引论:我们为您整理了13篇化学成分分析论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
篇1
Keywords:LigusticumchuanxiongHort.;Chemicalconstituents;Structureidentification
川芎为《中国药典》2005年版(Ⅰ部)收载品种,为伞形科植物川芎LigusticumchuanxiongHort.的干燥根茎,味辛、性温,归肝、胆、心包经,具有活血行气、祛风止痛的功效,常用于月经不调,经闭痛经,癥瘕腹痛,胸胁刺痛,跌扑肿痛,头痛,风湿痹痛[1]。川芎含有多种内酯类、生物碱类、酚类、以及挥发油类等多种化合物。
笔者对川芎进行了化学成分研究,从中分离得到了6个化合物,经鉴定为芥子酸(sinapicacid,Ⅰ)、β谷甾醇(βsistosterol,Ⅱ)、Z6,8’,7,3’二聚藁本内酯(Z6,8’,7,3’diligustilide,Ⅲ)、阿魏酸(ferulicacid,Ⅳ)、4-羟基3丁基苯酞(4hydroxy3butylphthalide,Ⅴ)、孕烯醇酮(pregnenolone,Ⅵ),其中化合物Ⅰ、Ⅵ为首次从该植物中分离得到。
1仪器与材料
X4熔点测定仪(温度未校正);BrukerAvance600型核磁共振仪(TMS为内标),测定溶剂为CDCl3;BioTOFQ型质谱仪;柱层析硅胶(200~300目):青岛海洋化工厂生产;川芎药材购自成都市五块石药材市场,经成都中医药大学炮制制剂教研室胡昌江教授鉴定为川芎LigusticumChuanxiongHort.的干燥根茎。
2提取分离
川芎粗粉(10kg),经乙醇回流提取,乙醇提取液减压浓缩至无醇味,氯仿萃取,回收氯仿,氯仿萃取物经硅胶(200~300目)柱层析,以石油醚醋酸乙酯混合溶剂进行梯度洗脱,TLC检查合并相似流份,各组分进行反复硅胶柱层析分离,先后得到6个化合物。
3结构鉴定
化合物Ⅰ:无色针状结晶,mp143~145℃,FeCl3反应呈阳性,显示其具有酚羟基。溴甲酚绿反应呈阳性,表明其具有羧基。1HNMR(CDCl3)δ:3.93(6H,d,J=18.24,OCH3),6.28(1H,d,J=9.48,H7),6.85(2H,d,J=4.44,H2,H6),7.61(1H,d,J=9.48,H8),参照文献[2],可确定该化合物Ⅰ为芥子酸(sinapicacid)。
化合物Ⅱ:无色针状结晶,mp137~139℃,LibermannBerchard反应呈阳性,提示分子中具有甾体母核,10%硫酸乙醇溶液显色为紫红色。1HNMR(CDCl3)数据与文献β谷甾醇标准图谱[3]一致,且与对照品β-谷甾醇的薄层具有相同的Rf值,与β谷甾醇对照品混合测熔点不下降,故鉴定化合物Ⅱ为β谷甾醇(βsistosterol)。
化合物Ⅲ:无色片状结晶,mp106~108℃,ESIMS给出分子量为380,结合元素分析确定分子式为C24H28O4,1H-NMR(CDCl3)δ:2.02(3H,m,H4),2.57(4H,m,H4),2.02(3H,m,H5),2.17(3H,m,H5),2.58(5H,m,H6),3.47(1H,d,J=7.24,H7),5.21(1H,t,J=7.8,H8),2.33(3H,m,H9),1.47(6H,m,H10),0.95(4H,t,J=7.6,H11),2.74(1H,m,H4’),2.45(1H,m,H5’),2.75(1H,m,H5’),5.93(1H,dt,J=9.6,4.1,H6’),6.17(1H,dt,J=9.6,1.8,H7’),2.94(1H,q,J=7.8,H8’),1.47(6H,m,H9’),1.14(3H,m,H10’),0.86(4H,t,J=7.6,H11’),ESIMS,1HNMR光谱数据与文献报道Z6,8’,7,3’-二聚藁本内酯相符[4]。故鉴定化合物Ⅲ为Z6,8’,7,3’二聚藁本内酯(Z6,8’,7,3’diligustilide)。
化合物Ⅳ:淡黄色针状结晶,mp174~176℃,溴甲酚绿反应呈阳性,表明其具有羧基。1HNMR(CDCL3)δ:3.94(3H,s,OCH3),6.30(1H,d,J=15.84,H3),6.93(1H,d,J=8.10,H8),7.11(1H,dd,J=8.22,1.8,H9),7.05(1H,d,J=1.92,H5),7.71(1H,d,J=15.84,H2),与阿魏酸光谱数据基本一致[4],且与对照品阿魏酸薄层具有相同的Rf值,故鉴定化合物Ⅳ为阿魏酸(ferulicacid)。
化合物Ⅴ:无色片状结晶,mp188~190℃,1HNMR(CDCl3)δ:5.55(1H,dd,J=7.98,3.06,H3),7.36(1H,t,J=7.65,H6),7.47(1H,d,J=7.62,H5),7.01(1H,d,J=7.92,H7),2.31,1.77(各1H,m,H8),1.39(4H,m,H9,H10),0.90(3H,t,J=7.08,H11),5.72(1H,s,4OH)。13CNMR(CDCl3)δ:170.7(C1),80.7(C3),136.1(C3a),150.4(C4),120.0(C5),130.6(C6),117.8(C7),128.5(C7a),32.4(C8),26.8(C9),22.4(C10),13.9(C11)。以上物理常数及光谱数据与文献报道4-羟基3丁基苯酞相符[4]。故鉴定化合物Ⅴ为4羟基3丁基苯酞(4hydroxy3butylphthalide)。
化合物Ⅵ:无色片状结晶,mp191193℃,1HNMR(CDCl3),13CNMR(CDCl3),二维谱数据与文献孕烯醇酮标准图谱[5]一致,且与对照品孕烯醇酮的薄层具有相同的Rf值,与对照品孕烯醇酮混合测熔点不下降,故确定化合物Ⅵ为孕烯醇酮(pregnenolone)。
【参考文献】
[1]国家药典委员会.中国药典,Ⅰ部[S].北京:化学工业出版社,2005:28.
[2]孙凯,李铣.南葶苈子的化学成分[J].沈阳药科大学学报,2003,20(6):419.
篇2
2.1提取与分离糯稻根3.0kg,用水煎煮3次,1h/次。合并滤液为A,药渣为B,将A浓缩至3000ml,加无水乙醇至含醇量达70%,放置24h,过滤,滤液回收乙醇至无醇味,滤液上阳离子交换树脂柱,用不同浓度的氨水洗脱,直到洗脱液无茚三酮反应为止。分别得到16种成分。B用80%乙醇回流提取3次,1h/次,合并滤液,回收乙醇得M,将M上聚酰胺柱,用H2O、不同浓度的乙醇洗脱,分别得到M1~M55个成分。
2.2TLC鉴定
2.2.1氨基酸TLC鉴定将样品溶于蒸馏水中(1mg/ml),制成供试液。另将各种氨基酸标准品分别用蒸馏水溶解,制成对照品溶液(1mg/ml)。吸取供试液与对照液各5μl,分别点于同一硅胶G薄层板上(20cm×20cm),以正丁醇-甲醇-水(75∶15∶10)展开,展距19cm,0.2%茚三酮显色,与对照品比较,供试品中的氨基酸与对照品的斑点一致。Rf值分别为:组氨酸Rf0.01,赖氨酸Rf0.02,丝氨酸Rf0.14,脯氨酸Rf0.15,苏氨酸Rf0.17,谷氨酸Rf0.24,精氨酸Rf0.26,门冬氨酸Rf0.27,甘氨酸Rf0.29,酪氨酸Rf0.30,丙氨酸Rf0.34,缬氨酸Rf0.40,蛋氨酸Rf0.45,苯丙氨酸Rf0.49,异亮氨酸Rf0.50,亮氨酸Rf0.59。见图1。
2.2.2糖的TLC鉴定将水提液与对照品葡萄糖、果糖,分别点于同一硅胶硼酸板上(5cm×20cm),以正丁醇-醋酸-水4∶1∶5(上层)展开,展距15cm,α-萘酚浓硫酸显色,与对照品比较,供试品与对照品的斑点一致。
2.3黄酮类波谱学鉴定M5:黄色针晶,m.p274~276℃,HCl-镁粉反应阳性,Molish反应阴性,UV[λ]MeoHmax:396、266,IRυKBrcm-1:3359(OH)、1659、1613(α、β-不饱和酮)、1600、1509(芳环)、1380、1175。1H-NMR(100MHz、CD3COCH3,TMS,δPP):8.14(2H,d,J=9Hz,2ˊ,6ˊ-H)、7.00(2H、d、J=9Hz、3ˊ,5ˊ-H)、6.49(1H、d、J=2.58Hz、8-H)、6.29(1H、d、J=2.6Hz、6-H)、3.11(4Hbr,OH加H2O消失)。综上分析M5的结构为山萘酚。
2.4氨基酸分析仪鉴定结果见图2。
3讨论
糯稻根来源广泛,全国各地均有栽培。经研究表明,根部含有各种氨基酸成分,作为氨基酸的天然资源是极为丰富的。
将糯稻根的有效成分研制为产品应用于临床或者研制成食品保健品,将有较好的经济效益和社会效益。
经药理实验表明,糯稻根的水煎液有明显的滋阴、保肝作用。
M1,M2,M3,M4单体的结构鉴定待进一步研究。
致谢:氨基酸、黄酮单体成分测定分别由广西分析测试中心和广西师范大学协助测定,特此感谢!
【参考文献】
[1]冉先德.中华药海[M].哈尔滨:哈尔滨出版社,1993:2238.
[2]谭文界.糯稻根的化学成分[J].中草药,1980,11(10):440.
篇3
1化学成分研究
1.1C21甾体苷类C21甾体苷类化合物是通光散中研究最多的成分,也是其主要的生理活性物质。从20世纪80年代开始,陆续从该植物的藤茎及种子中分离出50多种C21甾体苷类,含有多种β去氧糖。糖链主要连接在苷元的3位。主要有6种不同结构的苷元:Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ和Ⅵ。见表1。
1.2其它成分[9]从该植物中分离得到两个环醇:牛奶菜醇和二氢牛奶菜醇[9]。三个萜类化合物13(31,32dimethyl30methylene21αδacetoxytetradecanyl)29methylperhydrophenanthr1,3diene[17]、齐墩果18烯3乙酯和a香树脂醇乙酸酯。此外还有琥珀酸、硬脂酸、棕榈酸、二糖cymaroside等[18]成分。
2药理活性研究
2.1抗肿瘤活性现代药理研究表明,通光散所含C21甾体苷类和多糖具有抗肿瘤活性,通光散提取物对多种恶性肿瘤细胞有明显的抑制作用。
罗思齐等[3]测试了6种从通光散中分离得到的C21甾体苷元对KB,KB-VI,P338细胞株的毒性,只有化合物10,11和52对小鼠KB-VI细胞有弱的细胞毒活性,它们的ED50分别为4.1,2.5和3.4μg/ml。
应用MTT法观察通光散70%乙醇提取物的正丁醇萃取部位上大孔树脂后的95%乙醇洗脱部分和乙醚萃取部位对人骨肉瘤细胞Saos-2,人胃癌细胞SGC-7901,人肝癌细胞Bel-7404等的体外细胞毒作用,结果表明通光散对多种肿瘤细胞的生长抑制显示不同的敏感性,并呈现一定的剂量依赖性,其中对人骨肉瘤细胞和人肝癌细胞的作用较强,而对人胃癌细胞作用相对较弱。
用通光散提取物制备的消癌平口服液以20,10,5g生药/kg剂量对小鼠灌胃给药,发现消癌平口服液对小鼠体内移植的S180、胃癌、P388有明显抑制作用[19]。
李茂全等[20]研究了消癌平对SGC-7901胃癌细胞的作用及机制,体外抑制试验结果显示其对SGC-7901胃癌细胞有较好的抑制作用,药物作用7d后的IC50为21mg/ml。采用不同浓度消癌平抑制用胃癌细胞株移植后的昆明种小鼠体内肿瘤,用流式细胞仪检测,发现消癌平能抑制SGC-7901胃癌细胞株的生长,对G1期细胞有明显的阻断作用,使瘤体细胞主要停留在G1期。细胞形态学检查的结果表明消癌平能诱导癌细胞向正常细胞转换。
孙珏等[21]采用MTT比色法和放射免疫法观察消癌平对体外培养的人肝癌Bet-7404细胞、HepG2细胞的作用,以及对人肝癌细胞甲胎蛋白(AFP)分泌的影响,结果显示消癌平对上述肝癌细胞有显著的抑制作用,能显著降低AFP的分泌,提示消癌平在抑制肝癌细胞增殖的同时,能使AFP分泌量降低,可能使肝癌细胞向正常方向分化。
2.2平喘作用用组胺喷雾引喘法,豚鼠通光散苷100mg/kg腹腔注射,有一定的平喘作用。家兔静脉注射60mg/kg,能对抗组胺引起的气管痉挛松弛,还能减弱组胺引起的豚鼠离体肠管收缩。苦味甾体酯苷100~150mg/kg,腹腔注射能预防因组胺喷雾引起的支气管痉挛,有一定的平喘作用;离体豚鼠支气管灌注,对痉挛状态的支气管有解痉作用;对小鼠腹腔注射的LD50为274mg/kg。
2.3降压作用苦味甾体酯苷对离体兔耳血管灌注有直接扩张血管作用。麻醉犬静脉注射通光散苷有短暂、轻度的降压作用,无快速耐受现象,其降压似与中枢无关,离体兔耳血管灌流实验表明,它能直接扩张血管
2.4其他作用本品能明显提高机体的免疫能力,其抗癌作用的实现可能不是通过细胞毒,而是通过加强机体免疫力来达到抗癌效果。此外,尚有止痛、解毒、保肝利尿、恢复肿瘤患者放疗、化疗后白细胞下降作用。通光散总苷对肺炎双球菌和流感杆菌有抑制作用。
表1通光散中的C21甾体苷类化合物(略)
3结语
通光散对胃癌、肝癌、肺癌临床疗效显著,其化学成分和药理作用研究也较多,但是化学成分和药理作用的结合研究报道还比较少,其抗肿瘤的活性成分还没有明确,应加强此方面的研究。
【参考文献】
[1]杨仁洲,杨崇仁,周俊.通光藤苷元甲、乙和丙的结构[J].云南植物研究,1980,3(3):271.
[2]S.Miykawa,K.Yamaura,K.Hayashi,etal.FiveglycosidesfromtheChinesedrug"TONG-GUANG-SAN":thestemsofM.tenacissima[J].Phytochem,1986,25(12):2861.
[3]S.Q.Luo,L.Z.Lin,G.A.Cordell,etal.PolyoxypregnanesfromM.tenacissima[J].Phytochem,1993,34(6):1615.
[4]蒋毅,罗思齐.通光藤中新C21-甾体甙的化学结构研究[J].中国医药杂志,1996,27(9):391.
[5]陈纪军,张壮鑫,周俊.通光藤甙F,G,H和I结构[J].云南植物研究,1999,21(3):369.
[6]J.Deng,Z.X.Liao,D.F.Chen.MarsdenosidesA-H,polyoxypregnaneglycosidesfromM.tenacissima[J].Phytochem,2005,66(9):1040.
[7]J.Deng,Z.X.Liao,D.F.Chen.ThreenewpolyoxypregnaneglycosidesfromM.tenacissima[J].HelveticaChemActa,2005,88(10):2675.
[8]S.X.Qiu,S.Q.Luo,L.Z.Lin,etal.FurtherPolyoxypregnanesfromM.tenacissima[J].Phytochem,1996,41(5):1385.
[9]邢旺兴,陈斌,宓鹤鸣,等.通光藤的化学成分研究[J].中国中药杂志,2004,29(12):1148.
[10]邢旺兴,陈斌,宓鹤鸣,等.通光藤中两个新C21甾体苷类成分[J].药学学报,2004,39(4):272.
[11]罗思齐,徐光漪,易大年,等.通光藤中一个新C21甾族化合物的化学结构测定[J].化学学报,1982,40(4):321.
[12]周俊,杨崇仁,杨仁洲.通光藤苷元甲的化学结构[J].植物学报,1980,22(1):67.
[13]J.Deng,Z.X.Liao,D.F.Chen.TwonewC21steroidsfromM.tenacissima[J].ChinChemLett,2005,16(4):487.
[14]S.Singhal,M.P.Khare,A.Khare.Cissogenin,apregnanegeninfromM.tenacissima[J].Phytochem,1980,19(11):2427.
[15]S.Singhal,M.P.Khare,A.Khare.Tenasogenin,apregnaneesterfromM.tenacissima[J].Phytochem,1980,19(11):2431.
篇4
Keywords:NepetacatariaL.;Essentialoil;GCMS
荆芥NepetacatariaL.为唇形科荆芥属多年生草本植物,产于河南、山西、陕西、甘肃、新疆、山东、湖北、四川、贵州、云南等省区,阿富汗、印度、日本、美洲南部也有分布[1]。荆芥在河南主要以鲜嫩的茎叶供作蔬菜食用,也可作佐料,具有特殊的香味,富含营养价值和药用价值,是重要的药食两用蔬菜。荆芥在整个生长期间几乎不会受病虫危害,是一种经济效益高、很有发展前途的无公害、保健型辛香蔬菜,多为人工栽培,在伏牛山区和太行山区也有野生。在我国东北地区多以多裂叶荆芥SchizonepetatenuifoiaBrig的地上干燥部分作为荆芥入药,广西各地以同科的荠苎属(Mosla)及香薷属(Elsholtzia)多种植物的干燥地上部分“土荆芥”为名代替荆芥[2]。
在对同科裂叶荆芥属植物荆芥(SchizonepetatemuifoliaBrig.)挥发油成分及药理作用研究发现,化学成分主要是薄荷酮(30.8%)和2甲基6异丙基2环己烯1酮(38.98%),另外还有香芹酮、月桂烯和柠檬烯等含量较少成分。药理作用具有镇痛、抗炎、扩张支气管和抗过敏等功效[3~6]。笔者用GCMS首次分析了河南省开封市产荆芥挥发油的化学成分,将所得质谱图与标准图谱对照鉴定化合物,并用GC测定了各化合物在其挥发油中的相对百分含量。
1材料与方法
1.1仪器与材料GC/MSQP500联用仪(日本岛津)。荆芥样品200512采集于河南省开封市,经鉴定为唇形科荆芥属植物荆芥(NepetacatariaL.)。
1.2挥发油提取将切碎后的荆芥地上部分鲜重380g用挥发油提取器提取2h,取油待检测。
1.3挥发油成分分析荆芥挥发油的分析在GC/MSQP500气相色谱/质谱联用仪上进行。
气相色谱条件:色谱柱为OV17(30m×0.25mm);升温程度为60℃(保留2min),以速率6℃/min至260℃(保留8min)。进样口温度280℃,界面温度250℃。进样量为1.0μl,分流比为35∶1;载气为高纯He(φ=99.999%),载气流量为1.0ml/min。质谱条件是:离子源EI源;离子温度250℃;电子能量70eV;倍增器电压1.35kV;接口温度280℃;扫描质量范围33~440amu。
2结果与分析
2.1用水蒸气蒸馏法提取新鲜荆芥挥发油,挥发油占鲜重0.05%。应用GCMS法对荆芥挥发油成分进行分析,经NIST数据库与标准质谱图库对照,并经过有关文献人工图谱鉴定,从中鉴定出58种成分(表1),已鉴定成分的总含量约占全油的86.23%。
表1荆芥挥发油成分及相对百分含量(略)
从分析结果可以看出,河南产荆芥挥发油成分主要是萜类、萜醇类、醛类、酯类及烷烃类化合物等,其中含量较高的成分为反-柠檬醛(17.80%)、顺-柠檬醛(15.39%)和对烯丙基茴香醚(14.76%),这与文献报道同科不同属植物药用荆芥主要成分为右旋薄荷酮和消旋薄荷酮有很大的差别,与相同功效的薄荷主要的成分为薄荷酮区别也较大。
2.2萜类是存在于植物界具有多方面生物活性的一类化合物,是某些中药的有效成分,如在荆芥挥发油中的主要萜类顺-柠檬醛和反-柠檬醛具有杀虫、抗曲霉菌和真菌活性,对烯丙基茴香醚有抗真菌活性。柠檬醛是一种广谱性的杀虫剂,它可杀灭蚊子、苍蝇、蟑螂和臭虫等传染疾病的害虫,以及危害粮食、蔬菜的常见害虫,包括幼虫、蛹等在内,而对人、动物和植物均无毒性,且杀虫效果好。因此荆芥挥发油可望开发为环保型杀虫剂,对人、动物和植物均无毒副作用,从而有助于生产真正无污染的绿色果品。
2.3含柠檬醛的挥发油别具调味风味,制成粉剂后使用方便,易溶于水。在汤粉、粉末饮料中添加这种油性调味粉,则柠檬清香四溢。在脱水奶、香料、香料和着色剂中添加这种油性调味粉能显著增加香味,提高质量。通过对荆芥挥发油化学成分的分析及含量的测定,对开发和综合利用荆芥食用药用资源提供了科学依据。
【参考文献】
[1]丁宝章,王遂义.河南植物志[M].郑州:河南科学技术出版社,1998:348.
[2]周丽娜.荆芥的化学成分及药理作用研究[J].中医药学刊,2004,22(10):1935.
[3]袁久荣,袁浩,周方敏,等.山东荆芥挥发油的GCMS分析[J].中国药学杂志,1996,31(10):618.
篇5
截至到目前,从万年蒿的地上部分中分得的化学成分如表1所示。除表中所列外,吕惠子等[8]用水提醇沉法提取万年蒿多糖,用硫酸苯酚法测定含量,多糖含量测定结果为22.45%。朴光春等[9]用电感耦合等离子体质谱仪测定了万年蒿水提液中宏量元素Na,Mg,K和微量元素Cr,Mn,Fe,Cu,Zn的含量,发现微量元素中Fe,Mn含量最高;用高效液相法测定了维生素A,D,E,B1,B2,B6,B12,β胡萝卜素,其中维生素B6含量最高。万年蒿挥发油的化学成分[10~13]与艾蒿、苦蒿类相仿,但倍半萜类化合物,如β石竹烯,β毕澄茄烯成分比苦蒿类植物多。万年蒿挥发油主要成分为樟脑(Camphor)、樟烯(Camphor)、桉油精(Oneole)、石竹萜烯(Caryophyllene)、桂烯(Myrcene)、异松苷醇(1Oefen301)、葛缕酮(Carvone)、α水芹烯(αphtllanedrene)、胡椒酮(Piperiton)、香烩烯(Sabinene)、侧柏酮(Thujone)、α蒎烯(αpinene)、β-蒎烯(βpinene)、α松油醇(αterpineol)、松油醇4、乙酸龙脑酯(Bornylacetata)、莰烯(Camphene)、异蒎莰酮(Isoplnocamphone)、γ揽香烯(γelemene)、γ杜松油烯、反式-石竹烯(Transcaryophyllene)、绿叶萜烯酮(Patchoulenone)及蒿酮;此外,还含有异缬草酸及黄酮类,花和叶含有伞形花酯[1]、东莨菪内酯、胡萝卜素、有机酸、倍半萜内酯及维生素、粗蛋白、脂肪、纤维等。
表1万年蒿中已知的化学成分(略)
2药理活性
张德志[6]发现万年蒿的水煎液具有明显的利胆等作用,抗菌实验表明,其对金黄色葡萄球菌具有很强的抑制生长作用。邵等人[14]发现万年蒿叶的提取物对玉米大斑病菌菌丝生长的抑制率在72.39%以上,对苹果炭疽病菌菌丝生长有一定的抑制作用,其抑制率在64.01%,表明万年蒿具有一定的抗菌活性。万年蒿的其它药理活性研究较少,而与它同属的植物茵陈蒿则研究较多,后者具有多种药理活性[18~20],如利胆作用、保肝作用、抗病原微生物作用、抗肿瘤作用、心血管系统作用、解热镇痛消炎作用,临床上用于治疗急性传染性黄疸型肝炎、新生儿黄疸、胆道蛔虫症、高血脂症、婴儿湿疹、痤疮等疾病。万年蒿经常作为“茵陈”的代用品,因此它们在药理活性上有很多相似之处。
3结论
近年来对万年蒿的研究逐渐增多,但主要偏重于化学成分的分离与纯化,其药理活性研究还有许多空白之处。万年蒿的资源丰富[17],尤其是在东北、河北、山西、西北和内蒙,分布广泛,在中、低海拔地区的山坡、路旁、灌丛地及森林草原地区很容易采到,所以应采用现代科学手段对万年蒿化学成分及药理活性进行更深、更系统的研究,以使万年蒿更好地应用于临床。
【参考文献】
[1]严仲铠,李万林.中国长白山药用植物彩色图谱[M].北京:人民卫生出版社,1997:415.
[2]李铣,张德志.万年蒿中芳香类成分研究[J].中草药,l993,24(6):286.
[3]张德志,吴榜华,李铣.万年蒿中香豆素类成分的研究[J].中草药,1989,20(11):7.
[4]吴立军,班向东,王春晓.万年蒿化学成分的研究[J].沈阳药学院学报,1994,11(1):54.
[5]张德志.一个新倍半萜内酯的分离与结构研究[J].广东微量元素科学,2006,13(5):59.
[6]张德志.万年蒿中两个新贝壳杉烷型二萜德分离与结构测定[J].天然产物研究与开发,1998,10(4):34.
[7]张德志.万年蒿中肉桂酸类化合物的提取与分离[J].江西中医学院学报,2002,14(3):15.
[8]吕惠子,朴光春,郑光浩,等.万年蒿多糖的含量测定[J].中国野生植物资源,2004,23(3):61.
[9]朴光春,吕惠子,元海丹,等.中药万年蒿中微量元素和维生素的含量测定[J].微量元素与健康研究,2003,20(1):31.
[10]陈伟民.青海几种蒿属植物挥发油的化学成分及其药性与用途[J].青海科技,2004,4:7.
[11]胡世林,杨莲菊.十二种蒿属药用植物挥发油组分比较[J].中草药,1985,16(2):32.
[12]陈驰.茵陈蒿和白莲蒿挥发油成分比较研究[J].时珍国医国药,2000,11(5):1.
[13]顾静文,刘立鼎,陈京达.铁杆蒿精油的化学成分[J].江西科学,1999,17(3):187.
[14]邵,冯俊涛,韩静.32种植物提取物的离体抑菌活性测定[J].西北农林科技大学学报,2003,31(6):59.
[15]XIANLI,DEZHIZHANG,MASAYIJKIONDA.ENT-KAURANOIDDITERPENESFROMARTEMISIASACRORUM[J].JournalofNaturalProducts,1990,53(3):657.
[16]YAEKOKONDA,Nobuyukifunato,yoshihiroharigaya,etal.AphenolicglycosidefromArtemisiasacrorum.JHeterocyclicchem.1991,28:1949.
[17]商凤杰,杜晓琪,刘桂杰.我国东北蒿属药用植物资源及其利用[J].中国林副特产,1997,42(3):58.
篇6
烟叶的主要化学成份是决定烟叶内在品质的因素之一。现在已发现烟叶和烟气中各种化学成分已达5259种。长期以来国内外的烟草科研工作者,均想从烟草化学上来探索出一种用化学成份表示烟草质量的方法。近几年来,随着化学分析技术的提高和现代化的分析仪器的应用,只能够说明烟草的主要化学成份对其质量的影响,但还不能完全用化学成份的含量来表示烟草在“吃味”、“香气”方面的特性。
从长远来说,对烟草所含更多的化学成份的探讨还是一个任重而道远的长期研究课题。从目前卷烟生产对烟叶的要求来看,我们必须掌握烟叶的主要化学成份和特性以及对烟草质量产生的影响,为设计卷烟配方提供参考。
一、烟叶的主要化学成份及特性
1.碳水化合物
烟叶中的碳水化合物有可溶性的糖和不可溶性的多糖。
(l)可溶性糖有单糖和双糖。烟叶中的葡萄糖和果糖属于单糖,蔗糖和麦芽糖属于双糖。因为葡萄糖分子结构中含有醛基(-CHO)又称醛糖,果糖分子中含有酮基(-C=O)也称为酮糖,醛基和酮基在碱性溶液中都能还原酒石酸铜,所以在烟草化学分析中,用这一性质来检测烟叶中单糖含量,烤烟单糖含量一般在10%—25%之间,单糖含量的高低是衡量烟叶优劣的重要因素。
双糖属非还原性糖,只有在酸性条件下水解成单糖之后,才能与酒石酸铜在碱性溶液中发生还原反应。
(2)不溶性的多糖属于高分子碳水化合物,烟叶中的多糖包括淀粉、纤维素和果胶等,多糖与单糖双糖不同,它即不溶于水,也无还原能力,但在酸性条件下和酶的作用也能水解成单糖,但数量很少,所以在烟叶中起的作用也较少。淀粉在成熟的烟叶中的含量为10%—30%,在于制和发酵过程中转化为单糖、双糖及糊精,所以为提高烟叶内在质量,烟叶发酵是一个重要步骤,发酵技术的高低直接影响淀粉的转化率。
纤维素是构成烟叶细胞组织和骨架的基本物质,烟叶中含纤维素的量一般在11%左右,它随着烟叶等级的下降而增加。
果胶在烟叶中含量为12%左右,果胶影响烟叶的弹性韧性等物理性能,由于果胶的存在,当烟叶含水份多时烟叶的弹性韧性就增大,含水少时就发脆易碎,果胶分子结构中还含有甲醇,影响烟草吃味,因果胶分子易水解,烟叶在发酵过程中在酶的催化下,果胶发生水解便可除掉甲醇,提高烟叶质量。
2.含氮化合物
烟叶含氮化合物较多,主要有蛋白质、烟碱和游离碱。
(1)蛋白质:烟叶中的蛋白质对烟叶质量影响较大,在燃烧时产生一种臭鸡蛋味,其含量在5%—15%之间,蛋白质中氮元素的平均含量为16%,在检测烟叶化学成份时不直接检测蛋白质,而是通过测得的氮元素来换算出蛋白质含量,从烟株部位来看,中部烟叶含量低于上部烟叶.它随着烟叶等级的下降而增加,以顶叶含量最高。
(2)烟碱:烟草之所以能区别于其他植物主要是因为含有烟碱,烤烟含烟碱在0.5%-3%,而晾晒烟含量在5%以上,从烟株部位来看,上部烟叶含量最高。烟碱容易和酸进行化学反应,与草酸、柠檬酸作用,生成草酸盐和柠檬酸盐,与硅钨酸作用生成烟碱硅钨酸的白色沉淀,用此法可检测烟叶中烟碱含量。在50℃左右烟碱与水反应生成水合物,并具有和水蒸气共同挥发而不分解的特性,利用此性质可提取烟碱。
(3)游离碱:烟叶中还有一种游离碱,虽然含量很低,但对卷烟质量影响很大,卷烟在燃烧时,挥发碱受热进入烟气中,对人的感官产生一种辛辣刺激,但烟气中还必须有一定量的挥发碱,用以中和酸度较大的烟气,使烟气丰满,吸食后感到舒适。
3.有机酸
烟叶甲含有机酸在200多种以上,大部分为二元酸和三元酸,其中以柠檬酸、苹果酸、草酸、琥珀酸含量最多,这四种酸占烟叶中的有机酸的70%,虽然含量高但不是挥发酸,所以对卷烟香气元明显影响,但对卷烟的吸食品质影响较大。它可增用烟气酸性,中和游离碱降低烟气的辛辣、呛喉现象,使烟气变得甜润舒适,所以在卷烟生产中,经常加入有机酸来调整卷烟吸味品质,尤其对用那些含糖量低,含氮量较高的烟叶,在生产中加适量有机酸更为重要。
4.矿物质
烟叶中的矿物质种类繁多,一般含量为10%上下,从烟株的部位来分,以下部烟叶含量较高,其中对烟草影响较大的有钾和氯。
烟叶含钾高则燃烧性和阴燃持火力都较强,烟灰也好。氯离子在烟叶中含量高低,直接影响烟草的燃烧性,若含量在1%以下可使烟草柔软减少破碎,若超过1%则燃烧性较差,当氯离子达到1.5%以上时烟草就熄火,以上是一种概括的说法,确切的说要看钾氯比值,二者比值在4以上燃烧性就好;阴燃持火力强,若在2以下则烟草熄火,所以应把钾氯比调制到适当的比例。
二、烟叶的主要化学成份对卷烟质量的影响
卷烟质量分外在质量和内在质量,外在质量是指卷烟各种物理性能指标,如硬度、吸阻、重量等,这些指标受卷烟生产过程各个环节的影响。内在质量是卷烟在燃烧后,所产生的烟气中的各种化学成份含量及比例关系,对人的感官产生的各种感觉的一个总的反映。近一二十年来烟草企业都将烟气分析做为衡量卷烟质量的重要依据,卷烟烟气的质量优劣主要是由烟叶所含的主要化学成份及比例关系的协调性决定的,所以在设计卷烟配方时,烟叶的主要化学成份指标.是选评烟叶优劣,确定各等级烟叶比例及卷烟烟气质量的重要依据。
为了设计出一个优质卷烟产品或保持卷烟内在质量的稳定,就应以烟叶的主要化学成份为依据,结合配方师的经验来设计卷烟配方。
1.总糖量对卷烟质量的影响
烟叶的含糖量一向被认为是体现卷烟良好吃味的重要标志,在一定的幅度范围内,含糖量高则卷烟的品质好,由于糖在燃烧后产生的烟气呈酸性,可以中和烟气中的游离碱(氨),消除烟气产生的辛辣和呛喉的刺激。
烟叶中的蛋白质对卷烟是一种不利因素,燃烧后产生一种使人不愉快的气味,为了调节好烟气,苏联专家施本克教授寻找了用糖和蛋白质的比值来说明卷烟吸味品质和
烟叶品质,
称之为施木克值,比值高表明卷烟含糖量高,含蛋白质低,卷烟档次高品质好。
糖的存在对卷烟质量起到一定的作用,但不能认为糖是决定卷烟质量的决定性因素,更不能认为烟叶含糖越高越好,蛋白质含量越低越好,各自应有一个适宜范围,糖一般在18%—25%为佳,蛋白质一般在5%—10%为好。而且两者应有一个比较适宜的比例关系,所以施木克值也不是越高越好,一般掌握在2~3之间比较适宜。糖是卷烟的有利因素,但在卷烟中不能单独发挥其作用,还必须和烟碱协调起来,才能使烟气丰满、醇和、吃味甜润、舒适。若糖高烟碱低烟气无劲头,吸味平淡,香气不足吸食后不过瘾;若烟碱高糖低,烟气劲头大、不醇和、吸后无舒适感。为此国内外的卷烟配方师们,又在长期的研究和实践中,寻找出糖和烟碱适宜的比例关系,称为糖碱比值,此值一般在10:1—15:1为准。
2.烟碱含量对卷烟质量的影响
烟碱俗称尼古丁,是烟草特有的植物碱,是影响烟叶质量的重要化学成份,具有产生兴奋的刺激作用,同时也是卷烟产品质量稳定的主要标志,所以控制卷烟产品中的烟碱含量是卷烟质量的一项重要指标。
配方师在选择烟叶拟定配方时,必须掌握住各等级烟叶的烟碱含量和配方烟丝中的烟碱含量,一般要求烟碱含量控制在1.2%—2.2%之间比较适宜,但这不是硬性规定,配方师可根据设计产品的需要和当地消费者的口味来确定烟碱的高低。
现在卷烟生产方向为中焦油和低焦油卷烟,但降低焦油的同时烟碱也会降低。配方师必须采取措施保证烟碱在低焦油卷烟中的含量,或者说烟破和焦油之间要有一个适当的比例关系。经研究和实践认为10:1至15:1适宜,也就是说每支烟含焦油10~15毫克含烟碱1毫克,配方师在设计卷烟配方时应特别重视这个比例关系,而且要保持它的稳定性。
烟叶除了烟碱外,还含有一种挥发碱(游离态烟碱)它的含量高低不决定烟的劲头,而决定烟气是否辛辣、呛喉。为了控制挥发碱的含量,引用了一个尼古丁值来表示,此值是烟叶中的总烟碱被总挥发碱除所得的商值,称尼古丁值,此值越大表明挥发碱含量低,烟气就显得舒适平和,此值越小烟气就越加辛辣、呛喉,由此可见尼古丁值与卷烟质量呈正相关系,在一定范围内此值越高,卷烟档次越高质量越好。
篇7
Aratake等[2]从印度尼西亚海绵Haliclonasp.中分离得到一种多元不饱和溴代脂肪酸6-bromo-icosa-3Z,5E,8Z,13E,15E-pentaene-11,19-diynoicacid(1),并通过核磁数据确定了其结构。将分离得到的该化合物纯化后进行细胞实验,研究表明其对NBT-T2大鼠膀胱上皮细胞有细胞毒性,半数抑制浓度(IC50)值为36μg/mL。Watanabe等[3]从Strongylophora属海绵中分离得到3个多烯炔类成分strongylodiolA、B、C,它们对Molt-4肿瘤细胞有非常显著的细胞毒活性,IC50值分别为0.35、0.85、0.80μg/mL。
1.2过氧化物
Plakinidae类过氧化物在海绵中比较常见,该类成分在C-3、6位存在过氧桥,同时在C-3、4、6位有烷基链取代。Ernesto等[4]从中国南海简易扁板海绵Plakortissimplex中分离得到plakortideH(2)、I、J,运用波谱学和化学的方法解析了其平面结构,并利用改良的Mosher法确定C-3、4、6手性位点的绝对构型。plakortideH、I、J对鼠纤维肉瘤细胞WEHI164显示出较强的活性,其IC50值分别为7.1、9.5、8.2μg/mL。并阐述了该类化合物的构效关系,认为过氧环是其具有细胞毒活性的活性位点,若过氧环被破坏,其细胞毒活性则会消失。Dai等[5]通过活性筛选及分离手段从海绵Diacarnuslevii中分离得到4种结构新颖的norsesterterpene过氧化物diacarnoxidesA~D,其中diacarnoxideB(3)显示出显著的活性,可以抑制低氧状态下肿瘤细胞的生长。海绵中分离得到的脂类化合物的结构见图1。
2大环内酯类
来自海绵的大环内酯类化合物结构新颖、药理活性多样,其已经引起越来越多的海洋药物研究人员的关注。Johnson等[6]从海绵Cacospongiamycofijiensis中分离得到大环内酯类聚酮化合物fijianolidesA(4)、B(5),及6种新型的fijianolidesD~I。fijianolidesA、B具有类似于紫杉醇的微管稳定作用,其中fijianolidesB的作用强于fijianolidesA,且在严重联合免疫缺陷(SCID)小鼠肿瘤细胞体内评价中发现:fijianolidesB可持续阻断HCT-116肿瘤细胞的生长长达28d。fijianolidesD~I在体外实验中也显示了一定的抗HCT-116和MDA-MB-435细胞系活性,其中fijianolidesE、H可以阻断细胞的有丝分裂。Chevallier等[7]从巴布亚新及利亚海绵Irciniasp.中分离得到一种有强细胞毒性的大环内脂类化合物tedanolideC及其类似物。体外试验表明该化合物对HCT-116细胞有强的细胞毒性,从细胞周期分析中发现其可使细胞分裂停留在S期。Singh等[8]从新西兰海绵Mycalehentscheli中分离得到亚微克级的大环内酯类化合物pelorusideA、B。其中pelorusideB可以促进微管的聚合,同紫杉醇一样可以阻断细胞的有丝分裂在G2期。
3肽类
在近30年中,研究人员从海绵中发现了大量结构新颖且药理活性强的肽类成分,部分化合物结构见图3。海绵肽类化合物的研究能够取得如此大的进展,主要有以下几个原因:(1)制备型高效液相色谱等分离纯化技术的快速发展与应用;(2)结构54132鉴定方面,波谱解析技术的进展,特别是2D-NMR和质谱等技术在海洋肽类结构测定方面的巨大推动作用。很多海绵环肽类成分由于N-端的封闭、β-或γ-氨基酸残基以及D-型氨基酸等新氨基酸存在,已经不能通过Edman降解来获取氨基酸序列的分析结果;(3)手性分离技术的发展,使研究人员能够用极少量的样品就可以确定某一氨基酸的绝对构型。Ebada等[9]从印度尼西亚的加里曼丹岛海绵Jaspissplendens中分离得到化合物jaspamide(6)和其两个衍生物jaspamideQ、R。通过1D和2DNMR核磁数据、质谱分析比较得到了jaspamide的准确结构。jaspamideQ、R可以抑制小鼠淋巴瘤L5178Y细胞的增殖,IC50值<0.1μg/mL。Plaza等[10]从帕劳群岛深水水域海绵Theonellaswinhoei中分离得到3种新的类似于anabaenopeptin的多肽类化合物paltolidesA、B、C。paltolidesA、B、C在细胞实验中并没有显示出抗HIV-1活性或细胞毒性,但在亚微摩尔级显示出对羧肽酶的选择性抑制。Plaza等[11]从海绵Siliquariaspongiamirabilis中分离得到6种新的环肽化合物,它们分属于celebesidesA、B、C(7~9)和theopapuamidesB、C、D。celebesidesA在单轮传染性实验中抗HIV-1活性的IC50值为(1.9±0.4)μg/mL,而在非磷酸化的模拟实验中,celebesidesA即使在50μg/mL这样的高浓度下仍无活性。theopapuamidesA、B、C对人体结肠癌细胞HCT-116显示出细胞毒性,IC50值为2.1~4.0μg/mL,并且有强的抗真菌活性。Ratnayake等[12]从巴布亚新几内亚的海绵Theonellaswinhoei中分离得到一种结构新颖的环肽theopapuamide,该化合物对CEM-TART和HCT-116细胞系均具有强的细胞毒性,半最大效应浓度(EC50)值分别为0.5、0.9μmol/L。Robinson等[13]从两种海绵Aulettasp.和Jaspissplendens中分离得到jasplakinolide和11个jasplakinolide类似物,其中有7个化合物为新化合物。jasplakinolideB显示出非常强的细胞毒性,对人体直肠结肠恶性腺瘤细胞HCT-116的IC50值<1nmol/L,但是在细胞微丝试验中,即使IC50值为80nmol/L时也没有显示出微丝破坏活性。
4生物碱类
生物碱类成分是海绵化学成分研究的一个非常重要的领域。该类成分结构独特,其中许多化合物具有抗肿瘤、降压、广谱抗菌、抗病毒等生物活性。因此药物开发人员对从中寻找治疗人类重大疾病的特效药物寄予了厚望。
4.1吲哚类生物碱Dai等[14]从海绵Smenospongiacerebriformis中分离得到2个新化合物dictazolineA(10)、B(11),以及2个已知化合物tubastrindoleA、B,活性筛选结果表明该类化合物既没有显示出明显的细胞毒性,也没有抗菌活性。
4.2β-咔啉类生物碱Inman等[15]从巴布亚新几内亚海绵Hyrtiosreticulates中分离得到1个β-咔啉生物碱hyrtiocarboline(12),该化合物可选择性抑制H522-T1肺非小细胞、MDA-MB-435黑素瘤细胞、U937淋巴癌细胞系的增殖。同时在该属海绵中还分离得到dragmacidonamineA(13)、B。
4.3异喹啉类生物碱异喹啉类生物碱具有很好的抗微生物、抗肿瘤等药理活性。ecteinascidin743(14)的开发成功使我们认识到了该类化合物具有广阔的新药开发前景[16]。Pettit等[17]从海绵Cribrochalinasp.中分离得到了3个异喹啉生物碱cribrostatin3(15)、4、5,并通过X单晶衍射确定了其立体构型。cribrostatin3、4、5显示出很强的抑制卵巢癌细胞Ovcar-3增殖的活性,其IC50值分别为0.77、2.20、0.18μmol/L,对鼠白血病细胞P388也有很好的抑制增殖的活性,IC50值为2.49、24.6、0.045μg/mL。另外,这3个化合物还具有一定的抗微生物活性。
4.4溴代酪氨酸类生物碱溴代酪氨酸类生物碱是一类生物活性广泛的成分。Carney等[18]从海绵Pasammaplysillapurpurea中分离得到bastadine(16),其对多种肿瘤细胞均表7R1=PO3H2R2=C2H58R1=PO3H2R2=C2H59R1=PO3H2R2=C2H56·1436·现出较弱的细胞毒性,在2μg/mL时,对结肠腺癌、人肺癌细胞A5499、鼠淋巴白血病细胞P388和人体肿瘤细胞HT-2有毒性;当浓度为2.5μg/mL时,其对无肿瘤CV-1猴肾细胞有一定的毒性。另外,bastadine对拓扑异构酶II(IC50值为2.0μg/mL)及脱氢叶酸盐还原酶(IC50值为2.5μg/mL)有抑制作用。Galeano等[19]从加勒比海绵Verongularigida分离得到9种bromotyrosine衍生的化合物,其中purealidinB(17)、11-hydroxyaerothionin(18)在10、5μmol/L时对利什曼原虫和疟原虫显示出选择性抗寄生虫活性。
4.5吡咯类生物碱Mao等[20]从海绵Mycalesp.中分离得到18个结构新颖的脂溶性的2,5-二取代吡咯类成分(19)。这些化合物具有一定的阻断缺氧诱导因子-1(HIF-1)活性的作用,IC50值<10μmol/L。作用机制研究表明,该类化合物在一定浓度下可通过阻断NADH-泛醌氧化还原酶(复合物I)来抑制线粒体的呼吸作用,以此来阻断HIF-1的活性。Liu等[21]通过活性追踪及色谱方法从海绵Dendrillanigra中分离得到4个结构新颖的具有分子靶向抗肿瘤活性的片罗素类成分neolamellarinA、neolamellarinB、5-hydroxyneolamellarinB和7-hydroxyneolamellarinA(20)。7-hydroxyneolamellarinA可以阻断低氧诱导下T47D细胞中的HIF-1活性,IC50值为1.9μmol/L,也可以抑制血管内皮生长因子(VEGF),使其停留在分泌蛋白水平。季红等[22]从中国南海海绵Iotrochotasp.中分离得到purpurone(21),它是该属海绵中的特征性成分和主要抗氧化活性成分,其清除DPPH自由基的IC50值为19μg/mL。
4.6其他Morgana等[23]从海绵Petrosaspongiamycofijiensis中分离得到mycothiazole及类似物8-O-acetylmycothiazole、4,19-dihydroxy-4,19-dihydromycothiazole;mycothiazole可以抑制低氧诱导下肿瘤细胞中HIF-1的生成,IC50值为1nmol/L,抑制体外低氧刺激下肿瘤血管的生成,并在体外实验中还表现出一定的神经毒性。Coello等[24]从肯尼亚的拉姆岛海绵Mycalesp.中分离得到一种环状二胺1,5-diazacyclohenicosane(22),并运用HR-ESI-MS和1D、2D-NMR等波谱学方法确定了其结构。该化合物对A549、HT29和MDA-MB-231肿瘤细胞株显示出中等强度的抑制增殖活性,IC50值分别为5.41、5.07、5.74μmol/L。Hermawan等[25]从海绵Leucettasp.中分离得到一种新型聚炔类生物碱2-(hexadec-13-ene-9,11-diynyl-methyl-amino)-ethanol(23),并通过核磁数据确定其结构。该生物碱对NBT-T2细胞具有较强的细胞毒性,IC50值为2.5μg/mL。张浩等[26]从中国南海海绵Axinellasp.中分离得到hymenialdisine(24)和debromohymenialdisine(25)。这两种化合物为吡咯烷生物碱成分,都是MAPK途径抑制剂,其中hymenialdisine可以有效抑制影响丝裂原激活的蛋白激酶1的活性,其IC50值为6nmol/L,对GSK-3激酶以及CDK家族也显示出很强的抑制活性,其IC50值为10~700nmol/L。debromohymenialdisine能够具有抑制G2期DNA损伤检查点、检查点激酶1(Chk1)和2(Chk2)的活性,IC50值分别为8、3、315μmol/L。海绵中分离得到的生物碱类成分的结构见图4。
5甾醇
甾醇是一类分子中环戊烷骈多菲甾核的化学成分,是某些激素的前体,也是生物膜的重要组成部分。甾醇是存在于任何一种生物体内的化学成分。目前在海洋生物中发现了200多种单羟基甾醇,大部分在海绵中都可以找到。另外,从海绵中还分离得到了大量的多羟基甾醇类成分,这些成分大都具有显著的生理活性。Whitson等[27]从菲律宾海绵Spheciospongiasp.中分离得到3种新的甾醇硫酸盐spheciosterolsulfatesA(26)、B、C,通过1D、2D-NMR和HR-ESI-MS等波谱方法确定了它们的结构。这些化合物都可以阻断蛋白激酶Cζ(PKCζ)的活性,IC50值分别为1.59、0.53、0.11μmol/L;在细胞实验中显示其也可以阻断NF-κB的活性,EC50值为12~64μmol/L。黄孝春等[28]从我国南海的蓖麻海绵BiemnafortisTopsent中分离得到9个甾体。这些化合物均为首次从蓖麻海绵中分离得到,其中化合物cholest-4-ene-3,6-dione(27)在淋巴细胞转移实验中对T和B淋巴细胞的增殖显示出显著的抑制活性。另外,对蛋白质酪氨酸磷酸酯酶PTP1B也有显著的抑制活性,其IC50值为1.6μmol/L。Morinaka等[29]从海绵Phorbasamaranthus中分离得到5种新的甾体咪唑类化合物amaranzoleB(28)~F和已知结构的amaranzoleA(29)。amaranzoleB~F属于含有不同羟苯咪唑基侧链的类似物。amaranzoleA、C、D中C24位的C-N被C-O键取代分别得到化合物amaranzoleB、E和F。这两类咪唑类类似物很可能是因为烯丙基的重排,即C24-N和C24-O交换,同时伴随CO2的脱去而形成的。人结肠癌细胞HTC-116细胞毒活性测试结果表明,amaranzoleA无显著毒性(IC50>32μg/mL)。Whitson等[30]从菲律宾的科隆岛海绵Lissodendoryx(Acanthodoryx)fibrosa样品中分离得到3个新的硫酸取代的甾醇的二聚体化合物fibrosterolsulfatesA、B、C,其中化合物fibrosterolsulfatesA(30)、B(31)具有较强的蛋白激酶CPKCζ抑制活性,IC50值分别为16.4、5.6μmol/L。Fattorusso等[31]从Clionanigricans中分离得到两个结构骨架异常奇特的甾体clionastatinsA(32)、B(33)。clionastatinsA、B为首次发现在自然界中存在的多卤代androstane类甾体,它们对鼠纤维肉瘤细胞WEHI164、鼠巨噬细胞RAW264-7和人单核细胞THP-1显示出中等强度的细胞毒活性,其IC50值为0.8~2.0μg/mL。Lu等[32]从昆士兰北部海床收集得到的海绵Sollasellamoretonensis中分离得到两种A环为芳香环的胆汁酸3-hydroxy-19-nor-1,3,5(10),22-cholatetraen-24-oicacid和3-hydroxy-19-nor-1,3,5(10)-cholatrien-24-oicacid。从海绵中分离得到的部分甾醇类成分的结构见图5。
6萜类
萜类化合物是一类分子结构中具有(C5H8)n单元的不饱和烷烃及其衍生物。海绵中的萜类化合物结构类型多种多样,并且具有强烈生理活性。
6.1倍半萜Xu等[33]从海绵Hyrtiossp.中分离得到一种新的倍半萜–二氢醌puupehanol(35)及已知的化合物puupehenone和chloropuupehenone。puupehenone显示出强的抗新隐球菌和念珠菌活性,最低杀真菌浓度(MFC)值分别为1.25、2.50μg/mL。
6.2二倍半萜黄孝春等[34]从南海倔海绵属海绵Dysideavillosa中分离得到5种scalarane型二倍半萜化合物。抗肿瘤活性筛选结果表明,scalaradial对HL-60、BEL-7402、MDA-MB-435等肿瘤细胞株具有显著的抑制活性,IC50值分别为3.4、5.8、4.8μmol/L。邱彦等[35]从中国南海海绵Hyrtioserectus中分离得到8个二倍半萜类化学成分,通过采用多种色谱手段进行分离纯化,应用多种波谱分析技术,并结合文献对照,对所分离到的化合物进行了结构鉴定。其结构分别为furoscalarol、12-O-deacetyl-furoscalarol、16-deacetyl-12-epi-scalarafuranacetate、isoscalarafuran-A、scalarin(37)、12-O-deacetyl-19-deoxyscalarin、12-epi-deoxoscalarin、21-hydroxy-deoxoscalarin。印度尼西亚海绵Lendenfeldiasp.的脂类提取物可以抑制低氧诱导的T47D胸腺瘤细胞中hypoxiainduciblefactor-1的活性。Dai等[36]通过色谱分离技术分离得到结构已知的homoscalarane型二倍半萜16β,22-dihydroxy-24-methyl-24-oxoscalaran-25,12β-olactone(38)、24-methyl-12,24,25-trioxoscalar-16-en-22-oicacid、12,16-dihydroxy-24-methylscalaran-25,24-olide、PHC-4andscalarherbacinA。它们不仅能够抑制低氧诱导的HIF-1的活性(IC50值为0.64~6.9μmol/L),还有抑制T47D和MDA-MDA-MB-231胸腺肿瘤细胞的增殖活性。
6.3三萜海绵中三萜的种类和数量都相对较少,主要可以分为异臭椿型、siphonella型和羊毛甾烷型3大类。Dai等[37]通过活性筛选及多种分离手段从南非海绵Axinellasp.中分离得到7个结构新颖的sodwanone三萜类化合物3-epi-sodwanoneK(39)、3-epi-sodwanoneK-3-acetate、10,11-dihydrosodwanoneB、sodwanonesT~W和结构新颖的yardenone三萜类化合物12R-hydroxyyardenone,以及结构已知的化合物sodwanoneA、sodwanoneB、yardenone。sodwanoneV可同时阻断低氧诱导和铁离子螯合剂(1,10-邻二氮杂菲)诱导下T47D胸腺肿瘤细胞中HIF-1的活性(IC50值为15μmol/L)。化合物3-epi-sodwanoneK、sodwanonesT、10,11-dihydro-sodwanoneB和sodwanoneA可以抑制T47D细胞中HIF-1的活性。化合物3-epi-sodwanoneK-3-acetate对T47D细胞有一定的细胞毒性(IC50值为22μmol/L),化合物sodwanonesV对MDA-MB-231胸腺肿瘤细胞有一定的细胞毒性(IC50值为23μmol/L)。唐生安等[38]采用多种色谱手段对中国南海海绵Jaspissp.的化学成分进行了分离纯化,应用波谱分析技术(包括IR、MS、2D-NMR等),并结合文献对照,对所分离到的化合物进行了结构鉴定,分别为异臭椿类三萜化合物stellettinA(40)~D、H、I、rhabdastrellicacidA和geoditinB。该类化合物具有很强的抗肿瘤、抗病毒等生理活性,所以极具研究开发和应用价值。
篇8
1.2理论教学改革
在分析化学的理论教学中,既要讲授分析化学的基本原理和方法,使学生严格树立起“量”的概念,培养学生从事理论研究和实践的严谨的科学作风和能力。又要将新发现的现代分析方法和技术巧妙的融合到经典分析化学中,如介绍分析化学在环境监测、环境毒理学、环境化学等课程方面的应用,特别是环境污染治理、生命科学在分析化学方向使学生认识到分析化学的重要性,充分调动学生的积极性,激发学生学习兴趣,积极参与到教学活动中。教师教学不应重在讲授,而应重在“授之予渔”,引导学生提出问题,指导学生解决问题。首先,教师提出能够涵盖课堂教学所有知识点的问题,让学生课前带着问题去预习,既培养独立自主学习能力又可让学生发现自己遇到的难点。然后,通过启发引导,鼓励学生提出问题,引导学生寻找解决问题的途径和方法,并给出一定的时间让学生去思考,去查阅相关的资料,培养学生独立解决问题能力,同时让学生自己挖掘每个问题所涵盖的知识点,并引导其掌握问题在实际中的应用,以学生为主体通过问题的解决而掌握相关的知识点,不但帮助学生自主分析、解决问题,还提高了学生学习的兴趣,使所学知识体系和创新能力不断提高和发展。比如新课前先留下问题水中Cl-和CrO4-同时存在,缓慢加入浓的AgNO3哪种离子先沉淀呢?实验现象又如何?学生带着问题去预习,学习分步沉淀的原理,同时鼓励学生小组设计实验,理论课前可以先进行实验,观察现象,通过查找资料分析原因,课堂上教师根据学生解答问题情况讲授新课,理论与实践相结合,充分调动学生学习的积极性,培养了学生自主学习、团结协作分析解决问题的能力。课堂教学过程中注重灵活引导学生掌握学习方法,如对比方法,包括将有关同类滴定分析方法原理知识进行横向或纵向的比较、几种常规容量分析法的相似点不同点、化学键与分子间作用力的异同点、三种银量法的异同点等,又如如何选择最适的指示剂,重点讲根据酸碱滴定曲线中滴定突跃选择指示剂,而配位滴定和氧化还原滴定,就不再详细讲授,让学生分组讨论学习,而且滴定分析重在应用,加以案例分析教学,有助于提高学习兴趣,让学生学以致用,了解本方法的用途,进而开展实践教学。
1.3创新实践教学模式,多种实验教学模式相结合
现阶段分析化学实践教学中,多数是老师为学生准备好试验水样、土样、药品试剂等,学生仅按照试验步骤依次操作即完成实验,这并不能满足全面提升学生综合实践能力、创新能力的培养要求,针对上述问题,我对分析化学实践教学做如下改革。以学生为主体、教师为引导,强调以工作任务为驱动组织实践教学,开展实验,同时提倡让学生参与试验的布点、采样、试剂配制、试验耗材准备等实验整个过程的教学模式。即根据工作任务让学生分小组完成任务分配表,包括试验样品的选取、实验药品用量的计算和配制方法、实验原理、实验注意事项等,在实践教学方法上注重互动式、启发式教学模式,鼓励学生小组筹备实验,实验过程中出现问题,引导学生查找分析问题原因,注重培养学生能够掌握基本的分析原理和方法基础上,培养学生进行自主式探索研究,能够自主提出问题、分析问题、并通过分工合作解决实际问题,真正实现教学相长。整个实验过程,不仅提高了解决分析问题能力,也培养了学生团队合作精神。实践教学中工作任务的设置应注重基础实验和综合设计实验相结合,如基础项目、验证性项目、自主性项目、综合性项目等多种层次的8个实验项目来反复训练学生。基础项目的选取以学生基本操作规范、实验常用仪器使用方法为主。如天平的使用、基本仪器操作规范及注意事项等。验证性项目则在规范操作基础上,与课程教学大纲相结合,学会如何着手解决工作任务,教师给出概要的指导性问题和解决问题可选择的途径,学生通过实验过程记录现象和课后查阅资料分析现象,形成总结报告,教师根据结果用部分课堂时间予以点评,如开设水中氯化物含量测定、硫代硫酸钠的标定、EDTA的配制和标定等等。自主性项目则以小组为单位,进行自主式探索研究,分工合作,引导可以选择食用米醋酸度的测定、食用盐中碘含量的测定、自来水中总硬度的测定等。综合性项目为设计研究跨课程的大型综合项目,如草溪河水体富营养化评价等,根据所学的知识和操作技能和查阅相关资料,小组合作写出设计方案,在教师论证其可行性后筹备实验,完成实验,写出实验小论文。
1.4改革考试方式,推行全面而科学的考核方法
改革以考核知识的积累、实践能力为目标,考核采取全过程考核,考核方式有闭卷笔试、实验操作、平时作业、实验报告等多种形式,既注重结果又注重过程。理论部分占总成绩的60%,实验部分占总成绩的30%,考勤占10%,共100分。考核内容以应用为主,主要考核学生掌握知识点和灵活运用能力,达到培养学生综合应用能力的目标。
篇9
1.2课程内容单一
如今的高校有机化学教学课程较单一,几乎所有学校的学生都学习相似的内容,同一高校的学生更是学习同样的教学书籍内容。所以,有机化学这门课程缺乏创新,选择性较差,综合能力差,知识的相互关联性有待加强,不能形成一个完善的有机化学课程群。因此,有些学生无法系统地掌握有机化学的理论知识,实践能力较差,从而无法解决实验过程中遇到的一些问题。
2.完善高校有有机分析化学教学的措施
2.1改善教学理念和方法
一方面,在高校有机化学教学中主要实施探究性的启发式教学。即教学者在有机化学教学中对学生进行诱导式教育,充分调动学生主动学习的能力和积极性。教师不能对学生进行大量灌输抽象的理论知识以及强迫学生背诵记忆,这会导致学生厌恶有机化学的学习,并且在实际操作中无法解决遇到的问题,不能正确、有效的学习这门课程。所以,这种探究性启发式的教学模式不仅能够开发学生主动学习有机化学的兴趣,提高学生自主学习的能力,而且提高了学生的学习效率,培养学生的思考能力,为以后更深层的学习奠定了坚实的而基础。另一方面,还应注重培养学生解决问题的能力。这就要求教学者要针对学生的具体实际情况,即学生掌握基本知识的水平、接受知识的能力、兴趣爱好等,进行适当地专业知识传授和实验指点,不仅是单纯领略到该专业知识,更重要的是提高学习的能力,走出误区,突破盲点,不仅提高了学生主动学习的能力和兴趣、加深对专业知识的理解能力和掌握能力,也提高了学生的独立思考能力和学习能力。
2.2注重科学素养教育
首先,在高校有机化学教学体系中应重视对新知识的更新、补充。更新是高校当今进行教学改革中十分重要、紧迫的一项任务,更新教学内容,使教学知识现代化,不仅要求教育思想方面的更新、改革,还要求对专业技术方面问题的研究和解决。高校中有机化学教学模式中一些内容的理论性比较强或是知识比较陈旧,内容比较抽象,不好理解。所以,应适当将近年相关专业知识的一些成就、创新引入有机化学教育课堂上,不仅充实了学生的课堂学习和对有机化学更深刻、形象地理解,而且使学生了解该专业的发展现状和具体应用,提高了学生对有机化学的理解深度,培养了学生的学习兴趣。其次,教学者应结合实际生活中的案例进行课堂教学,丰富课堂活动。有机化学知识的呈现与人们的生产生活息息相关,人们的生活环境中处处体现有机化学,如各种食品健康问题,都是进行化学处理从而危害人们的健康。所以,任课教师应根据实际生活中的各种实例来阐述相应的原理知识,强调有机化学专业学科的重要性,开拓学生的视野。并且相应进行化学实验,培养学生思考和解决问题的能力,进行实践从而处理遇到的问题,进行科学探究和知识创新等。
2.3完善专业课程体系
篇10
布局问题。城市的布局应该有二层内涵。一是指大的地域空间内的城镇分布均衡性问题。随着地区经济发展条件优劣的变化,在全国范围内必然出现城市分布疏密差异的不均匀性。我国东部沿海省区工农业经济基础条件较好,加之较早获得改革开放的优惠政策,因此近年来城市化速度也较快,同时这些地区人口密度相对较高,因此城市分布密度和规模趋向高密也是必然的。现在在长江三角洲、珠江三角洲出现所谓都市绵延带的新课题也是必然的。而大西北地区由于地广人稀,经济发展也受一定条件制约,即使今后城市化水平较高时,城市的分布密度也还会是偏低的。因此并不存在必须在全国范围同步解决城市布局平衡的问题。如果实行大规模的移民政策和企业搬迁政策,强制调整人口分布密度,实践证明收效甚微,甚至是得不偿失的。随着发达地区本身产业层次的升级,低层次产业必然发生梯度转移,与这种转移相伴随的结果,或者可能在一定程度上缓解这种不均匀性。
就某一特定地区而言,确实存在一个城镇体系的合理布局问题。因为不同规模级的城镇发挥的能级作用是各不相同的。我们希望的是最大限度地综合发挥各级城镇的效益,因此,要寻求合理的分工,尽可能避免重复建设和效益的抵消。每个城市发展的规模,还受自然条件的制约,如水资源、土地资源——特别是基本农田保护政策的制约,环境容量的制约等。城镇与区域内可能形成的基础设施网络关系密切。如陆路、水路、航路等交通条件,通讯条件、电力供应条件等。还有城镇本身的特色产业、旅游资源、历史文化等等是否有优势条件等。所以,城镇处于特定的空间,赋予特定的发展目标,造就一个有机的、高效的、可持续发展的城镇体系,这就是加快城镇体系规划的意义所在。
城市的结构形态问题。如果讲实行城市“规模政策”难度较大,是由于很大程度上取决于客观经济推动力的作用,那么,城市的空间结构形态却是可以通过人的主观能动来加以引导的。我国很多大城市实际是在中等城市的基础上发展起来的,传统的扩展模式是以原有城市核心区为中心向周边不断辐射扩散,每隔若干年调整一次城市规划,不断的吃掉周边的郊区和农田,就像摊大饼一样,愈摊愈大。这种模式造成的后果是,
一原有城市内部的基础设施每隔若干年就要扩建或更新,马路一扩再扩,房屋拆了建、建了拆,人行道挖挖填填、填填挖挖”,旧的管线拆不了,新的管线不断挤进有限的地下空间,陷入一种低水平重复建设的循环之中。
二,由于是一张大饼,周围开发度较高、效益较好的农田菜地必然不断被蚕食,即使到远郊去复垦地也难以收到原有的效益。
三,人们成天穿梭忙禄在混凝土森林之中,与大自然愈来愈疏远。
四,城市的历史文化在不断的拆拆建建之中逐渐泯灭,依稀可辨的也只能是在重重高楼包围之中茕茕孓立的个别古建筑或宅院,既不协调也毫无情趣可言了。
篇11
Keywords:Sparganiumstenophyllum;GCMS;Volatileoil;Steamdistillation
中药三棱是黑三棱科植物黑三棱SparganiumstoloniferumBuch.-Ham、小黑三棱Sparganiumsimplex、细叶黑三棱Sparganiumstenophyllum和莎草科的荆三棱Scirpusflariatilis的块茎,其性味苦、平、入肝、脾经,具有破血行气、消积止痛等功能,是活血化瘀的中药[1]。三棱除含有黄酮类、皂苷类、苯丙素类外,挥发油也是其重要成分之一。三棱化学成分和药理的研究已有报道[2,3],但挥发油的研究报道较少,而且多以常见的黑三棱为试验材料,而细叶黑三棱挥发油成分至今尚无研究报道,因此本文报道了采用水蒸气蒸馏法提取细叶黑三棱挥发油,用GCMS进行测定,质谱峰数据经Wiley138质谱数据库检索确定其化学成分,并用峰面积归一化法确定各化学成分的相对百分含量的结果。旨在为细叶黑三棱的药理作用研究和开发应用提供实验依据。
1器材与方法
1.1材料
200607购于广州市医药公司,产地为河北,经鉴定为黑三棱科植物细叶黑三棱Sparganiumstenophyllum的块茎。
1.2仪器
设备电动粉碎机、挥发油测定仪、HP5890II/5972型GC-MS气/质联用仪(美国惠普公司)。
1.3挥发油的提取将细叶黑三棱粉碎,过30目筛。称取100g参照《中国药典》方法[4]提取挥发油,得挥发油0.7ml,收率为0.7%。
1.4挥发油成分分析
1.4.1分析方法
取适量细叶黑三棱挥发油,加醋酸乙酯稀释成10μg/ml,用GC-MS分析,得到的质谱数据经wiley138质谱数据库检索,鉴定各组分峰。用面积归一化法计算各组分的百分含量。
1.4.2GC-MS条件气谱柱:BP-1(60m×0.22mm×0.25μm);非极性石英毛细管柱(美国SGE公司)。
柱温80℃,保持15min后,以2℃/min速率一阶升温至140℃,保持20min,再以10℃/min二阶升温至220℃,保持10min。
进样口温度:220℃。载气:He;载气流量为1ml/min,进样量为2μl。电离电压1824mV,质谱温度173℃,溶剂延迟8min,扫描范围50~550m/z。
2结果
从细叶黑三棱挥发油中分离出11个质谱峰,见图1。经质谱数据检索分析,检索出9种化合物,并用面积归一化法确定了各成分的相对百分含量,见表1。表1细叶黑三棱挥发油化学成分和相对含量(略)
3讨论
从细叶黑三棱挥发油中分离出11种成分,鉴定出其中的9种,检出率为81.82%。已检出的成分含量占挥发油总量的94.978%。从表1可知,细叶黑三棱挥发油的主要成分和含量分别为:十六烷酸(即棕榈酸)(33.226%)、9,12-十八碳二烯酸(即亚油酸)(14.941%)、邻苯二甲酸双(2-甲氧基)乙酯(13.482%)、邻苯二甲酸双(2-甲基)丙酯(12.382%),占挥发油总量的74.031%。棕榈酸含量最高,占挥发油总量的33.226%。细叶黑三棱挥发油中脂肪酸有2种,占挥发油的48.167%;烷烃有3种,占15.804%,酯有2种,占挥发油总量的25.864%;醇有1种,占2.712%,α-雪松醇为倍半萜醇;酮1种,占2.431%。细叶黑三棱挥发油中含量最高的是棕榈酸和亚油酸,棕榈酸常温为常压下为白色结晶蜡状固体,熔点61.3℃,所以细叶黑三棱挥发油常温为下呈现固态;亚油酸是人和动物的营养必需脂肪酸,亚油酸能降低血液胆固醇,预防动脉粥样硬化[5]。研究发现,胆固醇必须与亚油酸结合,才能在体内正常的运转和代谢。如果缺乏亚油酸,胆固醇就会和一些饱和脂肪酸结合,发生代谢紊乱,在血管壁上残留下来,形成动脉粥样硬化,引发心脑血管疾病[6]。细叶黑三棱挥发油中亚油酸含量较高,是其治疗心脑血管疾病,具活血化瘀功效的基础。
细叶黑三棱成分复杂,人们对其活性成分的药理还知之甚少,要弄清楚细叶黑三棱药理需要进一步深入的研究。本文对细叶黑三棱挥发油成分进行了分析和报道,目的是为细叶黑三棱的药理作用研究和开发应用提供实验依据。
【参考文献】
[1]袁涛,华会明,裴月湖.三棱的化学成分研究[J].中草药,2005,36(11):1607.
[2]董学,姚庆强.中药三棱的化学成分及药理研究进展[J].齐鲁药事,2005,24(10):612.
[3]黄新炜,段玉峰,韩果萍,等.中药三棱的研究进展[J].中成药,2003,25(7):576.
篇12
那么,怎样强化“高考意识”、并使其贯穿于化学复习过程的始终呢?归纳起来,我们的做法是发挥了如下“五个作用”。
一、发挥“考纲”要求的主线作用
《考纲》是高考命题的依据,强化“高考意识”理所当然地应当使“考纲”成为教师组织学生复习的主线。由于“考试说明”仅是很简要的目录式提纲,为使学生对高考要求的领会明确具体,我们在开始系统复习之前,就把“考试说明”各个项目化解、组编成六个专题,每个专题又划分成若干单元,形成了《中学化学复习知识体系表解》发给学生。这份“表解”实际上成了教师进行复习教学的提纲;复习进行到哪里,学生就阅读到哪里,从中一目了然地明确哪些知识点是必考内容,哪些是考点,各考查点之间有何内在联系,使学生在整个复习过程中,头脑里有“考纲”这根“弦”,发挥了它在高考复习中的主线作用。
二、发挥历届高考题的示范作用
高考题是高考要求的具体体现,它既反映了高考的范围、重点,又展示了题型、特点,成了复习教学的“无形指挥棒”。纵观近年来全国的化学高考题一直保持了相当强的连续性,所以,让学生以它们为范例,把握来年高考的尺度,这对于强化“高考意识”十分必要。如何发挥历届高考题的示范作用呢?我们从以下三方面布局:
首先,把近五年高考题收集起来,按中学化学知识的“六大块”--基本概念、基本理论(又细分“物质结构与元素周期律”、“化学反应速度与化学平衡”、“电解质溶液”三部分)、元素的单质及其化合物、化学计算和化学实验,组编成八组“高考题专题汇编”,印制出来,复习进行到哪个专题就将与之相关的“高考题汇编”同步发给学生,进行配套训练。
篇13
对于探究地质矿物化学元素的分析工作而言,在选择岩石层的具体类型上需要进行一定的界定。比如在不同密度的岩石矿物储层的化学元素分析过程中,由于其在资源的储存和分布上都较为丰富,但如果开发与后期评析环节操作不当,则会造成资源的大量流失与浪费。因此在选择地质矿物化学分析技术的过程中需要按照以下原则。
首先,通过地质矿物化学分析技术来探究储层中的非均质性效果与储层涵盖的化学性质,那么针对岩石结构应该具备良好的增产潜力,并能够满足地质矿物分析的可供开采量;其次,地质矿物化学分析工作自身要具备充足的能力积累与能量基础,使用的化学元素分裂技术系数要满足0.8MPa/100m以上标准的地质矿物储层;最后,水驱单元内部的双向或者多项流柱能够准确对应,才能够精准的满足岩石体的非均质性、化学元素的测量要求。
1.2地质矿物化学分析应用的技术工艺
第一,压裂设计模拟工艺。在地质矿物岩石层进行分段性化学分析与改造的过程中,针对地质矿物化学的分析工作,要以优化射孔原则为基准,精确排量与摩擦、阻力之间的递进关系,以此来根据不同排量的标准选择不同的孔眼保持稳定的摩阻性。从而分析岩石层中蕴含化学元素的总量与分量比。压裂设计模拟工艺能够起到支撑井口的作用,并保证了地质矿物化学元素的取量长度适中,从而有效测量出地质矿物化学元素中的化学含性量指标以及密度指标等。
第二,组合陶粒工艺。将直径微小且适当的陶粒放置在地质矿物岩石层中的地层,以此来作为终端支撑载体,发挥良好的稳定性作用,同时也保证了之后的陶粒能够有效进入。再将直径中等且适当的矿物陶粒放置在地质矿物岩石层的中部,并与总体的岩石缝与化学元素定量位置保持水平平衡,该部位的陶粒起到重要的全体控制与支撑作用。利用这样的陶粒组合作为压裂井的有效支撑,起到压裂缝稳定的作用,以此便能够从更为精确的状态下分析储层的非均质性与化学元素量性分析之间的对应关系,即储层非均质性的横切变化值与竖切变化值对地质矿化学元素的影响都有所不同。
第三,高砂比压裂工艺。从该工艺的内部结构来看比较简单明了,通过利用井内的高砂密度比,来促使压裂井内部空间密闭完好,并保持稳定的封闭状态,以此为矿物岩石体的改造工作保持了良好的畅通性。同时使内部高砂密度保持大于10kg/m3的压裂状态,能够使岩石层的总体开发节奏更加稳定,提高岩石矿物低渗透储层的化学元素测量效果。
2地质矿物化学分析的基本流程分析
针对地质勘探工作来说,良好的技术与规范的流程是实地操作与探测活动的基本准则,不仅要以勘探工作不破坏生态环境为根本,同时更要保证实地活动的安全性。为了进一步剖析岩石层中地质矿物涵盖的化学元素,下面站在地质矿物化学分析的角度,针对化学分析的具体操作流程进行展开讨论。
2.1试样的提取与初步加工
在选择不同范围、不同区域的岩石地质矿物层时,对试样的提取环节要尽可能具备全面性与代表性。对每个含有典型特点的矿物层进行抽样提取试样,避免密度过大及过小的岩石区域范围。同时,在对提取试样进行初步加工时,采用符合等级标准的矿芯与岩芯,减少对试样的磨损与外界影响。
2.2开展定性与半定量分析
为了更好的研究岩石层中的地质矿物化学元素,利用定性半定量结合的方式对其进行含量的综合化验与分析。由于定性分析具备良好的速度性,而半定量分析方法又能保障分析结果的稳定性,从而采取二者融合的方式进行试样的分析,使化学分析的结果更为准确、科学。
2.3测定方法的选择
在地质矿物化学分析的测定方法选择中,需要建立在定性与半定量分析结果的基础上,对各项化学元素指标的高低进行综合测评,来保证化学共存元素的全面分析。那么在针对岩石层中化学含量较高的待测元素类型来说,容量法与重量法会更加适合,由于容量法与重量法能够从化学元素自身的根本性质出发,从岩石层总体与化学元素个体的角度进行具体性测定,有利于保证高含量化学元素含量的基本值与测后值之间差异性的最小化。那么针对岩石地质矿物层中含量较低的化学元素而言,可以通过采取比色法来进行测定,能够更加精准确定化学元素的性质与细微含量,同时也保持共存元素之间的形态不被破坏和改变。
2.4拟定分析方案
在拟定分析方案的环节中,是根据不同分析结果与测定结果进行集中性评估,从而模拟具备完整性与科学性的具体方案。在拟定方案的环节中,不仅需要相关工作人员具备良好的专业素质,同时更要对各个化学元素的基本特性都要清晰地掌握,站在精准度第一要把握的原则上进行方案的设计,一旦发现不合理现象时要及时排除,从而保障方案拟定结果的准确性。
2.5分析结果审查