测量技术论文实用13篇

引论:我们为您整理了13篇测量技术论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

测量技术论文

篇1

1.2箱梁合拢控制

(1)在各孔的边跨合拢块施工前,对各悬臂箱梁高程进行联测。(2)合拢段施工的高程观测按以下6个工况实测:①安装模板前;②浇筑混凝土前;③浇筑混凝土后;④张拉部分纵向预应力钢束后;⑤拆除临时支撑后;⑥张拉完所有预应力钢束后。(3)对于连续箱梁的中孔合拢,还应在主墩临时支座拆除的前后对各测控点进行监测。

2对称平衡施工

施工中严格按照平衡施工的要求进行,最大混凝土浇筑重量误差不得大于该梁段自重的30%,并在混凝土浇筑过程中实施监控,确保箱梁自重误差不大于设计要求的3%,控制梁段上的施工堆积物并及时清理箱梁中的施工垃圾,以避免由于施工荷载和桥面杂物的不平衡引起测量数据的不正确。

3质量保证措施

3.1抓好事前控制

3.1.1抓好人的质量施工测量放样工作是靠人干出来的,人是工作质量的决定因素,因此提高自身的思想水平、业务技术,工作能力、工作责任是极其重要的,同时必须了解和管理好所管辖内测量人员,有利于开展工作,必要时做好配合工作。3.1.2抓好测量仪器的质量测量放样必须有符合精度的仪器设备,才能确保精度和速度,除必要按规定进行鉴定,还必须在使用中时刻注意仪器的性能和状态,发现异常及时校正。3.1.3抓好基准点的精度平面高程控制点是实施施工放样的基准点,它的精度优劣直接影响放样精度。因此,施工前必须对控制点进行复测,并根据建筑物的分布,为便于放样,还需进行加密。施工阶段确保控制点的稳定完好,有破坏变动,应及时补埋补测。3.1.4抓好设计图纸的复核按设计图纸的数据进行施工,是我们的职责,设计单位要求对图纸进行复核是我们的义务,也是为了我们确保施工放样数值的准确。在复核发现问题,应及时地向设计单位反映。3.1.5学好规范、掌握规范、执行好规范规范是我们判别测放精度施工质量的标准,要养成严格执行规范的习惯,为此全面地学好规范,深刻地理解规范,认真地执行规范。在保证质量的前提下,把好执行规范,不断地总结提高。

3.2抓好事中控制

在检查时尽可能用自己的仪器自己测,及时发现问题及时解决,有些问题应及时汇报给相关的专业工程师。并有严格报验制度。3.2.1平面位置控制设站检查:全站仪对中整平后设置气象元素棱镜常数,输入站点后视点坐标,后视定向后要测距测坐标,一般误差控制在3mm以内。对每个放样点的检查,一般采用极坐标法,即以方位角定向、距离定点,再测坐标作校对。当检查点较多或时间较长时,要及时地复查后视点。当测放水中桩或不能直接定桩时,可放辅桩,但要标明辅桩与主桩的关系(方向和距离)。检查结束后,应到点位处一看一量,看所放的点组成的线形是否与设计院设计相符,量各桩间距是否与设计值相同。护栏的放样应保证其线形流畅,保证桥面宽度,其线形要确保不出现折角。3.2.2高程检查首先要经常检查水准仪的i角,确保其良好的性能,还需检查脚架及塔尺接头是否完好。检查时须从一个水准点联测到另一个水准点,这样可以:①发现所观测的是否闭合;②水准点是否变动;③水准仪有无问题。当要引测结构物上部或下部时可采用钢尺倒挂法,钢尺必须要垂角,最好用正、倒挂尺校检。

3.3事后总结

(1)平面控制方面目前采用的坐标系:①WGS-84大地坐标系;②1980西安坐标系;③1954北京系。(2)高程控制方面国家规定:采用1985国家高程基准点,它与1956黄海高程系的关系式:1985国家高程基准时1956年黄海高程值0.0286m。苏南地区采用吴淞值高程系,它与1956黄海高程系的关系式:吴淞系1956年黄海高程系值+1.8971.6972.097,根据不同地区而定。(3)加密控制对被破坏的不稳定的点必须重新埋测。桥梁处的点必须稳定可靠,并作为以后联测的起讫点。复测时设计路线不宜太长,尽量控制在2-3km,以减少误差的积累。(4)导线平差中对X、Y的fx、fy分配,可应仅考虑距离而应当按方位角距离的联合影响来分配。(5)采用全站仪用极坐标放样最大距离的控制国家规定最大误差是中误差的2倍,以J2级测一个单角,其精度约在10″左右,而放样桥梁桩、柱的平面位置,则最大要求<5mm。S=ρ″/10″×5mm=103m,最好控制在100m以内。

篇2

影像测量仪主要由机械主体、标尺系统、影像探测系统、驱动控制系统以及测量软件等组成。影像测量仪的结构型式主要有柱式、固定桥式和移动桥式。柱式一般用于小量程的机器,桥式一般用于中大量程的机器。

2.1柱式影像测量仪

柱式结构底部为基座,二维工作台分别沿X和Y向移动,影像探测系统可在固定立柱上沿Z向运动,结构牢固、精度高,不过工件的重量对工作台运动有影响,不能承载过重工件,适合于中小行程影像测量仪。

2.2固定桥式影像测量仪

固定桥式测量仪的X、Y、Z轴相互正交并沿着各自导轨运动,其中Z轴上安装有影像探头并可以相对Y轴做垂直运动,而Y轴则安装在基座上。Z轴部分和Y轴部分的总成牢固装在机座两侧的桥架上端。每轴都由电机来驱动,可确保位置精度,但不适合手动操作,该结构稳定、整机刚性好。

2.3移动桥式影像测量仪

移动桥式结构是目前大量程影像测量仪中应用最广泛的一种结构形式。其中,工作台固定,其中一个桥框由导轨带动在工作台上沿X轴移动,同时由另一个导轨带动滑板在桥框上沿Y轴移动,主轴则沿Z轴移动。被测工件安放在工作台上,影像探测部件安装在主轴上。这种形式的影像测量仪结构简单、紧凑,刚度好,具有较开阔的空间。

篇3

2.1工程概况

GwayiShangani拱坝工程位于津巴布韦西部的呱邑河上,坝址在呱邑河和尚嘎尼河交汇处下游约6.0km处,距津巴布韦第二大城市布拉瓦约276.0km,是以供水为主、发电为辅的水利工程。该工程为重力式混凝土单曲拱坝,坝高78.0m,坝底厚度27.1m,顶宽8m,溢流段弧长200m,库容6.91亿m3。水库每天可向布拉瓦约供水20万m2.3.2拱坝施工测量内业计算2.2.1拱坝设计尺寸溢流段弧长200m,半径109.874m,上游面垂直,下游坡比1∶0.2;两侧止推块顶宽8m,上游坡,1∶0.1,下游坡比1∶0.25。圆心及A、B点坐标分别为(42088.550,-17954.620)、(42093.340,-17824.520)、(42196.800,-17935.800)。2.2.2拱坝平面图(见图1)3.2.3拱冠梁断面图(见图2)

2.2基准线的“线路要素”计算

以拱圈上游面,半径为109.874m,两侧止推块顶上游1m画线,作为基准线(见平面图),设右侧直线端点为起点,桩号0+000,经计算起点坐标(42083.779,-17827.656),交点JD1坐标(42264.957,-17923.951),起始方位角:332°00′34.7″,交点间距205.178m,交点转角:104°17′38″。运行“HintCAD”,按道路设计程序,将上述数据输入到“主线平面线形设计”,得到“主线平面线形”,如图3。同时得到直线、曲线及转角表,如表1。

3拱坝施工测量放样(外业施测)

3.1控制点

大坝施工测量控制系统依据原有的控制点,按照“从高级到低级,从整体到局部”的原则,结合施工布置,合理布设施工控制点。

3.2线路要素输入到全站仪

把直线、曲线及转角表中的“线路要素”输入到全站仪“道路放样”程序中。

3.3放样

断面里程为0+163.8,下游843高程坝体坡脚点的放样:此坡脚点距基准线的距离,用计算器计算,距离=相应900.15高程坝顶宽+坡度×(设计高程-地面高程),D=11.7+0.2×(900.15-843)=23.13m。调出全站仪的道路放样程序,输入里程163.8,输入左偏距23.13,此坡脚点的坐标全站仪自动计算显示,接下来就按照坐标点放样的方法,转动全站仪至放样点方位角的方向,再测量距离,进行放样。其他点的放样同上述,已知其里程和距基线的距离,就可以对其放样。

篇4

1.2数字化资料处理技术

资料的数字化处理,是矿山测量系统的一项重要工作,矿山测量工作包括数据信息的采集、存储以及处理,数据类型主要是图形、数字以及表格等[2]。进行资料的数字化处理,需要用到计算机的辅助绘图功能和电子图表化功能,许多测量工作者会运用VB、AutoCAD等软件进行实际的数据处理工作。

2数字化测量在地面控制测量中的应用

2.1GPS地面控制网的布设要点

地面控制测量的主要目的是为施工放样、变形观测、地面大比例成图、建立整体的控制奠定基础,建立地面控制网可以对全局有一个整体的把控,限制测量误差的积累和系统之间的错误信息传递,因此,有利于提高测量数据的精准度[3]。GPS与地面控制测量结合,就形成了GPS地面控制网这种先进的地面控制测量方法,在布设地面GPS控制网时,要充分考虑测量范围的大小、精度要求以及点位密度等因素,可以根据工程的需要设定不同的边长。在分布网点时,要遵循统一的测量规则,按照严格的等级标准进行施工作业。

2.2常见的网形

GPS地面控制网对横向误差没有影响作用,但其长度却会对地下贯通的纵向产生误差,因此,两点通视网形和后视同一点网形这两种简便灵活的网形,在城市地铁的地面控制网布设中具有更加明显的优势。针对丘陵隧道情况,采用后视同一点布设网形不能直观的通视两个控制点之间的联系,但可以在丘陵山脊上设置一个新的控制点,实现与两点之间的通视,只要水平角度够精确,就可以显著地减少地面控制网对横向误差的影响[4]。

3数字化测量在井筒深部延伸中的应用

立井井筒深部延伸是矿井测量的一项关键工作,利用激光测距仪、全站仪等进行井筒深部延伸的贯通测量能够有效的降低横向误差,提高贯通测量的精确度,而且与传统的测量方式相比,还能满足井筒深部延伸的精准定位要求[5]。针对地理坐标北纬30°55′,东径117°49′,平均海拔为168.5m的丘陵地带开掘的直径3m,筒深600m的辅助井,可以直接对其改造并延伸成井,一般是先在井筒内预留一段超过5m的岩柱作为井筒隔离层,在180~300m深部采用吊罐反掘的方法刷大成井。为了提高竖井贯通工程的测量精度,采用全站仪和陀螺仪能够定向的反映辅助井的贯通施工,对丘陵地带的辅助井贯通施工具有很强的指导意义和实用性。

3.1贯通测量误差的预计

贯通测量误差,需要从既定的k点开始,沿平巷和下山敷设导线,并测量回到k点所引起的误差,从外部形式上看像一条闭合的导线k-1-2...15-16-k,在实际贯通之前是一条支导线,所以,在水平方向上的重要贯通误差,实质上是支导线终点k在x方向上的误差。

3.2辅助井贯通测量

在辅助井贯通测量的地面控制测量中,可在辅助井、措施井及混合井井口附加埋设3各相似的近井点,并建立以第1个近井点为坐标原点,其余两个为假定方位的坐标系统,将3个近井点之间用1条直线连接,利用全站仪测量6个回数,利用激光测距仪测量往返距离,在闭合的三角形中就可以测定导线边长,同台仪器的往返测距和不同测量方法的测量结果可以多次使用。由测量误差所引起的x、y方向上的误差,采用全站仪导线,全站仪的测角精度为2s,测距精度为2mm+2ppm,由于平均误差小于100m,所以各边的误差均小于2.2mm。利用陀螺仪可以简化深部延伸井筒的定向程序,先在地面上独立测量3个仪器常数,再在井下定向边上独立测量2次陀螺方位,基础定位程序可以在3d之内完成。辅助井井中测量的目的,是为了确定井筒的垂直度,一般是先地表标记出一个以井筒为中心点的十字线,沿井筒十字线放置两根钢丝作为几何投点,通过测量多处井点,利用余角法就可以推算出井中坐标的具置,并进而确定井筒的垂直度[6]。主井与辅助井贯通时的测量误差来自于两工作面上井筒中心的相对偏差,一般是先假定井筒中心线方向为y'方向,与它垂直的方向为x'方向,最后求出井筒中心的平面位置误差。对于两个相向开凿的立井贯通,需要同时进行地面测量、井下测量和定向测量,这些测量误差的所得出的贯通相遇点的误差,需要同时预计x'、y'两个方向上的误差。

篇5

这种方法需要获知几种变压器其绕组的热点温度,通过套入公式来间接计算需要测量的变压器的温度。这种计算方法的模型有三种,分别基于技术标准、热路和热阻。这种方法的优点是计算结果准确,实用性非常强。

3在线测量技术的优越性

上文中提到,直接测量法成本高昂且结果不精准,光纤光栅法结果精准,但成本高昂,而热模拟法虽然在日德等许多国家都有应用,但理论分析与实际情况有着巨大差别,导致了测量结果的较大偏差。仅间接计算法按照《油浸式变压器负载导则》中提到的计算公式[2],可以较准确地计算出变压器的热点温度。间接计算法经济实用、操作简便的优越性使其在变压器测温方面得到了广泛应用。由于间接计算法要通过几种变压器来间接获得最终结果,计算过程耗费时间较长,对计算机运算能力要求极高,待结果得出后向有关部门反应,有关部门再派出维护人员进行维修,这使得间接计算法暴露出一个非常明显的缺点——计算复杂、反应不及时。为此,业界许多研究人员对变压器的温度测量方法进行了深入的研究,目前已经取得了一定的研究成果,制作出一种在线监测仪器。这种仪器基于负载导则,模型依循旧版导则的简单计算公式,受到外界影响的可能非常小,结果的精确度非常高。由于计算公式涉及到的温度是稳态温度,不必考虑不同时间段温度的变化会对最终结果造成影响。在线监测仪器内置GPRS模块,可以与距离较远的变电站实现远程监测与控制。

4在线测量系统

4.1在线测量系统的工作原理

在线测量系统包括上位机、下位机、传感器和变压器本身。电力人员在油浸式变压器内安装在线监测仪器,在线监测仪器包括N个温度传感器,传感器在变压器温度上升时通过下位机中内置的GPRS模块将信息传送至变电站的控制中心,变电站的工作人员通过上位机获得变压器的温变信息,可以及时快速地安排人员前去维护。下位机的主要部件有温度传感器与单片机处理单元。下位机在变压器上只需安置五个检测点,即可对变压器的底部、油面、顶部、箱体以及环境五处温度进行及时的监测。下位机内置微处理器,与传感器相连,通过液晶屏显示即时温度。五处检测点,有任何一点的温度值超过内置的温度标准,将会引发微处理器发生报警信息。下位机通过内置的GPRS模块将信息传输至变电站内的上位机,上位机内的相关软件通过代码编译,迅速显示出工作人员可以理解的曲线和数据结果,并作出音像报警和故障分析。

4.2硬件

4.2.1下位机下位机的温度传感器通常为产自美国Dallas公司的DS18-B20半导体,微处理器一般为Atmel公司生产的AT89-S52。这种微处理器的串口可以跨越较远的距离,与GPRS模块进行数据传输。YM-12684液晶屏可以显示温度信息与故障代码。温度传感器通过屏蔽双绞线将温度信号传送至单片机中,鉴于屏蔽双绞线的特性,有效距离最多为50m。4.2.2GPRS模块GPRS模块是远距离无线通信的核心,通过TCP/IP协议,数据可以畅通到达终端设备处。

4.3软件

4.3.1通信协议在线测量系统的通信协议就是上文所提到的TCP/IP协议,AT指令集也能支持。4.3.2上位机和下位机软件上位机的软件可以借助GPRS模块查询到来自下位机的变压器温度信息,并显示温变数据、绘制温度曲线、打印温度报表、做出音像报警、记录故障信息、分析故障原因。下位机的软件依托于C语言指令,循环读取各个端口的温度信息,依照内置命令完成监控、报警功能。

篇6

作者:李智炯 单位:中国神华神东煤炭集团地测公司

矿山测量理论发展

随着电子计算机的软硬件发展,以及各种测量计算分析软件的推出,计算机已成为测量控制网优化设计、测量数据处理、自动化成图最有效和必不可少的工具。相对于以前测量工作人员在小型计算器上编程进行简单的数据处理或者进行简单的平差数据处理,现在的测量数据处理则体现出智能化、自动化和可视化,且数据处理理论得到了更深入的发展。灰色理论、小波分析、人工神经网络模型等新的理论大量应用于矿山工程测量数据处理中,单一模型的变形预测与组合模型的变形预测均得到了发展。以公路勘测数据处理系统为例,这个数据处理系统主要包括3部分:1)数据获取和处理模块;2)数字地面模型模块;3)绘图与设计应用模块。矿山测量控制网优化设计测量方案的设计以前都是凭经验进行的。随着计算机技术的应用,设计正在向着更科学的方向发展。优化设计是在现有人力、物力和财力条件下,使矿山工程控制网具有较高的精度。而在满足控制网的精度和可靠性的前提下,使成本最低。网的优化设计是一个迭代求解过程,它包括以下内容:1)提出设计任务。由测量人员与应用单位共同拟定,通常是后者提出要求,前者对其具体化,每一个优化任务都必须表示为数值上的要求。2)制定设计方案。包括网的图形和观测方案,观测方案指每个点上所有可能的观测,通过室内设计和野外踏勘来制定。3)进行方案评价。按精度和可靠性准则进行,同时考虑费用和灵敏度。4)进行方案优化。对网的设计进行修改,以期得到一个接近理想的优化设计方案。矿山测量信息管理随着矿山测量数据采集和数据处理的逐步自动化、数字化,测量工作者更好地使用和管理海量矿山测量信息的最有效途径是建立矿山测量数据库或与GIS技术结合建立各种矿山信息系统。目前,矿山测量部门已经建立了各种用途的数据库和信息系统,为矿山管理部门进行信息、数据检索与使用管理的科学化、实时化和现代化创造了条件。目前,矿山测量人员对这个问题都很重视,并且正在参与和从事各种信息的收集、传递和管理工作,建立矿山信息系统、矿山生活区信息系统、矿区信息系统以及土地信息系统等。煤矿开采沉陷预计理论开采沉陷预计理论按采用方法的基础可分为:经验方法、分布函数、理论模型法三大类。而常用的预计方法主要有:概率积分法、负指数函数法、典型曲线法、威布尔分布法、样条函数法、皮尔森函数法、山区地表移动变形预计法、基于托板理论的条带开采的预计法、力学预计法和有限元法。近年来,随着变形理论的深入发展,灰色系统理论预计法和神将网络预计法被应用到了沉陷预计领域,并有了一定的实践进展。同时,基于地质观点的沉陷预计方法也有相应报道。

3S技术在采煤地质灾害监测中的应用

以计算机技术为核心,结合数据库技术、地图可视化技术和空间分析技术,建立对包含空间定位和属性关联的问题进行计算机化处理,进而提供辅助决策的功能系统。目前,GIS已经广泛应用于地质灾害数据管理、地质灾害风险性分析和地质灾害预警等防灾减灾工作当中。由于GIS系统具有强大的空间分析能力,因此,其不再局限于某种地质灾害的分布显示,而可提供综合多种地质灾害,并能进行区域划分的功能。RS技术的应用RS(遥感技术)作为一门新兴的高新技术手段,近几年迅速在众多领域得到了广泛的使用,而应用遥感技术进行地质灾害监测的文章也多不胜数。总结归纳,遥感技术用于地质灾害监测是可行的,也是必要、可推广的。从地质灾害监测与防治的角度来看,遥感技术贯穿地质灾害调查、监测、预警、评估的全过程,为地质灾害防治提供了很好的决策参考。随着遥感技术在理论上、技术上和实际应用上的逐步发展,遥感数据源向着高分辨率遥感影像过渡,其不仅具有精确的空间分辨率,更重要的是拥有丰富的光谱信息,使具有特殊光谱特征的地物探测成为可能。这也必将使得遥感技术在地质灾害宏观调查、灾体动态监测和灾情评估中大显身手,成为地质灾害监测与防治的重要手段之一。GPS技术的应用煤炭开采中,大量的采空区随之出现,给采煤区居民的生活带来了很大的影响,而因此诱发的大量的地面塌陷灾害更给采煤区的经济带来了巨大损失。以采空区为变形体所进行的沉陷观测,受采空区自身沉陷影响,很难找到稳定的地点埋设监测基点。同时,在对沉陷引起的地裂缝进行监测时,需掌握其空间位置,针对上述工作,如果采用传统测量方法,必将面临诸多不便与不利因素。作为新一代空间定位技术的代表—GPS技术,经众多技术人员从实践角度和众多学者从理论角度的验证,其不仅可以满足沉陷观测的精度要求,而且可以实现监测工作的自动化与实时化。目前,GPS技术已广泛应用于各类变形监测项目中。而动态差分GPS技术的出现,更为地质调查、灾害地点确定等实时、高精度定位工作提供了有力支持。

篇7

无人飞艇低空遥感平台摄影测量系统主要是由两个部分组成,一部分是系统硬件,另一部分是系统软件。

2.1系统硬件

该系统的硬件由空中飞艇和地面监控两个部分组成,空中飞艇部分的主要设备包括气囊、吊舱、发动机、GPS陀螺仪、自动驾驶设备、增稳平台、数码相机和摄影机;地面监控部分具体是由以下设备组成:便携式计算机、手控设备、视频终端以及电源。GPS是飞艇的导航装置,在自动驾驶的状态下,飞艇会根据预先设置好的航行线路进行低空飞行,并以一定的距离和间隔时间进行拍照,借此来获取地面的数码影像;飞艇的起落主要是由地面监控部分负责,同时还对飞艇的自动驾驶进行监控。

2.2系统软件

该系统的软件主要由以下几个部分组成:飞艇航行线路规划软件、飞艇飞行监控软件、平差解算软件、正射影像制作与编辑软件。除上述软件之外,系统还包含以下功能模块:工程管理、全自动匹配、影像预处理、控制点量测、DEM生成等等。

3低空遥感平台摄影测量系统的应用实例

所选测量区域的地面高程约为50m左右,该测区内分布有大量的低山,山体的整体高度全部在170m以下,整个测区的范围长度为8000m,成图面积约为60km2。下面运用上文中设计的低空遥感平台摄影测量系统对该测区进行测量。

3.1飞艇航行路线规划

目前,数码相机在测量领域内获得了广泛应用,这使得大重叠度的航摄测量成为主流趋势,为摄影测量自动化目标的实现提供了可能。在本次测量中,决定对所测区域采用大重叠度航行路线设计,航行方向的重叠度设计为80%,旁向的重叠度设计为60%,地面的分辨率为0.2m。为了获得更加清晰的航摄影像,在数码相机上配备了14mm焦距镜头,相对飞行高度控制在350m左右,每张影像的摄影范围为600×900m。该测区的常规航行线路为22条,构架航行线路为4条,飞艇实际飞行的线路为26条,总计获取影像1804张。

3.2选点及量测

为有效提高测量效率,在对飞艇航行线路进行规划的过程中,需要合理选取控制点并进行量测。低空遥感摄影测量技术最为显著的特点之一是分辨率高,为此,可以直接选取影像上较为明显的地物点作为地面控制点,如路叉点、房屋拐角等等。依据我国现行的航摄测量作业规范标准的要求,并结合实际成图需要,决定在该测区的设计航带内每8条基线选取一个控制点,共计选取140个地面控制点,实地采用GPS-RTK测量155控制点。

3.3工程管理与航摄影像预处理

飞艇根据预先规划设计好的航行线路自动飞行,并对相关影像进行拍摄后,需要先对测区内的相关数据进行整理,主要包括数码相机参数、影像数据信息以及工程参数等等。其中数码相机的参数可以通过三维检验校正获得,在数据预处理的过程中,主要是对航空拍摄到的影像进行主点纠偏和畸变纠正。由于实际拍摄中,受角度不同等因素的影响,使得在同一个区域内的相邻影像当中存在色差,为确保测物内正射影像的色调一致,必须进行匀色处理,具体过程如下:从该测区拍摄到的影像当中选择出一张具有代表性的影像,然后借助图像处理软件,对其色调进行调节,并以此作为基准影像,随后,利用匀色模块将基准影像和测区内的其它影像全部载入到软件当中,并进行匀色处理。

3.4加密处理

由艇在低空飞行的过程中,受到风力作用,会对摄影的效果造成一定程度的影响,虽然飞艇的自动驾驶系统能够对其飞行姿态进行实时调节,数码相机的稳定云台也可以确保相机处于相对固定的状态,但飞艇在航线上行进时,其本身的姿态会发生不断地变化,若是遇到强气流,则会导致飞艇出现剧烈的变化,这样很难确保数码相机拍照时保持稳定的姿态,这样一来,造成了获得的影像姿态角超出测量规范标准的角度要求,从而导致匹配难度较大。为了解决该问题,决定在特征点匹配的过程中引入SIFT算子,并将其匹配结果作为初始值,然后利用最小二乘进行精确匹配,以此来确保匹配结果的稳定性和有效性。

3.5平差结算与影像校正

首先,采用光束法将拍摄到的每张影像的外方位元素计算出来,然后再对大量影像点进行密集匹配,并将这些影像点的大地坐标计算出来,经过滤波处理之后,通过地面离散点规则网格化生成DEM;在对拍摄到的影像进行方位元素解算时,由于各种因素的影响,难免会出现偏差,这样一来便会导致所生成的测区DEM出现偏差。因此可以采用系统中的正射纠偏模块进行分块校正,由此便可以获得整个测量区域范围的正射影像。

篇8

风煤的微波测量系统,如图2所示。两组微波探头按要求安装在管道上,微波信号通过两组微波探头被送入信号处理单元,信号经过处理,送入相关性处理运算单元,经过相关器识别出相关的微波信号,然后再经过运算,得出速度信号,直接将信号送到集控室的监测界面。另一组探头输出的煤粉浓度信号,也被送入集控室的监测界面。在安装风煤的微波测量探头时,微波探头应垂直于管壁,同方向上的微波探头中心连线应与输粉管道的轴线平行。为防止两组微波互相干扰,两组探头在理论上应该互相垂直,但在实际安装中不能保证绝对垂直,故两个方向上的微波探头在轴线夹角上的最大偏差为90°±3°。

3检测与运行

经过间隔τ0时间后,由2个下游微波接收探头得到的曲线,如图3所示。从图3可知,微波探头2接收的信号,经过τ0时间后,微波接收探头4得到相似的信号。由于接收探头上产生的信号与该段混合物的浓度、温度、风煤混合程度等因素有关,所以,仅在设定的管道长度内,才能接受到相似的信号,从而得到送粉管道的风速。利用微波特性测量送粉管道风速,对被测流体的流动产生的影响很小,甚至不产生阻碍作用或附加流动阻力,无疑是最适合用于多相流的测量方法。经过多次试验,利用微波传感器获取两相流体的流动噪声信号,这种间接测量方法的重复性好,检测设备的运行非常稳定。此外,微波测量方法克服了传统风速测量探头易磨损或堵塞等缺陷。

篇9

由于化工生产的特点,有的工况较复杂或介质腐蚀性强,不能在设备上开孔如储槽或反应器等等,因此,用现有的液位计无法准确测量;有的虽然能测量但不能长期稳定运行,而液位又要求严格控制;有的可以选择核液位计,但核液位计不仅价格高,而且核辐射对人身及环境影响较大,运行成本也较高。采用软测量可解决类似的测量难题。下面以云南云天化国际化工股份有限公司红磷分公司磷酸厂磷酸浓缩液位测量为例(见图1),来说明采用软测量方法解决复杂工况的液位测量的可行性。工况说明:红磷分公司1#磷酸浓缩系统由东华科技公司设计,采用强制循环真空蒸发技术,将w(P2O5)=25%左右的稀磷酸浓缩至w(P2O5)=45%~50%,同时蒸发气体采用两级逆流真空氟吸收系统生产出w=12%~16%的H2SiF6。特点是强腐蚀、高真空、设备内件复杂。控制系统DCS采用艾默生公司的deltav控制系统。

1)第一氟吸收塔T-301A液位的测量

T-301A内液相为w=12%~16%的H2SiF6,气相成分主要为HF、F2、H3PO4蒸汽,温度68℃左右,表压10kPa左右。设备采用A3钢内衬胶板,内有多层洗涤喷头。T-301A液位测量设计采用双法兰液位变送器测量,法兰膜片为钽+F隔膜。在使用过程中,由于真空度较高,负压室钽+F隔膜经常损坏,使用周期仅为一个月左右,正压室由于有F隔膜的保护能长期使用。双法兰液位计大约2.5万元一台,如此高的运行费用显然是不能接受的。2001年,笔者采用软测量的方式解决了这个问题,具体方法是:把LT-1301双法兰液位变送器改为单法兰变送器,在DCS系统中作算法,用LT-1301的信号减去PIC-1307信号模拟出液位LICA-1301。采用该测量方式后,液位测量10年来稳定运行,降低了运行成本并在公司内推广应用。

2)磷酸浓缩闪蒸室(V-301A)液位测量

磷酸浓缩闪蒸器(V-301A)是磷酸生产的重要设备,正常生产时,液相温度81℃左右,汽相温度68℃左右,表压10kPa左右,气相含F、H3PO4。设备采用A3钢内衬胶板,下半部衬胶板加碳砖,内有多层折流板。1#浓缩闪蒸器(V-301A)液位设计采用阿玛特的γ-射线液位计测量,存在测量误差大、有核辐射的问题。在LICA-1301液位测量使用软测量技术获得成功之后,仪表技术员在闪蒸器底部的进酸管上安装一个单法兰差压变送器,也使用软测量方式来测量。具体作法是:用新装的差压变送器信号LT-1303A与原有的PIC-1307压力进行计算,模拟出液位LIA-1303A。这种软测量方式虽然简单,但在实际生产中的确解决了一些测量的难题,云南云天化国际化工股份有限公司红磷分公司从2001年以来一直采用,并推广到2#、3#、4#浓缩及其它分公司。

2采用物料平衡测量液位

篇10

2.1我国电子仪表测量技术发展的现状

国内的电子仪表测量工业和技术在近几年有了长足的进步。随着对国际先进技术的引进和消化,测量仪表的功能和精确性都有了很大的进步,许多设备在功能的全面性上已经接近国际先进水平了。行业的发展受到国家在技术和财政政策的支持,已经步入了发展的快车道。许多国产的仪表已经使用了国际化的设计、生产标准,已从CAMAC、PC总线、STD总线向VXI、PXI总线发展,从堆叠式测试系统向标准化、模块化测试系统发展,并先后研制出国产化VXI模件、VXI测试系统及PXI系统,使我国测试系统技术水平逐步进入国际先进行列。

2.2我国电子仪表测量技术的主要问题

虽然近年来,我国的电子仪表测量技术有了一定发展,但是还有很多技术障碍没有突破,比如:电子仪表的软件系统和集成化不够发达,各模块单元之间没有形成完整的融合,功能集成较为单一。像电子电路、同轴器等核心组件与总线技术、软件系统没有完成结合。此外,自动化与模块结构化程度不够。电子仪器测量的自动化程度是衡量一个国家电子测量的技术时代的重要标准。由于历史原因,我国相关企业在生产过程中,对于世界上最先进的第三代电子仪表测量系统学习程度较浅,对于自动化、智能化的开发速度较慢,距离市场需求还有一段距离。不少企业仍然过分追求高精度或者功能全面型,对于系统化和稳定性的处理不够好,制约了其进一步发展。

2.3电子仪表测量技术的主要发展成果

近年来,世界上先进的电子仪表测量设备不断出现,高精度、智能化、全功能已成为电子仪表设备的发展方向。新开发的各种仪表,都一个突出的特点,就是强大的稳定性,像微波毫米波矢量网络分析仪,它最突出的优势在于:工作频带宽;测量精度高;大动态范围;高速实时测试;再比如可以完成超高速测量的VXI总线技术、可以进行毫米级别波段测量的电子信息测试仪等。

篇11

2.1水下地形测量技术的测量设备选择

(1)水下地形测量中测深仪的选择:传统的测深仪器与工具主要包括测深锤、测深杆和回声探测仪等,而现阶段这些设备通常被当作辅助工具来进行选用。现阶段的水深测量工作都是通过回声探测仪来完成的,测深仪的机型主要分为双频测深仪和单频测深仪两种,其中单频测深仪能够满足普通的深度测量需要,但一旦碰到需要进行土方计算的测量就显得比较困难,所以通常需要两个测深仪的配合使用才能更好的进行水深的测量工作。(2)水下地形测量中GPS的选择:在水下地形的测量设备中,GPS主要用于完成水上的导航与定位工作,这就要求我们必须依照测图比例尺来进行GPS的机型选择工作,同时要对测距精度和定位精度等进行充分考虑,结合实际选用的应用系统和探测仪,来进一步提高所采用的技术线路的可操作性。(3)水下地形测量中测深船的选择:在波浪等的影响下,使得测深船容易形成前后与上下波动,导致架设在船体上的GPS天线也会受到一定的波动影响,从而进一步影响到垂直方向的测量结果。专业的测量船对于各个方位的波动情况都能够进行准确的仪器测定,如果测深船体积过大,虽然能够确保船体的稳定性,却影响到其灵活性,不能有效的进行浅水区的水深测量工作,因此,测量人员必须依据作业环境的实际情况,来对测深船进行有针对性的船型选择[3]。

2.2水下地形测量技术的测量线路选择

所有的测量工作都需要在技术确定之前,充分的结合客户需要以及测区的实际特点来进行测量线路的合理规划,进行水下地形的测量工作也不例外。在对大型的河道进行水下地形的测量工作时,受到水域面积与水域特征的影响,提高了测量工作的难度,加大了测量工程的安全隐患,这就需要测量人员对测量点进行充分的调查了解,来确定出一条更加合理的测量路线,从而保障测量工作能够顺利开展。

2.3水下地形测量技术的测量软件选择

现阶段,一般的水下地形测量仪器都有与之配套的后处理软件系统,而依据测量仪的探头数量,我们又可以把测量系统划分为单波束测探系统和多波束测探系统这两种主要形式。多波束测量具有明显的测探速度更快,测探点更多,且测探覆盖范围更广泛等特点,有效的运用了旋转定向技术,提高了系统的测量效率与测量精度,降低了数据的处理时间,能够更好的保证测量的成图质量。

2.4水下地形测量技术的测量方式选择

我们常见的水下地形测量方式主要是踏勘测区,即运用先前掌握的数据资料来进行控制点的布设,在进行控制测量的计算之后,有效的利用全站仪岸上的观测,将测深数据整合成一份完整的操作报告,最后将数据输出到编辑软件中进行合理的修改,从而得到一副符合1:10000国际分幅的水下地形图。

篇12

(1)测量仪器的应用。

现在,岩层移动变形检测仪器、全站型仪器、卫星定位技术以及电子经纬仪等,不仅仅应用于测量地面与数据收集上,而且还能够大大提高工作效率以及测量的准确性,从而使得劳动强度大大降低,工作环境不断改善。为能够更好的开发与保护土地与矿产资源等,更好的保护矿区的环境等具有非常重要的作用;

(2)测量技术的应用。

计算机技术、遥感技术、地理信息技术以及卫星空间定位技术等,不单单是整个测绘学科的核心,而且还是整个矿山测量中的重要核心技术,同时这些技术在不断发展的过程中,其理论研究与实际应用也得以不断完善与发展。在当前矿山测量中遥感技术、数字摄影测量、卫星定位技术、机助制图、电子速测仪以及计算机处理技术等都得到了广泛的应用。矿山测量的工作者已经了解到了外业仪器设备智能化、数字化以及自动化的优越性,而对内业数据的处理、输出的一体化、形象化使得信息得以加工与处理,所以对认识资源与改造自然会不断深入,使得现代科学技术对环境保护与资源综合开发的潜力与优势得以充分发挥;

(3)变形观测的应用。

在矿山测量技术学科之中“三下”采矿研究、地表移动规律以及检测是其重要领域,这些研究具备重要的经济效益与社会效益。现在,我国在这上面的研究越来越朝着质复杂、地形复杂条件下发展,因此,对于多技术与多手段的三维空间开展计算机数值模拟、实验室模拟方法研究以及非线性理论等方法研究都予以极大的重视,而且效果显著。

3全面质量管理的探索与实践

3.1全员质量管理的核心内容

3.1.1做好测量人员的思想工作

对矿山测量工作人员开展警示教育工作,定期召开座谈会,对测量事故及其发生原因进行分析讨论,从而使测量人员树立起“质量第一”的思想,质量意识大大提高。

3.1.2测量技术与技术培训

与矿山测量实际工作需要相结合,有计划的组织所有测量工作者学习测量技术,并且交流技术经验,从而使得测量人员的操作技术、业务素质和处理问题的能力不断提高。

3.2全过程质量管理

3.2.1加强外业测量工作

在开展矿山测量工作之前一定要认真的对工具、仪器进行检查与校正,使得检测结果的正确性得以确保。熟悉并检查施工设计图纸,查阅测量资料,在对测量方案开展共同研究之后,施工人员开始下井施测,对工序的各环节进行测量,严格根据《矿山测量规程》的相关规定标准方法进行测量,在测量现场,应该将测量数据记录清楚,不能够存在涂改现象,在测量结束之后,应该对现场记录和计算推导的正确性进行检查,在保证其正确后才能够离开。

3.2.2加强测量内业计算工作

认真的检查与复算原始的记录数据,在矿山观测工作结束之后,应该对外业观测手薄里的计算正确与否进行及时的整理与检查,对检查结果是否符合各项限差要求进行观测,在确定观测结果都与要求相符后,才可以开展计算。要仔细的开展复测复算。在矿山测量工作中,要求绘图人员在计算结果的基础上开展绘图时,一定要根据“对算薄”的最终结果,并且“对算薄”一定要经由相关负责人签字确认之后才可以使用,这就在一定程度上避免了由于资料错误展开绘图而致使绘图出错问题的出现。

3.3全方位质量管理

矿山测量人员因为分工不同、管理层次不同、负责区段与范围不同,因此个作业小组应该增强组织协调,将测量工作做好,还应该把现场工作的质量保证,推广到测量工作与服务工作之中。在矿山测量工作中,都应该对之前测量成果的精确性、可靠性进行检查,根据《矿山测量规程》相关规定决定限差;对工具、仪器定期的进行检核,使得这些器具能够保持良好的状态,对于有问题的工具、仪器,杜绝使用;对设计图纸进行认真检查,在确保其准确无误后,才可以通过对算之后准备测量资料,在对测量方案进行研究之后,施工人员才可以下井施测。测量工序之中的各环节,都应该严格根据《矿山测量规程》中的标准测量方法进行测量,并进行严格把关,及时的对超限资料进行补测及重测。

篇13

工程测量通常是指在工程建设的勘测设计、施工和管理阶段中运用的各种测量理论、方法和技术的总称。传统工程测量技术的服务领域包括建筑、水利、交通、矿山等部门,其基本内容有测图和放样两部分。现代工程测量己经远远突破了仅仅为工程建设服务的概念,它不仅涉及工程的静态、动态几何与物理量测定,而且包括对测量结果的分析,甚至对物体发展变化的趋势预报。苏黎世高等工业大学马西斯教授指出:“一切不属于地球测量,不属于国家地图集的陆地测量,和不属于法定测量的应用测量都属于工程测量”。随着传统测绘技术向数字化测绘技术转化,我国工程测量的发展可以概括为“四化”和“十六字”,所谓“四化”是:工程测量内外业作业的一体化,数据获取及其处理的自动化,测量过程控制和系统行为的智能化,测量成果和产品的数字化。“十六字”是:连续、动态、遥测、实时、精确、可靠、快速、简便。

2我国工程测量技术现状

2.1先进的地面测量仪器在工程测量中的应用。

20世纪80年代以来出现许多先进的地面测量仪器,为工程测量提供了先进的技术工具和手段,如:光电测距仪、精密测距仪、电子经纬仪、全站仪、电子水准仪、数字水准仪、激光准直仪、激光扫平仪等,为工程测量向现代化、自动化、数字化方向发展创造了有利的条件,改变了传统的工程控制网布网、地形测量、道路测量和施工测量等的作业方法。三角网已被三边网、边角网、测距导线网所替代;光电测距三角高程测量代替三、四等水准测量;具有自动跟踪和连续显示功能的测距仪用于施工放样测量;无需棱镜的测距仪解决了难以攀登和无法到达的测量点的测距工作;电子速测仪为细部测量提供了理想的仪器;精密测距仪的应用代替了传统的基线丈量。

2.2GPS定位技术在工程测量中的应用。

GPS是美国从20世纪70年代开始研制,历时20年,耗资200亿美元,于1994年全面建成,具有海、陆、空进行全方位实施三维导航与定位能力的新一代卫星导航与定位系统。随着GPS定位技术的不断改进,软、硬件的不断完善,长期使用的测角、测距、测水准为主体的常规地面定位技术,正在逐步被以一次性确定三维坐标的高速度、高精度、费用省、操作简单的GPS技术代替。

在我国GPS定位技术的应用已深入各个领域,国家大地网、城市控制网、工程控制网的建立与改造已普遍地应用GPS技术,在石油勘探、高速公路、通信线路、地下铁路、隧道贯通、建筑变形、大坝监测、山体滑坡、地震的形变监测、海岛或海域测量等也已广泛的使用GPS技术。随着DGPS差分定位技术和RTK实时差分定位系统的发展和美国AS技术的解除,单点定位精度不断提高,GPS技术在导航、运载工具实时监控、石油物探点定位、地质勘查剖面测量、碎部点的测绘与放样等领域将有广泛的应用前景。

2.3数字化测绘技术在工程测量中的应用。

数字化测绘技术在测绘工程领域得以广泛应用,使大比例尺测图技术向数字化、信息化发展。大比例尺地形图和工程图的测绘,历来就是城市与工程测量的重要内容和任务。

常规的成图方法是一项脑力劳动和体力劳动结合的艰苦的野外工作,同时还有大量的室内数据处理和绘图工作,成图周期长,产品单一,难以适应飞速发展的城市建设和现代化工程建设的需要。随着电子经纬仪、全站仪的应用和GEOMAP系统的出现,把野外数据采集的先进设备与微机及数控绘图仪三者结合起来,形成一个从野外或室内数据采集、数据处理、图形编辑和绘图的自动测图系统。系统的开发研究主要是面向城市大比例尺基本图、工程地形图、带状地形图、纵横断面图、地籍图、地下管线图等各类图件的自动绘制。系统可直接提供纸图,也可提供软盘,为专业设计自动化,建立专业数据库和基础地理信息系统打下基础。

20世纪80年代以来,我国数字化测绘技术的开发研究和应用发展很快,成效显著。由于技术标准和规范不同,国外研究成功的数字化测绘系统不适合国情,难以推广应用,只有依靠自己研究开发。1987年北京市测绘设计研究院在国内首先完成了“大比例尺数字化测图系统”(即DGJ)的软件开发,并通过技术鉴定,1990年被建设部列为第一批技术推广应用项目之一,在80多个城市及工程测量单位推广应用,同时又有十几个大专院校、仪器公司和工程测量单位,先后开发和研制出多个类似的数字测图系统软件。

2.4摄影测量技术在工程测绘中的应用。

摄影测量技术已越来越广泛的在城市和工程测绘领域中得以应用,由于高质量、高精度的摄影测量仪器的研制生产,结合计算机技术中的应用,使得摄影测量能够提供完全的、实时的三维空间信息。不仅不需要接触物体,而且减少了外业工作量,具有测量高效、高精度,成果品种繁多等特点。在城市和工程大比例尺地形测绘、地籍测绘、公路、铁路以及长距离通讯和电力选线、描述被测物体状态、建筑物变形监测、文物保护和医学上异物定位中都起到了一般测量难以起到的作用,具有广泛的应用前景。由于全数字摄影测量工作站的出现,为摄影测量技术应用提供了新的技术手段和方法,该技术已在一些大中城市和大型工程勘察单位得以引进和应用。

航空摄影测量是进行城市大面积大比例尺地形图、地籍图测绘与更新以及大型工程勘测的重要手段与方法,它可以提供数字的、影像的、线划的等多种形式的地图成果。目前,我国有100多个城市或工测单位利用航测技术测制大比例尺地形图和地籍图,最大比例尺为1/500。采用的仪器除利用高精度的模拟测图仪和解析测图仪成图方法外,还用立体坐标测图仪与微机连接进行数据采集,经微机数据处理输入绘图机自动绘图。

3工程测量技术的发展展望

展望21世纪,工程测量将在以下方面将得到显著发展:

测量机器人将作为多传感器集成系统在人工智能方面得到进一步发展,其应用范围将进一步扩大,影像、图形和数据处理方面的能力进一步增强。

在变形观测数据处理和大型工程建设中,将发展基于知识的信息系统,并进一步与大地测量、地球物理、工程与水文地质以及土木建筑等学科相结合,解决工程建设中以及运行期间的安全监测、灾害防治和环境保护的各种问题。

大型复杂结构建筑、设备的三维测量,几何重构及质量控制,以及由于现代工业生产对自动化流程,生产过程控制,产品质量检验与监控的数据与定位要求越来越高,将促使三维业测量技术的进一步发展。工程测量将从土木工程测量、三维工业测量扩展到人体科学测量。

多传感器的混合测量系统将得到迅速发展和广泛应用,如GPS接收机与电子全站仪或测量机器人集成,可在大区域乃至国家范围内进行无控制网的各种测量工作。

GPS、GIS技术将紧密结合工程项目,在勘测、设计、施工管理一体化方面发挥重大作用。

在人类活动中,工程测量是无处不在、无时不用,只要有建设就必然存在工程测量,因而其发展和应用的前景是广阔的。

免责声明以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。

你好,需要期刊咨询服务吗?在线咨询
了解我们
获奖信息
挂牌上市
版权说明
杂志之家服务支持
在线客服
工作时间 8:00-24:00
期刊咨询服务
服务流程
网站特色
常见问题
经营许可
出版物经营许可证
企业营业执照
客服服务
期刊咨询
订阅咨询
投诉留言
其它
公文范文
期刊知识
发表咨询 加急见刊 文秘咨询 期刊订阅 返回首页