在线客服

抗震结构设计论文实用13篇

引论:我们为您整理了13篇抗震结构设计论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

抗震结构设计论文

篇1

1.3结构性能化设计措施(1)为提高剪力墙连梁的延性,在连梁中配置型钢,并加强其腰筋及箍筋配置(配筋率不小于0.4%且不小于计算配筋)。(2)在核心筒剪力墙中配置型钢,一是为了承担部分剪力及弯矩;二是与墙体竖向钢筋共同承担拉力。(3)通过核心筒的连梁来实现结构耗能,虽然连梁中设置了型钢,但墙体中也设置了型钢,相对于墙肢而言,连梁截面内力远小于墙体截面,所以地震作用时是连梁首先发生弯曲破坏,起耗能作用。虽然结构承载力已按较高的性能目标实现,但为使结构具有较好的塑性变形能力,结构仍然按高延性设计,核心筒及框架柱抗震等级为一级,钢构件抗震等级为二级。

2结构计算分析

2.1振动模态采用SATWE,ETABS软件进行多遇地震作用下的计算对比分析。ETABS软件计算得到的结构的振型图如图8所示(两种软件计算得到的振型一致),由图8可以看出,悬挑部分有较大的振动反应。

2.2整体分析结果对比由SATWE,ETABS软件计算的结构总体指标对比见表5。由表5可知,两个软件计算的结果比较接近,相符度较好。SATWE软件计算的整体稳定性验算指标刚重比X向为117.86,Y向为46.79,均大于规范限值2.7(不考虑二阶效应的限值);ETABS软件计算的整体稳定性验算指标刚重比X向为106,Y向为46.79,均大于规范限值1.4(稳定限值)和2.7(不考虑二阶效应的限值)。

2.3施工卸载模拟计算悬挑桁架部分采用满堂脚手架施工,脚手架支承于地下室顶板上,地下室顶板考虑60kN/m2的施工荷载。采用分段吊装的施工方案,桁架在现场焊接成型,采用塔吊和汽车吊相结合的方法完成吊装(图9)。全部钢结构构件安装完毕后再进行脚手架卸载,卸载顺序为由远端向根部逐渐延伸,在卸载过程中应对钢结构变形及位移进行现场测量。卸载完毕后,开始安装钢筋桁架,浇筑楼板,砌筑固定隔墙,然后封闭楼板后浇带。图9施工方案示意图本工程进行了施工卸载模拟分析,分四步拆脚手架,首先拆第四节下对应的脚手架,接着拆第三节、第二节、第一节下对应的脚手架。卸载过程远端位移模拟显示悬挑远端满足《钢结构设计规范》(GB50017—2003)[3](简称钢规)要求,虽卸载过程与使用状态下的结构支撑条件和荷载作用条件不同,但卸载过程中构件的内力符号没有发生变化,且其应力比均小于正常使用状态下的应力比。

2.4防连续倒塌分析与设计对于防连续倒塌的分析,参考高规采用了两种方法:一是拆除构件法;二是施加表面荷载法。(1)KZ1是受荷最大、最为重要的柱,所以对其按拆除构件法验证是否满足防连续倒塌的要求。计算结果表明,与所拆除构件直接相连的构件最大应力比为[(0.69/1.35)/1.25]×2=0.818,斜拉腹杆最大应力比为(1.13/1.35)/1.25=0.67,其余各构件应力比均小于1。(2)对于桁架的主要弦杆和腹杆,采用在构件表面附加80kN/m2侧向荷载的方法进行验证分析,分三步进行:第一步是按未加侧向荷载进行计算;第二步是将构件从整体结构中取出来,施加侧向荷载进行内力计算;第三步是叠加前两步内力。计算结果见表6,由表6可知,桁架一的主要杆件应力比均小于1.0。

2.5人群荷载下楼盖振动舒适度验算由于楼盖结构的跨度比较大,故对其进行了舒适度研究,采用MIDAS/Gen进行楼盖振动舒适度分析。楼盖振动舒适度分析考虑两种人群荷载工况:工况一为21人同频率、同相位行走;工况二为60人同频率、不同相位行走的。计算结果表明,楼盖最大振动加速度为0.0452m/s2,满足规范限值0.05m/s2要求。

2.6楼盖风振时程分析基于风洞试验实测数据,结合风速时程样本,采用MIDAS/Gen软件模拟结构风振[5],本工程中只考虑顺风向风速的影响,采用了Davenport脉动风速谱,参考深圳市气象局近年来的风速统计资料,设定参考风速,以MonteCarlo法为基础采用谐波叠加法,设定关心的频率始值和终值,随机产生风速时程曲线。局部风振时程荷载按点荷载直接施加于模型相应测点处。分析结果表明,不同风振时程样本引起的楼盖最大加速度差别较大,这主要是由于随机生成的风振时程的自身差异所导致的;基于本文的时域分析方法及风振报告提供的频率方法(其中楼盖振动最大加速度为0.221m/s2)计算出的楼盖风振效应均很明显。针对本工程而言,风荷载引起的竖向振动是设计的控制因素。

3关键节点设计及有限元分析

悬挑桁架从混凝土核心筒及外框柱伸出,第7层E,B点(图3)处节点交汇杆件达11根,节点受力比较复杂。悬挑桁架下弦杆根部弯矩非常大,尽管钢材已采用Q420GJC,但板厚仍超过100mm,基于此提出了解决桁架根部局部弯矩过大的新型节点,见图10。此节点通过对工字形截面翼缘板加下挂板的方式,变相增加了翼缘板的宽度。此种做法一是可以减小板厚,降低焊接难度;二是相对于箱形截面其便于焊接和混凝土浇捣。节点分析拟考虑两种荷载工况:一是大震作用工况;二是构件屈服工况,即加载至某构件(根据大震的分析结果,选取承载能力利用率最高的构件)发生屈服。选取桁架一下弦杆梁柱节点及桁架二下弦杆梁墙节点进行节点分析。采用MIDAS/FEA[7]进行分析。大震作用下节点应力云图如图11所示,结果表明,节点区几乎所有的钢构件均保持在弹性状态,混凝土受拉及受压均保持在弹性状态,节点区构件满足承载能力极限状态的要求。构件屈服工况下节点应力云图如图12所示,结果表明,应力最大钢构件中和轴以下全部发生屈服时,节点核心区内板件仍保持在弹性状态,节点板屈服区域仅分布在以屈服构件相连的局部区域,没有向节点板核心区扩展,满足“强节点、弱构件”的控制要求。

篇2

所谓抗震概念设计,一般是指不经过计算,尤其在难以做出精确理性分析或在规范中难以规定的问题中,依据整体结构体系与分结构体系之间的力学关系、结构破坏机理、震害、实验现象和工程经验中所获得的基本设计原则和设计思想,从总体的角度来进行建筑结构的总体布置和抗震细部措施的宏观控制,从而从根本上保证结构的抗震性能。

三、结构抗震概念设计的基本原则和具体要求

(一)建筑场地的选择

地震造成建筑的破坏,除地震动直接引起结构破坏以外,还有场地条件的原因,诸如:地震引起的地表错动与地裂,地基土的不均匀沉陷、滑坡和土体液化等。因此选择有利于抗震的建筑场地是减轻建筑物地震灾害的第一道重要工序。(二)建筑物的平面、立面及竖向剖面的布置建筑物平面和立面的规则性是抗震概念设计中需要考虑的一个重要因素。规则的建筑方案体现在:建筑物的平面布置基本对称;结构体型简单;抗侧力体系的刚度和承载力上下变化连续、均匀。因为,简单、对称的结构容易估算其在地震时的反应,容易有针对性的采取抗震措施并对其进行细部处理。因此,这就要求建筑专业的设计人员具有一定的抗震知识素养,应该对所设计的建筑的抗震性能有所估计,避免采用抗震性能差的严重不规则的设计方案。

(三)结构体系的确定和结构布置

结构体系的确定是结构设计中头等重要的大事。结构设计时应通过综合分析使结构体系尽量合理且经济,应优先采用抗震能力强、延性好、耗能能力强、便于施工且具有多道防线的结构体系(如框架-剪力墙结构,框架-筒体结构,设置耗能连梁的剪力墙结构等),避免采用抗震能力较低的结构体系(如板柱-剪力墙结构,单跨框架结构等),尤其应避免采用看似“合法”(符合规范)但不合理的结构体系(如当房屋高度接近规范框架结构类适用高度上限时,仍采用框架结构,震害表明,框架结构的侧向刚度较小,整体性较差,结构的抗震性能较差,此情况下应采用抗震性能较好的框架-剪力墙结构为宜)。而在结构布置时,应采用概念清晰、传力途径明确的布置方式,尽量避免造成结构扭转、平面和立面的里出外进、竖向传力杆件的间断与不连续等问题。

(四)多道抗震防线的设置

单一结构体系只有一道抗震防线,一旦破坏就会造成建筑物倒塌的严重后果。特别是当建筑物的自振周期与地震动卓越周期相近时,建筑物由此而发生的共振,更加速其倒塌进程。而如果建筑物采用的是多重抗侧力体系时,第一道防线的抗侧力构件在强烈地震作用下遭到破坏后,第二道乃至第三道防线的抗侧力构件立即接替,抵挡住后续的地震动的冲击,可保证建筑物最低限度的安全,免于倒塌。在遇到建筑物基本周期与地震动卓越周期相同或接近的情况时,多道防线就更显示出其优越性。当第一道抗侧力防线因共振而破坏,第二道防线接替工作,建筑物自振周期将出现较大幅度的变动,与地震动卓越周期错开,使建筑物的共振现象得以缓解,避免再度严重破坏。在双重结构体系中一般应优先选择不负担或少负担重力荷载的竖向支撑或填充墙,或轴压比值较小的抗震墙、实墙筒体等构件作为第一道防线的抗侧力构件,如框架-剪力墙结构中的剪力墙,框架-填充墙结构中的填充墙,单层厂房纵向体系中的柱间支撑,均可作为各自体系中的第一道抗震防线。如因条件限制,只能采用单一的框架体系,则框架就成为整个体系中唯一的抗侧力构件,此时应采用“强柱弱梁”型的延性框架。在地震作用下,框架梁成为第一道抗震防线,框架柱为第二道抗震防线,用框架梁的变形去消耗地震能量,使框架梁的屈服先于框架柱的屈服,从而保护了框架柱的相对完整,最终达到“大震不倒”的要求。

(五)结构抗震设计关键点的把握

篇3

地震灾害涉及到人类的生命和财产安全,是人类生活面临的重要的问题,也是建筑结构抗震设计的主题之一。因此,在建筑结构设计的时候,必须充分考虑到抗震设计,这已经在房屋建筑结构设计中占据非常重要的位置,在设计时只有采取适当的措施,以防止地震对建筑物的造成的巨大破坏,为减少地震的损失与危害在设计上做出应有的贡献,以保护人民的生命和财产安全。

一、 建筑结构抗震的重要性

在建筑结构中应用抗震结构的设计,首先能够保证人员的生命安全,为内部人员的逃生以及求救争取宝贵的时间; 其次,强化了建筑结构的设计,增加了建筑结构的抗震性,也将是建筑结构的使用寿命得到提升,使其利用价值得到不同程度的飞跃。建筑的基本功能是供人们居住,随后才是审美价值的体现。就建筑的基本功能来说,其能够供人居住的首要前提是安全,包括使用安全以及建筑物自身的安全。也就是说,建筑物只有在保证了自身安全的前提之下,才能够供人们使用。因此,在建筑物的设计和建设过程中,往往需要对影响建筑安全性的因素作全方位考虑。地震作为一种不可预知的自然灾害,其对建筑物安全性能的影响极大。而建筑物的安全一旦遭受威胁,必然会出现倒塌事件,从而砸伤和掩埋生命,给人们带来物质和精神上的双重损失。因此,建筑物在建设初期就必须做好抗震的准备工作,从根本上确保人们的生命和财产安全。

二、提高建筑结构抗震设计的措施

1、合理选址以提高建筑物的抗震能力

地震发生时,如果建筑物本身抗震能力弱,结构不坚固或者建筑刚性强而韧性不足,很容易遭到严重的破坏神之倒塌。如果建筑物选址不合理,地基建在地质不稳固的地方,地震会引起地表的地裂和错动以及地面沉降,这种破坏在地基不稳固的地方更加明显,因此合理选址以提高建筑物的抗震能力非常重要。在建筑物选址时,易选择地层稳固地带,应尽量避开地质不稳固的地方,如断层带、地下采空区、地下水空洞区、易液化土等地方。如果没有条件避开上述不适合建造建筑物的地区时,应采取相应的抗震应对措施。依据国家对建筑物抗震的类别等级,采取人工加固地基、注意建筑结构的整体性、建筑物的外形匀称、建筑物的结构简单减轻建筑物自重等,都可以消除地基液化沉陷。还有一种特殊的地质构造,那就是在地基的主要受力层内还存在土质较软的粘性土层或者不均匀的土层面时,这种地质构造若发生地震,地基会发生不均匀沉降。在此种地质构造地带施工时,应采用桩基和加强基础的措施来加固地基。

2、使用科学的结构形式

目前,我国常用的建筑结构有:钢筋混凝土结构、砌体结构、钢混结构以及钢结构。防裂度和地区不同都是造成结构不同的主要因素, 通常钢筋混凝土结构的抗震能力相对较强,由于自身柔韧性较好, 所以钢筋混凝土在建筑物变形能力控制中,具有良好的承载能力。因此,在建筑结构设计中,必须根据抗震要求以及功能特征选用合理的结构方案,在审核结构体系中,也必须考虑结构侧移度,特别是高层建筑物结构设计。随着高层建筑结构高度增加,不仅会让建筑结构在地震作用以及其他负荷作用影响下增大水平位移,也会让建筑结构抗侧移的刚度增加。而对于不同的钢筋混凝土结构体系、组成方式、构建以及受力特征,在抵抗侧移刚度等方面都具有很大的差异性,所以在使用中,必须根据具体情况,选用合理的高度。

3、强化设计质量

由于地震具有超强的危害性,所以在地震设计时,必须注重各项影响因素。由于我国建筑设计水平相对落后,很多建筑结构使用的方案不够合理,在不能科学布置建筑结构方案的过程中,不仅增加了建筑成本和自身重量,也加大了地震危害。因此,在建筑抗震设计中,必须正确运用抗震理论,根据相关设计原则,不断保障或者提高建筑结构可靠性与安全性。具体原则包括:努力降低地震作用时结构位移与扭转,并且建筑结构必须拥有足够的刚度;结构构件承载能力相对较高,同时具有足够的耗能能力与延性。在这过程中,延性大说明变形能力相对较高,承载力与强度减小速度缓慢,不能有足够的空间吸收,还能耗散地震能量,从自身结构避免坍塌。

4、选择合理的建筑材料

在设计阶段,要进行抗震分析和计算,在选择建筑材料时,要对其参数进行可靠度分析,也要充分考虑材料参数的变异性,而且尽可能选择自振频率不同的材料,避免在地震作用时结构物局部或者整体发生共振,造成严重破坏。

5、合理的平立面布置

建筑物的动力性能基本上取决于它的建筑布局和结构布置。建筑布局简单合理,结构布置符合抗震原则,从而确保房屋具有良好的抗震性能。建筑物的平、立面布置宜规则、对称,质量和刚度变化均匀,避免楼层错层。对体形复杂的建筑物合理设置变形缝,在结构设计时要进行水平地震作用计算和内力调整,并应对薄弱部位采取有效的抗震构造措施,严格控制建筑物的高度和高宽比。

6、多道抗震防线的设置

这样可以避免在地震作用下,由于局部损坏而造成整个建筑结构的损坏,例如框架----抗震墙结构系统,抗震墙可以抵抗较大的侧压力,是第一道防线,当在地震作用下抗震墙发生破坏时,框架结构就起到抗震的第二道防线。 多道抗震防线可以极大的消耗地震能量,延缓或者减轻地震作用对高层建筑的损坏。

7、加强建筑物内部的薄弱部分

在高层建筑中,由于层数较多,建筑面积较大,难免存在一些受力比较大而比较薄弱部分,在建设过程中,要及时对薄弱部分进行加强,采取有效措施增强其强度和刚度,这样就可以极大提高其承载力,避免在地震作用下过早的屈服产生较大变形,导致建筑结构局部损坏或者整个结构的损坏。

8、保障结构的延性

(1)对于建筑结构当中柱、梁等构件,应该按照强柱弱梁的原则,增加柱子的抗弯能力。钢筋混凝土的框架在强震发生时,当地震威力致使建筑结构达到最大的非线性位移时,梁端的塑性铰的塑性转动会比较大。当柱端的塑性铰出现比较晚,那么建筑结构达到最大的非线性位移时它的塑性转动会比较小。这样就保证了框架有了比较稳定的塑性耗能构件。

(2)要提高结构的延性,还要采取强剪弱弯的措施。因为剪切对于破坏根本没有延性,如果某个部位一旦发生剪切破坏时,这个部位在整个抗震结构中的作用就会丧失,柱端发生剪切破坏,建筑结构的局部就会发生坍塌,局部坍塌有可能导致整个建筑物的坍塌。因此,要采取措施来增大梁柱和柱端的组合剪力值,保证任何构件在强震发生时都不会损坏其剪力。

总之,结构抗震设计有许多不确定或不确知的因素,很难做到对结构进行精确的抗震计算,并得到结构在地震作用下的真实反应。因此结构的抗震设计除了必须进行细致的计算分析外,要特别注重结构的概念设计。如选取对建筑抗震适宜的建筑场地,设计延性结构,采用轻质高强建筑材料,设置多道抗震设防,加强结构的整体稳定性,重视结构的抗震构造措施等方面,只有这样才能保证结构的抗震性能。

参考文献:

[1] 李鸣. 浅谈建筑结构抗震设计[J]. 科技致富向导,2013(6):330.

篇4

为了提高超高层建筑的抗震性,其足够的结构侧向刚度必不可少。足够的结构侧向刚度不仅可以保障建筑物的安全性、抗震性,还可在一定程度上有效抵抗建筑结构构件的不利受力情况及极限承载力下的安全稳定性。设计超高层建筑的结构抗震侧向刚度,应重点从其结构体系和刚度需求进行。

2.1结构设计。结构初步设计根据建筑高度和抗震烈度确定高度级别和防火级别。超高层结构设计首先满足规范要求的高宽比限值和平面凹凸尺寸比值限值,其次控制扭转不规则发生:在考虑偶然偏心影响的规定水平地震力作用下,扭转位移比不大于1.4;最大层间位移角不大于规范限值的0.4倍时,扭转位移比不大于1.6;混凝土结构扭转周期比不大于0.9,混合结构及复杂结构扭转周期比大于0.85。最后设计过程中严格控制偏心、楼板不连续、刚度突变、尺寸突变、承载力突变、刚度突变等现象。满足结构设计规范的同时,还应考虑建筑师的设计意图和功能需求,同时满足设备专业设计要求。结构平面的规整程度直接影响着抗震设计的强弱,尽量采用筒体结构,以使得承受倾覆弯矩的结构构件呈现为轴压状态,且其中的竖向构件应最大程度的安置在建筑结构的外侧。各竖向构件和连接构件的受力合理、传力明确,降低剪力滞后效应,杜绝抗震薄弱层产生。

2.2结构侧向刚度控制。超高层建筑的抗震性能设计主要与结构侧向刚度的最大层间位移角和最小剪力限制相关。对于层间位移角限值,其是衡量建筑抗震性的刚度指标之一,地震作用应使得建筑主体结构具有基本的弹性,保证结构的竖向和水平构件的开裂不会过大。同时,因超高层建筑的底部楼层、伸臂加强层等特殊区域的弯曲变形难以起主导作用,所以应采取剪切层间位移或有害层间位移对其变形进行详细的分析与判断。对于最小地震剪力,其最重要的两个影响因素是建筑结构的刚度和质量,当超高层建筑难以达到最小地震剪力要求时,设计人员应该结合具体情况适度的增加设计内力,提高其抗震能力和稳定性,然而,当不能满足最小地震剪力时,还需通过重新设计或调整建筑结构的具体布置或提高刚度来提高建筑物在地震作用下的安全性,而非单纯增高地震力的调整系数。

3超高层建筑的性能化抗震设计

超高层建筑的抗震性能设计,国内主要根据“三个水准,两个阶段”,即“小震不坏、中震可修、大震不倒”。超高层建筑来说,其建筑工程复杂、高度极高、面积大、成本高,一旦受到地震损害,其损失程度会更高,因此,必须充分考虑各方理论、实际情况和专家意见,兼顾经济、安全原则,定量化的展开超高层建筑的性能化抗震设计。同时,相关文件虽针对超高层建筑结构的性能化设计制定了较具体且系统的指导理念,涉及宏观与微观两个层面。但是,由于结构构件会受到损坏,且损坏与整体形变情况的分析计算都需进行专业的弹塑性静力或动力时程计算,而目前我国尚未形成相关的定量化的评价体系,因此,设计人员应在积极参考ATC-40和FEMA273/274等规范。此外,对于弯曲变形为主导的建筑结构,在大震作用后应尤其注重构件承载力的复核。

4超高层建筑多道设防抗震设计

除了上述注意事项外,针对超高层建筑进行抗震性设计时,还因注重设计多道的抗震防线。多道抗震防线是指一个由一些相对独立的自成抗侧力体系的部分共同组成的抗震结构系统,各部分相互协同、相互配合,一同工作。当遭遇地震时,若第一道防线的抗侧移构件受到损害,其后的第二道和第三道防线的抗侧力构件即会进行内力的重新调整和分布,以抵御余震,保护建筑物。目前,我国超高层建筑主要依靠内筒和外框的协同工作来达到提供抗侧刚度的目的,包含两种受力状态:首先,建筑的内外结构通过楼板和伸臂析架来协调作用,进而使得外部结构承受了较多的倾覆弯矩和较少的剪力,而内筒则承受了较大的剪力和一些倾覆弯矩,广州东塔就是此受力方式的典型;其次,以交叉网格筒或巨型支撑框架为代表的建筑外部结构,其十分强大,依靠楼板的面内刚度,外部结构即可同时承受较大的倾覆弯矩和剪力,如广州西塔。

篇5

1.建筑抗震设计

目前随着经济的发展,抗震结构设计已经呈现出新的发展趋势,可利用基于性能结构抗震现场理论、材料抗震模糊可靠度等方法进行建筑抗震设计。但是建筑地震灾害依然在反复发作,虽然很多建筑设计师已经认识到以上技术的局限性,但是由于建筑结构还会受到地形、规划、工程造价、施工技术等多方面因素影响,导致“概念设计”开始被人们重视起来,并加大了对其的研究。概念设计不仅完善了建筑结构,同时综合全面的分析了地震所产生的影响,掌握了地质活动破坏机制,并可以综合全面的了解抗震设计规范与准则,在长期实践中还可以不断提升建筑结构的抗震水平。

2.建筑结构抗震概念设计遵循的原则

2.1建筑选址并确定地基稳定条件

合理的规划选址已经成为建筑设计成功的基础,对建筑结构抗震设计整体质量具有很大影响。实际操作中要求规避地震不利地段,尽量选择安全稳定的建筑场地,如果受各方面因素影响,导致实际操作中无法避开不利地段,必须结合实际情况采取针对性的措施,提高地基稳定性与安全性。现有基础设计规范中明确指出,结构单元中个别应地质因素而采用天然地基或桩基的做法不可取,尤其是不允许在地震高发段建设建筑物。地震作用力较强,一般会引起承载力降低或出现基土液化,进而影响了地基稳定性,容易出现建筑开裂、倾斜和倒塌等问题。同时受地震影响所产生的滑坡、泥石流等情况也与建筑选址密切联系,保证建筑基础稳定已经成为提高抗震力的核心条件。

2.2选择有利于建筑的立面或平面

为了避免地震发生时产生应力集中、扭曲或塑性变形等问题,要求建筑平、立面必须合理设置,一般要求建筑物的平、立面布置对称,同时质量和刚度均匀,尽量避免楼盖错层。实际操作中可从两反面操作,一方面,不设抗震逢,对建筑物进行结构抗震分析,了解局部应力和变形集中及扭转等的影响,并采取加强措施进行处理。另一方面,设置抗震缝,将建筑物划分为很多结构单元,可结合抗震设防强度、材料种类、结构型号及单位布置,并留有足够的宽度,要求伸缩缝与沉降缝满足防震缝要求。控制好建筑刚度与质量变化,各个楼层不能错层,条件允许时可在每层设置防震缝,可根据建筑结构实际情况设置。一般体型结构复杂的建筑必须给其设置计算模型,并展开抗震分析。

2.3选择科学合理的抗震结构体系

抗震结构体系要求从建筑重要程度、房屋高度、地基基础、技术、经济及使用等多方面进行判断。通常选择建筑结构体系时,必须满足以下条件:(1)具有详细的计算简图,并有恰当的传递地震途径;(2)具有较强的强度、耗能及变形能力;(3)设置多道地震防线,避免部分结构或构件对整体构件造成影响;(4)控制好强度与刚度,避免局部形成薄弱部位或者应力或塑性变形集中;(5)控制好结构在两主轴之间的动力特性。设计构件连接时,要求满足以下条件:(1)构件节点强度不能低于连接构件强度;(2)装配结构连接整体性必须得到保证;(3)预埋件锚固强度不能低于连接构件强度。选择抗震结构构件时,要求满足以下要求:(1)砌体结构必须结合施工要求,合理设置混凝土圈梁与构造柱,提高结构抗震水平;(2)设置钢结构构件时,要求控制好其尺寸,避免出现局部或整体构件失稳;(3)混凝土结构构件必须合理选择尺寸,配置好箍筋与纵向钢筋,避免剪切在弯曲前破坏,同时要求混凝土压溃先于钢筋屈服、钢筋锚固粘接在构件破坏前损坏。

2.4计算校核的必要性

目前计算机辅助设计系统已经广泛应用到结构设计中,而且应用范围较广,实际分析中,可应用计算机相关软件完成设计与校核。软件是辅佐校核的工具,实际操作中为了提高校核效果,必须由具有丰富经验的结构设计技术人员分析,同时掌握软件的适用范围、条件、计算模型等,深入理解设计规范,而且要端正自己对待工作的态度,只有如此,才能反复进行验证,进而将精确校核的计算结果成功应用到工程项目建设中。

3.正确处理主体结构与非承重结构的关系

主体结构与非承重结构关系的处理已经成为抗震设计的基础,具有减少地震损失及避免附加震害的作用。附属结果构件要求必须与主体结构或锚固稳定连接,避免实际操作中出现设备损害或砸到人员等问题出现。设置围护墙与隔墙时,必须综合考核结构抗震所产生的不利影响,避免设置不恰当损害主体结构。例如,厂房柱间或框架填充不完整时,就会损坏柱子。此外,吊挂件、装饰贴面与幕墙均要与主体合理连接,避免地震时造成人员伤害。

4.控制好材料与施工质量

材料选择与施工质量控制对抗震结构设计具有很大作用,不仅提高了施工质量,还保证了其他工序的顺利开展。目前抗震结构设计中已经对材料与施工质量提出了要求,必须在设计文件中明确,具体操作如下:(1)黏土砖等级要求不低于MU10,同时控制好砌筑砂浆强度与等级,不呢低于M5;(2)混凝土抗震与强度等级均使用一级框架梁、柱与节点,要求不能低于C30,芯柱、基础与圈梁不应低于C30,其他构件不能低于C20;(3)混凝土小型砌块强度控制在MU7.5,要求砌筑砂浆强度在M7.5以上;(4)控制好钢筋强度,要求纵向钢筋使用Ⅱ、Ⅲ级变形钢筋,箍筋为Ⅰ、Ⅱ热轧钢筋,构造柱与芯柱使用Ⅰ、Ⅱ级钢筋。进行钢筋混凝土结构施工时,由于实际设计中缺少规定的钢筋型号,使用其他规格型号的替代时,不能使用屈服强度较高的钢筋替代原始钢筋。实际替换中可结合截面实际屈服强度合理换算,并要求替代后构建曲面屈服强度不能超过原截面屈服强度。此种操作的主要目的是减少了薄弱部位转移,避免了混凝土脆性损坏,如剪切破坏或混凝土压碎等问题。

5.结语

建筑结构抗震设计时一项较系统的工程,改变以计算为中心的传统设计、评估与校核,实现了设计者多年经验与设计规范的结合,避免了盲目开展计算工作,对抗震设计创造了独特的发展空间,并真实展现了结构的实时情况,进而科学合理的进行抗震设计。

作者:柴梅卿 单位:国家林业局西北林业调查规划设计院

参考文献

[1]张松林.浅谈建筑结构抗震概念设计的进展[J].江苏建筑,2015,(04).

[2]黄传刚.浅谈房屋建筑中结构抗震概念设计的运用分析[J].科技创业家,2014,(07).

篇6

我国是一个地震灾害比较严重的国家。随着科学技术的不断发展,我国的建筑结构抗震设计的方法随着结构试验、结构分析、地震学以及动力学的发展也在不断的进步,在不断学习国外经验的基础上,我国的震害调查、强震观察的方法在不断的成熟。但是,如何从我国的社会发展和地震环境的实际情况出发来提高建筑结构抗震性能,从而保持建筑物更加合理经济、安全可靠,是结构抗震设计中的一项重要的任务。

1 建筑结构抗震设计中的问题

1.1 选择建筑抗震场地的问题

如果施工的条件相同,不同工程地质条件下的建筑物在地震时会受到明显不同的破坏程度。所以,选择一个好的建筑场地是提高建筑物抗震性能的重要基础,在场地选择的过程中,要降低地震灾害,尽可能地避开工程地质不良的抗震场地(比如河岸、边坡边缘、高耸孤立的山丘、非岩质陡坡、湿陷性黄土区域、液化土区域),选择有利的建筑场地(比如中等风化、微风化的基岩,不含水的粘土层,密实的砂土层)。如果实在无法当避开不利区域的话,应该在场地采取抗震加强措施,应根据抗震设防类别、湿陷性黄土等级、地基液化,来采取措施提高地基的刚度和整体稳定性。比如,如果建筑地基的受力层范围处在严重不均匀土层、软弱粘性土层、新近填土时,要合理估计计算地基在地震时形成的不均匀沉降,从而采取加强上部结构和基础的处理措施或者加固地基、桩基的措施来加强地基的承

载力。

1.2 选取房屋结构抗震机制的问题

1.2.1 房屋结构机制应有科学恰当的强度与刚度,能够有力地规避房屋结构由于突然变化或者个别位置减弱构成薄弱位置,引发太大的应力聚集或者塑性产生变化聚集;对于或许形成的脆弱位置,应采用提升抗震水平的手段。

1.2.2 在房屋架构机制中应设计有科学的地震功能传送通道与确定清楚的核算简图。另外,设置纵向房屋构件时,应尽量保持在垂直重力负荷作用下纵向房屋构件的压应力多少平均;设置楼层盖梁机制时,尽量保证垂直重力负载能够通过距离最小的途径传送到纵向构件墙或者柱子上;设置转换架构机制时,尽量保证从上面架构纵向构件传过来的垂直重力负载能够通过转换层完成再次转换。

1.2.3 在选取房屋架构机制时,应重视防止由于一些构件或者架构的损坏而让总体房屋架构失去对重力负载的承受性能与抗震性能。房屋架构抗震设置的基本准则是架构应该具备内力再次分摊作用、优秀的变形性能、一定的赘余度等。进而在地震出现时,一些构件即便出现问题,其他构件仍然可以承载纵向负载,提升房屋架构的总体抗震稳固性。

1.3 房屋架构平面设置的规则性与对称性问题

房屋的平面与立体的设置应遵照抗震理论基本设置准则,通常运用规则的房屋架构设置方案。依照房屋结构抗震设置规范的标准,对平面不规则或纵向不规则,或者两者均不规则的房屋架构,应运用空间架构的核算模式;对楼板部分区域连接不畅或者表面凹凸不成规律时,应运用相对应的贴合楼层强度刚度变动的模型;脆弱位置应当注重相对应的内力加大系数,而且依照规范标准来对弹塑性形状改变加以剖析,脆弱位置应采用抗震构造手段。

在房屋架构的抗震中,对称性是不容忽视的。对称性包含房屋平面的对称、品质分布的对称及房屋架构抗侧刚度的对称三个部分。保证这三个方面的对称中心为同样的位置是最优的抗震设置方案。国内的房屋结构中,架构的对称性通常指的是抗侧力主要架构的对称。对称的房屋架构有框架架构、简体框架架构等。

房屋架构的规则性体现在以下四点:

1.3.1 在平面设置房屋抗侧力的主要架构时,应当保证周围结构与中心的刚度与强度平均分布,让房屋的主要架构维持较强的强度与抗扭刚度,很大程度上防止了房屋在风力较大或者地震的扭矩影响下而产生很大的形状改变造成非架构构件与架构构件的损坏。

1.3.2 在平面设置房屋抗侧力的主要架构时,还应当重视保证同一主轴方向的所有抗侧力架构刚度与强度位于平均形态。

1.3.3 建筑结构的抗侧力主体结构沿着构成变化和竖向断面也要保持均匀,避免出现突变。

1.3.4 建筑结构的抗侧力主体结构的两个主轴方向也要有比较接近的强度和刚度,还要有比较相近的变形特性。

总体来说,在建筑结构抗震设计中,一定要对建筑平、立面布置的规则性加以重视,在实际的工程中还应该对建筑结构抗震设计的规范规定给予高度的重视。

2 提高建筑结构抗震能力的改良方案

(1)对地震外力能量的吸收传递途径进行恰当合理的布局,保证支墙、梁、柱的轴线处于同一平面,形成一个构件双向抗侧力结构体系。在地震作用下构件呈现出弯剪性破坏,有效地使建筑结构的整体抗震能力得到提高。

(2)要按照抗震等级来对梁、柱、墙的节点采取抗震构造措施,保证在地震作用下建筑物结构可以达到三个水准的设防标准。按照“强节点弱构件”、“强剪弱弯”、“强柱弱梁”的原则,来合理选择柱截面的尺寸,注意构造配筋要求,控制柱的轴压比,确保结构在地震作用下具有足够的延性和承载力。

(3)进行多道抗震防线的设置。在一个抗震结构体系中,在地震作用下一部分延性好的构件可以担负起第一道抗震防线的作用,而在第一道抗震防线屈服后其他构件才逐次形成第二、第三或更多道抗震防线,有效提高建筑结构的抗震安全性。各地区要根据所处区域的地质特征,提高抗震设防标准。

(4)在可能发生破坏性比较强的地震区域,建设、地震、科技等部门要对建筑技术规范进行严格的规定,从施工保障、材料选用、规划设计、建房选址等方面来加强监督检查和技术指导,保证建筑设施能够符合抗震设防的基本要求。

(5)根据地震地区本身建筑物的特点来积极引用抗震减灾新材料、新工艺、新技术,并且借鉴发达国家的技术和经验,将其推广应用到建筑抗震设计中。

(6)建筑结构抗震设计的管理者以及实施者也对建筑的抗震能力起到很大的作用。所以,必须提高抗震设计工作人员的整体素质,提升整个建筑的抗震工程

质量。

3 结语

经过多年来对建筑结构中抗震设计的研究,我国的抗震设计方法已经逐渐趋于成熟,但是还有许多需要完善的地方。我们要在严格按照建筑抗震规范要求的基础上上,科学地合理地进行建筑抗震设计,保证建筑物的稳定性和可靠性,促进我国建筑结构抗震设计向着高水平方向发展。

参考文献

[1] 方小丹,魏琏.关于建筑结构抗震设计若干问题的讨论[J].建筑结构学报,2011,(12).

篇7

[1]刘烽锋.对建筑结构设计中的思路优化探讨[J].建筑工程技术与设计,2015,(9):497-497.

[2]周宏伟.刍议房屋结构设计中建筑结构设计优化方法的应用[J].四川水泥,2014,(12):283-283,286.

[3]周宏伟.刍议房屋结构设计中建筑结构设计优化方法的应用[J].四川水泥,2014,(12):313-314.

[4]周翱.房屋结构设计中建筑结构设计优化方法的应用探讨[J].建筑工程技术与设计,2014,(22):710-710.

[5]梁辉辉,杨鑫.刍议房屋结构设计中建筑结构设计优化方法的应用[J].建筑工程技术与设计,2015,(14):390-390.

[6]伍后胜,庞宇.建筑结构设计优化技术在房屋结构设计中的实际应用[J].房地产导刊,2014,(18):114-114.

[7]朴洪立.建筑结构设计中优化方法研究[J].民营科技,2014,(7):145.

[8]刘立伟.建筑结构设计优化方法在房屋结构设计中的应用探究[J].商品与质量·理论研究,2014,(7):208-208.

建筑结构论文参考文献:

[1]张世廉,董勇,潘承仕.建筑安全管理[M].2005

[2]陈肇元,土建结构工程与耐久性[M].2003

[3]杨云峰.浅谈建筑结构抗震概念设计[j].科技创新导报.2009(11)

[4]王建军.土建结构工程的安全性与耐久性[N].伊犁日报(汉),2006

[5]董心德,叶丹,张永平,蔡世连.复杂高层建筑结构基于性能的抗震设计概念[j].中国产业.2010(12)

建筑结构论文参考文献:

[1]建筑抗震设计规范(GB50011-2001)

[2]混凝土结构设计规范(GB50010-2002)

[3]建筑结构杂志

[4]高层建筑结构概念设计

篇8

一、前言

建筑行业是我国重要的经济增长行业之一,关系到居民的切身利益。我国是多地震国家,但我国目前对地震的预防能力较弱,地震给我国带来了及其巨大的灾害,因此,加强建筑设计中的抗震设计,是进一步保障我国居民生命财产安全的重要措施之一。目前我国高层混凝土建筑应用的范围越来越广泛,其综合性和高集成性都使得高层建筑的抗震设计需要更为明确的重视,加强对高层混凝土建筑抗震设计,已经十分的迫切。

二、高层混凝土建筑结构中抗震设计的现状和存在的问题

高层混凝土建筑是经济发展的产物,高层建筑结构的设计尤其是在抗震结构设计上,我国虽然引进了一些西方欧美抗震设计理念,但缺乏符合本国实际的理论技术创新。很大方面存在着缺陷,主要表现在以下几个方面。

1.高层混凝土建筑在结构防震设计中缺乏科学规范的理论指导,缺乏实际经验的积累;而且我国对地质地震的认识尚不够完善,对地震的成因,预测,防治研究不够深入。因此,在进行高层建筑结构抗震设计时候,缺乏一定的科学依据,或依据的是不完善的理论。因此,难以在高层建筑结构设计中完美融合防震设计理念。

2.高层混凝土建筑结构设计中,设计立足于固定参数,而忽视了实际情况,设计完全依据“计算设计”完成。而且将一定的地震或力学参数做出固定的规范,比如,在我国地震设计研究中,把地震的降级系数统一规定为2.81,将小震赋予固定统计意义。而小震多用于结构设计中,结构截面承载能力设计和变形的检验计算,需要依据一定的实际情况而行。双向板内力计算时,查用《建筑结构静力计算手册》的内力系数时,其泊松比取值为0。 而钢筋混凝土材料的泊松比取值为1/6, 这在设计板时往往容易被忽略,在计算跨中弯矩时,未考虑引入泊松比后的计算公式,导致内力计算结果错误。

3,没有能够深入研究地震对建筑结构破坏的层次和顺序,难以做到重视主体的设计且兼顾细节问题。没有能根据实际情况灵活变通的运用抗震设计准则。

三、高层混凝土建筑结构抗震设计的方案

1. 高层混凝土建筑结构设计要从建筑的全局出发,全面考虑各种建筑部位的功能,在此基础上,科学设计每个部分的构件,保证每个部件之间的契合,促使每个部件或者是若干部件组合起来可以完成某一特定的设计要求,满足一定的现实需求,同时,通过抗震设计,使得每个构件都可以具有相应的承载力,当地震来袭时,每个构件都可以有着一定的先后破坏次序,整体组合构件将会有着更强大的承载力和柔性,从而延缓地震破坏的速度,消耗爆发的能量。增强建筑的整体抗震能力。

2.地基设计是进行建筑结构设计的基础,因此,在房间结构抗震设计中,要科学避开山嘴,山包,陡坡,河流等不利因素,要本着坚硬,牢固,平坦,开阔的选址原则。亲身实地,利用先进技术设备,进行地质勘探,山石水土监测,并取样论证,科学严谨分析。力求使得整个地基牢固可靠,地质稳定无渗漏,无坍塌,无暗河,无熔岩,无火山等,从而保证整个地基不会因为承载力不均,而发生小范围的坍塌,影响到整体承载能力和抗震能力设计。

3. 高层混凝土建筑物的动力性能基本上取决于其建筑布局和结构布置。建筑布局简单合理,结构布置符合抗震原则,通过无数次的实验表明,简单、规则、对称的建筑结构抗震能力强,对延缓地震烈度范围延伸,消耗地震的能量,减少地震对整体结构的破坏,而且,对称结构容易准确计算其地震反应。

4.抗震结构体系是抗震设计应考虑的关键问题。如果按结构材料分类,目前主要应用的结构体系有砌体结构、钢结构、钢筋混凝土结构、钢-混凝土结构;若是按结构形式分类,目前常见的有框架结构、剪力墙结构、框架剪力墙结构、筒体结构。高层建筑结构抗震设计中,不同结构的抗震结构体系的承载力受到抗震设防烈度、建筑高度、场地条件以及建筑材料、施工条件、经济条件等多种条件的影响,因此高层建筑结构抗震设计要综合考虑,做到科学选择,严谨设计。

5.结构良好的延性有助于减小地震作用,吸收与耗散地震能量,避免结构倒塌。因此,结构设计应力求避免构件的剪切破坏,争取更多的构件实现弯曲破坏。始终遵循“强柱弱梁,强剪弱弯、强节点、弱锚固”原则。构件的破坏和退出工作,使整个结构从一种稳定体系过渡到另外一种稳定体系,致使结构的周期发生变化,以避免地震卓越周期长时间持续作用引起的共振效应。

6.在高层建筑结构抗震设计中,一般而言,要尤其注意其是由诸多构件共同组合在一起,因此,要进行整体化的对待。要充分调动各个构件的作用来完成整体建筑的抗震效果。当高层建筑的一些基本构件都失去了原有功能的时候,那么,在地震来临后,很容易让整体的建筑结构丧失对地震的抵抗能力。在这种情况下,很容易让整个高层建筑坍塌,因此,要保证所有构件的功能协调,并确保所有的构件都能够在地震作用下保证良好的性能,如此,可以增强建筑结构的整体抗震能力。

7.设计高层混凝土建筑和超高层建筑时,屋顶建筑抗震设计也是整个设计的一个重要环节。近几十年来,从多数高层建筑抗震设计评定结果看,屋顶建筑设计还存在一些问题,例如:屋顶设计较高或者设计过重。屋顶设计较高或者设计过重,无形当中加大了屋顶建筑变形,而且也加大地震作用,尤其对自身和屋顶之下的建筑物的抗震作用都不利。有时屋顶建筑的重心和屋顶之下的中心不在同一直线上,如果屋顶的抗侧力墙和屋顶之下的抗侧力墙出现间断,在地震发生时,带来的地震扭转作用也会更严重,对抗震更不利。所以,在进行屋顶建筑设计过程中时,应该最大限度的降低屋顶建筑的高度。选用强度较高、轻质、刚度均匀的材料,使得地震作用传递不受阻碍;屋顶重心和屋顶之下的建筑中心在同一直线上;如果屋顶建筑非常高,屋顶建筑就必须具有较强的抗震性,让屋顶建筑地震作用和突变降低到最小,尽量避免发生扭转效应。

四、结束语

随着我国经济的发展和人民生活水平的提高,在目前的发展趋势中,高层建筑结构设计的主流趋势有低碳,环保,安全,节能,生态。其中指标之一,就是建筑的安全性,而我国目前破坏力最大的安全威胁便是地震,因此,加强对高层建筑结构的抗震设计,必将会被提升到建筑设计新的战略高度。要科学合理的设计好房间结构,增强抗震能力,设计人员不仅要大力提升自己的力学,建筑学,设计学等各方面的专业知识和制图技能,更要培养严谨缜密的态度,深刻理解设计规范,深刻了解建筑结构中的每个构件,做好每个构件,从整体构思,不断提高设计水平和设计质量,提升建筑结构的质量,为完美实现建筑的实用价值和美学价值的融合做出贡献。

参考文献:

[1]宫彩红,才永杰 试析高层混凝土建筑抗震结构设计[期刊论文] 《城市建设理论研究(电子版)》 -2012年9期-

篇9

1 荷载作用方式

相同点:两者均为偶然荷载,均为动荷载,设计时均按一次作用考虑。不同点:人防结构构件如果暴露于空气中则直接承受空气冲击波的作用,如果埋于土中直接承受土中压缩波的作用,因此人防荷载对结构构件外表面的是直接作用,其动荷载直接作用于构件,其作用为外力;而地震动荷载则是由于地震时地面运动引起的动态作用,其实质是惯性力,是间接的作用。建筑物的所有构件(只要有质量)均会由于地震动而存在惯性力。人防动荷载一般是直接作用于人防地下室外表面的构件,一般可按同时作用于围护结构考虑,而人防地下室内部的墙柱等构件只间接承受围护构件及上部结构传来的动荷载。

2 荷载的大小

人防动荷载(即常规武器或核武器爆炸动荷载)其冲击波压力是随时间变化的,为方便设计计算《人防规范》将它简化成等效静荷载,它只代表作用效果的等效,等效静荷载并不是实际作用的力,但它方便了设计计算可以用静力分析的模式进行内力计算;设计时等效静荷载的大小的确定主要与设防抗力等级有关。

地震作用大小首先与震级、烈度、震源深度、建筑物离震源的距离等有关。其次与建筑物的质量大小、建筑物所处的场地条件及土质、及建筑物的动力特性(如自振周期、振型、阻尼等)有关。

3 设计方法:

抗震设计方法通常为“三水准、二阶段”的设计方法,设防目标为“小震不坏,中震可修,大震不倒”。为实现设防目标取小震下地震动参数计算结构弹性下的地震作用效应,进行截面承载力验算。第二阶段是大震下的结构弹塑性变形验算。并通过概念设计和抗震构造措施来满第三水准的设计要求。

人防结构设计的动力分析一般采用等效静荷载法:由于在动荷载作用下,结构构件振型与相应静荷载作用下挠曲线很相近,且动荷载作用下结构构件的破坏规律与相应静荷载作用下破坏规律基本一致,所以在动力分析时,可将结构构件简化为单自由度体系,用动力系数乘以动荷载峰值得到等效静荷载,这时结构构件在等效静荷载作用下的各项内力就是动荷载作用下相应内力的最大值。按等效静荷载分析计算的模式代替动力分析,给防空地下室结构设计带来很大方便。采用等效静荷载分析时,为满足抗力要求,结构材料参数应乘以材料强度综合调整系数。最后结构构件在动荷载作用下的变形极限用允许延性比[β]来控制。按允许延性比进行弹塑性工作阶段的防空地下室,即可认为满足防护和密闭要求。 转贴于

4 设计原则:

人防设计与抗震结构设计的设计原则一样:

4.1 结构应尽可能有足够的延性,避免脆性破坏,钢筋砼结构构件均应采取“强柱弱梁”“强剪弱弯”的设计原则。

4.2 各结构构件抗力相协调的原则,避免出现薄弱部位。防空地下室的结构,应充分考虑各部位作用荷载值不同,破坏形态不同以及安全储备不同等因素,保证在规定的动荷载作用下,结构各部位(如出入口和主体结构)都能正常地工作,防止由于存在个别薄弱环节致使整个结构抗力明显降低。如果某个部位失效,将导致整个人防区失效。同样抗震设计也十分强调避免出现薄弱环节(如薄弱层,软弱层等),因为大震时薄弱层或软弱层出失效将导致建筑物倒塌,产生严重后果。

5 提高延性的设计构造措施

核武器与常规武器爆炸均属于偶然性荷载,具有量值大,作用时间短且不断衰减的特点,结构构件承受动荷载时已经处于弹塑性工作阶段,因此,结构构件具有较大的延性,对吸收动能,抵抗动荷载是十分有利的。人防结构设计时,构造上应采取“强剪弱弯” “强柱弱梁”“强节点弱杆件”的设计原则。如可充分利用受弯构件和大偏心受压构件的变形吸收武器爆炸动荷载作用的能量,以减轻支座截面的抗剪与柱子抗压的负担,确保结构在屈服前不出现剪切破坏和屈服后有足够的延性,最终形成塑性破坏,提高结构的整体承载能力;又如受弯构件应双面配筋,对承受动荷载作用下可能的回弹和防止在大挠度情况下构件坍塌十分重要,另外在节点区应有足够的抗剪、抗压能力和足够的钢筋锚固长度。上述这些措施和抗震设计的原则是一致的。

篇10

1.问题产生

随着房地产市场由粗犷型向集约型方向的发展,业主对工程造价的重视程度大为提高,甚至超越了建筑专业功能、外观等苛刻要求。论文格式。工程设计造价的高低成为承接工程设计的先决条件,因此根据建筑功能选择结构受力特性良好、经济性能优越的结构体系方案,成为结构设计人员必须面对的课题。

所谓小高层住宅,通常是指十一层加跃层(2006住宅设计规范规定十一层)以下的高层住宅。对结构设计来说有如下可行的结构体系方案:剪力墙结构、框架剪力墙结构、短肢剪力墙结构、异型柱框架剪力墙结构。本文结合实际工程,对以上四种结构形式的受力分析,经济造价进行综合比较,为类似工程的设计,提供了值得借鉴的有益经验。

以某位于沿海地区大型城市,地下一层、地上11层小高层住宅为例,高度35米,设计风荷载按C类地面粗糙度,基本风压0.5KN/m2设计,抗震设防烈度为七度第一组,设计基本地震加速度值0.1g,建筑抗震类别为乙类,结构安全等级为二级, 建筑场地土类别为II类,设计使用年限为50年。

2.各结构体系受力性能

2.1 剪力墙结构:

剪力墙结构通常是指布置的墙体其剪力墙肢肢长和肢厚比大于8的结构,特点是整体性能好,侧向刚度大,水平力下侧向位移小,并且由于没有梁柱等外露与凸出,便于房间布置。是一种传统、成熟、受力性能良好的结构形式,其缺点是结构墙体相对多、刚度和自重较大,一段时间以来应用减少。随着2002新规范的应用,该结构又显示出无穷的生命力。现在小高层住宅剪力墙结构,不再是以往大面积的墙体布置,而是紧扣规范条文,适当控制墙肢肢长和肢厚比的限值,使之稍微大于8,从而减少结构刚度和地震力,避开高规对短肢剪力墙结构近乎苛刻的限值,达到减少造价的目的。

2.2 框架剪力墙结构:

是指由普通框架柱和一般剪力墙共同组成的一种结构形式,由框架和剪力墙共同承担竖向和水平荷载,它结合框架和剪力墙受力的优点,又能获得较大空间房屋,但是由于现在建筑平面布置的灵活性,框架布置非常复杂,很难形成规则的受力体系,并且随着房间布局的变化,容易产生柱楞和凸出的大梁,影响外观和使用功能,同时由于多次受力转换,降低梁板受力性能,增加了结构造价。论文格式。因此除特别规则住宅建筑采用外,目前小高层住宅设计中较少采用。

2.3 短肢剪力墙结构:

短肢剪力墙结构是十多年前由南方沿海发展开来的一种结构形式,为避免剪力墙结构刚度太大的缺点,适当减少墙体长度,使剪力墙墙体肢长和肢厚比取5~8倍。在设计之初,由于没有明确国家规范,设计理论、计算方法和构造措施均参照剪力墙结构设计进行,因此设计随意性较大,不够科学严谨。在2002年新修订的高层建筑混凝土结构规程(JGJ3-2002)才明确了具体设计方法。由于该结构在地震区经验不多,为安全起见,对这种结构设计的最大适用高度、使用范围、抗震等级、一般剪力墙承受的地震倾覆力矩、墙肢厚度、轴压比、截面剪力设计值、纵向钢筋配筋率都作了非常严格规定。尤其是高规7.1.2.2规定:抗震设计时,筒体和一般剪力墙承担的第一振型底部地震倾覆力矩不宜小于结构总底部地震倾覆力矩的50%;高规7.1.2.3规定:短肢剪力墙的抗震等级比一般剪力墙提高一级采用;高规7.1.2.4规定:短肢剪力墙轴压比提高0.1到0.2;高规7.1.2.5规定:短肢剪力墙根据抗震等级不同,剪力设计值乘以1.4和1.2增大系数;高规7.1.2.6规定:短肢剪力墙全部纵向钢筋配筋率对底部加强区不宜小于1.2%,其它部位不宜小于1.0%;高规7.1.2.7规定:墙肢厚度不应小于200。一系列规范条文的限制,使结构造价直线提高,因此此类结构形式在小高层住宅中的运用迅速减少。论文格式。

2.4 异型柱框架剪力墙结构:

异型柱框架剪力墙结构,是由天津市异型柱规程(DB29-16-98)和广东省异型柱规程(DBJ/T15-15-95)等地方规程发展起来的新型结构形式,墙体肢高和肢厚比不大于4,柱肢受力特性复杂,由于该结构形式抗震性能存在很多争议,过去由于一直没有得到国家规程承认,在很多地方因需通过超限审查而受到限值。经过近几年不懈试验研究,终于通过国家抗震规范审查,今年八月一日正是以国家规程(JGJ149-2006)的形式生效,从而使结构设计人员有了可靠权威的设计依据。对这种结构形式,规程对其最大适用高度、使用范围、抗震等级、一般剪力墙承受的地震倾覆力矩、墙肢厚度、轴压比、截面剪力设计值、纵向钢筋配筋率、体积配箍率等也都作了严格规定。同时由于结构断面较小,规范5.3.1强制条文规定应进行梁柱核心区受剪承载力计算。该结构是发展了框架剪力墙结构,同时避免了框剪结构适用性不好的缺点,受到业主和用户欢迎,但是必须明确,由于异型柱断面很小,梁柱节点核心区钢筋密集,施工振捣困难,从而使之力学性能和抗震性能受到削弱,需仔细进行核心区计算。这种结构形式是我国目前迎合中国经济还不是很富裕、渴望减少土建造价的国情的独创,随着综合国力的提高,其发展前景必然会受到一定限制。

各结构体系经济比较

篇11

Key words: concept design structure design application importance

中图分类号:TU318文献标识码:A文章编号:

一、概念设计的涵义

所谓的概念设计一般指不经数值计算,尤其在一些难以作出精确理性分析或在规范中难以规定的问题中,依据整体结构体系与分体系之间的力学关系、结构破坏机理、震害、试验现象和工程经验所获得的基本设计原则和设计思想,从整体的角度来确定建筑结构的总体布置和抗震细部措施的宏观控制。运用概念性近似估算方法,可以在建筑设计的方案阶段迅速、有效地对结构体系进行构思、比较与选择,易于手算。所得方案往往概念清晰、定性正确,避免后期设计阶段一些不必要的繁琐运算,具有较好的的经济可靠性能。同时,也是判断计算机内力分析输出数据可靠与否的主要依据。

对建筑物抗震来说,从宏观原则上进行评价、鉴别、选择等处理,再辅以必要的计算和构造措施。从而消除建筑物抗震的薄弱环节,以达到合理抗震设计的目的。也就是说概念设计是工程师运用思维和判断力,根据从大量震害经验得出的结构抗震原则,从宏观上确定结构设计中的基本问题。因此,工程师必须从主体上了解结构抗震特点,振动中结构的受力特征,抓住要点,突出主要矛盾,用正确的概念来指导概念设计,才会获得成功。由于概念设计包括的范围极广,因此不仅仅要分析总体方案确定的原则,还要顾及非材料的正确使用和关键部位的细部构造。但是首先和最重要的还是结构总体概念设计、材料选型和细部构造等问题,这些设计原则和结构概念中,较为重要的是结构总体设计。

二、概念设计的重要性

概念设计是展现先进设计思想的关键,一结构工程师的主要任务就是在特定的建筑空间中用整体的概念来完成结构总体方案的设计,并能有意识地处理构件与结构、结构与结构的关系。强调概念设计的重要,主要还因为现行的结构设计理论与计算理论存在许多缺陷或不可计算性,比如对混凝土结构设计,内力计算是基于弹性理论的计算方法,而截面设计却是基于塑性理论的极限状态设计方法,这一矛盾使计算结果与结构的实际受力状态差之甚远,为了弥补这类计算理论的缺陷,或者实现对实际存在的大量无法计算的结构构件的设计,都需要优秀的概念设计与结构措施来满足结构设计的目的。同时计算机结果的高精度特点,往往给结构设计人员带来对结构工作性能的误解,结构工程师只有加强结构概念的培养,才能比较客观、真实地理解结构的工作性能。概念设计之所以重要,还在于在方案设计阶段,初步设计过程是不能借助于计算机来实现的。

三、概念设计在结构设计中的应用

所谓的概念设计一般指不经数值计算,尤其在一些难以作出精确理性分析或在规范中难以规定的问题中,依据整体结构体系与分体系之间的力学关系、结构破坏机理、震害、试验现象和工程经验所获得的基本设计原则和设计思想,从整体的角度来确定建筑结构的总体布置和抗震细部措施的宏观控制。运用概念性近似估算方法,可以在建筑设计的方案阶段迅速、有效地对结构体系进行构思、比较与选择,易于手算。所得方案往往概念清晰、定性正确,避免后期设计阶段一些不必要的繁琐运算,具有较好的经济可靠性能。同时,也是判断计算机内力分析输出数据可靠与否的主要依据。

运用概念设计的思想,也使得结构设计的思路得到了拓宽。传统的结构计算理论的研究和结构设计似乎只关注如何提高结构抗力R,以至混凝土的等级越用越高,配筋量越来越大,造价越来越高。结构工程师往往只注意到不超过最大配筋率,结果肥梁、胖柱、深基础处处可见。以抗震设计为例,一般是根据初定的尺寸、砼等级算出结构的刚度,再由结构刚度算出地震力,然后算配筋。但是大家知道,结构刚度越大,地震作用效应越大,配筋越多,刚度越大,地震力就越强。这样为抵御地震而配的钢筋,增加了结构的刚度,反而使地震作用效应增强。其实,为什么不考虑降低作用效应S呢?目前在抗震设计中,隔震消能的研究就是一个很好的例子。隔震消能的一般作法是在基础与主体之间设柔性隔震层;加设消能支撑(类似于阻尼器的装置);有的在建筑物顶部装一个“反摆”,地震时它的位移方向与建筑物顶部的位移相反,从对建筑物的振动加大阻尼作用,降低加速度,减少建筑物的位移,来降低地震作用效应。合理设计可降低地震作用效应达60%,并提高屋内物品的安全性。这一研究在国内外正广泛地深入展开。在日本,研究成果已经广泛应用于实际工程中,取得良好的经济、适用效果。而我国由于经济、技术和人们认识的限制,在工程界还未被广泛地应用。

四、小结

随着社会经济的发展和人们生活水平的提高,对建筑结构设计也提出了更高的要求。发展先进计算理论,加强计算机的应用,加快新型高强、轻质、环保建材的研究与应用,使建筑结构设计更加安全、适用、可靠、经济是当务之急。其中,打破建筑结构设计中的墨守成规,充分发挥结构工程师的创新能力,是相当必要的。因为他们是结构设计革命的推动者和执行者。这则需要工程界和教育界进行共同的努力。推广概念设计思想是一种有效的办法。

著名的美国工程院院士林同炎教授在《结构概念和体系》一书中为结构工程师提供了广泛而又有独特见解的结构概念设计基础知识和设计实例。该书着重介绍用整体概念来规划结果总体方案的方法,以及结构总体系和个分体系尖的相互力学关系和简化近似设计方法。为结构工程师和建筑师在设计中创造性地相互配合,设计出令人满意的建筑奠定基础。这本书第二版的出版,为我们更好的加深概念设计的理解,提供有益的帮助。总之,概念设计必然会成为今后结构设计的主流思想,这就让我们来共同学习、发展它吧,为结构设计的发展作出应有的贡献。

参考文献:

[1]林同炎,S.D.思多台斯伯利.结构概念和体系.中国建筑工业出版社.

篇12

地震是一种随机振动,所以建筑结构设计人员为防止、减少地震给建筑造成的危害, 就需要分析研究建筑抗震问题不断总结工程经验,妥善处理这一工程问题。

一、实行建筑抗震设计规范,总结工程经验妥善处理工程问题:

(一)选择有利的抗震场地

地震造成建筑物的破坏, 除地震动直接引起的结构破坏外,场地条件也是一个重要的原因。地震引起的地表错动与地裂,地基土的小均匀沉陷, 滑坡和粉、砂土液化等。科技论文。因此,应选择对建筑抗震有利的地段, 应避开对抗震不利地段。当无法避开时, 应采取适当的抗震加强措施,应根据抗震设防类别、地基液化等级,分别采取加强地基和上部结构整体性和刚度、部分消除或全部消除地基液化沉陷的措施; 当地基主要受力层范围内存在软弱粘性土层、新近填土和严重不均匀土层时,应估计地震时地基不均匀沉降或其他不利影响, 采用桩基、地基加固和加强基础和上部结构的处理措施; 对于地震时可能导致滑移或地裂的场地,应采取相应的地基稳定措施。

(二)优化的平面和立面布置

关于建筑结构设计的平面与立体结构, 我们根据认为有以下几个方面可以参考:

1、结构的简单性。结构简单是指结构在地震作用下具有直接和明确的传力途径。只有结构简单,才能够对结构的计算模型、内力与位移分析, 限制薄弱部位的出现易于把握,因而对结构抗震性能的估计也比较可靠。

2、结构的刚度和抗震能力。水平地震作用是双向的,结构布置应使结构能抵抗任意方向的地震作用。通常, 可使结构沿平面上两个主轴方向具有足够的刚度和抗震能力, 结构的抗震能力则是结构强度及延性的综合反映。结构刚度的选择既要减少地震作用效应又要注意控制结构变形的增大, 过大的变形会产生重力二阶效应, 导致结构破坏、失稳。论文参考网。

3、结构的整体性。在高层建筑结构中,楼盖对于结构的整体性起到非常重要的作用,楼盖相当于水平隔板,它不仅聚集和传递惯性力到各个竖向抗侧力子结构, 而且要求这些子结构能协同承受地震作用, 特别是当竖向抗侧力子结构布置不均匀或布置复杂或抗侧力子结构水平变形特征不同时, 整个结构就要依靠楼盖使抗侧力子结构能协同工作。

(三)设置多道设防的抗震结构体系

多道抗震防线, 是指在一个抗震结构体系中, 一部分延性好的构件在地震作用下, 首先达到屈服, 充分发挥其吸收和耗散地震能量的作用, 即担负起第一道抗震防线的作用, 其他构件则在第一道抗震防线屈服后才依次屈服,从而形成第二、第三或更多道抗震防线, 这样的结构体系对保证结构的抗震安全性是非常有效的。同时底框建筑底层高度不宜太高, 应控制在4.5m 以下。高度加大, 底层刚度减小, 重心提高, 使框架柱的长细比增大, 更容易产生失稳现象。论文参考网。而且由于高度较大,很多建筑房间被业主一层改成了两层, 造成了较大的安全隐患。科技论文。宜具有合理的刚度和强度分布, 避免因局部削弱或突变形成薄弱部位.产生过大的应力集中或塑性变形集中;可能出现的薄弱部位, 应采取措施提高抗震能力。

(四)保证结构的延性抗震能力

合理选择了建筑结构后, 就需要通过抗震措施来保证结构确实具有所需的延性抗震能力,从而保证结构在中震、大震下实现抗震设防目标, 系统的抗震措施包括以下几个方面内容。强柱弱梁: 人为增大柱相对于梁的抗弯能力,使钢筋混凝土框架在大震下,梁端塑性铰出现较早,在达到最大非线性位移时塑性转动较大; 而柱端塑性铰出现较晚, 在达到最大非线性位移时塑性转动较小,甚至根本不出现塑性铰。从而保证框架具有一个较为稳定的塑性耗能机构和较大的塑性耗能能力。强剪弱弯: 剪切破坏基本上没有延性, 一旦某部位发生剪切破坏, 该部位就将彻底退出结构抗震能力, 对于柱端的剪切破坏还可能导致结构的局部或整体倒塌。因此可以人为增大柱端、梁端、节点的组合剪力值, 使结构能在大震下的交替非弹性变形中其任何构件都不会先发生剪切破坏。

(五)合理的建筑结构参数设计计算分析

对于复杂结构进行多遇地震作用下的内力和变形分析时, 应采用不少于两个不同的力学模型,目前主要有两种计算理论: 剪摩理论和主拉应力理论, 它们有各自的适用范围:砖砌体一般采用主拉应力理论,而砌块结构可采用剪摩理论。对计算机的计算结果, 应经分析判断确认其合理、有效后方可用于工程设计。结构计算控制的主要计算结果有结构的自振周期、位移、平动及扭转系数、层间刚度比、剪重比、有效质量系数等。另外, 地下室水平位移嵌固位置,转换层刚度是否满足要求等, 都要求有层刚度作为依据。复杂高层建筑抗震计算时,宜考虑平扭耦联计算结构的扭转效应, 振型数不应小于15,对多塔结构的振型数不应小手塔楼数的9 倍, 且计算振型数应使振型参与质量不小于总质量的90%。总之, 高层结构计算很难一次完成,应根据试算结果, 按上述要求多次调整,才能得到较为合理的计算结果,以保证建筑物的安全。

二、高层建筑抗震设计中经常出现的问题

(一)部分建筑物高度过高

按我国现行高层建筑混凝土结构技术规程规定,在一定设防烈度和一定结构型式下,钢筋混凝土高层建筑都有一个适宜的高度。在这个高度,抗震能力还是比较稳妥的,但是目前不少高层建筑超过了高度限制。在震力作用下,超高限建筑物的变形破坏性会发生很大的变化,建筑物的抗震能力下降,很多影响因素也发生变化,结构设计和工程预算的相应参数需要重新选取。

(二)地基的选取不合理

由于城市人口的增多和相对空间的缩小,不少建筑商忽略了这一问题,哪里商业空间大就在哪里建。高层建筑应选择位于开阔平坦地带的坚硬土场地或密实均匀中硬土场地,远离河岸,不应垮在两类土壤上,避开不利地形、不采用震陷土作天然地基,避免在断层、山崖、滑坡、地陷等抗震危险地段建造房屋。高层建筑的地基选取不恰当可能导致抗震能力差。

(三)材料的选用不科学,结构体系不合理

在地震多发区,采用何种建筑材料或结构体系较为合理应该得到人们的重视。由于我国建筑结构主要以钢筋混凝土核心筒为主,变形控制要以钢筋混凝土结构的位移限值为基准。但因其弯曲变形的侧移较大,靠刚度很小的钢框架协同工作减小侧移,不仅增大了钢结构的负担,而且效果不大,有时不得不加大混凝土的刚度或设置伸臂结构,形成加强层才能满足规范侧移限值。

(四)较低的抗震设防烈度

许多专家提出,现行的建筑结构设计安全度已不能适应国情的需要,建筑结构设计的安全度水平应该大幅度提高。我国现行抗震设防标准是比较低的,中震相当于在规定的设计基准期内超越概率为lO%的地震烈度,较低的抗震设防烈度放松了高层建筑的抗震要求。论文参考网。科技论文。

三、结语

篇13

一直以来,支撑和满足建筑空间嘴重要的一个体系就是建筑结构,结构设计它是一门非常具有学问的学科,随着科学技术不断发展,和新技术的不断进步,建筑结构设计也在不断地进步着。即便如此,它的基本原理却是一成不变的,因此,结构设计最根本的理论依据就非这些基本原理构莫属了。虽然我们并不会经常在工程师的图纸上看到这些基本原理,但是有一点我们不能否认,那就是始终指导与贯穿着结构设计全过程的正是这些基本原理。在实际操作之中, 因为不同的原因, 结构设计人员容易在砌体结构设计、屋面梁与配筋、高层建筑结构的设计等等环节出现一些问题,导致失误。主要问题有以下几点:

1 砌体结构的设计

1.1 多层砌体房屋的建筑局部尺寸都不能满足抗震要求,此部位没有设构造筋。国家有关条例规定,抗震设防烈度为6度、7度时,承重窗间墙最小宽度、承重外墙尽端至门窗洞边的最小距离、非承重外墙尽端至门窗洞边的最小距离、内墙阳角至门窗洞边的最小距离不应当小于lm。结构破坏最容易的地方就是这些局部部位,在这些部位不能满足要求的条件下,结构设计应采取一定的弥补措施,例如:采取加强的构造柱、增加横向配筋等措施。

1.2 房屋四角与其余部位构造柱采用一样的配筋。建筑抗震有关规定,房屋四角构造柱可适当加大配筋和截面。有些设计人员不论什么部位,都采用一样的设置,这种做法会导致各种柱体的作用得不到充分发挥,还会造成浪费。比如房屋外墙最容易损坏的部位就是它的四个角,在构造柱的设计上面,应当适当的加强。

1.3 砌体结构布置方式可以有几下分析:横墙共同承重的结构布置。对于空间较大的,设有沿进深方向的梁支承于纵墙上,就让纵墙来承担其重量。楼板沿纵向搁置, 就会形成横墙承担重量,横墙间距不入,一般就能满足抗震的需求,,同时纵墙因为存在轴压力,所以就提高了抗剪的能力。另一方案就是纵墙承重与横墙承重沿竖向交替布置,但是此种方案在实际操作中使用的并不多见。纵墙承重的结构布置方案,横墙间距大、数量小,并且轴压力较小,所以对抗震极其不利,纵墙多容易引起弯曲破坏所以在选用的时候要小心谨慎才是。混合承重结构布置的方式较为各异 ,,比如内框架砌体结构、底层框架砌体结构和局部框架砌体结构等等。此结构体系由两种结构体系组成,弹性模量以及动力性能两种,这两个组成部分相差较大,所以抗震结构形式并不是很好。但它能满足建筑使用的要求。使用空间也很大。总之,选择哪种砌体结构是抗震结构设计中的关键环节,应当从抗震的概念设计出发,综合建筑使用功能、技术、经济和施工等方面来正确选择。

2 屋面梁和配筋

2.1 屋面梁配筋太少。结构建模时,设计人员为了方便,屋面梁直接使用和层梁一样的尺寸。因为屋面梁荷载很小,计算结果配筋很少,因此屋面梁在温度变化、混凝土收缩和受力等作用下因配筋率过低导致裂缝宽度较大。

2.2 受扭屋面梁缺少必要的腰筋。对于一般的梁,为了保持钢筋骨架的刚度,同时为了承受温度和收缩应力及防止梁腹出现过大的裂缝,一般构造措施为梁腹板高度大于450mm时加设腰筋,它的间距要小于200mm,然后拉筋勾连。对于受扭构件有关条例的规定,其纵向受力钢筋的间距应小于200mm与梁截面短边长度。对于设置悬挑檐口的屋面梁,在结构设计中误等同一般梁,未按受扭构件设计配筋。

2.3 楼层平面刚度。一些设计在缺乏基本的结构观念以及结构布置缺乏必要措施的时候,采用楼板变形的计算程序。即使程序的编程在数学力学模型上是成立的,甚至是准确无误的,可是在确定楼板变形程度上却很难做得非常精确。首先计算的大前提都做不到“精确”,就更不要指望其结果会“正确”了。据此进行的结构设计肯定存在着结构不安全成分或者结构某些部位或构件安全储备过大等现象。为了使程序的计算结果基本上反映结构的真实受力状况而不会导致根本性的误差,设计时就要尽量将楼层设计成刚性楼面。

3 高层建筑结构的设计

在高层建筑结构设计中, 高层建筑结构平面和立面形式的选择,要让建筑的三心,即几何形心、刚度中心和结构重心尽量汇于一点,也就是三心合一。加入在结构设计中不能做到这一点,那么就会产生扭转问题。扭转问题就是结构在水平荷载作用下发生的扭转振动效应。 它在风载等水平荷载载荷情况下会对结构产生危害,为避免由此产生的危害,就要求在结构设计的同时,选择合理的结构形式以及平面布局,尽量地让建筑物达到三心合一的效果,因此在选择的时候,平面以及立面形式是极其关键的。高层建筑的平面一般要采用简单、规则和对称的形状,而至于非常复杂的平面形式,是要尽量避免使用的,以往震害的资料表明,高层建筑物容易造成震害的主要原因就在于。平面布置不对称、过多的外凸和内凹等复杂形式。在高层结构的抗震设计中,结构体系的选择、布置和构造措施比软件的计算结果是否精确更能影响结构的安全,不仅要考虑结构安全因素,而且要综合考虑建筑美观、结构合理和便于施工以及工程造价等多方面因素。资料及力学分析表明,在不对称结构中,结构在凹凸拐角等处容易造成应力集中,因此会带来破坏,在实际应用中应尽量避免。至于完全对称的结构,也应注意凸出部分的尺寸比例。对于凸出部分过长的,结构设计中就应采取相应的补救措施。结构的竖向布置要尽力做到刚度均匀并连续,避免结构的刚度突变及出现软弱层。刚度突变和软弱层的出现一般都是由于切断剪力墙造成的,如果在结构设计中要求一定要切断少数剪力墙时,其他剪力墙在该切断层处就要必须加强。总之,标新立异的平面和立面设计是以结构的抗震及安全性能为代价的。

4 总结

建筑结构设计的推动者和执行者就是结构工程师。因此。想要让建筑结构设计更加可靠、经济、安全、适用,就必须充分发挥结构工程师的突破能力。这就需要工程界和教育界直接共同配合。不但要加强计算机的应用,加快新型高强、轻质、环保建材的研究应用,还要推广概念设计思想。相信在我们的共同努力与配合下,我们的设计水平一定会有很大的提高。

参考文献

[1]高长远,马文明,付丽丽等,.结构设计的新思路《大科技》2009年。

[2]刘连江,牛莉,高层结构设计的主要问题 ,《城市建设》2007年。