建筑结构抗震论文实用13篇

建筑结构抗震论文

篇1

1.3坚实的质量地震作为破坏性超强的自然灾害,想要最大限度降低其对建筑的破坏,保证建筑设计坚实的质量是最基本的防护措施。相比较而言,我国建筑设计水平发展较为缓慢,在地震设计方面也存在不够合理的情况,这使得很多建筑结构都出现了地震安全隐患,过大的自身重量也加大了地震危害。为了保证建筑结构抗震水平,必须要在建筑抗震设计环节中科学的运用抗震理论,根据相关设计原则,利用有效措施来提高建筑结构的可靠性与安全性。

2实现建筑结构抗震水平设计的措施

2.1基础性防震措施应用基础性防震措施根据建筑的结构的不同位置有着不同的措施:(1)地基隔震。地基隔震是在建筑地基与土层之间设置缓冲层,以便在地震发生时减小建筑与土层之间的震动碰撞,实现对震能的有效吸收和反射作用,减小地震对建筑物的破坏。目前,我国最常使用的地基隔层为沥青原料隔震层。(2)基础隔震。基础隔震是整个建筑结构抗震设计中的关键,想要降低地震对建筑物的破坏,就必须要做好基础隔震措施。在对建筑基础采取抗震措施时,为了减小地震对上部结构的破坏,需要在建筑物的上部结构和基础位置接触处设置隔震层,防止地震力由地基处向上部结构传播,降低地震对建筑上部结构的破坏。基础抗震装置一般采用混合隔震装置、基底滑移隔震装置和夹层橡胶隔震装置等。(3)间层隔震。间层隔震是为了吸收地震的冲击余力而设置的,间层隔震的有效设置能够对震力进行再次削减,以达到降低地震对建筑的破坏作用。间层隔震一般都安装在原始结构层上,其实我国最早使用的的抗震措施,具有施工操作简单的优势。(4)悬挂隔震。悬挂隔震是通过悬挂的方式,将建筑物全部或部分结构脱离地面,从而在地震出现时,降低地面震动与建筑物之间的震力作用。目前,此种抗震措施多用于大型钢结构建筑当中,收到了较为不错的抗震效果。

2.2机敏减震支撑体系机敏减震支撑体系是集成现代科技技术的防震系统,其利用活塞运动的原理,对建筑结构进行设计。在地震灾害发生时,保证建筑结构中的内、外钢能够通过不断的滑动来消减地震的破坏力,减轻震力破坏和消耗地震作用力的传导。目前,这项技术还在不断的研究和完善当中,相信其很快就能够实现有效的应用,为建筑抗震设计水平的提升做出贡献。

2.3效能减震技术应用效能减震是实现对地震所产生动能的消耗,来减轻地震能的传导大小,从而降低其对建筑物的破坏程度。目前,在此技术方面一般采用消能器和阻尼器,两种器械都能够实现地震能量的有效消耗和吸收,减小震力对建筑主体的破坏,以达到对建筑主体结构安全、稳性定的保护。目前,效能减震技术在我国建筑防震设计中得到了有效的应用,其在新建筑的防震设计和旧建筑的抗震加固方面,都起到了良好的效果。

篇2

为了提高超高层建筑的抗震性,其足够的结构侧向刚度必不可少。足够的结构侧向刚度不仅可以保障建筑物的安全性、抗震性,还可在一定程度上有效抵抗建筑结构构件的不利受力情况及极限承载力下的安全稳定性。设计超高层建筑的结构抗震侧向刚度,应重点从其结构体系和刚度需求进行。

2.1结构设计。结构初步设计根据建筑高度和抗震烈度确定高度级别和防火级别。超高层结构设计首先满足规范要求的高宽比限值和平面凹凸尺寸比值限值,其次控制扭转不规则发生:在考虑偶然偏心影响的规定水平地震力作用下,扭转位移比不大于1.4;最大层间位移角不大于规范限值的0.4倍时,扭转位移比不大于1.6;混凝土结构扭转周期比不大于0.9,混合结构及复杂结构扭转周期比大于0.85。最后设计过程中严格控制偏心、楼板不连续、刚度突变、尺寸突变、承载力突变、刚度突变等现象。满足结构设计规范的同时,还应考虑建筑师的设计意图和功能需求,同时满足设备专业设计要求。结构平面的规整程度直接影响着抗震设计的强弱,尽量采用筒体结构,以使得承受倾覆弯矩的结构构件呈现为轴压状态,且其中的竖向构件应最大程度的安置在建筑结构的外侧。各竖向构件和连接构件的受力合理、传力明确,降低剪力滞后效应,杜绝抗震薄弱层产生。

2.2结构侧向刚度控制。超高层建筑的抗震性能设计主要与结构侧向刚度的最大层间位移角和最小剪力限制相关。对于层间位移角限值,其是衡量建筑抗震性的刚度指标之一,地震作用应使得建筑主体结构具有基本的弹性,保证结构的竖向和水平构件的开裂不会过大。同时,因超高层建筑的底部楼层、伸臂加强层等特殊区域的弯曲变形难以起主导作用,所以应采取剪切层间位移或有害层间位移对其变形进行详细的分析与判断。对于最小地震剪力,其最重要的两个影响因素是建筑结构的刚度和质量,当超高层建筑难以达到最小地震剪力要求时,设计人员应该结合具体情况适度的增加设计内力,提高其抗震能力和稳定性,然而,当不能满足最小地震剪力时,还需通过重新设计或调整建筑结构的具体布置或提高刚度来提高建筑物在地震作用下的安全性,而非单纯增高地震力的调整系数。

3超高层建筑的性能化抗震设计

超高层建筑的抗震性能设计,国内主要根据“三个水准,两个阶段”,即“小震不坏、中震可修、大震不倒”。超高层建筑来说,其建筑工程复杂、高度极高、面积大、成本高,一旦受到地震损害,其损失程度会更高,因此,必须充分考虑各方理论、实际情况和专家意见,兼顾经济、安全原则,定量化的展开超高层建筑的性能化抗震设计。同时,相关文件虽针对超高层建筑结构的性能化设计制定了较具体且系统的指导理念,涉及宏观与微观两个层面。但是,由于结构构件会受到损坏,且损坏与整体形变情况的分析计算都需进行专业的弹塑性静力或动力时程计算,而目前我国尚未形成相关的定量化的评价体系,因此,设计人员应在积极参考ATC-40和FEMA273/274等规范。此外,对于弯曲变形为主导的建筑结构,在大震作用后应尤其注重构件承载力的复核。

4超高层建筑多道设防抗震设计

除了上述注意事项外,针对超高层建筑进行抗震性设计时,还因注重设计多道的抗震防线。多道抗震防线是指一个由一些相对独立的自成抗侧力体系的部分共同组成的抗震结构系统,各部分相互协同、相互配合,一同工作。当遭遇地震时,若第一道防线的抗侧移构件受到损害,其后的第二道和第三道防线的抗侧力构件即会进行内力的重新调整和分布,以抵御余震,保护建筑物。目前,我国超高层建筑主要依靠内筒和外框的协同工作来达到提供抗侧刚度的目的,包含两种受力状态:首先,建筑的内外结构通过楼板和伸臂析架来协调作用,进而使得外部结构承受了较多的倾覆弯矩和较少的剪力,而内筒则承受了较大的剪力和一些倾覆弯矩,广州东塔就是此受力方式的典型;其次,以交叉网格筒或巨型支撑框架为代表的建筑外部结构,其十分强大,依靠楼板的面内刚度,外部结构即可同时承受较大的倾覆弯矩和剪力,如广州西塔。

篇3

地震的影响范围一般情况下都很大,一定区域内的建筑物都会受到一定的破坏。所以建筑物场所的选择对于结构的抗震设计及其总要。在选择建筑场地时要注意以下几个方面:地质结构坚硬、避开有较大坡度的山脚,周围地势开阔和避免地震多发地带。在结构的抗震结构设计中对于建筑物的高度有一定的规定和标准。因此建筑物的高度要严格按照国家标准设计。在一些地震多发地区,不仅仅要设计合理科学,还要注重建筑材料的性能。通常情况下,不同高度的建筑对于建筑材料也有一定的要求。一般都采用不同规格的钢筋混凝土结构。同时,为了提高结构的抗震性,在建筑结构抗震设计中,需要减小柱的轴压比,增大柱的截面尺寸。从抗震设计的科学角度来讲,减小柱轴压比主要是为了使柱子处于大偏心受压状态,从而避免这样的情况发生比如:纵向受力钢筋未达到受拉屈服但混凝土却被压碎。在建筑的抗震设计时,很多专家认为应该会提高建筑物抗震设计的等级。这主要是考虑到我国是地震多发国家。大型地震容易出现重现。或是50年,或是200年。建筑的抗震设计还存在一些其他的问题,比如在选择结构体系选型时,尽量可以采取承载能力高、延展性好和充足耗能性能的体系,主要是为了在地震发生时,建筑结构能够有足够的抗倒塌能力。同时在结构的刚性和强度方面要水平方向和竖直方向均匀分布。防止出现局部结构出现问题导致整体结构的倒塌。

3抗震设计对结构抗连续倒塌的影响

3.1地震作用及倒塌机制地震

可以造成建筑倒塌是地震造成一切破坏的主要形式,是为结构在外部作用力下的倒塌。连续性的倒塌是因为内部内力发生重新分布而造成的。在地震作用下,构建的受力和质量分布有关系,构建受力分布在整个结构之中。整个结构的非弹性形变能够很好的减轻地震队构建的破坏。建筑结构的倒塌开始于结构中大部分梁柱节点的损坏。近而造成其他部件和结构的倒塌和破坏,这也叫做建筑结构的连续性倒塌。

3.2抗震设计与抗连续倒塌设计的关系

抗连续倒塌设计的主要目的在于防止建筑结构倒塌的连续性,连锁性的发生。抗震设计的标准是比较小的地震,建筑没有出现任何的结构的问题。较大的地震建筑结构不会倒塌。一般中等地震造成的破坏仍旧可以重新的进行结构的维修。抗震设计和抗连续性设计都有一个共同点就是都特别的注重结构的整体性和连续性。在地震作用性,建筑结构造成结构一定的破坏,抗倒塌能力的作用主要是在梁抵抗内力重分布上。然而结构的抗震设计能够使梁中纵向受力钢筋增加,也提高了结构的抗倒塌能力。建筑结构的抗震设计和抗连续倒塌设计存在很多的相同点,同时也有不同和相互的影响。

3.3抗震设计对结构抗连续倒塌的影响

目前,抗震设计对抗倒塌能力的影响有两种不同的观点:一种认为抗震设计通常是可以取代抗连续倒塌设计的,主要在于抗震设计的结构有整体牢固性的特点,使得结构的抗连续倒塌性能提高。另一种观点认为,抗震设计和抗连续性的倒塌设计有着不同的出发点和目的,存在较大的差别。对于每一种设计都应该充分的考虑,不能够想当然的认为抗震设计可以取代抗连续倒塌设计。因为结构抗震设计中的一点点的构造的方法可能增加了。虽然一些构造措施可增加建筑抵抗倒塌的能力,但是毕竟这样的一点点增加对于整个建筑抵抗连续倒塌能力是微乎其微的。于述强等人通过科学的方法对于抗震设计对于结构抗连续倒塌性的影响。主要采取的方法是建立模型进行分析。采用拆除构件法通进行实验的主要方法,这也是美国使用比较科学的方法。分别拆除了角柱,中柱,拆除内柱等,然后分析了模型的抗连续性倒塌能力。通过模型实验分析得到了科学的理论。一是地震作用存在较多的偶然因素在里面,但是有不同于偶然作用,存在较大的差别,所以抗震设计并不能够取代抗连续倒塌设计。二是虽然抗震设计不能够期待连续性倒塌设计,但是研究表明抗震设计对于抗连续倒塌能力有着极其重要的意义。在较小级别的抗震结构设计中对于结构抗连续倒塌能力没有一个明显的提高,但是当建筑的抗震级别高于8度时,抗震设计结构抗连续倒塌能力得到增强。

篇4

由于我国的科技水平不高,不能准确的判断地震的成因,并且对其预测,造成居民的很大损失,还有在地质地震等方面的研究不够,特别是建筑物的抗震能力方面。这就导致我国建筑设计中抗震设计的发展滞后,而且也没有统一规范的设计理念,因而很难实现建筑设计的抗震目标。

1.2工程师对实际情况的考量不足

目前,很多建筑工程师只是根据数据和固有的一些参数进行施工,缺少对地区的实际情况进行考量。因为不同地区地质的构造截面的实际承载能力不同,所以要结合实际情况进行检测计算。不能根据固定地震降级系数来进行施工,例如,我国建筑抗震设计中的把地震降级系数固定为2.81,容易导致工程师把小级别的抗震应用到建筑抗震设计中,当遭到大级别的地震时,建筑物不具备抗震能力,会造成很大的损失。

2.建筑抗震设计的注意要点

2.1坚持建筑结构设计的对称原则

目前,根据相关的建筑抗震设计规定,建筑工程师要坚持建筑结构的规则,同时要求结构设计师做大简单、规则的设计,从而做到建筑物遇到小级地震不坏、中级地震可以修补、高级地震不会倒的目标。并且要求工程结构设计师遵循竖向形态的建筑规则,通常选择方形和圆形的形状,因为矩形和梯形的形状规则比较均匀。按照此类形状设计的建筑物,在遇到地震时内部构件承受力比较均衡,通常只会出现平移震动,而一些非对称结构的建筑在地面平移时,会出现扭转震动,主要是因为建筑物的质心和刚心不能重合,当发生地震时,建筑物的内部构件会遭到严重的破坏,发生变形。

2.2注重建筑构件与连接点处质量

在建筑工程设计和施工过程中建筑构件的合理配置以及连接点处的质量与建筑施工安全质量存在直接的联系。并且在新型建筑材料问世的同时建筑物的外部设计大都会采用新型建筑材料,例如大理石、瓷砖等。而建筑室内装饰也会使用到吊顶等技术。这些室内以及立面装饰本身存在抗震性能的问题,并且其与建筑主体的牢固连接也是抗震设计的关键。近几年,在一些地震灾害中,发生过很多下“玻璃雨”的事情,主要原因是目前的技术还不能防止地震中玻璃幕墙的变形,因此,在很多地震中,一些高层建筑的玻璃幕墙会遭到很大的破坏。所以,如果在建筑中采用玻璃幕墙,必须提高建筑构件与连接处的质量,从而保证玻璃幕墙在地震时不会变形。并且在遭遇地震时能够与建筑物脱离,将所受到破坏的程度降到最小。此外,在内隔墙、玻璃隔断等构件的设计上也要提高连接点的质量,保证建筑主体连接点的牢固性,从而提高建筑物的抗震性。

2.3关注建筑顶部抗震

建筑屋顶的抗震设计对于高层建筑物有重要的影响。这就要求设计师十分重视建筑顶部的抗震设计,在遭遇地震时,建筑屋顶过高、过重都会加重建筑的变形程度,特别是我国的高层建筑物中普遍存在这样的问题,如果不重视高层建筑屋顶的抗震设计,发生地震时,下层建筑物会受到很大的影响。如建筑的屋顶与下层建筑的重心没有位于同一条直线上,那么建筑屋顶的抗侧力墙也会与下层建筑的抗侧力墙出现分离,当地震出现时则会加剧损坏。因此在高层或超高层建筑设计中应该使用新型高强度轻质的建筑材料,尽可能保证屋顶的重心与下层建筑的重心位于通一条直线。当建筑屋顶的较高时要保证其抗震定性,缓解地震带来的变形作用。此外顶部结构的设计也适当的选用强度高、刚性均匀轻质的结构材料。

2.4建筑竖向布置

建筑竖向布置主要体现在建筑物的高度结构质量以及刚度的设计中,特别是在高层或超高层建筑中建筑的竖向布置对于建筑抗震设计来说更加重要。建筑楼层的使用功能差异导致建筑物楼层分布的质量和刚度均不一致,例如楼层包括游泳池、会议室、健身房等。楼层的功能导致楼层上下之间的刚度差异过大。高层建筑中刚度最差的楼层的抗震性能最为薄弱,在出现地震时即为变形严重的薄弱层。在建筑设计中由于楼层功能不同导致的墙体不连续,柱子不对称等极大的限制了抗震性能。因此在建筑抗震设计中应该尽量保证竖向的刚度分布靠近,尤其是在结构上刚度转换层更加要着重注意。

2.5建筑设计需要达到的设计限值

在实际的工程操作以及设计时,一定要严格遵循我国相关部门的标准规范要求,例如在8度的防烈度情况下,粘土砖多对地震降级系数固定为2层建筑物的高度不能够高于18m,建筑层数不能大于6层等。一旦超过相关的规定,就会严重影响到建筑物的抗震能力,除此之外,对于建筑物局部的墙体尺度也要控制它的最小值,保与实际情况结合在一起证墙体截面的抗震强度能够满足抗震要求,避免墙体在地震时不会出现开裂或者倒塌等破坏情况的发生。

篇5

我国高层建筑在设计计算及施工技术各方面迅速发展的阶段是在上个世纪80年代,当时各大、中城市普遍兴建高度在100m左右或100m以上的以钢筋为主的建筑,建筑层数和高度不断增加,功能和类型越来越复杂,结构体系日趋多样化。比较有代表性的高层建筑有上海锦江饭店,全部采用框架一芯墙全钢结构体系,深圳发展中心大厦是我国第一幢大型高层钢结构建筑。进入90年代我国高层建筑结构的设计与施工技术进入了新的阶段。不仅结构体系及建筑材料出现多样化而且在高度上长幅很大有一个飞跃。现阶段,土与结构物共同工作理论的研究与发展使建筑抗震分析在概念上进一步走向完善,如果可以在结构与地基的材料特性,动力响应,计算理论,稳定标准诸方面得到符合实际的发展,自然会在建筑结构抗震领域内起到重要的作用。

二、从理论上分析高层建筑的抗震设计

高层建筑抗震工作一直建筑设计和施工的重点,概述高层建筑的发展,对建筑抗震进行必要的理论分析,从而来探索高层建筑的设计理念、方法,从而采取必须的抗震措施。建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计,包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容的法定性文件。它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

1、拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数即地震系数。

2、反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

3、动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

三、高层建筑结构抗震设计的理念、方法和措施

1.高层建筑的抗震设计理念

高层建筑的抗震要能做到:当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

2.高层建筑结构的抗震设计方法

我国的《建筑抗震设计规范》(GB50011-2010)对各类建筑结构的抗震计算应采用的方法作了以下规定:⑴高度不超过40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法。⑵除1款外的建筑结构,宜采用振型分解反应谱方法。⑶特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

3. 高层建筑结构的抗震措施

篇6

1 抗震结构设计理论的基本概念及注意事项

1.1建筑结构工程中抗震设计的基本概念

建筑结构工程中的抗震设计理论是在长期的工程实践中积累总结而来的,是一种防御地震灾害,将地震灾害所产生的破坏降到最低点的一种设计思路和概念。也就是说建筑结构工程中的抗震设计的目的是提高建筑结构整体抗震能力,确保建筑物在地震灾害来临时能够有效地抵御灾害。当然地震发生时的剧烈程度我们是无法预知的,我们能做的是运用抗震设计理论知识,结合建筑空间结构工程的实际情况,从分析抗震材料选择等方面入手,提高建筑结构整体抗震能力。

1.2 建筑结构工程抗震设计注意事项

1.2.1 建筑物建筑场地的选择。在建筑结构工程抗震设计阶段,建筑场地的选择是抗震设计过程中必须要注意的关键技术性问题,抗震设计人员在设计时应深入到建筑场地,对建筑场地的地质情况和水文情况进行勘察,收集记录数据,认真研讨在该建筑场地建筑房屋对抗震设计的影响因素,比如建筑场地处于地震频发地段或者建筑场地的地基为软弱地基等,所以在建筑场地选择时应尽量避开这些地段,如果无法避开,就需要充分地运用建筑抗震设计理论知识,对建筑地基和结构进行强化和优化设计,保证建筑整体结构的稳固性,进而提升建筑的抗震能力。同时,根据建筑物地域性分布及结构特征选择不同的建筑材料和抗震设计方案,如果建筑场地处在地震高发区,建筑房屋的抗震防烈度要求高,这就需要对建筑结构的柔性和延展性进行考虑。

1.2.2 建筑结构体系的选择。在建筑结构体系选择时要对建筑结构的特征进行综合考虑分析,在设计过程中要对建筑结构中的任何一个构件都要进行抗震能力的分析及试验,避免因某个微小的房屋构件未达到抗震设计要求,一旦地震发生,会因一个微小的建筑构件影响整个建筑的抗震能力。因此在建筑结构体系选择时,首要工作是对建筑结构中的各个构件承重能力、构件均匀沉重分布情况及构件的抗震能量传输进行分析和计算。

1.2.3建筑结构中的抗震设计另外一个需要注意的问题是建筑平面布置问题,在建筑结构抗震设计时,除了抗震设计达到有关要求外,还需要注意建筑平面布置的规则性,做到既能满足抗震要求又能满足城镇建设规划要求。

2 建筑结构抗震设计方法研究

2.1根据建筑结构性能进行抗震设计

根据建筑结构性能进行抗震设计同传统的建筑结构抗震设计有着本质上的区别。针对建筑结构性能的抗震设计主要是通过对建筑场地地质情况,建筑结构情况和抗震材料采集数据,并分析计算后所产生的更具科学性的抗震设计新思路,新方案。这样综合性考虑建筑结构抗震设计的方式,使得设计作品更加地贴合抗震功能性的要求,对确保建筑抗震能力,降低地震灾害对建筑物体的破坏程度有着积极的影响。

具体而言,根据建筑结构性能进行抗震设计时都会有一个终极目标,设计者在设计过程中会对以往建筑物体在地震灾害破坏之后的破坏程度大小进行定性定量分类,然后建立完善的地震灾害数据库,根据数据库的信息数据对建筑结构进行抗震设计。为了能够确保建筑结构抗震能力的有效发挥,目前在建筑结构性能抗震设计中还会通过模拟地震的方式对地震对不同性能的建筑结构破坏进行安全评估,更具安全评估结果,分析抗震设计方案中存在的一些问题,然后及时对设计不足之处进行优化改进。使建筑结构工程抗震设计达到最优化,以便抗震设计方案应用到工程实践中能发挥其真正的抗震作用。

2.2 根据建筑场地和建筑规划进行抗震设计

通常情况下,地震在同一区域造成的破坏程度具有差异性,即同一区域的建筑房屋在地震灾害的破坏下,有的建筑物破坏程度不是很严重,而有些建筑物破坏程度极为严重,造成这一问题的主要原因除了同建筑物体自己的建筑质量有关外,还同建筑场地和建筑规划有着必然的联系; 如建筑物体在建设过程中建筑场地刚好处于地震震中外,地震的破坏能力最强,使得这一区域的建筑物体受破坏程度最为严重。所以在建筑结构工程抗震设计时要针对各个区域以往发生地震震级的大小及地震发生的区域进行设计,规划条件允许的情况下尽可能在选择建筑场地时候避开地震频发区域。

2.3根据建筑结构类型进行抗震设计

目前建成的房屋建筑中,大部分为钢筋混凝土框架结构。以框架结构为例,抗震设计过程中需要对框架构件的截面尺寸和配筋率进行合理设置。合理的布置设置构造柱和防震缝。对于建筑结构的薄弱位置应加强构造措施,提高建筑结构的整体抗震能力。

结束语:

尽管现在已经具备先进的技术能够较为准确地对地震进行预测,然而地震仍然会给人们带来巨大的经济损失,并且严重威胁到人们的生命安全。为了能够有效降低地震带来的破坏作用,在建筑结构设计中必须要采取有效的措施进行科学合理的抗震设计。本文对建筑抗震设计与建筑结构设计之间的联系进行了分析和介绍,并且提出了在建筑抗震设计中结构设计具有基础性的作用,在结构设计中必须要有效地融合结构设计与建筑抗震设计这两者之间的关系,从而有效地促进我国建筑行业的不断发展。

参考文献

[1]周云,徐彤. 基础隔震结构的能量设计方法[J]. 地震工程与工程振动, 2011.

[2]赵艳. 关于改进我国抗震设计反应谱的探讨[J]. 地震工程与工程振动,2

篇7

我国地处于多地震带区域,东连太平洋地震带,而南邻欧亚地震带,整个地震域分布广泛,活动范围较大、频度较高,在全球是遭受地震灾害颇为严重的一个国家。由此可知,有关房屋建筑结构中的抗震问题,是目前处于地震易发区域城市主要面临的建设发展阻碍。

一、建筑结构中抗震设计理念

地震作用是一种随机性强,且不可准确预测的外部力量作用。现阶段,采用的计算方法通常还是半经验半理论形式的计算方法,所以想要获取精确的抗震结论还需一段研究时间,在建筑实践过程中,设计工程师变提出了这一理念——“建筑抗震设计”。这一设计理念主要依赖于工程概念,在原本有助于结构抗震力提升的基础上,采用顺应工程客观规律跟建筑本质的措施对建筑设计的对象展开宏观控制工作。因此,结构的抗震设计普遍结合于综合性的概念设计、测量计算以及结构措施等一整套细节工程。概念设计重点强调了在建筑工程设计时,应合理选择施工场地,把握能量输入点、房屋整体体型美观度、结构建筑体系化、刚度分布的合理性及构件的递延性等各个方面,从基础细节方面消除建筑里各个抗震薄弱的环节,再加上一定技艺的计算跟建筑构造措施,从而使得房屋建筑设计具有较强的抗震性能及安全可靠性。

二、影响建筑结构抗震性能的几大因素

(1)抗震设计标准化

现阶段, 建筑结构中有关抗震设计的标准主要是根据国家针对各个地区发生地震的可能性及危害程度而展开的初步预测工作,进一步确定各个地区最基本的设防性能强度。设防性能强度的确定一直都是设计抗震标准的主要参考凭证,换句话说,只有使得抗震烈度的测量预测愈加准确、精密,才可以确保抗震设计愈加标准化、科学性、正确度。另一方面,建筑施工单位就按照抗震设计的一切标准和工程项目开发商对建筑使用性能的主要要求,展开抗震设计工作,强化建筑物抗震设计烈度目标的实现力度,从而确保:设计烈度正比于建筑物的抗震性能,并反比于建筑工程的成本造价。

(2)抗震设计合理性

抗震设计其实主要就是针对建筑工程的结构体系实施最合理、最科学的设计规划,并选择最适合工程施工的建筑抗震措施,进而确保整个建筑结构体系具有一定的抗震性能,使建筑在受到地震灾害威胁时屹立不倒,在一定程度上保护了人类的财产安全和生命安全。一般情况下,高层建筑物相比于普通建筑而言,对抗震设计标准有着更高的要求、规定,一般会选择所谓的“现浇剪力墙结构、框架”——剪力墙结构作为高层建筑物的首选结构类型。此类型建筑工程结构的强度较高,在强烈的外力作用条件下,一定程度上就可以维持整个建筑结构体系的平稳度,获得的抗震效果异常明显、高效。总而言之,建筑工程结构抗震设计、规划的合理性基本确保了建筑工程优质的抗震性能。

(3)建筑施工质量合格度

通常情况下,建筑工程整体的施工质量对建筑物的使用周期及性能有直接的影响,被地震强烈振幅波及影响,建筑物稳固度偏低,很难确保安全性,因此,必须要严格控制建筑物整体的施工质量合格度,精致规范建筑施工过程中的每一道工序,强化质量监督、管理与检验的工作力度,进一步提高建筑工程施工质量,确保建筑物的抗震安全性能。

三、建筑抗震设计趋势分析

(1)以位移为基准的结构抗震

我国目前实行的建筑结构抗震设计,普遍是以承载力作为基础的一种设计方法。即:用线弹性方法计算结构在小震作用下的内力、位移;用组合的内力验算构件截面值,使建筑结构具有足够的承载力;位移限值主要是使用阶段的要求标准,同样也是为了对建筑非结构构件加以保护;结构的延性和耗能能力是通过构造措施获得的。为了可以实现以位移为基础的抗震设计目标,第一步就必须要研究简单建筑结构(例如框架及悬臂墙)的各种构件变形跟配筋间的关系,实现按变形要求进行构件设计;进而研究整个结构进入弹塑性后的变形与构件变形的关系。这就要求除了小震阶段的计算外,还要按大震作用下的变形进行设计,也就是真正实现二阶段抗震设计。

(2)分析材料参数随机化的抗震模糊可靠程度

这一方法主要以结构的整体性能为出发点,摒弃以前那种对结构抗震安全可靠度的一种研究依据:仅仅考虑荷载程度的不确定性,忽视其他的各类影响因素,综合性地结合各种影响因素的建材变异性能,了解地震烈度随机性与其等级界限随机性跟模糊程度对结构抗震安全可靠度的主要影响。这一方法的研究成果不仅可以用在对建筑结构抗震性能的可靠度评估这一方面,还可以用在指导以可靠度理论为基础的建筑结构抗震设计这一方面。

(3)建筑结构中针对隔震与消震的抗震设计

想要将建筑结构整体的抗震性能上升到一定的层次,隔震与消能减震这一类的抗震工作起到的作用是不可忽视的,其在整个建筑结构设计中有着特殊的应用功能。耗能元件及其体系可错开地震动卓越周期,进而避免共振引起的破坏、损失,降低了地震振动感应以及风振影响。

这里提及的隔震,其实就是隔离地震,也就是说在建筑物的基础结构跟上部结构间加上一层隔震层,将房屋跟基础结构相隔离,隔离地面运动能量向建筑物的传递,从而减弱房屋结构经受的地震作用力,进而使得地震时发生理想化现象,那就是建筑物仅仅轻微发生运动和变形现象,确保整个建筑物的安全性及人生财产安全。消能减震使地震输入到建筑物的能量一部分被消能部件所消耗,一部分由结构的动能和变形能承担,以此达到减少结构地震反应的目的。

伴随着社会发展的不断进步,人类对各种建筑构筑物具有的抗震减震性能标准越来越精准,使得“延性结构体系”在建筑工程中的应用日渐局限、拘谨,因此传统的建筑抗震结构理论跟体系逐渐满足不了基本的建筑设计要求。因为隔震消能跟各类减震控制结构体系相比较于传统的抗震体系来讲,有着独特且明显的优势,因此其在未来的建筑工程结构里的应用将变得越来越广泛。阻尼器在隔震与消震设计技术中应用而生,阻尼器的性态应通过在最大地震和最大风荷载下的足尺试验得到验证;另一方面,提高结构阻尼,采用高延性构件,在一定程度上可以减轻地震作用力。

四、结语

综上所述,研究建筑结构中各种抗震设计方法,结合各国所有大地震对国家、社会、人民造成灾害、损失的实际经验,使得全球地震工程学者跟设计人员都获得了一致的见解:经济与安全是衡量建筑结构中抗震设计科学、合理性的主要因素。

参考文献:

[1] 晏斌斌. 高层建筑结构抗震设计分析[J]. 江西建材, 2011,(04)

篇8

【中图分类号】TU318【文献标识码】A【文章编号】2236-1879(2017)20-0217-01

引言:随着我国经济快速发展,一栋栋高楼大厦拔地而起,但与此同时,在我国是地震多发国家的背景下,建筑抗震等安全因素成为设计需要考虑的因素之一,现阶段,我国的建筑抗震水平较高,但因地震导致房屋倒塌的情况时有发生,为了能更好的提高建筑抗震水平,在建筑抗震设计方面更加合理,作为中学生了解建筑结构的抗震设计中关键问题、具体的抗震设计举措是很有必要的。建筑结构抗震设计关键问题

(一)场地的科学选择。

建筑场地的科学选择,直接关系到建筑结构抗震设计的水平与质量。因此,有关的工程设计人员需要对于建筑物建设的场地进行全面的考察工作,选择具有土质松软、地质元素分布不均衡的区域来进行地段的选择,避免地震发生时产生出地裂或者是地表错动问题。

(二)建筑结构的合理化抗震设计。

建筑结构的合理化设计也对于提升建筑抗震设计的质量与水平发挥着重要的作用。比如:使用高强度的建筑材料使得建筑物的结构框架具有完整性的构造。而高质量设计图纸的应用,可以使得建筑物的各个部位进行更加合理、科学的布局,最终形成强有力的抗震效果。

(三)建筑平面布置的规则性。

进行满足有关抗震设计要求的施工,可以极大提高建筑的抗震水平与能力。比如:综合的考虑到各个方面的因素,应用现代的网络信息技术进行对称性的结构设计,将会对于建筑的抗震实际效果进行科学的提升。同时,我们需要清楚的了解到各种科学的设计需要真正的落实到施工实践中,使得设计的成果真正转变为实际的应用成果[1]。

一、建筑结构抗震设计的具体举措

(一)基础隔震措施。

所谓的基础隔震指的是应用各种各样的减震装置来完成有关建筑物的结构抗震设计。具体来讲,将有效的抗震、隔震的装置应用到建筑物自身的部位中,从而达到保护建筑物,使其具有良好抗震、隔震效果的一种方式。但是,这种方式不适用于高大的建筑物中。原因在于,在高大建筑物中应用抗震装置会导致建筑物产生出自振周期问题,无法达到应有的抗震效果。在我国的生活中常见的抗震装置有橡胶垫装置、混合隔震装置等。对于这些装置应用摩擦移动或者是粘弹性隔震的方式就可以进行有效的防震,保障建筑物具有良好的防震要求[2]。

(二)特殊材料在地基隔震中的应用。

应用特殊的材料全面保障建筑物的地基具有良好的防震性能,也是一个重要的防震举措。具体来讲,应用高效的沥青原料与粘土、砂子等进行混合性的应用,可以提高建筑物整体的质量与水平,保障建筑物的安全。目前这种方法已经在建筑物的防震设计中进行了一定程度的应用,并且取得了不错的应用效果[3]。

(三)建筑结构悬挂隔震。

所谓的建筑结构悬挂隔震指的是在进行建筑物结构设计工作中,应用悬挂的方式来对于建筑物大部分结构或者是整体的结构进行有效减震处理,使得地震发生时地震灾害的破壞力量对于悬挂的建筑结构没有非常大的影响,最终减轻地震对建筑的破坏程度,避免重大的人员伤亡与财产损失。比如:在一些大型钢结构建筑中应用悬挂的方式来进行有关的设计,使得有关的子框架通过锁链或者是吊杆方式的应用悬挂在主框架上。这种设计方式应用的意义在于地震发生之后,地震一部分破坏力量会传导在这些锁链或者是吊杆上,降低了地震对于建筑物地基以及墙面的影响,提高了建筑物地基抗震的实际效果[4]。

(四)建筑层间的隔震。

对于建筑物层间进行有效的隔震是一种操作简单、工序简单的应用方式。但是,这种方式与其它方面的隔震使用举措比较起来只能对于地震破坏力量的10%到30%进行有效的预防,无法从根本上形成强有力的抗震效果。因此,这种方式需要与其它模式的抗震举措进行综合性的应用,形成对于建筑物的有力保护,全面提高其应对地震破坏力量的能力。

(五)建筑结构的加固隔震。

为了全面提高建筑物结构的抗震能力,我们需要采取各种的方式对于建筑物进行必要的加固处理,提升建筑物的质量。具体来讲,第一,在建筑物竣工之后,有关的工程施工技术人员可以应用阻尼的方式对于建筑物进行全面的加固,最终使得建筑结构的抗震效果得到加强。第二,为了提高高层建筑的抗震效果,我们可以应用消能减震装置来提高其抗震的能力,使得高层建筑也可以在地震发生时具有对地震破坏力的抵御能力,避免重大的财产损失与人员伤亡。比如:消能减震装置在建筑物隔震夹层中进行应用,可以极大提高建筑物结构的抗震效果[5]。

二、结论:

通过上述几个方面,对于建筑物结构抗震若干问题进行科学的研究与探讨,有利于建筑物施工的企业应用众多的具体方法全面提高建筑物结构抗震的质量与水平,保障建筑物在地震发生时具有强有力抵御地震的能力,减少人员的伤亡与财产上的损失。如今总体的设计理念与方式比较先进,但也需要与时俱进,不断提高建筑抗震等级,为人们的生命和财产安全提高保障。

参考文献 

[1] 古力铭. 关于建筑结构抗震设计若干问题的讨论[J]. 四川水泥,2015,06:60. 

[2] 曹振. 关于建筑结构抗震设计若干问题的讨论[J]. 门窗,2015,06:126. 

[3] 邱子龙. 关于建筑结构抗震设计若干问题的讨论[J]. 建材与装饰,2016,08:76-77. 

篇9

1.1 在抗震设计中有意识、有目的地控制薄弱层(部位),使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。

1.2 一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。例如框架——剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。

1.3 构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。

1.4 强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。

1.5 要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层(部位)的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。

1.6 要防止在局部上加强而忽视了整个结构各部位刚度、承载力的协调。

2 建筑抗震的理论分析

2.1 建筑结构抗震规范。建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

2.2 抗震设计的理论

2.2.1 拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

2.2.2 反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

2.2.3 动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

3 建筑结构设计的有利抗震措施

3.1 建筑物结构悬挂隔震,将建筑物的全部或者一部分悬挂起来以隔离地震,就是我们常说的悬挂结构,名字很恰当地表达了它的特点,同时,我们也能很直接的感受到它的缺点和局限,即耗费的成本太大,和并不适合于普遍的推广,虽然是一种非常行之有效的方法,但是执行起来却是值得商榷的。一般情况下,大型的钢结构会采用此种措施。大型钢结构一般分为主框架和子框架,在悬挂体系中,子框架通过索链或者吊杆悬挂于主框架上,地震来临时主体框架虽然受到冲击,但是其子框架以及其他零部件是用近似于双节棍的链接方式与主体相连的,那么主体受到的冲击力在传送给子框架时就会减小很多,有益于保护子体框架。

3.2 建筑物基础设置隔震装置减震,这这种减震措施与上文的不同之处在于是在建筑物中间加上辅助材料或者部分已达到减震目的,而前者则是在整体框架结构上的创新上入手,减震装置属于独立于建筑物自身的材料,使用得当最多可使震力减少三分之一左右,不过这种方法局限于非高层建筑,高层如果采取这种方法,反而会增加建筑物的质量,而使地震来临时,这些附属物的重量给生命和财产造成更大的伤害。

3.3 建筑物地基,用具有防震功能的材料,彻底从根源上稳固地基,将防震落实到最底部,从而到达减震的最终目的。传统的做法是在建筑物的基础部位用粘土和砂子结合固定,也可以直接设置粘土或砂子垫层。在我国建筑史上,曾经有人突发奇想以糯米为原材料,采其优良的粘着性,在建筑物底部形成防震的糯米垫层,减少震对建筑物的损害,不可谓不奇,当然现当今的材料学,尤其是建筑材料学已经发展的足够进步,我们可以不仿照古人的做法了,但是这种创新和探索的精神还是值得我们学习的。

3.4 层间隔震,层间隔离主要用于旧房改建的改建中对于防震的需求,在施工方面很简洁,专业性不强,居民可自行操作。当然于此对应的是低收益,也就是层间隔离的效果没有上述几种方法明显,这也是必然的,因为旧房改建,旧房的地基,基础结构是不能改变的,也是无法改变的,所以只能作为辅助结构使用,其作用原理与前面提到的在建筑物中增加辅助减震的原理基本相同,可以借鉴,也可以根据不同的具体情况选择使用。

4 结语

总之,建筑物的抗震问题是目前建筑结构设计界讨论比较多的话题之一, 也是涉及到人类生命财产安全的重要问题, 因此, 我们在对建筑物进行结构设计的时候, 必须把建筑物的抗震问题放到非常重要的位置, 并采取适当的措施, 尽量避免地震对建筑物的损坏。

参考文献

篇10

1.1 建筑结构抗震规范。建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

1.2 抗震设计的理论。

①拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构设计的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小相当于结构的重量乘以一个比例常数。

②反应谱理论。反应谱理论是在20世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加州理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

③动力理论。动力理论是20世纪70-80年代广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

2 高层建筑结构中抗震设计特点

2.1控制建筑物的侧移是重要的指标。在地震荷载作用下,建筑结构所产生的水平剪切力占主导地位,所以建筑物会产生明显的侧移,随建筑结构的高度不断曾加,结构的侧向位移迅速增大,但该变形要在一定限度之内,这样才能保证结构安全以及使用功能。

2.2地震荷载中的水平荷载是决定因素。水平荷载会使建筑物产生倾覆力矩,并且在结构的竖向构件中引起很大的轴力,这些都与建筑物高度的两次方成正比,故随建筑结构高度的增加,水平载荷大相径庭。对高度一定的建筑物而言,竖向荷载基本上是不变的,但是随着建筑物的质量、刚度等动力特性的不同,水平地震荷载和风荷载的变化是比较大的。

2.3要重视建筑结构的延性设计。高层建筑结构随着高度增加,刚度减小,显得更柔 ,在地震荷载作用下变形较大。这就要求建筑结构要有足够的变形能力,使结构进入塑性变形阶段仍然安全,需要在结构构造上采取有利的措施,使得建筑结构具有足够的延性。

3 建筑结构中抗震设计的关键问题

3.1 场地选择。场地选择是建筑结构抗震设计中的关键问题之一,在建筑施工中,需要选择对建筑物抗震有利的场地,需要避开对建筑物抗震不利的场地,尤其是在危险地段,更不应该修筑建筑物。研究表明,地震对建筑物造成很大的破坏,除了地震释放的能量,引起的结构性破坏之外,还有一个非常重要的原因就是建筑物场地的选择。所以,为了提高建筑物的抗震性能,在修筑建筑物时,进行地段选择的时候,需要选择有利的地段,避开对建筑抗震不利的地段,比如软弱场地土,易液化土,状态不均匀地段。当然,在工程建设中,如果确实不能避开这些地段的时候,则需要采取相应的加固措施,以强化建筑物的抗震能力。

3.2 结构体系选择。

①结构体系需要避免对建筑整体抗震产生不利影响。在进行设计的时候,需要考虑不能因为部分结构的破坏而导致整个建筑结构抗震能力下降或者丧失。②结构体系需要有明确的计算简图和合理的地震作用传播途径。

③结构体系需要具备必要的承载能力,良好的变形能力和消耗地震能量的能力。由于钢筋混凝土结构具有上述良好的能力,所以在建筑结构设计中,需要使用钢筋混凝土结构。

④结构体系需要具有合理的刚度和强度。需要具有合理的刚度和强度分布,避免因局部的变形或者削弱而形成薄弱部位,产生过大的应力集中或者塑性变形集中。

3.3 结构的规则性。结构的规则性主要表现在建筑主体抗侧力结构上,尤其需要注意以下四个问题:

①建筑主体抗侧力结构需要注意两个主轴方向的刚度需要比较接近,其变形特性还需要比较的相似。

②建筑主体抗侧力结构构成变化比较均匀,不应当有突变的情况发生。

③从建筑主体抗侧力结构的平面布置来看,需要注意的是,应该注意同一主轴方向的各片抗侧力结构刚度尽量均匀,这样有利于建筑整体的抗震性能的发挥。

④建筑主体抗侧力结构的平面布置需要注意,中央核心和周边结构的刚度协调均匀,以避免产生过大的扭曲变形。重视建筑平面布置的规则性是相当重要的工作,在实践中需要高度重视。

4 提高建筑结构抗震能力的措施

为了提高建筑结构抗震能力,结合当前建筑行业的实际情况,笔者认为应该采取以下措施:

4.1 合理布局地震外力能量的传递吸收途径。这是提高建筑结构抗震能力的第一步,通过这样的合理布局,能够保证支柱、墙和梁的轴线处于同一平面,从而使得构件双向抗侧力体系形成。通过这样的布局,当地震发生的时候,支柱、墙和梁呈弯剪破坏,并且,塑性屈服尽量在墙的底部产生。此外,当地震发生的时候,连梁宜在梁端塑性屈服,还具有足够的变形能力。通过这种结构和布局,当地震发生的时候,在墙段充分发挥它的抗震作用前,按照强墙弱梁的原则加强墙肢的承载力,这样使得墙肢的剪切应力得以破坏,从而使得建筑结构的抗震能力得到了提高。

4.2 按照抗震等级对梁、柱以及墙的节点采取相应的抗震构造措施。这样做的目的是为了保证在地震发生的时候,梁、柱以及墙都能够达到抗震的标准。建筑物的主体常常使用的是钢筋结构,如果钢筋结构的延性和承载力较好的话,建筑物的抗震能力较强。所以,为了保证建筑钢筋结构的延性和承载力,在结构设计的时候需要按照强剪弱弯、强柱弱梁、强节点弱构件的原则进行,对柱截面的尺寸进行合理的控制,合理控制柱的轴压比,严格按照构造配件的要求,对节点的构造措施尤其需要加强,提高节点的牢固性和抗震能力。

篇11

中图分类号:S611文献标识码:A 文章编号:

随着科学的发展和时代的进步,高层建筑如雨后春笋般的出现。高层建筑的高度在一定程度上反映了一个国家的综合国力和科技水平,世界著名的建筑更是建筑史上的纪念碑。但是如果高层建筑因结构设计不清,而造成结构布置不合理,不仅会造成大量的浪费,更重要的是给高层建筑留下了结构质量的安全隐患。因此高层建筑的结构设计就显得尤为重要了。

一 结构设计特点

1.1 水平载荷是设计的主要因素

高层结构总是要同时承受竖向载荷和水平载荷作用。载荷对结构产生的内力是随着建筑物的高度增加而变化的,随着建筑物高度的增加,水平载荷产生的内力和位移迅速增大。

1.2 侧向位移是结构设计控制因素

随着楼房高度的增加,水平载荷作用下结构的侧向变形迅速增大,结构顶点侧移与建筑高度的四次方成正比,设计高层建筑结构时要求结构不仅要具有足够的强度,还要具有足够的抗推强度,使结构在水平载荷下产生的侧移被控制在范围之内。

1.3 结构延性是重要的设计指标

高层建筑还必须有良好的抗震性能,做到“小震不坏,大震能修。”为此,要求结构具有较好的延性,也就是说,结构在强烈地震作用下,当结构构件进入屈服阶段后具有较强的变形能力,能吸收地震作用下产生能量,结构能维持一定的承载力。

1.4 轴向变形不容忽视

高层结构竖向构件的变位是由弯曲变形、轴向变形及剪切变形三项因素的影响叠加求得的。在计算多层建筑结构内力和位移时,只考虑弯曲变形,因为轴力项影响很小,剪力项一般可不考虑。但对于高层建筑结构,由于层数多,高度大,轴力值很大,再加上沿高度积累的轴向变形显著,轴向变形会使高层建筑结构的内力数值与分布产生明显的变化。

二 建筑抗震的理论分析

2.1 建筑结构抗震规范

建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

2.2 抗震设计的理论

拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

三 高层建筑结构抗震设计

3.1 抗震措施

在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

3.2 高层建筑的抗震设计理念

我国《建筑抗震规范》(GB50011-2001)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率10%,重现期475年;罕遇地震:50年超越概率2%-3%,重现期1641-2475年,平均约为2000年。

对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

3.3 高层建筑结构的抗震设计方法

我国的《建筑抗震设计规范》(GB50011-2001)对各类建筑结构的抗震计算应采用的方法作了以下规定:高度不超过40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法;除1款外的建筑结构,宜采用振型分解反应谱方法;特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

四 高层建筑结构发展趋势

随着城市人口的不断增加建设可用地的减少,高层建筑继续向着更高发展,结构所需承担的荷载和倾覆力矩将越来越大。在确保高层建筑物具有足够可靠度的前提下,为了进一步节约材料和降低造价,高层建筑结构够构件正在不断更新,设计理念也在不断发展。高层建筑结构也正朝着结构立体化,布置周边化,体型多样化,结构支撑化,体型多样化,材料高强化,建筑轻量化,组合结构化,结构耗能减震化等方向发展。

五 总结

高层建筑物有效地减轻了住房压力,但必然也带来了安全隐患,其结构设计显得尤为重要。随着设计理念的不断发展,高层建筑物必将朝着更加合理的方向发展。

参考文献

篇12

1 抗震概念设计重要性以及抗震概念设计定义

建筑物自身就是一个复杂而又庞大的系统,建筑物自身中的各种构件都以非常复杂的方式共同工作,建筑物各种构件并没有脱离建筑物整体结构体系而单独工作。近些年来,地震频频发生,这就在一定程度上提高了人们的安全防范意识。因此,人们对于建筑物的抗震性能也更加关注。由于地震本身具有复杂性、不确定性以及随机性,而建筑物结构模型的基本假定与其实际情况存在着很大的差异,在建筑物结构分析这一方面并不能对建筑物结构的材料时效、阻尼变化、非弹性性质以及空间作用进行充分的考虑,所以,我们很难准确的预测到建筑结构所要遭遇的地震参数和地震特性,因此,我们必须对建筑结构运用抗震概念设计。

在《抗震规范》这一条文中明确说明了结构抗震设计性能的决定因素就是良好的抗震概念设计。而所谓的抗震概念设计就是指根据建筑设计者的经验和知识,运用其判断能力和思维能力,对建筑结构的细部构造和整体方案进行决定,从而达到合理的抗震设计。抗震概念设计是结构抗震设计的一种,结构抗震设计主要包括抗震概念设计、抗震构造措施以及抗震计算设计。其中,抗震概念设计以及抗震计算设计这两者应该与抗震构造措施进行有效地结合。在日常生活中,造成建筑物遭受震害的原因应该是多方面的,抗震概念设计应该针对各个方面的震害原因,保证建筑物抗震设计的效果。抗震概念设计的主要内容包括:采用隔震消能技术、保证非结构构件安全、提高结构延性、采用合理抗震结构体系、合理选用建筑体型、合理选用建筑结构布置以及有利场地的选择等等,其中,对非结构构件安全进行保证的目的在于确保建筑结构的整体性。

2 抗震概念设计在建筑结构设计中的应用研究

2.1 建筑设计应重视建筑结构的规则性

建筑结构的设计应该重视其规则性,综合现代建筑在地震中的若干表现来看,建筑结构规则性一直都对抗震能力产生着极其重要的影响。在一九七二年二月二十三日,南美洲的马那瓜发生了地震,当时的马那瓜有两幢间隔并不远的高层建筑,一幢高层建筑是马那瓜的中央银行大厦,另外一幢高层建筑为十八层高的美洲银行大厦。当时的马那瓜地震强度被估计为八度,两幢高层建筑中,一幢在地震过程中遭到了严重的破坏,在地震后被拆除,而另一幢只有轻微的损坏,在地震以后稍微修理便可以继续使用。这两幢高层建筑在地震中的表现引起了人们的关注,经过研究发现,在地震中破坏较轻的建筑立、平、剖均比较对称和规则,其结构侧向刚度以及材料强度和质量分布都是连续、均匀的,而另一幢高层建筑则相反。所以,笔者认为,建筑设计应该重视建筑结构的规则性。

2.2 合理选择建筑的结构体系

抗震结构体系是抗震设计应考虑的关键问题,结构方案的选取是否合理,对安全性和经济性起决定性作用。

2.2.1 合理选择建筑的结构体系要求所选择的建筑结构体系不仅要有合理的地震作用传递途径以及明确的计算简图,还要求建筑结构体系的传力路线、传力合理以及受力明确,这些都应该与不间断的抗震分析相符合。

2.2.2 合理选择建筑结构体系还应该对由于部分构件或者部分结构的破坏而导致的整个建筑结构体系丧失对重力荷载或者对抗震能力的承载能力。其中,有内力重分配功能以及赘余度功能是抗震概念设计的一个重要原则。坚持这一重要原则的重要性在很多建筑物地震后的实际情况中都得到了很好的印证。

2.2.3 合理选择建筑结构体系还要求必须具备良好的变形能力、消耗地震能量能力以及一定的承载能力,在这里笔者想要强调的是,良好的变形能力是与充足的承载能力相互作用并且同时满足的。有些建筑结构体系拥有很高的承载能力,但是缺少强大的变形能力,例如没有约束的砌体结构,砌体结构就很容易因为脆性破坏而导致最终的倒塌。因此,良好的变形能力以及强大的承载能力相互结合会使建筑结构在强烈的地震作用下最终具有耗能能力。

2.3 提高结构构件的延性

结构的变形能力取决于组成结构的构件及其连接的延性水平。对各种建筑结构采取的抗震措施进行规范,从根本上对各类建筑结构的构件延性水平进行提高是抗震概念设计在建筑结构设计中应用的重要问题。而笔者这里所指的抗震措施例如:采用水平向(圈梁)和竖向(构造柱、芯柱)混凝土构件,加强对砌体结构的约束,或者进行配筋砌体的采用,从而使配筋砌体在地震中建筑物产生裂缝以后不会散落和倒塌,从根本上使建筑物在地震时不致丧失对重力荷载的承载能力。

3 结语:

本文中,笔者先对抗震概念设计的重要性以及抗震概念设计的定义进行了分析,接着笔者从建筑设计应重视建筑结构的规则性、合理选择建筑的结构体系以及提高结构构件的延性这三个方面对抗震概念设计在建筑结构设计中的应用进行了分析。

参考文献:

[1]曹会兰.李山有.张雷.李伟.ARX结构模态参数识别方法对比(Ⅰ)――基于理论地震反应时程的对比[J].地震工程与工程振动.2009.(01).

[2]黄宜胜.常晓林.李建林.切割式横缝碾压混凝土重力坝抗震安全性研究[A]. 第二届中国水利水电岩土力学与工程学术讨论会论文集(一)[C].2008.

[3]李碧雄.谢和平.邓建辉.何昌荣.王哲.汶川地震中房屋建筑震害特征及抗震设计思考[A].汶川大地震工程震害调查分析与研究[C].2009.

[4]刘俊.陈亚春.适用于高烈度区多层框架的两阶段抗震设计方法[A].防振减灾工程理论与实践新进展(纪念汶川地震一周年)――第四届全国防震减灾工程学术研讨会会议论文集[C].2009.

篇13

引言

现阶段,土与结构物共同工作理论的研究与发展使建筑抗震分析在概念上进一步走向完善,如果可以在结构与地基的材料特性、动力响应、计算理论、稳定标准诸方面得到符合实际的发展,自然会在建筑结构抗震领域内起到重要的作用

一、建筑抗震的基本要求

我们所说的抗震设防,指的是对建筑物进行抗震设计,同时有针对性的采取一定的抗震构造的措施,最终实现结构抗震的效果和目的。一般来说,抗震设防主要依据的是抗震设防烈度。通常情况下,是采用国家地震局颁发的地震烈度区划图中规定的基本烈度的。从当前国内外抗震设防目标的发展总趋势来看,其基本要求是建筑物在使用期间,可以应对不同频率和强度的地震,即“小震不坏,中震可修,大震不倒”。这是我国抗震设计规范所采用的抗震设防目标。建筑工程在施工中的设防的目标如下:

(一)如果所遭受的是低于本地区设防烈度多遇的常规地震,建筑物不受损坏不需修理仍可继续使用;

(二) 如果遭受到本地区规定的设防烈度的地震,建筑物,包括结构和非结构部分,可能损坏,但不会对人民生命和生产设备的安全造成威胁,经修理仍可使用;

(三)如果遭受高于本地区设防烈度的罕遇地震,保证建筑物不倒塌。也就是说,在建筑结构的防震设计上,设计方可以按照多遇烈度、基本烈度和罕遇烈度这三个层次进行考虑。从概率上看,多遇地震烈度是发生机会较大的地震级别。建筑物将进入弹塑性状态,但一般不会发生严重破坏;当遭遇罕遇烈度作用时,建筑物可能会有严重破坏,但不至于倒塌。

二、建筑抗震的理论分析

(一)建筑结构抗震规范

建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。正是基于这种认识,现代规范中的条文有的被列为强制性条文.有的条文中用了“严禁,不得,不许。不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

(二)抗震设计的理论

拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性.地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的质量乘以―个比例常数(地震系数)。

反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加州理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的―个重要成果:动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解.同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为―个时间过程.选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

三、建筑结构抗震设计的基本内容

(一)建筑结构抗震设计的基本内容

(1)应重视建筑结构的规则性。建筑设计应符合抗震概念设计的要求,不应采用严重不规则的设计方案。因为震害表明,对称建筑在地震时较不容易破坏,容易估计出其地震反应,宜于采取相应的抗震构造措施和进行细部处理。

(二)抗震概念设计应坚持的原则

(1)结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能

①结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则。

②对可能造成结构的相对薄弱部位,应采取措施提高抗震能力。

③承受竖向荷载的主要构件不宜作为主要耗能构件。

(2)尽可能设置多道抗震防线

①一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。例如框架一剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。

②强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部沉余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。

③适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。

④在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。

(四)抗震措施

有抗震设防要求的高层建筑除应满足强度、刚度要求外,还要满足延性的要求。钢筋混凝土材料本身自重较大,所以对于高层建筑的底层柱,随着建筑物高度的增加,其所承担的轴力不断增加,而抗震设计对结构构件有明确的延性要求,在层高一定的情况下,提高延性就要将轴压比控制在一定的范围内而不能过大,这样则必然导致柱截面的增大,从而形成短柱,甚至成为剪跨比小于1.5的超短柱。众所周知,短柱的延性很差,尤其是超短柱几乎没有延性,在建筑遭受本地区设防烈度或高于本地区设防烈度的地震影响时,很容易发生剪切破坏而造成结构破坏甚至倒塌。

(1)使用复合螺旋箍筋

高层建筑框架柱的抗剪能力是应该满足剪压比限值和“强剪弱弯”要求的,柱端的抗弯承载力也是应该满足“强柱弱梁”要求的。因此,使用复合螺旋箍筋来提高柱子的抗剪承载力,改善对混凝土的约束作用,能够达到改善短柱抗震性能的目的。

(2)采用分体柱

由于短柱的抗弯承载力比抗剪承载力要大得多,在地震作用下往往是因剪坏而失效,其抗弯强度不能完全发挥。因此,可人为地削弱短柱的抗弯强度,使抗弯强度相应于或略低于抗剪强度,可以在柱中沿竖向设缝将短柱分为各柱肢组成的分体柱,分体柱的各柱肢分开配筋在组成分体柱的柱肢之间可以设置一些连接键,以增强它的初期刚度和后期耗能能力。一般连接键有通缝、预制分隔板、预应力摩擦阻泥器、素混凝土连接键等形式。

对分体柱工作性态的理论分析和试验研究表明:采用分体柱的方法虽然使柱子的抗剪承载力基本不变,抗弯承载力稍有降低,但是使柱子的变形能力和延性均得到显著提高,其破坏形态由剪切型转化为弯曲型,从而实现了短柱变“长柱”的设想,有效地改善了短柱尤其是剪跨比过小的超短柱的抗震性能。分体柱方法已在实际工程中得到应用。

(3)提高短柱的受压承载力

提高短柱的受压承载力可减小柱截面、提高剪跨比,从而改善整个结构的抗震性能。减小柱截面和提高剪跨比,最直接的方法就是提高混凝土的强度等级,即采用高强混凝土来增加柱子的受压承载力,降低其轴压比;但由于高强混凝土材料本身的延性较差,采用时须慎重或与其他措施配合使用。此外,可以采用钢骨和钢管混凝土柱以提高短柱的受压承载力。

建筑工程结构的抗震设计是一个系统、复杂、艰巨的任务,建筑物的抗震设计水平在很大程度上决定了建筑物整体结构的设计质量,在地震灾区更是关系到人民群众的生命财产安全。所以,在具体设计时,要综合考虑建筑物的特点、施工环境等多种因素,寻求最合理的抗震设计方法

参考文献:

在线咨询