在线客服

无线传输技术论文实用13篇

引论:我们为您整理了13篇无线传输技术论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

无线传输技术论文

篇1

CDMA2000的优势是可以和窄带CDMA的基站设备很好地兼容,能够从窄带CDMA系统平滑升级,只需增加新的信道单元,升级成本较低,核心网和大部分的无线设备都可用。容量也比IS-95A增加了两倍,手机待机时间也增加了两倍。缺点是CDMA2000系统无法和GSM系统兼容。

1.WCDMA与CDMA2000的物理层技术比较

WCDMA和CDMA2000物理层技术细节上有相似也有差异,由于考虑出发点不同,造成了不同的技术特点。WCDMA技术规范充分考虑了与第二代GSM移动通信系统的互操作性和对GSM核心网的兼容性;CDMA2000的开发策略是对以IS-95标准为蓝本的窄带CDMA的平滑升级。

(1)这两个标准的物理层技术相似点可以归纳为以下几点:

①内环均采用快速功率控制。CDMA系统是干扰受限系统,因此为了提高系统容量,应尽可能的降低系统的干扰。功率控制技术可以减少一系列的干扰,这意味着同一小区内可容纳更多的用户数,即小区的容量增加。因此CDMA系统中引入功率控制技术是非常必要的。

②系统都支持开环发射分集,信道编码采用卷积码和Turbo码。

③系统均采用软切换技术。所谓软切换是指移动台需要切换时,先与新的基站连通再与原基站切断联系,而不是先切断与原基站的联系再与新的基站连通。软切换只能在同一频率的信道间进行,因此模拟系统、TDMA系统不具有这种功能。软切换可以有效地提高切换的可靠性,大大减少切换造成的掉话。

④WCDMA工作频段:1900~2025MHz频段分配给FDD上行链路使用,2110~2170MHz频段分配给FDD下行链路使用,2110~2170MHz频段分配给TDD双工方式使用。其中WCDMA和CDMA2000利用1900~2025MHz频段(上行),2110~2170MHz(下行)。

(2)两个标准的物理层技术差异可以归纳为以下几点:

①扩频码片速率和射频带宽。WCDMA根据ITU关于5MHz信道基本带宽的划分规则,将基本码片速率定为3.84Mcps。WCDMA使用带宽和码片速率是CDMA2000-1X的3倍以上,能提供更大的多路径分集、更高的中继增益和更小的信号开销。CDMA2000分两个方案,即CDMA2000-1X和CDMA2000-3X两个阶段。CDMA2000系统可支持话音、分组数据等业务,并且可实现QoS的协商。室内最高数据速率达2Mbit/s,步行环境384kb/s,车载环境144kb/s。CDMA2000在前向和反向CDMA信道在单载波上采用码片速率1.2288Mcps的直接序列扩频,射频带宽为1.25MHz。

②支持不同的核心网标准。WCDMA要求实现与GSM网络的兼容,所以它把GSMMAP协议作为上层核心网络议;CDMA2000要求兼容窄带CDMA,因此它把ANSI-41作为自己的核心网络协议。

③WCDMA进行功率控制的速度是CDMA2000的2倍,能保证更好的信号质量,并支持多用户。

④为了使支持基于GSM的GPRS业务而部署的所有业务也支持WCDMA业务,为了完善新的数据话音网络,CDMA2000-1x需要添加额外的网元或进行功能升级。

2.WCDMA与CDMA2000网络接口的比较

3G标准的基本目标是能在车载、步行和静止各种不同环境下为多个用户分别提供最高为144kbit/s、384kbit/s和2048kbit/s的无线接入数据速率。为多个用户提供可变的无线接入数率是3G标准的核心要求。CDMA2000可分别用于900MHZ和2GHZ两个频段CDMA2000的码片速率与IS-95相同,两系统可以兼容。WCDMA的码片速率为3.84Mcps,显然WCDMA系统中低速率用户或语音用户的移动台成本会大幅上升,在CDMA2000系统中则不会如此。

WCDMA的接口标准规范、制定严谨、组织严密,而CDMA2000的接口标准严谨性有待加强。IS-95厂家设备难以互通,给运营商设备选型带来了较大问题;3G许诺的高速无线数据服务必须可以和话音一样实现无缝的漫游,这是至关重要的。多媒体信息要漫游、视频通话也要漫游,没有这些基本要素,3G就不能称其为3G。漫游涉及到的不仅仅是技术问题,更重要的是商业利益。在这方面WCDMA显然更胜一筹,它支持全球漫游,全球移动用户均有唯一标识,而CDMA2000尚不能很好做到这一点。

3.WCDMA和CDMA2000网络演进的比较

(1)WCDMA的网络演进技术

现有的GSM系统利用单一时隙可提供9.6kbit/s的数据服务。如果复用多个时隙就能升级为HSCSD(高速电路交换数据)方式;此后出现了GPRS(通用分组无线业务),首次在核心网中引入了分组交换的方式,可提供144kbit/s的数据速率。接着继续升级采用8PSK调制,这样传输速率可以上升至384kbit/s这就是EDGE;WCDMA的数据传输速率将高达2M/s。

(2)CDMA2000网络演进技术

主要的CDMA2000运营商将来自现在的窄带CDMA运营商。窄带CDMA向CDMA2000过渡的方式为IS-95AIS95BIS-95CIMT2000。IS-95A的数据传输速率为14.4kbit/s,为了提供更高的速率,1999年部分厂商开始采用IS-95B标准,理论上支持115.2kbit/s的速率。IS-95C进一步使容量加倍,最后升级为CDMA2000。

窄带CDMA系统向CDMA2000系统的演进分为空中接口、网络接口及核心网络演进等方面。

①目前窄带CDMA系统的空中接口是基于IS295A,其支持的数据速率为14.4kbit/s,由IS295A升级到IS295B,可支持64kbit/s。

②窄带CDMA网络接口的演进主要指窄带CDMA系统A接口的升级和演进。对于窄带CDMA系统,以前其A接口不是规范接口(即不是开放接口),窄带CDMA和GSM的A接口的规范相比较,GSM是先有A接口标准,然后厂家依据标准开发;窄带CDMA是厂家各自开发,然后广泛宣传,最后凭借自身影响修改标准。

③窄带CDMA的核心网在美国经过多年发展后,从IS241A到IS241B到IS241C,我国CDMA试验网和红皮书以IS241C为基础,IS241D规范在1999年底,目前IS241E规范还未正式。

二、WCDMA和CDMA2000在我国的前景

对3G标准的选择不仅要看其技术原理及成熟程度,还要结合本国国情、市场运作状况等因素进行考虑。按目前的进展来看,两种标准最后不能融合成一种,但可以共存。

在我国,GSMMAP网络已形成巨大的规模,欧洲标准的WCDMA在网络上充分考虑到与第二代的GSM的兼容性,在技术上也考虑了与GSM的双模切换兼容,向WCDMA体制的第三代系统演进,从一开始就解决了全网覆盖的问题。而且CDMA2000采用GPS系统,对GPS依赖较大;在小区站点同步方面,CDMA2000基站通过GPS实现同步,将造成室内和城市小区部署的困难,而WCDMA设计可以使用异步基站,运营者独立性强;对于电信设备制造行业,我国在GSM蜂窝移动通信方面发展成熟,而窄带CDMA系统尚未形成规模和产业。

WCDMA采用全新的CDMA多址技术,并且使用新的频段及话音编码技术等。因此GSM网络虽然可采用一些临时的替代方案提供中等速率的数据服务,却不能提供一种相对平滑的路径以过渡到WCDMA。而CDMA2000的设计是以IS-95系统的丰富经验为依据的,因此窄带CDMA向CDMA2000的演进无论从无线还是网络部分都更为平滑。在基站方面只需更新信道板,并将系统软件升级,即可将IS-95基站升级为CDMA2000基站。

由此可见,WCDMA和CDMA2000还将长时间在我国共存,鹿死谁手?尚未分晓。

参考文献:

[1]TeroOjanpera,RamjeePrasad.朱旭红译.宽带CDMA:第三代移动通信技术.北京:人民邮电出版社.

[2]杨大成.CDMA2000-1X移动通信系统.北京:机械工业出版社,2003.

篇2

1系统组成

系统组成如图1、图2所示。

系统由测量站和主控站两部分组成。测量站主要完成对现场信号的采集、存储,接收遥控指令并发送数据。主控站的主要工作是发送遥控指令、接收数据信息、进行数据处理和数据管理、随机显示打印等。

2AT89C51与数字电台的串行通信

Atmel公司的AT89C51单片机,是一种低功耗、高性能的、片内含有4KBFlashROM的8位CMOS单片机,工作电压范围为2.7~6V(实际使用+5V供电),8位数据总线。它有一个可编程的全双工串行通信接口,能同时进行串行发送和执着收。通过RXD引脚(串行数据接收端)和TXD引脚(串行数据发送端)与外界进行通信。

2.1通信协议与波特率

数字电台与单片机、终端主控机的通信协议为:

通信接口——标准串行RS232接口,9线制半双工方式;

通信帧格式——1位起始位,8位数据位,1位可编程数据位,1位停止位;

波特率——1200baud。

数字电台选用Motorola公司的GM系列车载电台,工作于VHF/UHF频段,可进行无线数传(9线制标准串行RS232接口),也可进行话音通信;采用二进制移频键控(2FSK)调制解调方式,符合国际电报电话咨询委员会CCITT.23标准。在话带内进行数字传输时,推荐在不高于1200b/s数据率时使用。实际使用时,电台工作于220~240MHz频率范围,采用半双工方式(执行收、发操作,但不能同时进行)即可满足系统要求。

2.2AT89C51串行口工作方式

AT89C51串行口可设置四种工作方式,可有8位、10位和11位帧格式。本系统中,AT89C51串行口工作于方式3,即鳘帧11位的异步通信格式:1位起始位,8位数据位(低位在前),1位可编程数据位,1位停止位。

发送前,由软件设置第9位数据(TB8)作奇偶校验位,将要发送的数据写入SBUF,启动发送过程。串行口能自动把TB8取出,装入到第9位数据的位置,再逐一发送出去。发送完毕,使TI=1。

接收时,置SCON中的REN为1,允许接收。当检测到RXD(P3.0端有“1”到“0”的跳变(起始位)时,开始接收9位数据,送入移位寄存器(9位)。当满足RI=0且SM2=0或接收到的9位数据为1时,前8位数据送入SBUF,第9位数据送入SCON中的RB8,置RI为1;否则,这次接收无效,不置位RI。

串口方式3的波特率由定时器T1的溢出率与SMOD值同时决定:

方式3波特率=T1溢出率/n

当SMOD=0时,n=32;SMOD=1时,n=16。T1溢出率取决于T1的计数速率(计数速率=fosc/12)和TI预置的初值。

定时器T1用作波特率发生器,工作于模式2(自动重装初值)。设TH1和TL1定时计数初值为X,则每过“28-X”个机器周期,T1就会发生一次溢出。初值X确定如下:

X=256-fosc×(SMOD+1)/384×BTL

本系统中,SMOD=0,波行率BTL=1200,晶振fosc=6MHz,所以初值X=F3H。

2.3AT89C51与数字电台的硬件连接

AT89C51与数字电台的硬件连接如图3所示。

系统采用异步串行通信方式传输测量数据。利用单片机串口与数字电台RS232数据口相连。电台常态为收状态(PPT=0,收状态;PPT=1,发状态),单片机P3.5脚输出高电平。单片机使用TTL电平,电台使用RS232电平,由MAX232完成TTL电平与RS232电平之间的转换。3片光电耦合器6N137实现单片机与电台之间的电源隔离,增强系统抗干扰性能。

单片机通过带控制端的三态缓冲门74HC125、非门74HC14控制电台的收发转换,以及指令的接收和数据发送。接收时,P3.5=1,c2=1,74HC125B截止;P3.5经74HC14反相、光电隔离,使电台PPT脚为低电平,将其置为接收状态;同时c1=0,74HC125A导通,接收的指令由电台的RXD端输入,经MAX232电平变换、光电隔离、74HC125A缓冲门,送入单片机RXD脚。发射时,P3.5=0,经74HC14反相、光电隔离,使电台PPT脚为高电平,将其置为发射状态;同时c1=1,74HC125A截止,c2=0,74HC125B导通,数据由单片机TXD脚输出,经74HC125B缓冲门、光电隔离、MAX232电平变换,通过电台TXD端口将数据发送出去。

3通信软件设计

通信软件至关重要,一旦出现问题,整个系统就会瘫痪。采取差错控制与容错技术是非常重要的。

*主控站发送的指令中包含一定数量的同步符55H和3字节的密码。测量站在连续收到5个同步符后进行密码验证,验证通过后正式接收指令字节;如未通过,则测量站发一信号让主控站重发,三次验证不过则停发该命令。测量站发/主控站收时,验证方式与此相同。验证通过后,测量站开始发送数据。

*一个指令由3字节构成,第二字节等于第一字节加上35H,第3字节等于第二字节加上36H。如果收到的指令不符合此规则,则重发该命令,连续三次错误时停发。

*主控站每发一个指令,测量站都回送一个应答信号。该应答信号中包含原指令样本。

下面给出单片机串行口与电台的基本通信程序。

初始化程序:

BTLEQU2FH;波特率放在内部RAM的2FH单元

MOVTMOD,#21H;T0方式1,16位计数器,T1方式2,串口用

SETBTR0;启动T0

MOVBTL,#0F3H;波特率设定为1200

MOVSCON,#0C0H;串口方式3,9位数据,禁止接收

接收及验证程序:

NUMEQU2BH;同步符个数值存放在内部RAM的2BH单元

TEMPEQU2CH

ROM-CH:DB55H,55H,55H,55H,55H,55H,55H,55H,55H,55H

DB55H,55H,55H,55H,55H,55H,55H,55H,55H,55H;20字节同步符

MIMDB''''WSC'''':3字节密码“WSC”

SETBP3.5;置电台收状态

SETBREN;允许串口接收

A1:MOVNUM,#0;记录连续到同步符55H的个数

A2:JBRI,A2;串口有数据转A3

A3:CLRRI;清接收中断标志

MOVA,SBUF;读串口数据

CJNEA,#55H,A1;不是同步符转A1

INCNUM;收到的同步符个数加1

MOVA,NUM;取收到的同步符个数

CJNEA,#5,A2;未收够连续5个55H转A2

A4:MOVNUM,#0;密码验证,记录收到密码字节数

A5:MOVDPTR,#MIM;密码字符首址

MOVA,NUM

MOVCA,@A+DPTR;查表取密码

MOVTEMP,A;保存密码

JBRI,A6;串口收完一个字节转A6

A6:CLRRI;清接收中断标志

MOVA,SBUF;读串口数据

CJNEA,TEMP,A4;与密码不符转A4

INCNUM;收到的密码个数加1

MOVA,NUM;取已收到的密码字节数

CJNEA,#3,A5;密码未收完转A5

发送程序:

CLRP3.5;置电台发状态

MOVB,#23

MOVDPTR,#ROM-CH

B1:CLRA

MOVCA,@A+DPTR;查表发送同步符和密码共24字节

INCDPTR

LCALLSEND-CH;调发送单字节子程序

DJNZB,B1

CLRA

MOVDPTR,#7000H;外部RAM数据首址,发送外部RAM中的数据到电台

B2:CJNER4,#0,B3

CJNER3,#0,B3;R4R3=发送字节数

B3:MOVXA,@DPTR;取数据

INCDPTR

LCALLSEND-CH

CJNER3,#0,B4

CJNER4,#0,B5

B4:DECR3

LJMPB2

DECR3

DECR4

LJMPB2

SEND-CH:SETBTB8

MOVSBUF,A

DB0,0,0,0,0,0,0,0

JNBTI,$;延时4μs

CLRTI

篇3

随着短距离、低功率无线数据传输技术的成熟,特别是蓝牙、802.11b等应用的推广,无线数据传输应用再次成为应用的热点。本文介绍一款基于新加坡Winedge公司WE904芯片的无线收发模块,说明其在一个实时无线图像数据传输系统中的应用,以其实现一个低发射功率和低成本的实际应用系统。为低成本中低速的无线数据传输提供一种新的解决方案。

1系统简介

系统的简单框图如图1。此系统的简单工作过程为:①电脑眼负责图像采集和图像信号的A/D转换。②电脑眼输出的图像信号由DSP芯片TMS320VC5402(以下简称5402)编码压缩。③5402通过McBSP(多通道缓冲串口)实现与WE904模块的接口,实现WE904模块的配置,并且将编码后的图像信号以RS232协议的信号格式输到WE904模块,经调制后发送出去。④接收端的WE904模块输出TTL电平的信号,经过RS232电平接口的电平转换后由串口输入PC机。⑤PC机将收到的图像信号解码并显示出来。

2WE904无线收发模块WE915CTX1介绍

WE915CTX1无线收发模块的主芯片是新加坡Winedge公司的WE904。WE904是一款支持全双工的单片调频收发芯片,仅需少量外部元件即可实现无线收发功能,工作频率范围可以从0.1GHz到1GHz。WE904提供串行编程接口,通过串行编程接口可以灵活地调整收发频率、信号输出模式、是否支持全双工等参数。本系统在设计初期直接使用了WE904的模块WE915CTX1。WE915CTX1集成了WE904芯片和所需的外部元件,并提供了简明的使用接口,可以非常方便地嵌入到应用系统中。其主要的特点是:

①工作于902MHz~928MHz美国ISM频段,可以提供20个通道;

②使用FM/FSK的调制方式,频道宽度100kHz;

③提供数字信号和模拟信号两种输出模式,可用于数字和模拟信号的传输;

④灵敏度为-115dBm;

⑤在低输出功率0dBm时,可以提供约80m(数字信号)和300m(话音等模拟信号)的有效传输距离;

⑥传输速率可达57.6kbps,与传输距离有关;

⑦提供串行编程接口,可能灵活配置收发频率等参数;

⑧提供RSSI接收信号强度指示。

3WE904模块WE915CTX1的接口

WE915CTX1提供简单的用户接口,如图2所示。①VCC和GND为电源,电源电压为3.3~4.5V。②AudioIn为待调制基带信号的输入引脚。其输入信号可以是话音等模拟信号,也可以是数字信号。对输入信号的要求是,其交流有效值通常为140mV~200mV,更大的输入有效值能得到更好的信噪比,但也将占用更大的带宽。通常200mV将产生25kHz的频偏。TTL电平的数字信号输入AudioIn引脚时,必须先降低其电压有效值,这可以通过使用2个串联电阻分压来实现。例如,可以用1个10kΩ和1个1.8kΩ的电阻串联分压,但使用的电阻阻值不能太大,否则会使输入的方波波形产生严重的畸变。③AudioOut为接收信号的输出引脚。当输出模式设置为模拟输出(analog)时,输出信号有效值通常为140mV~180mV的已解调基带信号。当输出模式设置为数字模式(digital)时,输出信号Vp-p为3V左右的数字信号方波。④LNA_ON为低哭声放大器电源控制引脚,低电平有效。在接收时必须置低,能够得到约15dB的增益;在不接收信号时可以关掉,以降低功耗。⑤ANT为天线连接引脚,其输出阻抗为50Ω。⑥RSSI为接收信号强度提示。接收信号从-110dBm变化到-50dBm时,RSSI的电平大约从0.65V变化到1.70V。⑦CLK、DATA和LE为串行编程控制端口,用来实现对WE904芯片的编程控制。以下将详细介绍。

4WE904模块WE915CTX1的编程控制接口

WE904芯片内部有4个控制寄存器,用来对WE904芯片的工作状态进行控制。这4个寄存器分别是参考频率寄存器、发送频率寄存器、接收频率寄存器和模式寄存器。这4个控制寄存器的相应位的功能定义此处不作介绍,读者可以参考W904的芯片资料。对这4个寄存器的写入控制则是通过CLOCK、DATA和LE三个引脚业实现的,分别与模拟WE915CTX1的CLK、DATA和LE相对应,其写入时序如图3所示。

写入的基本过程为:①LE开始时为低电平。②当LE变为高电平后,数据在CLOCK的驱动下开始由DATA引脚移入内部的移位寄存器。数据的移位操作是在CLOCK的上升沿进行的。所以设计接口时通常使时钟CLOCK的下降沿和位边界对齐,这样在CLOCK的上升沿能有效的采样到数据。③在最后一个数据位移入内部移位寄存器后,LE在下一个时钟上升沿之前变低。在LE的下降沿,数据将由内部移位寄存器写入控制寄存器。④数据具体写入4个控制寄存器中的哪一个,是由DATA的最低两位的值来决定的。这两位称为装载控制位(loadcontrolbit)。⑤WE915CTX1要求在CLOCK上升沿到来之前,DATA的数据至少已经保持45ns,所以CLOCK的频率不能太高,建议取10MHz以下。

55402rMcBSP简介

5402是TI公司一款性价比非常优越的通用DSP芯片,有着广泛的应用。它提供有两个McBSP。McBSP是一种全双工的高速同步串行口,可以用来与系统中其它的DSP芯片、编码解码器等进行高速的串行通信。McBSP的操作由DSP芯片中一系列寄存器来控制。图4是McBSP的标准操作时序。无论是发送还是接收的移位操作,都是由帧同步信号FSX或者FSR的上升沿触发的,并且由时钟CLKR或CLKX来同步位边界。从FSX或FSR的上升沿到移位操作开始可以有几个时钟的延迟,图4所示为1个时钟的延迟。这可以由控制寄存器XCR2和RCR2中的相应的位来设定。在每一个帧同步信号之后发送或者接收的数据的位数也在控制寄存器XCR2和RCR2中有相应的设定,图4是McBSP的最简单的操作时序,对一般的应用已经足够,更强大的功能则需要更复杂的设计。

65402与WE904模块的接口设计

在本系统的设计中,图像数据的发送和对WE904模块的编程配置是使用DSP芯片5402的同一个McBSP来完成的。这了使这两个过程互不影响,在设计中还使用了5402的一个I/O引脚XF。图5为接口电路的简单原理,基本原理如下:①在对WE904模块配置期间,XF为高电平,LE的输入决定于McBSP的发送帧同步FSX,而发送时钟CLKX和发送数据线DX分别驱动WE904模块的CLK和DATA。②为了对WE904模块进行配置,McBSP的设置为FSX周期大于24个CLKX的时钟周期,高电平宽度设置为24个CLKX的时钟周期。CLKX在驱动CLK时先反相。这样即可得到与图4大体相同的时序,能够完成对WE904模块的配置。这里给出McBSP各个控制寄存器的参考值:SPCR1=0x0080,SPCR2=0x0262,RCR1=0x0000,SRGR2=0x301f,MCR1=0x0000,MCR2=0x0000,PCR=0x0b02。③在对WE904模块的配置完成后,XF设置为低电平输出,此时LE的输入值恒为高电平,因此,CLK和DATA的输入不会再改变WE904的设置。此时,发送的图像数据从DX串行输出,经分压后输入EW904模块的AudioIn。发送的时钟CLKX从FSR引脚输入。这主要是因为本系统的DSP时钟为100MHz,DSP的时钟经过内部计数器分频后仍然无法从CLKX引脚得到要求的几十kHz的时钟,所要求的时钟必须经过再次分频后(在寄存器FPER中设定分频参数)从FSG得到,而发送帧同步FSX将设置成在数据从DXR拷贝到XSR时自动产生。在模块的配置期间,FSR设置为输入,不会影响CLK的输入值。④XF在与FSX做或运算前经过了一次反相,主要是因为XF在此系统中还同时用于其它结构的控制,在图像的发送期间,要求XF为低电平。

图4

7RS232异步串行通信

本系统采用RS232异步串行通信协议。RS232异步串行通信接口是微机的传统外设接口,特点是使用简单,但速率较低。RS232接口在低速数据传输和工业控制、工业数据采集等方面有着广泛的应用。由于本系统要传输的图像数据已经得到较好的压缩,速率在几十kbps,所以本系统使用RS232串行口进行通信。当不需要握手时,最简单的串口通信只需要3条线即可完成连接,单向通信甚至只需要2条线即可。但是由于RS232串行接口的电平较高(通常为正负4V~12V),不同于通常的TTL电平,所以必须经过必要的电平转换。本系统中使用MAXIM的MAX232完成电平转换。RS232的通信协议的数据格式如图6所示。在每一个字节的传输时,都是以一个起始位开始,以停止位结束(停止位个数可设定)。在停止位前可以加入奇偶校验位,在各个字节之间还可以插入空闲位。起始位为0,停止位为1。空闲位也为1,与停止位有相同的电平。接收串口总线在检测到起始位的下跳沿时开始接收数据。在本系统设计中,由于数据是单向传输,RS232的数据格式直接由McBSP负责构建。之后送入WE904模块的AudioIn调制发送。如果要求双向的数据传输,则可以加上一个异步串行通信的接口芯片来实现,如TI公司的TL16C750。接收方的微机负责串口数据接收。串口接收程序的编写通常有三种:①使用C或汇编语言控制硬件;②使用Windows的API函数;③使用VB提供的Mscomm控件。本系统使用的是VB的Mscomm控件。这种方法比较简单,但是效率稍低,如需要更高效率的程序,可以选择前两种方法。关于串口收发程序编写的资料很多,这里不再详述。

8FSK无线数据传输中低频分量引起的误码

篇4

2.1ZigBee协调器节点硬件设计ZigBee协调器节点主要由六大模块构成,分别为LED指示灯、电源模块、串口模块、晶振模块、射频天线以及无线收发器。LED指示灯主要用于显示系统网络连接状态。串口模块用于传输数据信息,并接收相关指令控制协调器运转。由于射频天线在输入和输出为高阻与差动,故适用(115+180)的差动负载。为了进一步优化ZingBee协调器节点性能,我们采用了不平衡变压器。无线收发器工作电压为3.3V,在运行过程中应采用电压转换模块将5V电压下降至3.3V无线收发器能够同时接收两种频率的晶振电路,以此满足监控系统的不同电路需求。

2.2传感器节点硬件设计传感器节点主要由电源模块、CC2430数据传输模块、数据采集模块以及外部数据存储等模块构成。电源模块使用两节5号干电池,CC2430数据传输模块负责数据的传输与采集,并通过与路由节点进行数据交换来控制命令。数据采集模块主要负责采集系统监控区域的湿度、温度、水浸以及光照强度等信息,并将其转化为数据进程存储。

2.3ZigBee协议栈ZigBee协议栈是分层的,每一层都需要向上一层进行数据的提供和管理功能,其主要包括网络层、应用层、媒体访问控制层以及物理层。其中应用层内又划分为ZDO、APS以及应用对象等。媒体访问控制层与物理层位于协议栈子层的最底,属于硬件系统,其他层则在这两者智商,不属于硬件系统。ZigBee协议栈的分层结构简洁明了,极大的方便了系统的设计和调控。

2.4无线传感网软件平台搭建搭建无线传感网软件平台需要一个良好的操作系统。操作系统能够对各项任务进行调度并使整个系统正常运转。不同;诶型设备的同一项处理可以视为同一任务,新建任务并添加至系统,操作系统即将新任务与ZigBee协议栈进行融合,使系统获得新功能并投入使用,从而搭建出完整的无线传感网软件平台。

篇5

在以LTE为代表第4代移动通信正在普及应用的时候,第5代移动通信(5G)的研发已经拉开了帷幕。在过去30多年里,移动通信提高系统容量的方法主要有3个:增加无线传输带宽、提高无线传输链路的频谱效率和增加小区密度。而技术革新最多、最有成效的是无线传输技术,通过引入高阶调制和高性能信道编码等技术有效改善了频谱效率。特别是在第4代移动通信中采用了多天线技术,并通过引入空间资源改善了频谱效率。在未来10~15年,移动通信业务数据量将有数千倍的增加,我们采用什么技术来满足这个需求将成为5G研发需要面对的问题。

目前,移动通信的主要需求是来自移动互联网的发展,特别是智能终端的发展激发了移动通信数据业务量的猛增。未来将有更多类型的终端引入达到移动通信网络中,移动通信终端的数量将远远超过人口数量,数据业务成为绝对的主流。5G移动通信的主要技术突破点仍然是新频段、无线传输技术和蜂窝组网技术。5G移动通信可能采用5 GHz以上的频段增加带宽,而28 GHz、47 GHz和60 GHz将可能用于微功率小区和室内覆盖,解决高密度数据量的热点覆盖需求。大规模MIMO是一种充分利用空间资源的技术,可用于5G移动通信系统中提高频谱效率和功率效率的有效手段,当天线数量增加到上百根后也会引发一系列的技术难题。增加小区密度,多系统、多层次异构协同组网是提高单位面积数据量的最有效手段,但是,多小区的干扰协同与抑制、多系统间的协作与资源调度成为高密度异构小区的主要瓶颈,我们需要全新的思路来解决。

此外,移动通信对新技术的引入方式也在发生着本质的变化,从早期的与场景无关的普适技术到现在依场景优化的自适应技术;1G和2G使用单一技术满足所有的应用场景,无疑将只能针对最恶劣的使用场景进行优化,系统整体性低;3G和4G使用了AMC、智能天线和MIMO等技术,更加精确地利用无线传输信道的特征,可以在更多的使用场景达到最优,整体性能较高;到了5G,这个特点将更加突出,现在提出的一些新技术都是在特定场景中使用的,可达到更高的系统性能。

5G移动通信的研究才刚刚开始,本专题只是涉及了部分5G相关技术。希望通过这些论文能部分反映中国在5G移动通信领域的研发现状,并促进未来5G移动通信技术的研究。

篇6

关键词 : 谐振式磁耦合;无线鼠标;无线传输

中图分类号:TH215 文献标识码:A 文章编号:1006-4311(2015)26-0103-02

基金项目:本文得到嘉兴学院大学生重点创新计划(编号:851714044)的资助。

作者简介:葛彦军(1993-),男,浙江杭州人,嘉兴学院南湖学院电气专业学生,研究方向为电能的无线传输与电气控制。

0 引言

目前,大部分的无线鼠标的电源由电池提供,但电池的使用寿命短,更换频率快,这样会给使用者带来很大的麻烦,且造成环境污染,为了解决这一问题,本文使用谐振式电磁耦合方式,把电能无线传输运用到无线鼠标上,可为鼠标的正常工作提供持续能量。

1 谐振耦合电能无线传输原理

谐振耦合电能传输的原理是利用电磁感应原理实现电能传递,通过谐振耦合能量的方法是使两个线圈发生谐振,使能量从一个线圈传输到另一个线圈,即利用两个LC电路,一个作为电能的发送端,另一个作为电能的接收端,当高频激励信号的频率同发射回路与接收回路的频率相同时,两个LC回路处于谐振工作状态,发射回路的电流值达到最大值,线圈发射的功率最大,接收回路也获得最大功率。

2 系统总体方案

系统总体设计方案如图1中所示,发射部分和接收部分组成了无线电能传输系统。电能无线输电系统包括发射源、发射系统、接收系统、负载等部分,高频逆变电路、线圈组成了发射部分;另一线圈和整流滤波电路组成了接收部分。

电能从计算机中的USB接口获得+5V的电源(DC),通过自激振荡电路产生约100kHz的高频振荡电流,发射线圈将能量以电磁波的形式发射出去,接收线圈将电磁波接收,接收到的电流需要经过整流滤波电路,再有集成稳压芯片构成稳压电路,变换成鼠标工作所需的直流电(3.3V),给鼠标提供电源。由于鼠标工作时要实现自由动作,因此就会改变线圈之间距离,使磁路中存在很大的漏感,很低的耦合系数,这样系统的传输功率会受到限制,从而影响系统的正常工作和工作效率。谐振补偿电路用来消除传输系统中松耦合产生的影响。

3 电路设计与实施

发射端电路由高频调制、L1C1谐振、功率放大器构成。NE555构成振荡频率为100kHz的信号发生器,为发射电路提供激励信号,信号经光电耦合芯片隔离后驱动MOSFET的关断。光电耦合芯片采用HCNR201,其线性度可达0.05%信号带宽可大于1MHz。电路采用IRF540-N场效应管构成桥型逆变电路,同时可将谐振信号进行有效的放大,将信号提供给L1C1并联谐振电路。

接收端电路由L2C2谐振、整流电路、稳压电路构成。整个电路安装在鼠标中,整流电路即将交流电(AC)转化为直流电(DC)的装置,在本设计中采用了体积较小的集成桥式整流芯片MP6S(0.8A)进行整流,整流后经MC34063双极性集成芯片构成BUCK稳压电路,电路输出电压为3.3V。

4 线圈设计与实施

在能量的发射与接收中线圈起重要的作用,试验表明,线圈半径越大,传输距离越大,因此,线圈安要求尽量做的大一些,对于发射线圈,由于和发射电路一起安装在计算机的USB接口,线圈可以大一些,发射线圈用1mm的漆包铜线,绕制半径200mm,匝数10匝。对于接受线圈,由于鼠标内部空间的限制,所绕制的接受线圈应尽可能的小,并要求一定的体积内能输出最大的功率。漆包线直径越大,在相同的体积下匝数就会较少,直径越小,在相同的体积下匝数就会较多。通过实验,在匝数较多的情况下,线圈输出的电压越大,因此,设计中采用了直径为0.15mm的漆包铜线,匝数为6000匝,绕制半径10mm。

由于鼠标在工作中的自由运动,改变了两线圈的距离,影响了电能传输的效率,本设计中采用了并联电容的作为补偿电路以提高传输效率。

5 实验与结论

本设计方案确定后,首先利用PROTUS软件对方案进行了仿真,仿真结果表明了方案的可行性,然后,搭建了实际电路进行了实验测试,实验表明,该电路发射端与接收端相距50CM时,输出端输出电压最大可达8.8V,传输功率可达350MW。传输距离达到1.5米时,输出电压可达到3.5V。本设计完全可以满足无线鼠标的电源供电。

参考文献:

[1]李阳,杨庆新,闫卓.磁耦合谐振式无线电能传输方向性分析与验证[J].电工技术学报,2014,29(2):197-203.

[2]王玉龙,冷宇.电能无线传输装置的补偿电路研究[J].信息技术,2014(7):111-116.

篇7

越来越多数字电子产品借着新科技提升本身的性能和实力。以目前发展的趋势来看,未来消费性电子产品将有两个重要的发展指标,一是使用蓝牙技术这类开放技术,以无线,局域网络,可携带式设备成为网络体的延伸。另一项则是内存规格的统一,加密以及轻量化应用。

无论您喜不喜欢,“蓝牙计划”这个名词几乎已到了无孔不入的境界,不论是商业财经台还是一般大众电视台,都不只一次以上报导这个计划的进展与新闻,话虽如此,但却很少人了解此计划的原意与来龙去脉,只知道有这样一个计划正如火如荼地进行,且声势浩大、似乎充满无限希望。可预见的,未来与蓝牙计划相关的新闻只会更多,因为计划正一步步实现中。

蓝牙(Bluetooth)简单讲就是一种电信、计算机的无线传输技术。单从字面上很难了解蓝牙是个怎么样的技术,他不像“GSM”一样可以望文生义。简单的说蓝牙是一种无线网络与消费性电子产品之通讯技术,透过无线传输和基频模块构成,其快速响应和跳频系统的特性使无线传输更佳稳定。可以应用在各种电子产品如:笔记型计算机、行动电话、数字相机和其它相类似电子产品等。

二、蓝牙的缘起

蓝牙计划基本上是一个无线传输的计划,不需要透过实质线路,在一定的距离范围内,可以传输可观的资料量,当然这种无线传输并不像行动电话那样数十公里内皆可传达,而是数十至数百公尺内的短距离无线传输。此外可传输的装置不限于手机,只要有装设蓝牙收发模块的装置都可以使用蓝牙传输,眼前的构想即是让其它的行动装置都可以使用蓝牙传输,包括PDA、笔记型计算机、车用装置等等。蓝牙计划的发起,主要是1998年5月,由Ericsson(爱立信,瑞典)、Intel(英特尔,美国)、NOKIA(诺基亚,芬兰)、IBM(国际商务机器,美国)、TOSHIBA(东芝,日本)等五家公司,共同组织一个“特别参与组织(SIG,SpecialInterestGrou)”称为BluetoothSIG,以此组织来制定一套短距离的无线传送、接收的技术规格。

三、浅谈蓝牙技术

蓝牙计划虽是1998年开始,但是蓝牙的技术根基却来自1997年制订完成的无线局域网络通讯协议:IEEE-802.11。

蓝牙基本上也是运用射频(RF)方式进行无线通讯,至于使用的频带范围,则是使用2.45GHz,这个无线电频带是全世界共同开放、不受法令限制的频带,举凡工业、科学、医疗(ISM,Industrial/Scientific/Medical)、甚至微波炉等都是使用2.45GHz的频带。

由于这个频带被广泛使用了,那么使用此频带进行通讯,绝对是很容易收到干扰的,因此蓝牙规格被设计成可跳频通讯,能够在一秒钟内进行1,600次的跳频动作,此这样的动作避免其它通讯的干扰。由于每秒1,600次的快速跳频,这也使得蓝牙无线收发的数据封包不能太长,否则不能满足如此频繁的跳频次数,所以蓝牙短封包、快速跳频的特性,也使其无线传输能抗干扰、更稳定通信。

蓝牙规格已经正式公布v1.0版,规格方面算是踏出成熟的第一步,接下来就是商品化、投入实际制造的阶段。而要让蓝牙迅速普及,就是在既有的用途装置上,追加设计蓝牙功能即可,以节省开发时间与成本,为此蓝牙射频模块就成为非常重要的一项零组件。

蓝牙射频模块一方面要够便宜,才可能快速普及,另一方面也要够小巧,才能适用于所有的需求装置上,目前专家推估射频模块的成本必须低于5美元才能普及,而各家公司也正加紧将射频模块设计地更精小、更便宜中。

四、蓝牙技术的应用

蓝牙由于具有1-2Mbps、10-100公尺的无线通讯能力,因此蓝牙技术可以舒缓若干问题,例如可以直接利用蓝牙的高速数据传输率来传输语音,等于是把蓝牙通讯当成无线电话的功能。

另外对于小公司、小环境等,也可以省去布设实质线路的成本,以及后续线路维护的困扰。还有蓝牙可以指定隔绝与通行的通信功能,也等于可以建立无线的LAN环境、小族群通讯环境。

五、蓝牙技术的展望

(一)蓝牙收发话器对健康的好处。由于手机有高功率的电磁波,据报导证实电磁波会对人体造成伤害,所以有了蓝牙,你将可以把一个小小的蓝牙附件装在你的大哥大,然后把收发话器戴在你的耳朵(由于蓝牙应用的是低功率,所以不会对人体有任何伤害)。准备好了以后,你就把你的大哥大放在口袋里讲电话,不必把电话紧贴的脸,甚至按下收发话器上的按钮就可以直接接听来电。

(二)比一般传统式红外线传输更快,且不用对准两个传输端口成一直线。蓝牙科技在传输方面的好处就是,它能够允许两个装置,在不排成一直线的状态下,还能够以无线的方式传送数据。不像红外线传输最大的缺点是,你必须对准两个传输端口成一直线才有办法传送数据。蓝牙传输甚至无视于墙壁、口袋、或公文包的存在而可以顺利进行。蓝牙的数据传输速度比红外线传输还要快,每秒钟高达1MB。

(三)手表可自动对时间,无线下载Mp3。只要将来手表有内建蓝牙且有Mp3拨放功能,这样一来将可自动设定为标准时间,且可很方便的随时从计算机传输歌曲。

(四)其它还有很多很多,只要现在是要接线的,都有可能会被蓝牙所应用。蓝牙技术一旦普及,相信对通讯方式、产品设计、生活方式等都会有巨幅的冲击,甚至很难想象冲击的程度。不过就现阶段而言,蓝牙可能带来的便利却是可以想象的,各位可以想象家里安装一个蓝牙收发基地台,家中的计算机、电话、传真机都不用实际接线,就可以互通或连外。在公司内外务人员赶时间,只要在蓝牙收发范围内都可以传送数据,例如咖啡厅、车站等都可以。此外仓库的盘点盘查,只要带个PDA,仓库内设有蓝牙基地台,马上可以跟全省各地的仓库进行盘点加总,当然,蓝牙基地台后面有接往Internet,或是以公司专线,或VPN方式连接。另外数字相机拍完的相片,只要接近笔记型计算机就可以回传,省去记忆卡的插拔,既有计算机外设装置也都可以无线化,无线打印机、无线键盘、鼠标、摇杆。还有家中、公司都设有蓝牙基地台,则一支具有蓝牙功能的手机,在家就可以跟居家无线电话一样使用,而且是付居家电话费,在公司则变成自己的办公分机,公司替您付电话费,而在外出时就跟一般行动手机一样使用,这样真正落实一人一机终生用的理想,这种方式也被人称为三合一电话,即是居家、办公、行动电话三者合一。

六、结束语

蓝牙技术一定会飞速发展,但仍然有一些应用的细节问题需要解决,如相邻设备之间为防止信息误传和被截取,必须要用户提前设置对应频段等,严重影响蓝牙技术产品面市的速度。但相信随着一个不断完善的发展过程,蓝牙技术会为我们的未来家居和办公带来不仅仅是方便一点的革命。

参考文献:

[1]NathanJ.MullerBluetoothDemystified(影印本).人民邮电出版社。

篇8

[1]钮心忻,杨义先.软件无线电技术与应用[M].北京邮电大学出版社,2000.6-20.

[2]李世鹤.TD-SCDMA第三代移动通信系统标准[M].北京:人民邮电出版社,2003.3-22.

[3]潘涛,等.第三代移动通信系统TD-SCDMA的核心技术[J].通信技术,2002.

[4]赖玉强,王甲琛.软件无线电的体系结构及其关键技术[J].武警工程学院学报,2002.

[5]朱东照,罗建迪,等.TD-SCDMA无线网络规划设计与优化[M].北京:人民邮电出版社,2007.206-228.

[6]张书强,朱守中,金永杰.基于3G通信的软件无线电应用研究.测试测量技术,2008(9).第三代移动通信系统中的软件无线电技术

无线通信论文参考文献:

[1]熊卿青,邓媛姬.现代无线通信技术的现状分析及其发展前景[J].科技创新导报,2012(2):31

[2]赵晗.现代无线通信技术的发展现状及未来发展趋势[J].企业技术开发,2011(8)

[32]纪越峰等,现代通信技术,北京邮电大学出版社,2002年3月

[4]蒋同泽著.现代移动通信系统[M].电子工业出版社,1994

[5]百度及谷歌网站

无线通信论文参考文献:

[1]陈哲.张正江.尹长川.乐光新B3G技术演进与发展趋势电信工程与技术标准化2008,12

[2]孙常清.王琪琳.张佳麓B3G技术发展浅析电信科学2007,23(7)

[3]万屹.李扬B3G技术的研究及发展趋势电信网技术2006,1

[4]林辉B3G研究与标准化进展电信科学2007,23(9)

篇9

一、引言

道路交通安全事关人民群众的安居乐业,事关经济社会的协调发展,加强道路交通安全工作,保障人民群众的生命和财产安全,是政府以及交管部门一直以来的重点工作。为了彻底改变以往的人工考试模式,提高驾驶员的驾驶技术,降低考试员的劳动强度,同时使考试更加公平、公正。全国各地的车管所及驾驶员培训学校都逐步启用了“机动车驾驶员桩考”系统。

桩考系统的基本原理是通过在考试车上安装信号检测传感器、数据处理系统以及无线发射机,在场地上安装电子吊杆及远红外检测光路等,使得考试过程中各种动态信息可以通过有线和无线两种方式传输到主控制室,这样监考员就可以利用主控计算机显示屏实时监控考试的全部过程。论文参考网。论文参考网。目前,整个考试过程已经全部实现自动化控制,并且最后可以将考生的考试结果存档、打印。但是,通过实际调研发现所采用的各种桩考系统仍普遍存在着以下缺陷:

1.系统功能单一,运行速度较慢

2.抗干扰能力较差,无线传输时容量出现误码现象。

3.模拟(场地考车)跟踪显示界面单一,跟踪速度较慢。

4.红外光路在恶劣天气(大雾、风沙)时接收灵敏度下降。

5.单机版,不能全国联网。

由于科学技术的进步,无线传输技术、信号采集及处理技术、传感技术都有了长足发展,集成电路的多功能、抗干扰等也都有了很大提高, 因此有必要对传统的“机动车驾驶员桩考”系统进行改进,使考试系统更加完善。本文就此提出一种新型的计算机驾驶员桩考系统的设计方法。

二、系统总体设计

(一)基本功能

根据我国《机动车驾驶员考试管理办法》有关科目二考试(桩考)的规定。方案拟采用计算机监控管理、单片机实时检测处理、集成数字电路、进口无线通信和红外线报警设备,结合机电一体化等高新技术。由主监控仪及车载分机实时采集考车、桩杆、库线等信号,经过计算机分析判断,在监视屏上真实模拟、跟踪考车进行状况,同时对桩考过程中出现的:

1.不按规定路线、顺序行驶;

2.碰擦桩杆;

3.车身出线;

4.移库不入;

5.中途停车(两次);

6.发动机熄火;

等犯规动作进行自动监测和管理,对以上所有犯规动作,系统可以进行自动报警,并在驾驶员考试记录表上打印结果。监考人员只需通过监视器就可以在室内全面了解场地桩考情况,同时,考生通过语音提示可以了解考试结果及犯规种类。另外,计算机系统可对考生的情况进行存储,综合查询,对桩考结果进行综合统计查询。

该系统从功能上大致划分为考试监控、考生信息查询、考试统计查询及系统参数设置四个模块。各功能模块的具体功能如图1所示。

图1 系统功能图

(二)基本组成

为了实现系统设计的基本功能,新型的计算机驾驶员桩考系统主要由主控制室、场地、考车三个组成部分。如图2所示。

1.主控制室

由专用计算机,打印机,桩考监控仪,交换机,无线通信机,电源等构成。

2.场地

(1)越库线红外监测装置

场地由对射式红外线发射、接收器形成对大型车和小型车的桩考库线报警和移库状态判断系统,它用来检测车身越线、移库不入行进路线出错等犯规项目。

(2)碰杆电子报警系统

场地安装固定龙门架, 悬挂可以360度任意碰撞、自动归位的电磁吊杆,构成考车碰、檫杆自动检测报警系统。它用来监测碰杆犯规项目。场地系统的电平信号通过电缆各自直接地连接到控制室的系统监控仪上。

3.考车

采用专用考车,在考车上安装检测前进、后退、停车、熄火等传感器及考车信号监测仪, 考车监测系统实时监测考车运行状况,将检测信号进行分析、处理后通过无线通讯方式传输到主控室。

图2 系统组成图

(三)拟达到的技术指标

1.软件系统功能增强,人机界面友好,操作智能化,

2.软件可在不同操作系统下运行。

3.监控室中仪器(计算机系统、主机系统),可适应温度为-10℃~40℃。要求室内保持清洁、干燥以及电压稳定(220±20V)。

4.场地桩杆、吊架、红外线装置等均采用防风、防水、防冻、耐高温等措施,能适应我国各地的高温、高寒天气情况(-35℃~60℃)。

5.红外发射、接受设备可全天候工作,不受任何恶劣天气(大雾、风沙)的影响。

6.考车信号监控系统芯片及传感器均采用进口元器件,温度系数可达到-40℃~70℃。论文参考网。

7.建立远程网络数据库,与公安部联网,实现异地查询考生档案,信息共享。

三、系统应用前景

所设计的新型计算机驾驶员桩考系统在软件、硬件方面都将采用当今最先进和主流的技术及进口传感器件,使软件功能更强大,速度更快,图像可实时跟踪考车行车轨迹,运用无线传输自动判断考车熄火,远红外幕墙检测考车碰线、出库,计算机自动判断并语音提示,彻底排除了人为因素。场地硬件部分可灵活组合成单库、双库(大库套小库),节约场地,可适合不同用户的需要。同时,该系统技术先进,主控计算机可以实现高速图象跟踪、自动变库,完全符合公安部的考试要求,因此将会有很强的市场竞争力。

目前市场上正在使用的桩考系统基本上都处于更新换代的时期,而随着经济的不断发展和人民生活水平的提高,买车、学车的人越来越多,新的驾校及驾驶员培训基地不断建立,新型的计算机驾驶员桩考系统的研制成功必将会有先入为主的优势和广阔的市场空间。

参考文献:

[1]黄爱民,陈万里. 机动车辆自动识别系统[J]国防科技大学学报, 1998,(05) .

[2]王未央,黄皎,梁长河,范新南. 基于实时数据采集的驾驶桩考系统的实现[J]计算机应用, 2000,(11) .

[3]刘晓冬,苏光大,周全,田超. 一种可视化智能户外监控系统[J]中国图象图形学报, 2000,(12) .

[4]公安部公开征求对《中华人民共和国机动车驾驶证登记办法》《中华人民共和国机动车驾驶员考试办法》(征求意见稿)的意见[J].道路交通管理, 2003,(01)

[5] 孙步战. 驾驶培训综合库教学操作要领依据的研究[J].教育与职业, 2006,(32)

篇10

前言

单片机控制系统在实验室反复实验都可以得到很好的预期效果,然而把系统放到实际现场运行时却不能工作。论文大全,遥控系统抗干扰分析。原因是工作现场比实验室环境恶劣,系统受到了各种各样的干扰,加之构成系统的元器件本身方面存在的可靠性,以及系统本身各部分之间的相互耦合因素等原因,系统必须增加一些有效的抗干扰措施才能正常运行。论文大全,遥控系统抗干扰分析。据工作经验之谈,有时存在后期的抗干扰工作往往会比前期的设计工作还要艰巨,花费的时间也需要得更多,所以说抗干扰技术是非常重要,关于在抗干扰措施是否能够运用得恰当方面,其直接关系到系统的稳定性和可靠性。

一、单片机遥控系统系统工作原理

单片机以其体积小、价格廉、面向控制等方面的独特优点,使得单片机在各种工业控制、仪器仪表、产品的自动化、智能化方面获得了广泛的应用。单片机的遥控系统以单片机系统为基本控制单元,能够构成无线传输系统、速度调节系统等等,而且其优点是,能够在三公里外控制运动目标的启动、速度快慢、停止、往返。而且最特别的是在运动目标的运行过程中,可根据需要随机调节速度快慢,调速一般是在7~25km/h范围。单片机实现控制了所有这些状态,开始通过键盘输入控制参数,然后经过单片机运算和处理行为,并且通过无线数传模块完成对参数的无线传输、运行状态以及调速设备的控制方式,达到遥控运行的目的要求。

二、单片机遥控系统系统受干扰原因及危害

在电磁干扰较弱时,其可靠性和稳定性往往是容易达到应用要求,这方面尤其是在室内体现出来,然而对在室外,会遇到各种各样的环境条件,尤其是那种在工作环境较恶劣的情况下,就会导致仪器仪表工作不正常或失灵。而单片机的遥控系统一般都安装在工业现场,而在工业现成环境中的干扰大多是以窄脉冲的形式出现,而这样的形式其最终造成微机系统故障的多数现象都是“死机”现象。究其原因是计算机中的CPU在执行某条指令时,受周围环境干扰的冲击,影响到它的操作码或地址码发生改变,最终致使该条指令出现错误。这时,CPU就会执行随机拼写的指令,并将其操作数作为操作码执行,从而导致有关程序“跑飞”或进入“死循环”。对于在工业现场中由于诸多大型用电设备的投入或者是撤出电网运行,经常都会造成系统的电源电压不稳,如果当电源电压降低或掉电时,这样就会造成重要的数据丢失的可能性,以至于系统不能正常运行,而且干扰也会导致单片机内部程序指针错乱现象,从而使得中断程序运行超出定时时间。关于RAM中计时数据被冲乱,导致程序计算出错误的结果。论文大全,遥控系统抗干扰分析。假设设法在电源电压降到一定的限量值之前,单片机进行快速地保存重要数据,将会最大限度地减少损失,对于干扰源的影响会使系统的可靠性和稳定性大大降低,严重的情况还会导致系统的运行紊乱,造成生产事故。

三 如何实现单片机的遥控系统的抗干扰

关于高频干扰噪声和有用信号的频带是不同的,其解决方法是在导线上增加滤波器的方法来切断高频干扰噪声的传播,或者也可加隔离光耦来解决这个问题。关于电源噪声的危害最大。需要把电源做得好,其整个电路的抗干扰能力就解决了一大半问题。对于在单片机系统中还可借助于一定的外部附加电路来监测电源电压,当在电源发生故障时能够及时通知单片机快速保存重要数据,同时断开单片机外围设备用电电源,从而使整个应用系统的功耗降到最低点。目前市场上许多单片机对电源噪声都是十分敏感的,那么就要给单片机电源加滤波电路或稳压器,达到减小电源噪声对单片机的干扰。比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。当电源恢复正常时,取消掉电工作方式,通过复位单片机,使系统重新正常工作。

单片机系统设备的抗干扰与系统的接地方式也存在很大的影响,接地技术有能够抑制噪音的效果。所以说一个良好的接地能在很大程度上抑制系统内部噪音耦合的现象,而且还能够防止外部干扰的侵入,能够真正提高系统的抗干扰能力。在这里需要注意的是,如果要求设备的金属外壳等需要安全接地,其屏蔽用的导体的必须能够很好的接地,这样才能为单片机系统提供良好的地线,并且对提高系统的抗干扰能力极为有效果。论文大全,遥控系统抗干扰分析。尤其是对于有防雷击要求的系统,其良好的接地是至关重要的。假设系统不能接地,或者是虽有地线现象,但是接地电阻过大,就会抗干扰元件就不能正常发挥其应有的作用了。

关于单片机供电的电源的地俗称逻辑地,并且和大地的地的关系具有相通性、浮空性、或接电阻性。但是不能把地线随便接在暖气管子上。坚决不能把接地线与动力线的火线、零线中的零线相混淆。因为单片机系统通常存在模拟电路和数字电路两种,并且关于数字地与模拟地是要分开,只是在一点相连,假设两者不分,就会存在互相干扰现象,那么可以把控制条件中的关于一次采样和处理控制输出更改为循环采样和处理控制输出,这样能够对惯性较大的控制系统具有良好的抗偶然因素干扰作用效果。

设置输出状态寄存单元来抗干扰。其程序是根据单片机系统对数据处理后的输出结果为依据,设置出相应的输出状态寄存单元形式,假设其中干扰侵入输出通道将输出状态破坏时,系统就会在定时查询寄存单元的输出状态信息时,并发现错误,及时纠正输出状态。论文大全,遥控系统抗干扰分析。

设置自检程序来抗干扰。论文大全,遥控系统抗干扰分析。通常是在计算机内的特定位置或某些内存单元中来设置状态标志,并且在开机后或有自检中断请求要求时,计算机系统首先将运行自检测试程序,如对整个系统或关键环节进行模拟方面的测试,对测试结果再通过某种方式显示出来,目的是保证系统中信息存储、传输、运算的高可靠性。设计单片机的遥控系统过程中,要求电路的元器件或线路布局合理以消除元器件之间的电磁耦合相互干扰,如去耦电路或者是平衡电路等。还有种方法是采用冗余结构,也称容错技术或故障掩盖技术,该方法是通过增加完成同一功能的并联或备用单元数目来提高系统可靠性的一种设计方法。当某些元器件发生故障时也不影响整个系统的运行。对于消减外部电磁干扰,可采用电磁兼容设计,目的是提高单片机系统在电磁环境中的适应性,即能保持完成规定功能的能力。

参考文献:

[1]麦山.基于单片机的协议红外遥控系统.电子技术.1998

[2]孟庆建张恭孝.单片机系统的电磁兼容问题[J].自动化仪表,2004

篇11

无人机自组网要求多架无人机进行数据交换和传输,而无人机自组网采用无线传输技术作为底层通信手段,无线信道本身的物理特性决定了它所能提供的网络带宽,再加上无线信道产生的碰撞、信号衰减、多径干扰等因素,使无人机终端可得到的实际带宽远远小于理论上的最大带宽值。因此,选择合适的物理层传输技术是提高无人机组网性能的关键性问题之一。

1无人机Ad Hoc 网络特点

Ad Hoc网络是一种特殊结构的无线通信网络,其通信依靠节点之间的相互协作,以无线多跳方式完成。网络中的每个节点都带有收发信机,采用分布式控制,同时具有主机和路由器的功能,可以不依赖预先存在的网络基础设施而快速展开,各节点可在不进行通知的情况下自由进入网络和脱离网络且不会导致整个网络陷入瘫痪,具有自组织和自管理的特性。无人机Ad Hoc网络在很多方面区别于其他通信网络,表现在:

(1)移动自组织。除了网络节点外没有固定的基础设施,每个节点都具有路由功能,支持随时随地通信,能自发组建移动网络;

(2)动态拓扑。节点可以以任意可能的速度和模式移动,自由地加入或者离开Ad hoc 网络,会导致网络拓扑结构的变化。

(3)无线多跳路由。无线通信范围外的通信需要由中间节点完成路由转发功能。

(4)完全分布式。Ad Hoc网络是由对等节点构成的网络,不存在中心控制,管理和组网都非常简单灵活。

(5)无线传输带宽窄。它所能提供的网络带宽相对于有线信道要低得多,并且无线信道的质量较差。

(6)安全性差。自组网是一种特殊的无线移动网络,由于采用无线信道和分布式控制等技术,它更加容易受到被动窃听、主动入侵、网络攻击。因此,信道加密、抗干扰、用户认证、密钥管理、访问控制和其他安全措施都需要特别考虑。无人机组成的Ad hoc网络如图1所示。

2 OFDM技术概述

OFDM的概念源自于频分复用(FDM)和多载波通信(MC)技术,它是在MC的基础上,使不同的子载波相互正交,这种正交性有利于克服FDM及通常MC中频谱效率低的不足。其实质就是把高速率的信源信息流通过串并变换,变换成低速率的N路并行数据流,然后用N个相互正交的载波进行调制,将N路调制后的信号相加得到发射信号。

3 OFDM技术在无人机Ad hoc自组网中的优势

在无人机Ad Hoc自组网中利用OFDM技术的主要优势体现在以下几个方面:

(1)频带利用率高。OFDM系统由于各个子载波之间存在正交性,允许子信道的频谱相互重叠,而不是传统的利用保护频带分离子信道的方式,因此OFDM可以最大限度的利用频谱资源。

(2)抗噪声和多径衰落能力强。OFDM系统可以把一个串行传输的高速数字流转化到多个低速率的并行信道上,这样在每个子载波上传输的符号周期就相应的比同速率的单载波系统上的符号周期长很多倍,从而使OFDM对脉冲噪声和多径时延失真的抵抗能力更强。

(3)易于实现真正的数字化调制和解调。与传统的FDM系统不同,随着数字信号处理技术和大容量可编程逻辑器件技术的发展,借助于FFT/IFFT变换,OFDM系统在基带可以非常容易的实现对信号的全数字调制和解调,从而简化了通信系统的实现。

(4)降低了均衡的复杂性。由于OFDM系统把整个可利用带宽划分成许多个窄带子信道,对每个子信道而言,符号周期大大变长,单个子信道上的频率响应变得相对平坦了许多,从而使信道引入的符号间串扰变得不再重要,因此所需的均衡要比串行系统简单。

2 结论

本文通过对OFDM技术分析得出无人机Ad Hoc网络的物理层采用OFDM技术,可以提高数据传输能力。无人机自组网方面,还有很多东西有待于研究和开发。本文仅仅是对无人机自组网物理层技术的探讨,仅供参考。

参 考 文 献

[1] 何一,姜飞等.基于多旋翼无人机和4G的指控系统中继通信研究[C].北京:第三届中国指挥控制大会,2015.

[2] Chlestil C. Reliable Optical Wireless Links withinUAV Swarms[C].IEEE Transparent Optical Networks International Conference,2006,4:39-42.

篇12

地铁性能动态调试是列车调试过程中的重要环节,动态调试主要检测地铁车辆的牵引、动力、制动系统[1]。而现有的地铁动态调试测试手段主要是基于列车本身牵引网络系统自带测试软件,即利用列车通信网络中的列车诊断系统接收列车子系统(包括微机控制与非微机控制系统)的状态信息、故障信息,并进行评估、储存,在司机室的显示屏上进行显示[2]。因此其测量准确性无法衡量。为此开发地铁动态试验性能检测及数据分析装置对于列车的安全正常运行具有重要意义。

2.地铁运行状态检测系统建模

地铁动态试验性能检测及数据分析系统对列车运行过程中的速度、加速度、冲击率、闸瓦温度进行检测和分析。通过测速雷达、压力传感器、红外辐射温度等传感器分别测量地铁行驶过程中的速度、制动管路压力、制动器温度等特征量,然后利用无线传输装置将数据发送给由笔记本电脑和系统控制软件构成的系统控制终端,系统分析软件根据采集的数据进行牵引加速度、制动距离、制动减速度、冲击率、静态制动响应时间等状态量的计算,然后进行数据分析,由此完成对车辆运行状态的监测。

2.1用例模型

用例是模型中结构实体的指定功能,它描述了系统的功能需求,将系统看作黑盒,从外部执行者的角度来理解系统[3]。绘制用例图的第一步是确定系统的参与者。分析可知,系统共有三个参与者,即检测人员、管理人员及地铁。检测人员负责对地铁运行状态进行检测,包括速度、加速度、温度、压力的检测,得出检测结果后,在系统初步分析结果的基础上做出检测报告。管理人员负责进行用户管理和设备管理,以保证检测工作的正常进行。地铁是被检测对象的承载体,由各传感器对检测量进行检测。系统中的关键用例包括:自检模块、数据采集、数据传输、监控或控制设备无线网络通信、数据导出、数据分析、数据库等。对检测的数据及数据分析过程产生的图表行储存;对测试特征量的阀值进行设定;对用户进行管理等。

2.2类图分析

类图反映了系统中类的静态结构。类图不仅定义系统中的类,还表示类之间的联系,如关联、依赖、聚合等,同时也包括类的内部结构(类的属性和操作)。检测系统提供显示和操作界面DMI,检测员通过对系统界面进行一系列操作完成检测过程,在此过程中DMI也会为检测员提供检测过程的参考信息。因此围绕DMI进行深入分析具有重要意义。

1.控制的内容包括:

1)数据采集的启动与停止:包括对速度、加速度、温度、压力等信息的采集进行控制,并将采集到的信息通过无线传输装置发送给控制终端并显示出来。

2)数据分析的启动与停止:包括将采集的数据导入到EXCEL等第三方软件,并做图表分析。

2.显示的内容包括:采集数据显示、警示信息显示、数据分析结果显示、设备状态信息显示。

2.3检测过程活动图

活动图在用例分析中主要用来描述用户当前完成的工作以及用例实例或对象中的活动[6],为了更详细地描述用户使用系统的工作过程,我们给出本系统的用户活动图。检测过程建模的主要业务有登录、数据采集、数据分析和数据存储。

事件流程可以描述如下:

检测人员使用用户名和密码登录系统;

检测人员发出数据采集指令,传感器进行数据采集;

无线传输装置将传感器采集到的数据发送到控制终端进行存储;

控制终端对数据进行计算,并作图表分析;

检测人员根据分析结果整理出检测报告;

检测人员也可再次登陆系统查看上次检测结果。

2.4检测过程序列图

为防止活动图变得过于复杂,数据采集、数据分析等过程都分别被压缩在了一个超级活动里,为了更详尽的描述实例间的消息,现在使用交互图[7]。序列图显示对象之间的动态合作关系,它强调对象之间消息发送的顺序,同时显示对象之间的交互。

3.结论

本文利用实时UML,通过用例图、类图、活动图、序列图建立了地铁运行状态检测系统的模型,研究表明,为地铁运行状态检测系统构建UML模型,能够规范系统开发流程、优化软件结构、提高系统开发效率,增强程序可读性和可维护性。该项工作的完成为地铁运行状态检测系统的开发提供了依据。

参考文献

[1]王磊.列车网络控制系统的分析与研究[D].西南交通大学硕士学位论文,2008,01

[2]李春璞.记者试乘长沙地铁提速停车都“温柔”[N].长沙晚报,2013-04-11(A8)

[3]GB/T 7928-2003,地铁车辆通用技术条件[S]

[4]李伟.CTCS-3级列控系统车载设备测试平台关键问题研究[D].北京交通大学硕士学位论文,2008,06

篇13

2205双相不锈钢焊接工艺的实验研究

简讯

油井管的淬火变形及控制

轻烃回收技术在渤海友谊号FPSO的研究和应用

SA302Gr.B余热回收锅炉汽包制造

中国化工机械动力技术协会第六次会员大会在成都召开

某气田污水处理系统运行状况探讨

抽油机井示功图计量及无线传输技术在跃进二号油田的应用

PDC钻头在川西孝泉~新场构造的使用

超深高破压碳酸盐岩储层深度酸压改造技术研究与应用

提高轻烃装置运行范围研究

换热器管板焊接变形的控制

石油钻井井身结构及钻机设备的选择

海洋固定平台消防泵参数设计

如何在网上查询我刊发表的论文

石油加工装置常见应力腐蚀及其防护措施

气液两相流管道振动测试分析

《石油和化工设备》杂志改制致读者

《石油和化工设备》征稿简章

自滑块-滑道副在十字滑块压缩机中的应用

2205双相不锈钢焊接工艺的实验研究

简讯

油井管的淬火变形及控制

轻烃回收技术在渤海友谊号FPSO的研究和应用

SA302Gr.B余热回收锅炉汽包制造

中国化工机械动力技术协会第六次会员大会在成都召开

某气田污水处理系统运行状况探讨

抽油机井示功图计量及无线传输技术在跃进二号油田的应用

PDC钻头在川西孝泉~新场构造的使用

超深高破压碳酸盐岩储层深度酸压改造技术研究与应用

提高轻烃装置运行范围研究

换热器管板焊接变形的控制

石油钻井井身结构及钻机设备的选择

海洋固定平台消防泵参数设计

如何在网上查询我刊发表的论文

石油加工装置常见应力腐蚀及其防护措施

气液两相流管道振动测试分析

杜佩衡:垂直筛板塔王国的缔造者

高效拼装式连续型螺旋折流板换热器的开发

热夹点技术简介及其应用进展

ANSYS在大型球罐上的应用

双喷嘴导流管喷动床流动性能实验研究

关于凸形封头厚度的再讨论

《石油和化工设备》杂志编辑部地址变更

大发酵罐外半管的制作工艺

盘式连续干燥器与回转窑干燥机干燥镍精矿的比较

《真空设备选型与采购指南》征稿启事

反应塔(塔-101)的制造

折流式超重力旋转床及其在精馏中的应用

车载移动橇装式膜制氮装置简介

基于风险的检测(RBI)在合成氨装置中的应用

汽轮机组相对膨胀的分析与对策

离心泵的振动测试分析

钢制原油储罐的腐蚀分析及防护措施