加强了其高级应用,更突出了其自我检测的智能性能。

三、智能变电站高压设备智能化成为一种需求

我国在国内一些相关智能设备供应商、高等院校及相关科研人员的参与下,提出了适宜于我国的高压设备智能化的概念。

(一)高压设备智能化(智能设备)概述。智能设备是指一次设备和智能组件的有机结合体,具有测量数字化、控制网络化、状态可视化、功能一体化和信息互动化特征的高压设备,是高压设备智能化的简称。它是智能变电站不同于其他变电站的最主要的区别,是智能变电站最重要的构成部分之一。智能组件的由若干智能电子装置集合组成,承担宿主设备的测量、控制和监测等基本功能;在满足相关标准要求时,智能组件还可承担相关计量、保护等功能。总体来说,智能设备是一次设备与智能组件的有机结合。

(二)高压设备智能化需求有关探讨。智能组件的发展经历了目前阶段、过渡阶段以及成熟阶段。在智能组件的目前阶段(又称试点阶段),起保护、控制等作用的智能组件都是采用外置的安装方式。传统的一次设备(高压设备)与传统的二次设备(智能组件)构成一个松散的、不严格的“智能设备”,高压设备与智能组件十分契合地形成了间隔层和过程层。随后,智能组件逐渐开始尝试进行嵌入式的安装,这样就使得当初高压设备与智能组件较松散的组合出现了紧凑的趋势,这一时期正是智能组件发展的过渡时期。随着科学技术的不断发展,嵌入式的智能组件越来越广泛地运用在智能电网系统中,可以集成的智能组件也在不断增加,使得高压设备和智能组件越来越融合为一个整体,渐渐形成了真正的一体化智能设备。

(三)高压设备智能化的有关技术原则。我国十分重视智能电网系统的试验和推行。现阶段根据各个试点的不同特征和性质,我国制定了不同的智能设备技术原则。

1 基本技术要求。对高压设备或其部件的相关参量进行就地数字化测量,测量结果可根据需要发送至站控层网络或/和过程层网络,用于高压设备或其部件的运行与控制。所属参量包括变压器油温、有载分接开关分接位置,开关设备分、合闸位置等。

2 高压设备的智能化原则和要求。需要智能化的高压设备应该是或故障率相对较高,或故障影响较大,具有自监测、自诊断的需求和价值,除变压器、断路器/高压组合电器设备之外,电力电缆、电抗器、避雷器等高压设备也可根据实际需要进行智能化。在实际应用中,应遵从可靠、高效、经济的绿色电网理念,兼顾以下几个方面的因素,统筹确定:(a)高压设备在电网中的重要性。决定高压设备重要性的因素包括电压等级、容量、冗余情况、用户类别、故障影响及其发生几率等;(b)自监测技术本身的可靠性及其对宿主设备可靠性的影响等;(c)自监测技术的成本,有无更加经济的替代方案(如带电监测)等。综合权衡考虑安全、经济、维护等方面的要求,最终确定适合的方式。

结语

高压设备智能化的一个很重要的实现手段就是将在线监测技术与常规高压设备结合起来。监测技术的进一步应用,使得智能高压设备能够更好地完成自我检测和自我评估,实时对变电设备的各项功能状态进行分析和预警,从而达到真正的高压设备智能化。高压设备智能化势必成为电力系统的主流发展方向。

参考文献

篇10

前言

随着国民经济的发展和电力供给消费的日益增加,变电站数量增长迅速。电力行业为了顺应减员增效的改革潮流,变电站无人值班模式在各地推广。目前,计算机和通讯技术的发展,使得凡具有“四遥”功能(即遥测、遥信、遥控、遥调)的变电站就已经具备了无人值班运行的条件。

选题背景及其意义

然而,近年来电力设施遭人为破坏及偷盗情况频频出现,电力管理部门对变电站安全防范的需求极为迫切,因为人民的生活、生产与电力行业息息相关,一旦电力设施遭破坏,就会造成大范围停电,后果不堪设想。因此,运用最新的计算机技术、网络通信技术、无线传输技术,建立完善的、智能的变电站辅助系统,实现变电站各辅助设备数据整合、二次共享利用,集中管理,对变电站人员进出、各区域环境、温度、设备状态、火灾、水灾、电缆温度、高压开关温度、周界等进行实时在线全方位监控,并有效降低各种运行成本,是无人值班变电站智能化管理必然的趋势。

国内外研究动态

为保障变电站设备的正常运行,存在着多套保障系统,这些保障系统被统称为变电站辅助系统。辅助系统的存在大大提高了变电站设备的运行安全性,已经成为了变电站内不可或缺的内容。

国内供电企业、设计院、电力设备厂家对于变电站辅助系统和设备的设计及应用做了研究和探索,其中对于视频监控、安防系统的研究及应用占绝大多数。从2009年提出建设坚强智能电网以来,一大批对智能变电站的介绍的论文涌现而出,但多数为智能变电站网络的构建及设备在线监测系统的研究。

目前,各地区供电公司或检修分公司分别在不同的变电站或公司内部区域现场建立了各自的单元安全设施,如视频、消防、门禁、防盗联网告警系统等。但传统变电站内辅助系统具有以下特点:

(1)标准不一,互不兼容

目前变电站辅助系统中各个子系统大多为独立建设实用,存在多厂家设备共存,数据产生、储存、传输格式各不相同、技术标准互不统一、互不兼容,难以形成统一有效的管理;各个子系统信息不能共享,在变电站内形成了辅助系统的多个信息孤岛,无法满足变电站集中管理、统一监控的要求。

(2)各子系统间相互独立,无联动机制

现有的各辅助子系统均自成体系,互相独立,缺少以事件为核心的多系统联动策略和机制,对事前预防、事中跟踪、事后分析缺乏有效的支撑手段,尤其是视频监控子系统作为“四遥”的有力补充并没有起到应有的作用。同时各子系统的信息监测与控制功能脱节,无法根据变电站运行维护的需求实现智能调节、自动控制等高级应用。

(3)报警监控模式被动,容易误报、漏报

现有的辅助系统缺乏智能化、主动化的管理手段,变电站多采用人为主观判断的被动监控模式,这很容易由于人员的主观因素而产生误报、漏报现象,甚至是报警信息无人处置。同时报警信息的多头管理,无专人监控,容易造成问题不能闭环处理。

(4)各辅助设施的控制局限性

目前变电站辅助系统的自动化程度较低,部分设施需要不同人员的人工手动直接控制,远远不能满足变电站的智能化自动控制需求。

(5)设备资源浪费,运行维护成本高

各种独立的辅助设备各自为阵、分散管理,造成人力和设备的严重浪费,不仅运维成本高,而且影响工作效率。其中部分设备长期运行不正常,日常实用和专业维保脱节,对变电站的安全稳定运行带来了很大的隐患。

基于以上情况,为满足变电站长期安全稳定运行的需要,必须妥善解决目前变电站辅助系统存在的问题,实现整个变电站所有辅助系统联网集中监控、统一管理、有机配合、信息共享。

三、课题研究内容

基于对目前国内外变电站辅助系统分析总结,本课题将研究设计一种智能化的安全生产在线监控系统,将变电站各种需要的辅助功能通过先进的数字远程监测、远程控制技术和IT网络传输技术搭建在一套集监控、门控、环境、设备监测、远程控制为一体的智能化安防统一平台之上,实现监测变电站的实时运行环境,对变电站各种设备的运行状况及影响变电站安全运行的因素实现在线全方位监控,为变电站的安全生产提供可靠的保障,并有效降低实际运行维护成本。相对于目前变电站内各种辅助系统,本课题研究设计的统一平台主要在以下几个方面进行着重提升和改进:

1. 对所有子系统进行统一管理、集中监控;

2. 所有子系统实现信号的统一上传、统一联动、统一控制;

3. 重点考虑各子系统之间的联动关系,对数据进行充分的二次利用;

4. 采用模块式管理,变电站可以根据自身需要任意选择所需的子系统;

5. 数据库格式和数据接口实现统一,使设备运行维护扩展更加便捷。

6. 各子系统可以独立运行,最大限度保证整个平台的稳定性。

研究方案及难点

研究方案:

第一章 绪论

1.1 课题研究的背景

1.2 国内外研究现状

1.3 论文的主要工作

第二章 变电站智能化安防统一平台概述

2.1 变电站安防需求分析

2.2 统一平台的组成及概述

2.3设计思想和原则

第三章 变电站智能化统一平台的设计

3.1 统一平台的体系结构

3.2 子系统方案设计

3.3 统一平台软件设计

第四章 变电站智能化统一平台的应用论证

第五章 总结

研究难点:

1、各子系统的统一联动、控制

平台的各个子系统都应可靠联动,其相互作用的策略应基于实际运行经验,并考虑到预想事件的发生。

2、数据的二次利用

实现各个子系统产生数据的二次共享利用,必须要统一各个子系统数据发生格式、传输格式和存储格式,而目前运用中的各安防系统均没有统一的数据标准。

3、模块式管理

实现模块式管理必须采用分层共享的系统体系结构。

预期成果和可能的创新点

预期成果:

研究设计一种智能化的安全生产在线监控系统,将变电站各种需要的辅助功能通过先进的数字远程监测、远程控制技术和IT网络传输技术搭建在一套集监控、门控、环境、设备监测、远程控制为一体的智能化安防统一平台之上,实现监测变电站的实时运行环境,对变电站各种设备的运行状况及影响变电站安全运行的因素实现在线全方位监控,为变电站的安全生产提供可靠的保障,有效降低实际运行维护成本。并在实际变电站中得到初步应用。

可能的创新点:

1、先进的平台体系结构

统一平台将采用分层分布的体系结构,分别是源数据采集层、数据持久层、业务逻辑层、表示层,保证平台的先进、安全、可靠等设计原则。

2、先进的模块式架构

统一平台将采用模块式架构,可以根据不同的变电站需求,选择任意功能的模块。降低了变电站辅助系统改造的成本,并且实现了运行过程中易扩展、易操作、易维护等要求。

3、完善的系统报警上传逻辑和联动技术

统一平台将采用完善的系统报警上传逻辑,实现从现场各子系统前端信号到各处理终端的实时联动机制。

4、在线检测前端设备故障及网络通讯自恢复机制

通过使用网络及设备工作状态智能检测与捕获技术,使得当网络发生故障或设备发生故障并恢复后,在不需要人工重新启动软件的情况下,可立即恢复使用,保证整个统一平台的可靠运行。

六、主要参考文献

[1] 国家电网公司. 变电站智能化改造技术规范[S]. 2011:5-6.

篇11

表1 电子式互感器的优点

有源式电子互感器利用电磁感应原理感应被测信号。CT采用空心线圈(RC)和低功率线圈(LPCT),空心线圈传感保护用电流,LPCT传感测量和计量用电流。电子式互感器采用互感器上的小线圈和光功能两种方式进行能源供给:采用互感器上的小线圈进行功能;当线路一次电流小于一定值(50A)时,采用光供能。智能变电站设有光功能屏,将变电站内直流电源转换成激光,通过光纤输送至互感器,供给传感头能量。通过电子式互感器,将采集到的电流量和电压量转化成数字信号,送至合并单元柜及智能单元,在将数字化的电流、电压信号进行同步后,通过光纤分别送至保护、测量和计量装置。哈地区变电站全站采用站域化保护,全站所有的保护(包括线路、主变等保护)分别集中于站域化保护A/B屏,站域化保护动作及远方下达跳合闸命令,通过光纤下行至智能单元中的操作模块,通过跳合闸压板动作跳闸,实现了保护的站域化,全站保护全部集中在站域化保护A/B屏两块屏上。

篇12

0 引言

常规变电站通信规约存在的主要问题是:只定义字节在通信介质上如何传输,而未规定如何从上层应用的角度去组织数据。用户必须通过复杂的手动配置,建立上层应用数据与底层通信数据之间的映射关系,这就大大增加了工程的复杂度、成本和工作量。

IE C61850《变电站网路与通信协议》标准(简称IE C61850标准)正在逐渐成为变电站通信网络和自动化系统的重要标准,不仅为变电站内各个厂家不同型号装置的互连互通提供了1套全新的解决方案,更重要的是为整个变电站自动化系统提供了2套完善的建模规范。不需要太多的手动配置即可建立上层数据,就能识别底层通讯上送的数据,这不仅降低了变电站自动化系统的建设成本,也为传统的防误闭锁方案提供了新思路和解决方案。

1 变电站防误装置的检查梳理及存在问题

通过普查发现问题主要集中在10kV (20kV,35kV)的开关柜的防误闭锁上,设备自身具有的防误功能有一定的局限,不能满足全方位闭锁的安全要求,操作与检修时易发生安全隐患,主要问题可归纳为如下几类。

1.1 母线接地不车缺少强制闭锁措施

开关柜母线接地不车上未安装微机防误锁或只安装了普通挂锁,操作时存在安全隐患。

1.2 开关柜柜门缺少强制闭锁措施

开关柜、置柜、无接地闸刀的开关柜后柜门(或前下柜门)如开关柜、母线压变、母分开关柜、母分闸刀柜等,部分柜没装电磁锁。即使有电磁闭锁的,由于只是取感应电,可靠性也不高,没有强制闭锁措施,检修人员在检修时存在安全隐患。

1.3 开关柜门与下车之间缺少防误闭锁

开关柜,置柜,前柜门和下车之间没有强制闭锁措施。当下车没有摇到试验位置时,门可以打开;门没有关上时,下车可以摇至工作位置均存在一定的安全隐患。

1.4 馈线下车与母线接地下车之间缺少防误闭锁

开关柜,置柜下车与母线接地下车之间缺少强制闭锁措施,当母线接地时,除母线压变下车外,其余未安装闭锁装置的下车均能摇至工作位置,存在安全隐患。

2 智能化变电站防误闭锁推荐解决方案

智能化变电站防误闭锁系统完成变电站内各种操作的防误闭锁,满足防误闭锁的全面性和强制性要求,并实现与监控系统站内模型信息共享,监控系统与防误闭锁系统信息交互免配置。

系统根据IEC 61850标准三层架构体系构建,由站控层防误主机,间隔层智能防误装置,过程层智能闭锁单元、机械和电气锁具及闭锁附件,电脑钥匙等主要部件组成。防误主机、智能防误装置、智能闭锁单元之间均采用IEC 61850。系统主要功能特点如下:

(1)系统信息共享。智能化变电站各设备及系统之间的数据交互采用统一的IEC 61850标准,这为防误闭锁装置和自动化装置互联与互操作性提供了技术依据,并解决了两者之间数据交互困难的问题,从而在防误闭锁装置独立的基础上实现了信息的统一和共享。实现方式:间隔层的智能防误装置从监控系统获得全站SCD文件,通过MMS服务器直接从测控装置或监控主机获取五防逻辑需要的实遥信、遥测数据,同时为监控系统提供网门、地线等手动设备的虚遥信。

(2)防误闭锁全面性。站控层通过防误主机实现防误;间隔层智能防误装置以IEC 61850标准设计,能够对五防主机和监控系统提供设备操作的所有五防功能(包含顺控功能),从而实现间隔层防误;过程层采用基于GOOSE通信的智能闭锁单元、过程层传统锁具来实现防误。另外,系统预留集控防误和防误延伸产品接口。

(3)防误闭锁强制性。为防止过程层网络GOOSE报文错误或监控系统未经防误系统解锁便直接操作智能电动开关设备所导致的误操作,在过程层上设置支持GOOSE服务的智能闭锁单元,以实现防误闭锁的强制性要求。智能闭锁单元通过将常开接点串接于一次设备遥控跳合闸回路来实现强制闭锁,只有在接收到智能防误装置的允许解锁GOOSE消息,才驱动常开接点闭合,解锁相关设备;就地操作时使用电脑钥匙也可对其进行解闭锁操作。

(4)顺控操作。顺控操作由间隔层智能防误装置和监控系统配合完成。智能防误装置具有良好的互操作性和开放性,从权限管理、唯一操作权管理、模拟预演、实时逻辑判断、闭锁元件5个方面完整地实现了对设备操作的防误功能。

(5)方案的优越性。①防误系统独立运行,对其它运行设备无影响,在其它电气设备或系统故障时,仍可完成防误闭锁功能。②将测控装置间由通信实现的闭锁转化为由智能防误装置来实现,从而减轻了系统的复杂性和不同厂家测控互连的难度,实现了间隔层的防误及顺控的防误闭锁功能。③其它防误相关产品(高压带电显示闭锁装置、地线管理装置、智能钥匙管理机等)可无缝融入到全站的防误系统中,并可方便地接人集控防误系统,有效地降低了系统造价,避免了重复投资。

3 管理措施

3.1 从长远、统筹的角度来选择防误装置

不管是新建还是改建变电站在选择防误装置时,都应该站在长远的角度、统筹规划,进行合理的选择。主要包括:产品应该满足当前运行的需要,及时的进行升级和更新;在选择商家时,应充分考虑产品的定位、成熟度、性能、可靠性、经济性等,防止出现劣质商品;商家的售后服务,能够保证产品的顺利运行,出现问题,以便及时进行维护。

3.2 制定完善的使用、维护、管理制度

(1)在防误装置运行后,应制度出完善的使用操作规程,特别是对解锁钥匙操作规程的制度尤其重要,在操作时填写操作记录(并且尽可能的详细),使用都应有分管领导的批示,并保存好记录。

(2)加强对违规操作的考核力度,并与员上的绩效工资挂钩。强化操作员上的工作责任心和安全意识,对于不按规定流程进行操作的,要及时的进行记录、考核,不断提高施工人员的安全意识。

(3)加强对员上操作技能的培训。对于操作员工要进行详细的培训,使其不仅知道操作的方法,也要知道其中要性能,注意事项以及维护的方法。充分发挥出员工的能动性。防误装置时变电站不可或缺的设备,不仅保障了电力生产的安全,还降低了因误操作而引发的事故。因此,应该给予防误装置足够的重视,制定合理的规章制度,保障其正常运行。

4 结束语

本文主要从防误操作闭锁的强制性与全面性原则出发,提出了智能化变电站防误闭锁方案。防误系统在各层保持独立性的基础上实现了不同层次的全面闭锁,包含站控层、监控中心、集控中心的顺控操作防误,同时智能闭锁单元和常规锁具的使用实现了过程层操作防误的强制闭锁功能。此方案已应用在部分智能变电站,效果良好,是目前完善的智能化变电站防误闭锁系统解决方案。

参考文献

篇13

2.1电子式传感器在电能计量中的应用

随着供电量不断增加,配送电设备不断更新,配送电新技术不断推广,传统的传感器已经无法满足现阶段智能变电站计量系统技术需求了,需要改进。电子传感器能够应用通讯信号,将电子信号转化成数字信号,从而提高了供电效率。此外,它还具有电压及电流传感器,能够准确的接受用电信息,并且结构简单,覆盖范围广泛,在智能变电站中发挥着重要作用。另外,电子式传感器很够抵抗其它信号干扰,对采集到的信息通过光纤材料传输,能有效降低电流或电压信号在传输中出现误差,从而提高了供电稳定性。电子式传感器由于具有这些优点,在供电规模不断扩大的情况下,被广泛应用到智能变电站供电运行中。

2.2智能电能表在电能计量中的应用

和传统电能计量表不同之处在于,智能电能表能够支持两种信号,如IEC61850-9-1和IEC61850-9-2,在二者的基础上,再结合变电站运行方式,对电量计信息做及时调整,从而达到高效率供电目的。智能电表所采用的信息传输材料是光纤,极大提高了信息传输的准确性,这也是智能电表优于普通电表的指标之一。另外,智能变电站中之所以安装智能电表,在很大程度上出于其优越的性能,如它能够对各种类型的电能准确计算,如,分时正反向电能、四象限无功电能、功率、电网频率等组合运行参数。还能够对流失的电量自动记录,并储存在相应设备上。此外,该设备在接入端使用了数字接口,使搜集到的信息自动转换,并通过光纤传输,避免了用电信息在传输过程中受到屏蔽,进而影响供电稳定性。另外,智能电能表的优越之处还在于能够充分利用其它一些外在装置,如数据处理装置、数据分析装置等,所以应用范围相当广泛。但需要指出的是,在这些外在装置安装时,需要按照相关规定,使智能计量表按照规范化流程运行,才能实现智能变电站的计量系统稳定运行。

2.3合并单元在电能计量中的应用

在智能变电站中,除了智能电表和电子式传感器,还有合并单元,这三者缺一不可,在智能变电站中发挥着非常重要的作用。智能变电站之所以使用合并单元,是由于在该单元是变电站不可缺少的组成部分,能够对电气量进行有效合并,并对其中的数字信息进行初步处理,同时采用一定格式,传送给电量计量设备。该设备对接受到的信息作进一步细处理,再给予保存,该处理结果的准确与否,直接关系到变电站供电运行稳定性及安全性。合并单元采集用电信息的主要方式有两种,其一,利用IEC60044-8通讯技术,同时应用内插法及同步法将不同单元给予合并,再实施用电信息采集,从而得到需要的电流或者电压信息。其二,利用IEC61850-9-1通讯技术,该技术能够采用同步法,获取用电信息,进行一定处理,传送给智能表。由此可知,合并单元在用电信息采集中,对所需要的用电信息进行获取,不仅提高了供电效率,也提高了供电稳定性,对于满足变配电设备安全、平稳运行具有重要意义。

3智能化变电站的电能计量纠错设计

首先,电子式传感器的纠错设计。由于电子式传感器是智能变电站的重要组成部分,所以应加大监测力度,提高计量准确性。目前,对该装置的纠错方式为,将测量数据和绝对值相比较,得到检测误差,从而实现纠错效果。具体方式为,以传统的传感器作为标准器具,供电数据在二次传输中实现自动转换,形成标准通道,并和合并单元处理的数据相比较,得到电子式传感器的运行误差,从而实现了纠错效果。在实际操作中,标准传感器发送信号,由校验仪器接受,再传送给合并单元,合并单元安装在电子式传感器中,之后再通过光纤传输,将信号分析处理,从而完成误差检查。其次,智能电表纠错。智能电表通过光纤和电子式传感器连接,并在物理层面上连接到以太网上。所以,智能电表在检测时,通常和标准电表连接在一起,连接材料为光纤,当电量数据同时传输给这两个装置之后,分别计算,然后将智能电表中的信号和标准电表的相比较,从而完成误差检测,实现了智能表校验目的。