引论:我们为您整理了13篇轨道交通论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
篇1
1.2同步数字传输技术同步作数字传输技术,作为电信骨干网中非常重要的一部分,比开放式传输网络技术显得更加成熟和优秀。该技术具备统一的国际标准,为系统的更新换代提供了可能性,另外还有自愈以及网管的功能。但是,该技术还有一些欠缺,例如,语音业务是同步数字传输技术主要服务项目,因此在数据和图像业务方面还存在着不足。
1.3异步转移模式技术异步转移模式技术的优势在于,一是业务服务对象比较多样,可以给各种业务提供服务,特别是在视频的相关业务中,其效果非常明显;二是能够有效地提高宽带的使用效率,这是因为该技术属于面向连接的技术,使用统计复用功能就能实现宽带利用率的提高。然而,由于异步转移模式技术系统的复杂性,导致该技术不够准确可靠,此外该技术的成本比较高,这也对该技术的发展产生了不利的影响。另外值得一提的是,随着各种新型通讯新技术的开发和涌现,轨道交通的业务有了相当程度的发展,新型的业务不断成熟,对宽带的需求也有所上升。在未来城市轨道交通信息通讯系统中,将会采用千兆以太网技术和粗波分复用技术。其中,千兆以太网技术,能够和以太网及快速以太网兼容,并且具有直接、快速的特点,设备比较便宜,传输距离长,在一定程度上能够让城市轨道交通信息通讯系统组网的要求得到满足,而且也解决了以太网存在的缺陷;粗波分复用技术,已成为大容量电信骨干网的首选,它具有操作简单、价格便宜以及容量大等优点,未来城市轨道交通信息通讯系统中可以充分利用粗波分复用技术,值得推广。
2城市轨道交通信息通信系统的其他子系统
2.1公务电话系统公务电话系统作为轨道交通运营控制的重要通讯工具,主要是用于轨道交通线内部的一般公务通信,并且连接了市话网和一些相关的轨道交通线的公务电话网。在轨道交通线内部,可以直接通过拨号进行通话;如果与公用电话网的用户通话,那么是由全自动或是半自动的出入局来完成呼叫。另外,该系统应该要有其他普通程控交换系统所不具备的功能,例如,和时钟系统的时间达到一致。
2.2专用电话系统专用电话系统是轨道系统所专用的,是为轨道交通行车指挥、系统能够正常运行所专门设置的通信设备,主要负责的是控制中心和各车站的列车、电力、防灾及公安等方面的调度,并且还提供了紧急电话、调度电话以及站间电话业务。在轨道交通中使用专用电话系统,有利于工作人员指挥列车的运行,以及进行设备的操作,同时也为行车调度提供了有力的支持。在应对突发状况时,为了快速解决事件,可以把系统内部的每台电话都设置成热线电话,进而保障行车安全。
2.3闭路电视监控系统闭路电子监控系统通过图像通讯,能够跟踪、监控和记录实时的动态图像。该系统还具有指挥和管理的功能,有利于实现城市轨道交通自动化调度和管理。另外,电视监控系统的传输具有不对称的特点,导致车站到中心需要比较大的宽带,而中心到车站运用低速的数据业务即可。就目前来看,ATM技术仍是电视监控系统中最佳的传输机制,该系统可以利用ATM技术按需求连接、分配带宽的特点,保证图像的质量,同时也节省了所占的宽带。
2.4广播系统、时钟系统、无线系统、电源系统广播系统由控制中心广播系统、停车场广播系统组成。首先广播系统采用的是模块化的设计,因而结构很简单,便于操作和安装;其次该系统具备很好的兼容性以及一致性,采取的是进口数字音频信号处理设备,可以根据需要进行自由组合。时钟系统主要有设在控制中心的GPS接收设备、主控母钟、各站铺助母钟、子钟以及传输设备等组成,其作用在于为乘客与工作人员提供标准时间,并且为其他系统提供统一的时间信号,从而实现全县统一的时间标准。无线通信系统包括列车无线通信、公安无线通信以及消防无线通信。是为列车运营、电力供应、日常维修、防灾救护提供指挥手段的专用通信系统。电源系统由配电设备、整流设备和蓄电池组成。电源系统是为通信设备中各系统正常运行提供电源保障。所以,电源系统一定要具有安全性和可靠性,可以满足不间断的运行。
篇2
1.3部分变电所电缆夹层电缆敷设交叉严重,不同专业电缆未按设计要求分层敷设,电缆预留不统一,绑扎不规范,标示不明或缺失。原因是施工方案、作业手册制定不细不明,电缆敷设前未认真规划路径,施工技术交底不到位,未就公用支架与其他施工单位核对图纸说明。预防措施是技术交底要覆盖全施工人员,统一施工标准、工艺;对电缆路径统一规划,敷设一部分要及时理顺;有需公用支架的地方,施工单位应及时沟通联系相互核对图纸,避免分层敷设错误及交叉。
1.4供电系统送电前,需对设备进行调试,导致交直流电源直流充电模块损坏率高,烧损充电模块是因为临电电压不稳。地铁车站安装施工交叉作业多,各种用电工具功率不同,使用频次不同,还有管理不善等原因导致除一级配电箱外电压波动很大,因此要求充电模块电源应从一级配电箱引取。
2环网及杂散电流
2.1盾构区间电缆支架打孔,一处会出现多次打孔,原因是盾构瓦片配筋密集,一次成孔困难,影响盾构结构安全,应尽量避免。施工单位在开工前应从盾构瓦片厂索要配筋图,施工是避开钢筋打孔。
2.2电缆支架与隧道壁不密贴,部分锈蚀,电缆转弯处电缆超出电缆支架托臂。出现此类情况,施工单位应分别向支架生产厂家提供完善测量数据,对差别较大的应分不同弧度进行加工生产;加强进场材料验收,对不合格产品坚决退货;施工过程轻拿轻放,杜绝野蛮施工。
2.3环网电缆外皮划痕、破裂造成安全隐患,预留及绑扎不规范。电缆划痕主要是穿管毛刺或拖地敷设遇尖锐物引起,敷设前应检查打磨套管,地面加设滑轮;预留及绑扎应符合规范及工艺要求。
2.4杂散电流传感器受潮及参比电极埋设离钢筋太近。原因是传感器未按技术规范安装,施工中造成传感器堵头丢失,没有及时进行补齐,因此安装过程厂家现场督导;采用钢筋探测仪提前进行预判,避免参比电极埋设靠近结构钢筋。
3接触网工程
3.1预埋化学锚栓斜度超标,部分支架、吊柱安装倾斜。造成以上问题根本原因是施工人员质量意识不强,测量打孔没有效避开结构钢筋,造成打孔倾斜。预防措施,施工测量参照结构钢筋配置图预先避开钢筋,打孔遇钢筋应及时纠正,安装支撑架前应校正螺栓。
3.2中心锚结与汇流排不垂直,部分区间导高、拉出值不符合设计要求。现场调查原因是施工作业人员对中心锚结拉出值及接触网导高、拉出值数据模糊不清,凭经验施工。解决办法是增加交底频次,技术人员现场盯岗,各工序之间加强协调,保证工序交接顺畅。
3.3隔离开关安装位置与消防等专业冲突或者安装高度不能满足设计高度,未按规范接地。地铁车站施工专业交叉作业多,隔离开关安装前应作详细的施工调查,核对相干专业图纸,如有冲突及时联系设计处理。设计单位在出图阶段应与其他专业进行沟通,并在双方图纸中进行体现。接地方案应在设计图纸上明确,与规范有出入处应作具体说明。
3.4场站接触网立柱与水沟位置冲突,与库外信号灯冲突。此类问题连续出现,尤其以立柱与水沟冲突为多,设计图纸都是一笔带过,施工单位间抢工工序安排不合理导致。因此设计单位应提前核对施工图纸,对冲突地方应及时修改,如因平面布置不能回避,需在图纸上说明工序安排。施工单位施作前应加强沟通,将接触网立柱基础放在水沟施工前进行。
3.5柔性接触网有部分螺栓、缠绕钢丝容易锈蚀。原因是施工单位未及时涂抹防腐材料及施工工艺不合理。暴露在钢丝、螺栓外短时间极易生锈,施工单位选取样板部位,要求说作业人员观摩,统一工艺并及时涂抹防腐材料。
3.6成品保护问题,也是变电所、环网电缆专业会遇到的同样问题。施工单位进场后应每所安排一名值班人员24小时看护,变电所安装临时门,其他施工单位需进入房间施工必须签安全协议并签到,区间派人不间断巡视尤其以夜间为主。
篇3
国家轻轨试验线新建于中国铁道科学研究院国家轨道试验中心,正线与既有大环试验线并行,线上有高架桥、隧道、小半径曲线等各种形式的试验段。高架桥为单线桥,位于城轨试验线的西侧,设计里程为K7+573.351—K8+359.534,线路纵坡25‰~28‰,总长约786m,均为简支结构,共计54片29跨,其中30m的T梁32片、25m的T梁18片、25m的U形梁4片。原设计梁间接缝使用C80,C100型耐腐合金止水带伸缩缝,共计140.40m。为验证TTXF弹性体伸缩缝在城市轨道交通高架桥上的适用性,选定在U形梁和T形梁上使用弹性体伸缩缝替代原设计,梁间接缝分为U-U梁接缝、U-T梁接缝两种。弹性体伸缩缝安装施工环境温度为15℃。根据原设计,试验线上两种梁型梁端均设有现浇挡水台,因此将弹性体伸缩缝浇注于两挡水台之间,同时可根据需要在现浇挡水台时预留槽口,以方便弹性体伸缩缝的安装。主要施工步骤有混凝土基面处理、衬垫定位及安装、底涂料涂刷、弹性体浇注、面涂料喷涂、挡水凸台二次浇注以及过程中的覆盖养护,详述如下。
1)由于现场预留槽口尺寸较小导致表面混凝土出现蜂窝麻面,选择使用手持式混凝土打磨设备进行混凝土基面处理,将薄弱、疏松或破碎的表面混凝土清除,并清理表面的浮土、浮锈、脱模剂、油污等污物。
2)试验线上为分块式轨道结构,选择实心PP棒材(直径不小于20cm),作为弹性体伸缩缝的底衬材料,安装时要求成形面平顺、无接头。安装完成后,检查衬垫的定位尺寸,预留空腔尺寸不得小于设计要求。
3)底涂料为本弹性体材料专用的界面处理剂,涂刷面应均匀、不露底面、不堆积,并至少大于粘接面外轮廓,涂刷完成后覆盖养护。
4)TTXF型弹性密封材料,由A,B组分在现场浇注机内恒温混合而成。混合完成后,可选择人工或机械方式进行浇注,浇注过程中避免带入空气,随时注意除泡,配制好的液态密封材料应在30min用完,随用随配,保证浇注过程的连续性。浇注完成后覆盖养护,确保密封材料外观的清洁、干燥。
5)浇注完成12h以内,且胶面不黏手时,进行面涂料喷涂,喷涂完成后继续覆盖养护至材料实干,养护中避免水份、灰尘、杂质落入,并防止机械损伤。
6)为保证桥面积水不在伸缩缝两端漫流至桥下,可在弹性体实干后进行挡水凸台的二次浇注,凸台高于伸缩缝表面2cm。
篇4
2.服务质量监管轨道交通运营服务质量监管主要包括对轨道交通设施、乘车环境、时间安排、服务标准执行情况等进行监督检查,接受处理顾客对服务质量的投诉并构建反馈机制,可通过对轨道交通运行的系列定量、定性指标的考核来衡量和监督服务水平。行业监管部门应承担如下一些工作:①服务设施监管:对车站基本设施、票务、导乘、问询服务、照明设施、列车和其它辅助设施等进行检查和监管;②服务水平监管:参照行业和地方标准,对票务、导乘、行车、问询、特殊服务、应急服务、服务承诺的实施情况等进行检查和规范;③服务环境监管:检查运营企业在车站和车厢的环境卫生和环境保护状况是否达到国家和地方的要求,并提出改进的指导性意见;④服务质量定量指标监测与评价:通过采集分析准点率、列车拥挤度等业务指标数据,监测评价服务水平;⑤顾客投诉受理:接受处理顾客对服务质量问题的投诉。
3.应急管理全封闭、速度快、容量大、系统复杂等特点导致城市轨道交通若发生突发性事故或灾害,其事故后果严重,影响范围大,应急管理难度大。根据突发事件发生与处理的流程,行业主管部门的具体职责包括:①联合相关部门组建城市轨道交通应急管理机构;②制定城市轨道交通系统突发事件的应急预案,在预案中明确事故预警机制、应急响应等级、不同等级事故的处理流程、涉及部门的具体职责等;③承担应急演练的组织和监督工作,通过应急演练加强应急工作中涉及的各单位单位的联系与协作;④执行应急救援物资、设备、人员贮备情况的日常监督检查;⑤若发生突发事件,应急管理机构应承担事故现场指挥协调任务;⑥突发事件结束后,应实施突发事故的善后收尾及调查评估。
4.价格监管鉴于轨道交通对城市居民出行的重要作用,城市轨道交通价格是各城市政府严格监管的领域。从定价机制来看,国内所有城市均把轨道交通定价纳入政府定价机制中,通常由政府制定价格并监控价格变动。城市轨道交通价格监管的工作包括确定票价水平、票价结构、折扣方式、调价方式,组织召开票价听证会,对价格调整进行监督和管制等。
5.成本控制与补贴国内城市轨道交通主要由国有企业运营,一方面,容易存在高成本、低效率的问题,行业管理部门可基于运营企业的成本核算实施成本控制;另一方面,由于政府对轨道交通价格实施了管制,轨道交通企业可能面临亏损,政府应就亏损部分适当补贴。因此,运营企业成本控制在什么范围、政府补贴多少、怎么补贴才能保持运营企业的高效运转也是行业主管部门的一项重要职责。这一职责的具体任务包括:①建立成本核算体系,核算运营企业“实际成本”;②建立城市轨道交通补贴的计算标准;③建立预算管理制度与财务审计制度,明确预算的硬性约束和弹性区间,主管部门每年度对预算的编制和执行情况进行检查和审核,并将预算执行情况作为补贴额度的一项重要依据;④根据轨道交通投资方式、投资主体、经营主体性质等特征,研究制定轨道交通运营企业补贴方式;⑤成立成本核算与补贴监督委员会,委员会依据成本与服务质量方面的考核评价标准对运营企业进行综合评定,评定结果作为轨道交通运营企业年度财政补贴的依据。
6.准入管理轨道交通运营的准入管理主要涉及市场准入和安全准入两个方面。由于我国轨道交通运营机构通常为国有企业,且不存在多个经营企业竞争性经营的问题,因此,国内轨道交通运营企业的市场准入主要集中在试运营条件的审核和轨道运营线路开通条件的审核上。安全准入方面,英国和美国等欧美国家通过建立完善的强制认证制度来设定轨道交通运营安全的“门槛”,而我国还未建立类似制度。在未来的行业监管体系中,安全的准入管理应逐步建立。
二、完善监管体制的保障措施
1.制定和完善城市轨道交通运营相关法规、规章国内开通轨道交通的城市一般在轨道交通开通运营前地方性的规范文件,即该城市的“轨道交通运营管理办法”,该办法是城市轨道交通运营的基础性规范文件。然而,根据本研究对国内多个城市轨道交通运营规范的整理分析,发现许多城市缺乏针对安全、服务质量、成本标准、投诉处理等某方面具体管理问题的规范或标准,这不利于运营质量与效率的提升。因此,各城市应将运营规范具体化,提高运营规范的可操作性。例如,有必要与安监、公安等部门联合制定城市轨道交通运营安全方面的具体规范以及城市轨道交通突发事件的应急预案,一方面,可以作为运营企业提供高品质运营服务的参考;另一方面,也让监管部门考核运营企业有据可依,做到客观公正。
篇5
1.2变压器及电缆。
各类变压器消耗感性无功,中压环网电缆及低压电力电缆都能提供一定的容性无功。供电网络一旦建成,变压器消耗的感性无功及电缆提供的容性无功都基本稳定,较易控制。
1.3动力及照明负荷。
城轨动力及照明负荷涉及多个用电系统,如通风空调环控系统、通信系统、电扶梯屏蔽门系统、信号系统、人防系统、车站隧道照明系统等等。每个用电系统内容大不一样,开启时间不定,其功率因数也不相同,一般为0.5~0.8,较难控制。
2补偿方案
补偿方案的选择与供电局考核点有关,由轨道交通供电系统组成及负荷构成分析,其无功特点是:电缆无功影响大;夜晚停运功率因数低,无功倒送;无功波动大;存在冲击性负荷。目前供电局一般要求用户自身功率因数达到要求即可,至于输电110kV电缆无功倒送问题,在后期负荷升高后自然抵消或是在变电站110kV馈线端加电抗器解决。为达到地铁中压网络中的无功平衡,一般在主变电所设置无功补偿装置进行集中补偿,以改善高压侧电源的功率因数,提供降压变电所的电压和补偿变压器的无功损耗。各地根据自身情况在不同时期,相应的技术条件下选用了以下的集中补偿方案:(1)采用电容和电抗器进行无功补偿;(2)静止无功补偿器(SVC);(3)静止无功发生器(SVG)。
3补偿比较
3.1电容和电抗器无功补偿。
该方案投资低,但无功补偿效果差,投切速度慢,不适合负荷变换频繁的场合,易产生欠补偿和过补偿。同时可能会引起某次谐波谐振或放大,因此城轨供电系统补偿基本不采用此方案。
3.2静止无功补偿器(SVC)。
静止型动态无功补偿装置即StaticVarCompensator(SVC)是目前国内外解决这一系列问题普遍采用的方法,在无功负荷接入点处接入SVC装置后,无功负荷冲击得到抑制、高次谐波得到滤除、三相电网得到平衡、PCC点电压得到稳定和提高了电力系统的稳定性。TCT型SVC,TCT名称含义是晶闸管控制变压器(ThyristorControlledTransformer,简称TCT),结合其实际用途,把它理解成晶闸管控制变压器型可调电抗器。TCT实际上是将常规TCR中的耦合变压器和电抗器合二为一。TCT组成:高阻抗变压器本体+晶闸管阀+控制器。原理:晶闸管阀连接在高阻抗变压器本体的低压侧,通过调整晶闸管阀的导通角,改变低压绕组电流,高阻抗变压器高压绕组的电流立即会按相应的匝数比改变,从而改变TCT无功功率大小。通过晶闸管控制变压器的副边电流,从而控制原边连续变化的感性无功功率,当晶闸管完全导通时,相当于副边短路运行,此时输出感性无功功率最大,即达到可控电抗的额定容量。TCT特点:(1)响应速度,全波采样需要20ms,半波采样10ms。(2)可靠性,本体是高阻抗变压器,抗冲击能力强,晶闸管运行在变压器的低压侧;(3)结构,TCT的结构简单,经过简单的培训就能操作。(4)噪音,TCT的整个磁路上没有饱和的区域,不会因为磁滞伸缩的作用产生很大的噪音,TCT上没有大功率风扇等运动部件发出噪音。(5)损耗,与其它可调电抗器不同,TCT的整个磁路上没有饱和的区域,铁损小;TCT磁场不会泄露到本体外部,附加损耗小。
3.3静止无功发生器(SVG)。
静止无功发生器StaticVarGenerator,简称为SVG。其基于电压源型变流器的补偿装置实现了无功补偿方式。是通过大功率电力电子器件的高频开关实现无功能量的变换。具备如下主要功能:(1)在电力系统扰动情况下,提供有效的电压支撑;(2)提高输电系统的静态和动态稳定性;(3)降低暂态过电压;(4)阻尼系统的低频和次同步振荡;(5)减小电压和电流的不平衡,抑制不对称负荷;(6)减小由于电压波动引起的闪变;(7)增加输电线路的有功功率传输容量;(8)滤除流入系统的谐波电流。目前已经投运的SVG主要分为两种结构,即多重化/多电平结构和链式结构,西安地铁一、三号线采用链式结构。SVG是目前最先进的无功补偿设备,目前全国范围正大力推广,但其技术还在发展阶段,维护率较高,有待在运行中进一步考验。
篇6
城市轨道交通客运安全有二层含义:①乘客运送过程中,乘客的人身、财产安全;②企业内部管理方面的人、财、物、设备、环境等要素的安全。前者是安全运送乘客的前提,后者则为乘客出行提供一个安全、创造的乘车环境,二者缺一不可。
3事故预防
3.1预防原理
安全生产管理工作首先应做到预防为主,通过有效的管理和技术措施,降低和防止人和物体的不安全性,这就是预防的原理。
3.2运用预防原理
3.2.1偶然损失
事故后果及严重程度,都是不可预见性的、难以预防的。即便是重复发生的同类事故,也不一定就会发生完全相同的后果,这就是事故损失的偶然性。偶然性损失告诫大家,无论事故造成损失的大小,都必须要做好准备工作。
3.2.2事故调查处理原则
(1)实事求是、尊重科学的原则实事求是:是唯物辩证法的基本要求。尊重科学:是事故调查工作的工作准则。(2)“四不放过”的原则事故原因没有查清不放过;事故责任人没有受到处理不放过;群众没有受到教育不放过;防范措施没有落实不放过,简称为“四不放过”原则,可以起到“举一反三”的防范效果。(3)公正、公开的原则公正,就是实事求是,以事实为依据,以法律为准绳,既不准包庇事故责任人,也不得借机对事故责任人打击报复,更不得冤枉无辜;公开,就是对事故调查处理的结果要在一定范围内公开。
3.3事故责任分析
事故责任分析,分析的是造成事故原因的责任,明确事故责任者。事故责任者是指对事故发生负责任的人。其中包括直接责任人、主要责任人和领导责任人。其行为与事故发生有直接关系的,为直接责任人。造成不安全效果的人和有不安全行为的人都可能是直接责任人。对事故发生负有领导责任的,为领导责任人。一般从间接原因确定领导责任。在直接责任者和领导责任者中,对事故发生起主要作用的,为主要责任人。
4事故处置
4.1客伤受理
(1)值班站长应做好先期处理、适时安抚并做好事发现场的调查取证工作。(2)值班站长告知乘客可先去医院就诊,在治疗结束后到车站进行协商解决。(3)如乘客伤势较重或提出陪同去医院治疗时,值班站长应安排工作人员陪同。(4)如乘客提出要求车站垫付医疗费时,值班站长应报请区域站长同意,先行垫付,但必须留下医药费凭证。(5)如乘客无人陪同,车站应设法联系其家属,待家属到达后予以移交。
4.2客伤处理
(1)客伤处理时,值班站长如与乘客协商无异议的,且费用在一定金额内可与乘客办理有关手续予以解决。(2)客伤处理时,值班站长如与乘客协商有异议的,且乘客提出无凭据费用的,值班站长应向上级管理部门汇报请求协助处理。(3)对超出车站处理范围或不能与乘客协商解决的客伤事件,应向线路管理部门运营安全部汇报后将相关材料移交线路管理部门运营安全部处理。(4)值班站长在客伤事件处理完毕时,须办理以下手续:与乘客签定事故处理协议书、领款书并留下乘客原始缴费凭证、病历、出院小结和乘客身份证复印件后,填写好客伤处理单连同车站及乘客事情经过一并上交上级分管部门。(5)在双方协议不成的情况下,经由人民法院介入处理为客伤处理的最终手段。
4.3注意事项
(1)车站在发生各类客伤事件时,值班站长应报线路管理部门生产调度,如乘客伤势较重的,车站应及时拨打“120”急救中心电话。(2)值班站长除及时处理好发生在本站的客伤事件外,还应认真负责地接待城市轨道交通运营管理范围内或其他车站发生的客伤事宜,除乘客自己提出,车站不得推脱处理。(3)如乘客委托他人处理客伤事宜的,值班站长应在签定事故处理协议书前要求被委托人提供委托人(伤者)及被委托人亲笔签名的《委托书》及委托人及被委托人的身份证复印件。(4)车站应做好客伤事件的取证工作,人证至少要二名以上可追溯的非运营方证人。
篇7
1.1.2悬挂式单轨车辆第一辆悬挂式单轨车辆是由德国Langen发明,于1901年在德国的乌泊塔开始运营,如图5所示。德国乌帕塔悬挂式单轨线,线路总长13.3km[2],经过20个站点,最高速度60km/h,年载客量达到2500万人次。悬挂式单轨车辆的轨道梁采用下端开口式钢制箱型断面,车辆悬挂在轨道梁下方,转向架采用悬挂式二轴转向架设计,且为钢板焊接结构。与跨座式单轨车辆转向架走行部的不同是:悬挂式单轨车辆转向架(见图6)没有稳定轮,设走行轮和导向轮各4个,均为橡胶充气轮胎,为保障安全预防轮胎泄气或爆裂,橡胶车轮也配有钢制辅助车轮。车体的悬挂装置由悬挂吊杆、液压减振器构成。因为胶轮在封闭环境下运行,所以不受恶劣天气影响,但也受转向架和轨道形式的影响,遇到突发状况时无法及时处理,维修困难。目前,悬挂式单轨车辆在我国尚未运用,但是在德国、日本等许多国家都得到广泛应用。悬挂式单轨车辆建设周期短、制造车本低、无需扩展城市公路设施,而且在高架上运行,增强城市景观,结合我国的交通实际情况,适合在我国建设和推广。但是单轨车辆也存在橡胶车轮与轨道梁摩擦产生橡胶粉尘的现象,对环境有轻度污染,列车运行在此区间发生事故时救援相对较为困难。
1.2新型交通系统
目前,世界各国对新型交通系统还没有一个明确的概念。广义上指的是那些所有现代化新型公共交通方式的总称。狭义上讲,即自动化导轨交通系统(Au-tomatedGuidewayTransit,简称ATG),该系统是中小运量型车辆运行在具有侧向或中央导轨专用混凝土轨道上,车辆通常采用小轻量的橡胶轮胎,由电气牵引,可单车或数辆编组[7]。ATG是在1963年由美国西尼电气公司研发并应用的,在美国多作为机场内的交通工具。经过多年发展,尤以日本和法国在技术和规模上处于领先地位。在日本称AGT,在法国称为VAL(VehiculeAutomatiqueLeger,即全自动捷运系统)。
1.2.1AGT1981年,日本首次开通营业运行“神户港岛线”和“大阪南港港口城市线”两条线路。由于采用橡胶轮胎,噪声小[7],对城市生态环境有很好的保护,并且建设费用低,所以AGT系统在日本深受欢迎和重视,到目前,已有14条线。运行在日本神户港岛线的2000型列车如图7所示,线路总长度10.8km,采用600V、60Hz侧向接触轨受流。AGT车辆的走行部采用橡胶轮胎,并具有转向机构,其分为三种导向方式(如图8所示):一种是侧面导向方式,导向轨布置于行驶面两侧,导向轮沿着导向轨导向行驶;一种是中央导向方式,导向轨设置于走行轨道间的中心线处的工型钢质导轨,导向轮夹其腹板导向行驶;另一种是中央沟槽导向方式,在两条行车轨道间的中央槽中,导向轮沿着行车轨道侧壁导向行驶[4]。如果车辆采用两侧导向方式,转向架为单轴转向架,由2个走行轮和2个导向轮构成;若采用中央导向方式,转向架为两轴转向架,由4个走行轮和4个导向轮构成。因采用胶轮,所以设置了在漏泄状态也能运行的钢制辅助车轮;而且新型交通系统是双向运行,因此前后轴必须都能转向。车轮与轨面的黏着性能好,与钢轮钢轨相比能产生较大的摩擦力,可缩短加减速度时间,增大爬坡能力。列车最小平面曲线半径仅为30m,又具有较强的爬坡能力,因此可以适应较为复杂的地形。橡胶轮寿命能达到10万km左右,列车编组一般在4~6节,最高速度在60km/h左右。北京首都机场也采用了AGT车辆(见图9),在机场T3航站楼A座、B座和C座之间承担运载任务。该系统采用加拿大庞巴迪公司设计方案,无人驾驶,单程行车线路为2080m,设有3个乘车站,2008年3月正式运营。
1.2.2VALVAL是20世纪80年代基于RobertGabi-llard教授发明的胶轮路轨系统技术,由Matra公司设计的一套轨道运输系统,于1983年5月在法国里尔开通营运。为了减小成本,剔除了橡胶和钢轮并用的设计,采用单轴转向架;前后4个导向轮,一般采用内部充填聚胺脂的实心胶轮;中间2个走行轮,内部通常充入氮气[4];构架前后两端设有导向滚轮,如图10所示。法国里尔VAL车辆,全自动无人驾驶,最高速度可达80km/h,运营速度可达34km/h,每天运量可达12万人次。由于胶轮磨耗大,有粉尘,所以不如钢轮经久耐用。胶轮使用寿命相对较短,同时运行能耗也相应加大,其载客能力相对较低,使这种交通扩大载运量也受到了一定限制。此外,该系统采用充气橡胶车轮,还需要有预防爆裂和发生爆裂后的安全措施和装置。
1.3现代有轨电车传统有轨电车采用钢轮钢轨系统,没有隔声措施,以至于引起的噪声大,对城市的生态环境影响较大。为了克服缺点,近年来,法国劳尔重工(Rollindustry)公司研制出胶轮导向巴士电车系统,也就是现代有轨电车(Translohr),如图11所示,法国克莱蒙费朗劳尔电车。Translohr是Roll公司于2001年开发出的橡胶车轮的低地板有轨电车,采用单轨导向技术,胶轮负责牵引车辆,导轮负责引导车辆的行驶方向,中央轨道导向系统如图12所示。与传统的有轨电车相比,Translohr爬坡能力强(最大坡度可达13%),通过小半径曲线能力强(可达10.5m)[8],噪声小,并且保留了传统有轨电车便利性、中等规模运输量等特点。2007年5月10日,天津滨海新区开通了全长7.6km的从法国引进的劳尔电车,是我国大陆境内第一个使用劳尔电车的城市。2009年12月31日,上海浦东张江高科新区也开通了全长10km的胶轮有轨电车,走行轮采用充入氮气的无内胎橡胶车轮,上海张江地区劳尔电车非动力转向架如图13所示。为减小线路的影响范围,实现有轨电车和社会车辆混行的方式,道路中央双车道独立双向运行,如图14所示,为运行在上海浦东张江高科新区的劳尔电车。其采用接触网受电,3节车辆铰接式编组,最高运营速度可达20km/h,最高时速70km,总载客量约167人/列,地板高仅为260mm。但也有一定的缺点,由于当地路面的结构,车内的噪声较大,候车的时间较长,不适合在繁华的街道运行,所以还需要进一步地研究强化,并结合我国道路交通系统的结构特点来发展此类电车。
1.4我国最早的橡胶车轮车辆1932年5月22日,在已经运行于滇越铁路线(昆明—河内)的内燃动车组上安装了由米其林轮胎公司生产的橡胶轮胎,通常叫它“米其林动车组”(曾经改名为红旗号),同时是国内唯一一条米轨铁路。如图15所示,我国最早的米其林橡胶车轮内燃动车组,车长16m,宽2.6m,自重8t,采用汽油内燃发动机。该车组最为独特的部分在于它的走行部,每个转向架上有4对车轮,采用钢制轮辋和橡胶车轮一体化设计,车轮踏面都套装可自动也可人工充气的凸形橡胶轮胎,可以使噪声减小,减振好,乘坐舒适性加强,而且还能提高车速,在当时最高速度可达100km/h,曾创下时速记录。到20世纪80年代因零件不易购置而失修,后经国家花费大量财力修复并移至昆明米轨铁路博物馆。
2橡胶轮胎的选择及其特性
车辆通过轮胎与地面的附着作用产生各种运动,其特性对车辆性能有着至关重要的作用。轮胎有4个基本功能:1)支撑整车重量;2)缓冲因路面不平顺引起对车辆的冲击力;3)为驱动和制动提供附着力;4)提供转弯所需的侧向力[9]。橡胶车轮系统城市轨道交通车辆大多采用无内胎、胶质实心轮胎。无内胎轮胎通常也称“真空胎”,在轮胎内部充入惰性气体。从安全角度讲,真空胎是高速行车最为理想的轮胎。真空胎发热低、质量轻、节省燃料、使用寿命长,鉴于走行轮需要承受整个车体重量,于是为了安全,几乎所有的橡胶车轮城市轨道车辆的走行轮均采用无内胎轮胎。胶质实心轮胎适应于低速高负载苛刻使用条件下运行的车辆,所以通常作为辅助车轮或者用于一些车辆的导向轮。选择轮胎主要是根据每种车辆的运行特点、承载能力和路面情况而定。与钢轮相比,橡胶车轮具有很好的弹性和抓地力,故具有更好的爬坡能力,并且能降低运行时的噪声。爬坡的能力与地面附着力的大小有很大关系,附着力取决于路面状况、粗糙度以及轮胎橡胶材质、花纹、几何尺寸、气压。对于传统的钢轮钢轨系统,轮轨接触属于金属与金属之间的接触,所以附着力很小,在超过牵引力所能承受的坡度时,容易滑坡。与传统轮轨系统比较,橡胶车轮具有复杂的力学特性,轮胎的力学特性对车辆的稳定性、舒适性、动力性、安全性起着举足轻重的作用。轮胎力学特性如下:1)轮胎纵向力学特性。影响纵向力学特性的主要因素是滚动阻力,车轮滚动时,轮胎与路面的接触区域产生法向、切向的相互作用力以及相应的轮胎和支撑路面的变形。当轮胎在硬路面滚动时,轮胎径向变形是主要的,由于轮胎内部摩擦产生弹性迟滞损失使轮胎变形时对它做的功不能全部回收[10]。2)轮胎垂向力学特性。充气轮胎的缓冲作用与轮胎的弹性有关,轮胎的刚度特性对车辆的行驶平顺性、行驶稳定性和制动性均有着重要影响。3)轮胎的侧向力学特性。其中轮胎的侧偏特性很大程度上决定了车辆的操纵稳定性,包括各种垂直载荷下轮胎的纵向力、侧向力和回正力矩与侧偏角、纵向滑移率的关系[11]。
篇8
通常情况下在城市交通疏解任务中城市轨道交通线路承担着十分重要的任务,为确保人们出行的安全性,应采用完整的、先进的、高效的列车控制系统作为地铁信号系统。正线信号系统采用完整的列车自动控制(ATC)系统,由ATS、ATP、ATO、联锁设备组成。车辆段/停车场由联锁设备、微机监测设备、ATS分机等主要设备组成。目前城市轨道交通的信号系统主要有准移动闭塞和移动闭塞系统选择。
2.1基于目标距离模式的准移动闭塞ATC系统通常选用音频数字无绝缘轨道电路作为目标距离模式,这种模式的主要特点为信息传输量较大及抗干扰能力很强。列车车载设备依据由钢轨传输而接收到的联锁、轨道电路编码、线路参数、控制管理等报文信息,连续对列车追踪运行及折返作业进行速度监督,最大限度对其进行超速防护,控制列车运行间隔,以满足规定的通过能力。由于音频数字轨道电路具有极大的传输信息量,可以将目标速度、目标距离、线路状态等信息提供给车载设备,为计算出列车相适应的运行模式速度曲线,将ATP车载设备与固定的车辆性能数据进行充分地结合。
2.2基于通信的移动闭塞系统(CBTC)基于通信的移动闭塞列车控制系统具有极为先进的发展技术,是列车控制技术的发展趋势,是国际ATC先进水平的代表。是独立于轨道电路的高精度列车定位。CBTC系统为实现车与地、地与车间之间的双向数据通信,可以选用自由空间无线天线、交叉感应电缆环线、漏泄电缆以及裂缝波导管等方式进行有效通信。依据列车的位置信息及进路情况轨旁ATP设备可以有效对每一列车的移动权限进行准确计算,同时根据列车位置速度的变化不断更新数据,利用连续车地通信设备向列车进行信息的发送。依据接收到的移动授权及本身的运行状态车载设备可以对列车运行速度曲线及防护曲线进行有效计算,在ATP子系统的保护防御过程中,在该速度曲线下ATO子系统或人工驾驶控制列车可以正常运行。可以最大限度地实现后续列与前行列车尾部的紧密性,并始终处于安全距离范围内。在确保安全的基础上,CBTC系统可以实现区间通过能力的有效提高,同时不受轨道电路区段分割的限制。虽然CBTC系统在调试时因对现场环境要求高、调试周期较长等一些不尽如人意的地方,但是CBTC系统在具有自身优越性的同时已经成为城市轨道交通信号系统的首选方案。其相对于准移动闭塞系统的优越性是不可取代的。
3城市轨道交通信号系统通信设备的传送方式
3.1通过轨道电路进行传送轨道电路不仅可以检测列车占用情况,也可以传递报文信息给车载设备。在轨道电路不忙的情况下,将轨道电路信息传送给联锁系统,当列车对轨道进行占用时,利用装置切换,并将发送轨道电路信息的作业进行停止,开始采用轨旁设备将ATP报文信息连续向钢轨进行发送,将接收和发送设备装置在列车底部,可将接收到的信息向车载设备进行传递,同时也可以向地面发送列车信息。
3.2通过轨间电缆传送单独沿着钢轨铺设一条线路,专门用于传送ATP报文信息,此方法安全可靠,但费用较高。
3.3通过点式应答器传送在轨道电路的部分地方进行应答器的设置,应答器的设置主要有两种形式:固定数据应答器与可变数据应答器。用于存储固定数据的应答器为固定数据应答器,可变应答器通过对中心进行控制来取得数据,将接收和发送天线安装在列车底部,当列车运行在应答器位置经过时可以感应到应答器的信息,然后进行双向数据交换,因为这种信息的传送不具有连续性,只能在一定位置才能进行接收,因此这些位置被叫做点式ATC。
3.4通过无线方式进行传送无线车地通信主要采用无线方式,由控制中心来实现车载ATP/ATO的功能,利用无线交换器和轨旁无线单元AP与车载无线通信设备进行时时数据的交换。一般情况下一个控制中心可以实现对一条线路上所有车站的控制,当控制中心设备发生故障时,为了确保整条线路不出现瘫痪现象,可以将车站现地工作站和车站ATS远程控制单元设置在车站。这样当控制中心出现故障之后,车站工作人员可通过车站现地工作站进行操作来实现联锁计算机的功能,ATS远程控制单元可代替中央ATS系统向联锁系统和轨旁设备发送相关信息,此时ATS远程控制单元所具有的信息不全面,但能够保证列车在本站的正常运行。
篇9
对上述选定的研究标准,分析标准中绝缘耐压部分,主要内容包含:标准适用范围,国内应用,测试环境,测试流程,绝缘判断,耐压值,耐压方法,耐压合格判断,耐压电源等。IEC60077-1999、GB/T21413-2008、TB/T1333-2002内容完全一致,以下仅研究IEC60077-1999。GB/T14894-2004耐压部分引用TB/T1333规定,绝缘部分引用IEC60077规定,不对其进行专项研究。GB/T7928-2003耐压部分引用TB/T1333与TB/T2227-1996规定,绝缘部分引用TB/T2249-1996规定,不对其进行专项研究。TB/T1795-2003耐压部分引用TB/T1333与TB/T2227-1996规定,绝缘部分引用TB/T2249-1996规定,不对其进行专项研究。EN50343-2003、EN50215-1999只是将绝缘与耐压分开研究,本次研究作为一个整体。TB/T2249-1996、TB/T2227-1996只是将绝缘与耐压分开研究,本次研究作为一个整体。
3标准分析研究
3.1适用范围
GB/T3048-2007、DL474.4-1992作为国家与行业标准,其绝缘耐压值对铁路车辆只有参考价值,不完全适用与铁路行业耐压标准;IEC60077-1999是机车车辆设备件进行耐压的标准,TB/T1484.1-2001是电缆订货技术条件进行耐压的标准;其它标准均可应用于铁路机车车辆及城轨车辆电缆敷设后耐压。GB/T12817-2004、TB/T2249-1996、TB/T2227-1996只能应用于200km以下速度等级的铁路客车,不适用于高速列车绝缘耐压试验。如以上标准规定交流回路耐压值为1500V,直流回路耐压值为1000V,但现在动车组中,直流回路电压已经高达1500V,交流回路电压有25000V,以此标准做耐压试验已经没有意义。IEC60077-1999、IEC1133-1992、EN50343-2003、EN50215-1999作为国内现有动车组(CRH1、CRH3、CRH5)及地铁车辆耐压标准。适合多电压等级及高速运行条件。
3.2应用环境
各标准应用环境建议选择IEC60077-1999,海拔:≤1400m,温度:-25℃~40℃,湿度:≤95%,此工作环境可满足绝大部分铁路车辆运行条件。
3.3测试流程
部分标准(如EN50343-2003)规定了测试流程为绝缘-耐压-绝缘,部分标准(如GB/T12817-2004)规定测试流程为绝缘-耐压,部分标准未明确规定测试流程为绝缘-耐压-绝缘,但实际应用测试流程为绝缘-耐压-绝缘。为发现耐压试验过程中是否存在绝缘破坏,测试流程建议采用EN50343-2003标准(绝缘-耐压-绝缘),前后两次测试绝缘电阻偏差不超过10%。
3.4绝缘电阻
绝缘的目的是为耐压前进行绝缘性能的初步测试,在各个标准中,对绝缘电阻测量值及所有仪表有不同规定。建议在适用车型的基础上,采用最为严格的标准。
3.5耐压值
在试验中,根据不同电压等级的线路或设备施加不同的电压,各标准耐压值见表1。通过表1数值,发现耐压值有所差异,但各耐压值经验证均可有效发现电缆敷设过程中造成的绝缘损伤。
3.6升压方法
总结以上标准,结合安全生产需要,建议综合以上升压方法,采用从0V开始升压,在电压达到规定值的50%以前,尽快升压,电压在50%到75%之间采用以可以读出电压数值的速度升压,当达到75%电压之后,以2%的速度上升到规定值,仪表显示值偏差在规定值的3%以内。升压过程中,注意倾听、观察是否出现电流突然增大、电压闪络等现象,如出现此问题,立即切断电源。耐压时间建议采用1分钟,观察电流在1分钟内无明显变化。
3.7耐压判断
各标准中均规定耐压合格的判断为无闪烁或击穿,建议根据各车型车辆实际特点,增加泄漏电流数值,以防止部分线路泄漏电流过大。
3.8耐压电源
耐压电源建议根据GB/T3048-2007要求,电源频率根据试验电缆应用环境决定,试验电压峰值与有效值之比为1.662~1.802,谐波含量不超过5%。
篇10
城市轨道交通运输和铁路运输是两种主要的轨道交通运输方式。可以总结为如下五种技术系统(见下页表1),主要涉及电子电路、继电器控制、自动控制、计算机控制、通信、软件技术、数据库技术等,集控制科学与工程、通信工程和计算机科学与技术三大主要学科,是典型的多学科知识交叉的综合行业体系。
三、人才培养措施
1.树立应用型培养理念。所谓应用型人才培养理念,既包括学校管理理念的应用型、也包括教师教学理念的应用型。建设应用型专业的首要任务在于围绕应用型培养目标,改变或提升教师的教学理念和思想。一是改变教师教学评价体系,围绕应用型人才培养目标,完善或修订教师绩效考核指标,利用政策指挥棒引导教师改变理念。二是加强教师培训工作,新进教师大多为从“校园”到“校园”,在应用型如何实践方面必然缺少切身的感悟,因此需要加强对此类教师的培训,提升其业务能力。
2.构建“深度校企联合”培养体系。校企联合是众多高职、应用型高等院校普遍采取的人才培养模式,但合作效果往往不尽如人意。首先,探索校企之间的硬件资源共享机制,包括实验条件、实训条件等,如学校利用企业的培训资源进行实训培养,企业利用学校的教师、实验环境进行优秀员工的能力、学历提升教育等。其次,探索校企之间的智力资源共享机制,包括优秀企业员工聘任专业课教师;优秀教师到企业协助解决部分技术难题;双方联合开发专业课程、实训课程等。
3.建立应用型课程体系。首先,在课程设置上采取“平台+模块”的发展策略,建立通识课、专业基础课和专业课三大平台,根据专业方向设置课程群模块。通识课模块主要包括数学类、物理类、设计类核心课程;专业基础课根据本专业的特点,遴选控制类、通信类、计算机类、交通运输类中的核心课程组成。设置国铁和城轨两大培养方向,国铁和城轨两个课程群模块。其次,采取“小课程、短课时”课时设置模式,缩短讲解时间,预留课时增加到实验或实践环节。构建“掌握基础理论—实验提升认知能力—实训强化应用能力”的“一条龙”式的培养体系,创造条件让学生实现“理论知识—实践应用”两者之间的交互式提高。
4.搭建应用型实验、实训室。培养应用型人才,实验室建设、实训条件建设是基础,更是必要条件。实验条件直接决定着课程体系的建设,开设何种课程,课程如何设置实验实训内容,都由实验室硬件条件决定。因此,在实验条件设计上以学生“能动手、愿动手”为目标,改变“观摩式”实验模式创造条件让学生动手。
5.加强建设综合实训基地建设。轨道交通系统是安全苛求系统,从业人员一般均需经过严格的专业技能培训。从教育角度而言,实验室或实训室锻炼了学生基本的动手能力,要真正提高他们的一线生产能力,在走进工作岗位之前,仍然离不开实训基地的培养。综合实训基地主要是以轨道交通实物实训实施,构建一个涵盖城市轨道交通多个部门、多个工种的综合性实训考核基地,满足轨道交通运营与管理、信号与通信、车辆维修、供电系统维修等多专业的实训演练、教学指导、实做考核以及技能鉴定等工作,并且可以作为学生科技创新的孵化器。
篇11
轨道交通换乘站是轨道交通线网中各条线路相交产生的节点,城市的不断扩大,使各个点之间的距离越拉越大,乘客要想到达一个目的地,就需要多次换乘,换乘次数对于路径选择的影响也随之增大。也就对轨道交通换乘站客运组织工作提出更高要求,一般情况下,应遵循如下原则:(1)要有合理的科学调研,掌握不巾站区间客流情况,制定出的方案必须要与换乘客流量相适应,满足乘客换乘需求。(2)通过不同线路的组成式连接,合理规划线路衔接方式,为乘客创造良好的换乘条件,节省乘客出行时间。(3)以科学的设计规划,不断缩短乘客的换乘步行距离,节省换乘时间,以制度为保障,加强服务能力的提升。(4)要充分考虑到地铁站突发事件,通过预设方案,能够紧急应对意外事件,设计合理的换乘设施,保证乘客出行安全。
3建立健全应急处理系统
城市轨道交通网络运营复杂,涉及多个部门、多个工种的协调,在技术上要求较高,针对轨道交通网络结构复杂、客流密集、空间有限、运营故障、自然灾害、人为破坏、大型社会活动等情况,会对各个系统产生巨大的压力,同时也会对整体系统、网络局部造成瞬间拥堵或瘫痪,这就需要合理设置应急措施,建立健全各种应急制度。目前,我国各地城市轨道交通使用的业务子系统包括:SCADA(数据采集带那里监控系统)、BAS(环境与设备监控系统)、FAS(防灾报警系统)、ATC(列车自动控制系统)等,系统不断进行改造升级,也比最初设计有了更多的功能,由原来各自独立运转向综合监控系统不断发展,改管如此,也存在一些问题,如各线路间的综合监控信息互通不足、资源共享较差,这样就会导致许多有用的信息传导实效弱、应急机制不足、应急手段相对落后、应急网络缺失等问题的产生,也就很难形成快速反应的预警分析和快速协调处理能力。城市轨道交通系统对一个城市的发展起着重要作用,正因为其运营的复杂性,一旦出现地铁事故,其影响范围将十分广泛。城市轨道交通越是复杂的,故障应急响应机制就显得越重要,一个良好的响应机制,能够有效降低预警城市轨道交通运营事故、故障、突发事件,在发生故障时,通过预警措施及时作出反应,能够保证交通运营秩序尽快恢复。可以说,在应急响应模式的基础上建立起来的城市轨道应急响应机制,主要有以下几种基本类型:(1)政府机构中没有常设地铁应急机构,地铁公司是应急处置的主体,地铁公司和其他相关机构是一对一的联系模式,不足是信息通道短、指挥效力差。(2)政府中有专门的地铁应急机构,应急指挥机构能够正常运转,解决紧急事态,形成中枢式的指挥机构,承揽协调组织、保障的职能,通过行使政府职能,强有力的保障应急措施快速落实,特点是信息通道长、指挥效力高。(3)常设机构是一个虚拟机构,没有专门办公地点,由应急指挥机构负责下达命令协调等项具体工作,如果遇到突发事件,则由地铁公司与公交集团自行处置联络,特点是信息通道和指挥效力均等适当。
4应急处置过程遵循的原则
应急响应机制由应急事件反应和处理两个方面构成,反应机制主要是指相关管理协调部门对事故故障预先探测和判断、信息传递和决策、对乘客及外界信息功能、技术手段及相互关系等项工作;而处理机制是指相关职能协调部门对事故现场处理、乘客疏散,以及外界对处理提供支持的功能、技术手段和相互关系的工作。要想科学的建立反应机制,就需要掌握大量的运营信息,对相关信息进行收集、处理、传递和,通过相关的应急预案体系,确保事故发生后快速处理,最大范围的挽回损失和社会影响。那么,应急处置机制部门对应急事故的处置要遵循如下原则:(1)有效性原则。如果发生应急事件,就需要有一个统一的指挥平台,保证应急系统快速启动,及时进行工作状态。(2)安全性原则。做为公共客运交通工具,在发生故障时,应把保障乘客生命财产安全作为工作出发点,减少人员伤亡与财产损失。(3)协调性原则。城市轨道交通涉及多部门,要根据各部门职责协调合作,并与公安、卫生、消防等部门加强资源整合、信息共享、主动配合,形成高效有序的组织结构。
篇12
2.1减振效果试验对比
针对首次使用于城市轨道交通工程中的聚氨酯浮置板整体道床进行的一系列测试,通过将地下线普通整体道床与之对比,其普通道床铅垂方向的振动级最大值达到72.6dB,而聚氨酯微孔弹性减振垫,铅垂方向的振动级最大值减小到57.0dB,该值低于《城市区域环境振动标准》中对于居民文教区昼间70dB,夜间65dB的要求,减振效果明显。
2.2聚氨酯浮置板减振轨道系统测试结论
对于施工完成的聚氨酯浮置板整体道床轨道减振垫测试时,在大于22Hz的频率段上其插入损失值>0,说明满铺于道床基底的减振垫减振工作频率为22Hz以上。而在70~125Hz频率段内减振的效果最为明显,最大减振量发生在100Hz处,基底测点在100Hz处的加速度级插入损失为38.17dB,基底测点2的Z振级插入损失为21.37dB,基底测点5的Z振级插入损失为20.97dB,两者平均值为20.17dB。测试结果最终表明:
(1)试验轨道系统自振频率为16.4Hz,理论计算结果为14.8Hz;
(2)减振工作频率为22Hz以上;
(3)在70~120Hz频率段内减振效果最为明显,最大减振量发生在100Hz处,基底测点在100Hz处的加速度级插入损失为38.17dB;
(4)基底测点Z振级插入损失为15.98dB(根据国家标准GB10071—88,分析频段取1~80Hz);
(5)基底测点Z振级插入损失为21.17dB(根据行业标准JGJ/T170—2009,分析频段取4~200Hz)。由此表明,聚氨酯微孔浮置板减振材料与道床整体形成了一个质量弹簧系统,其聚氨酯微孔减振垫具有最低的动静态刚度比和对车辆运行过程中产生振幅降低的性能,对于微孔减振垫材料在支撑上部道床结构部分传授的荷载时,动态刚度可能还会由于振幅频率和荷载的大小产生较小的变化,采用在槽形道床基底及侧墙范围内铺设减振垫,又可称之为全表面弹性支撑弹簧系统,相当于超临界频率范围内,可将结构传播噪声平均减缓至30dB范围内,实现城市轨道交通工程减振目的。
3聚氨酯浮置板整体道床轨道技术应用
3.1聚氨酯浮置板减振垫轨道系统铺设方式及施工流程
聚氨酯浮置板减振整体道床轨道系统施工中,在奥地利聚氨酯微孔弹性材料专家的支持和现场指导下,对于铺设施工方案进行了多次调整细化,以确保铺设的侧墙减振垫和基底减振垫完全呈隔离状态,避免刚性搭接,形成声桥,影响减振效果,打破常规轨道施工方式,以“先附属后主体”方式完成减振系统铺设。在聚氨酯减振浮置板整体道床轨道系统施工中,对铺设轨道的结构底板找平处理完成后,进行整体道床侧墙施工,对侧墙施工的位置、几何尺寸精度严格控制直至检测修正完毕后,铺设聚氨酯微孔减振垫材料,随后采用“机械铺轨法”先进行一次性浇筑整体道床,待强度满足要求后,绑扎道床凸台钢筋并浇筑完成聚氨酯浮置板整体道床轨道施工,完成聚氨酯浮置板整体道床浇筑施工。
3.2聚氨酯浮置板减振垫轨道系统铺设要求
(1)基底清理:对于铺设聚氨酯浮置板减振垫地段,必须对结构基底进行找平和清洁,对于不平整度控制在±4mm以内进行验收,同时避免基底表面出现尖锐突起,损坏材料,同时对于结构底板必须保证不能有可见的水,对于渗水、结构漏水处必须及时处理,确保结构底板干燥。
(2)不同结构形式铺设:对于盾构形式的弧形基底,减振垫作为一个整体(没有底垫与侧垫之分)铺设减振垫必须达到规定高度,通过测量确定两段无误后即可定位;对于矩形的槽形结构基底,应当首先铺设底垫,然后铺设侧垫,其减振垫的下表面必须与精确处理平整的结构底部密贴接触。
(3)当轨道板减振垫铺设完成之后,侧垫上部与轨道板和基底侧面之间的接头空隙处要用专用的密封胶进行密封,保证侧墙及结构底板的减振垫形成一个整体,保证减振垫在道床浇筑完成后形成的质量-弹簧系统发挥其减振降噪性能。
(4)减振垫底垫和侧垫铺设完毕后,可以作为浇筑模板在上面浇混凝土道床。浇筑前应当根据轨道板的设计对其进行配筋。为了防止钢筋头对减振垫造成损坏,可以在钢筋和减振垫之间放置一些支撑块,予以支撑抬起钢筋,避免钢筋直接接触减振垫表面层。
(5)浇筑前对轨道进行几何尺寸调整时,支撑轨道的支撑架丝杠在调整过程中产生竖向力,避免支架调整轨道几何尺寸时破坏已铺设完成的聚氨酯减振垫,在支架丝杠下垫上预先加工的丝杠扭力防护垫板,调整时丝杠落在防护垫板中心,同时要求在丝杠上要预先穿好PVC管,便于浇筑道床完成后,可方便取出丝杠。
4施工过程中质量控制的难点
(1)道床钢筋绑扎焊接作业时产生焊渣,焊渣烧伤减振垫是个难题,通过铺设浸湿养生棉布或浇水降温的形式,可避免钢筋焊接时电焊的焊渣烧伤减振垫的问题,严格确保聚氨酯减振垫外观完好无损,可全面发挥减振垫减振作用。
(2)道床侧墙与道床分为2次浇筑施工,且侧墙与道床间夹有25mm厚度的聚氨酯减振垫,受列车行驶过程中产生的振动荷载,道床浮动,容易造成残渣及积水顺减振垫两侧流入减振垫层,造成对减振垫侵蚀破坏。为解决此问题,采用具有柔韧性较强的玻璃胶对25mm厚度的减振层密封,进行防水沥青包裹共2层密封,以确保减振道床的有效性。
(3)为确保聚氨酯浮置板减振整体道床轨道系统的铺设精度,提出“先附属后主体结构”施工方式。通过精确控制施工的附属结构即侧墙作为减振整体道床系统的基准保证,控制整体道床轨道施工精度。根据其聚氨酯减振系统需要,在线路中心线两侧每2.5m各设置1对测量基标;以基标精确定位侧墙中心线,并设置侧墙高程控制桩,按照侧墙结构设计尺寸施工浇筑,完成后两边侧墙与结构地板形成槽形,检查结构尺寸满足减振结构系统铺设要求后铺设减振系统,附属结构的精度直接影响减振道床结构精度,对此采取设置成对基标级附属结构控制桩的方式保证施工数据精确性。
篇13
二、校企合作资源共享及实训基地的建立
教学资源共享。共享图书、教材、网络数据库教学资源,校企合作开发城轨供电类教材。共建专业教师团队。院校的专业教师可以到企业授课,苏州轨交公司具有丰富经验的工程师到校授课或开专业讲座。院校供电专业教师团队和轨交公司供电专业工程师组成优势互补的专兼职教师团队。共建校内外实训基地。教学仪器市场上还没有专门针对城轨供电专业的实训仪器和设备,学校可以通过在传统变电站综合自动化等实训设备上进行模块化改造,比如在供配电实训装置中,增加城轨牵引供电模块,再加以改造,使其成为地铁中典型的牵引降压混合变电所装置。同时与当地轨道交通企业共建现场性强的接触网和高电压实训基地。给学生及在职人员提供实践与训练的场所,开展职业资格认定合作。城轨供电类所需实训实习场所及适用项目课程等如表2。学校专业教师下企业实践。利用假期下轨道交通公司运营一线,了解和掌握最新的轨道交通供电技术,跟踪最新的运营动态。
三、就业服务与保障
就业服务的对象是学生,而根本上是学生、学校、企业三者的关系。协调好三者关系,学生的就业服务就能做好。首先在学生在校学习过程中,创造与轨道交通公司互动的条件,通过邀请城轨公司的工程师给已组成的“地铁班”定期进行企业文化和专业技术讲座,通过学生实习前纳入教学计划的认识参观实习,以及在学生下城轨公司顶岗实习期间组织专业教师的定期巡视,来完成过程性监督和保障。完善学生预就业实习阶段的意外保险与医疗。现有轨道交通公司对于实习的每个学生提供一定的住宿和生活补助,使其无后顾之忧。而对于城轨公司不予录取的学生,学校积极组织再推荐就业等都是作为该专业所必须的就业服务保障。