引论:我们为您整理了13篇桩基础技术论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
篇1
2.1桩基础技术应用的分析在建筑工程的施工中,桩基础的选择对于确保建筑工程的施工质量具有重要的作用。桩基础的选择面依据建筑环境的变化而变化,确定桩基础的类型需要遵循下列的原则:一是依据土层条件因地制宜。在建筑工程桩基础的施工中,需要考虑土壤的成分、桩端持力层的深度以及地下水的水位等因素,这些因素影响着桩基础的施工质量,因此具体的施工中依据各种桩基础的结构和技术指标来选择合适的桩基础类型。二是基础荷载量的有效控制。基础荷载量是影响单桩的承载力的最主要因素,因此在建筑工程桩基础的施工前需要对建筑上层和基础荷载量进行详细的计算,并且设计出合适的桩基础。三是工程进度的控制。建筑工程的进度是影响建筑工程质量的重要因素,在建筑工程的施工中需要采取措施准确的把握工程的施工进度。如果施工的工期比较短,采用施工速度快的静压力桩的方法进行施工。如果施工的工期比较长,可以利用应用范围比较广泛的人工挖孔桩进行施工。
2.2桩基础技术施工的质量控制桩基础工程是建筑工程重要的部分,桩基础的质量关系到建筑工程整体的质量。桩基础的施工工序复杂,对施工工艺的要求逐渐的提高。在桩基础的施工中出现一些质量问题。例如桩基础的倾斜角比较大、桩位偏差、单桩的承载力低于设计要求值等问题。针对这些问题,建筑施工中需要采取一些提高质量的措施:一是补桩法和纠偏法。补桩法可以利用承台以及地下室的结构承载静压力桩的施工的反力,这样的措施操作简单,而且能够确保施工的质量。纠偏法适用于桩体发生倾斜而没有断裂的情况下,可以利用局部开挖之后使用千斤顶进行纠偏复位。二是扩大承台的方法。在建筑工程桩基础的施工中如果出现桩基础承台平面尺寸不够的情况,就需要扩大桩基础承台的面积。如果设计中单桩的承载力达不到设计的要求,需要考虑桩基础和地荃共同的分担荷载。
篇2
桩基础在重要的建筑和高层建筑物的建造中的应用比较广泛,下面主要介绍常用的桩基础进行分析,从而提高桩基础的施工技术。首先是人孔挖孔桩基础施工。该施工方式纯粹是由人力来进行的,它的主要特征是操作简单、花费少、承载力弱、工作量大等,所以在小型建筑的施工中应用广泛。其次是静力压桩施工法。在人口密集处或者是高层建筑中进行施工时要尽量减小对环境的影响,而静压力桩施工技术正好能解决这一问题,施工时低噪音、低冲击力,所以在这类建筑的施工中有着普遍的应用。静压力桩基础属于预制桩施工技术的一种,其工作原理是借助静力压桩机及桩架上的重力对预制桩产生压力,进而将预制桩压进土中。使用这种方式进行工作时可能会毁坏土层的结构,所以要尽量连续完成,以提高工程整体质量。再次是预制桩的施工。这种方法一般在高层建筑中使用,它的强度很高并且原料利用率高。开展工作时是借助沉桩机械将预制桩压进土层内部,施工期间要特别重视预制桩底部的高度和方向,万一方向不够准确,则会影响沉桩工作的顺利进行。施工中要把握好各桩之间的间隔,避免因锤击力太大而使桩基础附近的土壤结构发生形变。最后是灌注桩的施工。使用这种方式进行施工时多采用冲击法和沉管法。前者在土质较松软的地方适用,且操作工艺简捷,不过要做好防坍塌的处理,可后者会将周围的土体挤压致变形。施工期间,不但要保证混凝土浇筑的高质量,还要科学的把握管桩的入土深度,才能有利于桩基础的长期使用。
3建筑工程施工中桩基础技术应用的要点
桩基是建筑的根本,在建筑工程中必须重视桩基的建造,以保证整个建筑工程的顺利完成,并确保建造结构的稳定性与牢固性。在建筑工程土建施工中,桩基施工技术的运用十分广泛,并对整个建筑的质量产生最直接的影响,桩基检测技术的运用,则为保证施工质量起到了至关重要的监测作用。建筑工程施工中常见桩基础技术应用如下:
3.1桩基础技术应用分析
进行建筑工程的施工时,必须要认真选择桩基础,这样才能保证整体工程的质量。在确定桩基础时要结合实际的建筑环境,选择最适宜的桩基础,一般需要符合下列三个关键点:首先是要符合土体的实际状况。进行桩基础的施工时,必须综合考虑土壤种类、桩端持力层深度、地下水状况等众多因素,这对于桩基础的质量有着很大的影响,所以在施工期间必须要结合桩基础的结构等确定最适宜的桩基础类别;其次是基础荷载量的有效控制。基础荷载量是影响单桩的承载力的最主要因素,因此在建筑工程桩基础的施工前需要对建筑上层和基础等进行精确的有关荷载量的计算,还要设计最符合实际状况的桩基础;最后是要把握好工程进度。实际施工进度对建筑工程的整体质量有着很大的影响,所以在施工过程中必须制定科学的方案来控制好施工进度。若工程的建设周期不长,就可以使用施工速度较快的静压力桩施工方式来完成工作,但是在工期相对较长时,就可以使用普遍使用的人工挖孔桩技术来完成工作。
3.2桩基础技术施工的质量控制
现代的建筑工程施工中,采取桩基础,既节省了施工工期,又保证了工程质量,并取得了相应的经济效益和社会效益。随着现代科学技术的发展桩的种类和桩基形式、施工工艺和设备以及桩基理论和设计方法,都有了很大的演进。桩基已成为在土质不良地区修建各种建筑物特别是高层建筑、重型厂房和具有特殊要求的构筑物所广泛采用的基础形式。现今的建筑工程施工中,桩基础技术是一项重要的施工内容,其施工质量也和建筑整体工程的质量有着密切的联系。桩基础的施工具有较高的难度,所以我们必须不断提高桩基础施工的工艺。但在实际施工期间依然不可避免的会出现许多质量方面的问题,如斜角过大、桩位位移、单桩承载力差等。对于这些问题,在施工期间必须制定高效的解决措施:(1)补桩法、纠偏法。前者是借助承台和地下室结构来承担静压力装所造成的反力,它的优势是施工简便,还能更好地保障工程质量。若桩体出现了一定的倾斜却未断裂就要使用纠偏法来进行施工,一般要在完成局部开挖后用千斤顶完成纠偏及复位;(2)增大承台面积。进行建筑工程的桩基础施工时,可能会遇到平台面积过小的状况,这时就需要采取措施来增大基础承台的面积。若工作中单桩的承载力无法满足相关需求,还要将荷载分散到桩基础和地基上。
篇3
1.2溶洞地质勘探情况
前期勘探发现主桥区域有溶洞发育情况,部分桩基探出有3~4层溶洞,其多为填充或半充填溶洞(半充填溶洞中多为流~软塑状的粘性土或含泥粉细砂充填),其中过渡墩(42#墩)、辅助墩(43#墩)位置处尤为明显。对42#墩、43#墩的地质勘探报告发现:部分桩基探出有3~4层溶洞,其多为填充或半充填溶洞(半充填溶洞中多为流~软塑状的粘性土或含泥粉细砂充填)。(1)43#墩的3#、4#、5#、7#、8#、9#孔有溶洞,见洞率为33.3%,多为填充半填充溶洞。其中43-5#探明有一个7.8米的大溶洞,溶洞无填充物,这给施工带来极大的困难。(2)42#墩的1#、3#、7#、10#孔有溶洞,见洞率为40%,多为半填充及填充溶洞。
2工程预处理方案
根据地勘报告,42#墩、43#墩共有10个溶洞。大部分为1m~3m的有填充物的中型溶洞,另有一个7.8m的无填充物的大溶洞,部分溶洞如42-3#、42-5#有多层的珠串式类型的溶洞。根据不同的溶洞类型以及地质情况,我们分别制订了不同的处理方案。
2.1抛填片石粘土筑壁法
该方法适用于溶洞内无充填或半充填且溶洞高度不大(一般在3m以内)时的情况。当存在严重漏水,护筒内水头高度不能保持时,可采用片石、粘土回填冲击(0.5~0.8m小冲程),使回填物充分密实,将漏浆处堵住后再使用小冲程继续钻进,形成人工泥石护壁。如此反复多次回填片石、粘土,反复冲击直至形成泥石护壁并不再漏浆为止,此法具有成熟的工艺流程。
2.2注浆固结法
先用正常方法冲孔,若出现泥浆面出现明显下降的情况,则迅速抛填片石、砂(碎)石和整包的水泥包,并及时补浆。然后用小冲程冲击钻机将片石挤压到溶洞外边形成外护壁,在片石空隙初步堵塞后,停止冲击。水泥浆液通过渗透作业板结固化砂、砾石等填充物,通过劈裂、挤密作用加固粘土填充物,对于半填充溶洞的空间,浆液通过充填作用填满溶洞。注浆固结法处理目的是为了加固填充物和填满溶洞空间并达到一定强度,防止钻孔施工时泥浆流失、流砂及坍孔等情况的发生。待浆液中水泥强度达到2.5MPa后即可用冲击钻冲击成孔,顺利穿过溶洞。
3方案对比研究及实施
3.1方案比选
根据后续补堪情况和实际钻孔的经验,在处理中小型溶洞和融隙时抛填片石粘土筑壁法和注浆固结法效率高,费用低,施工方便易操作。而对于其中7.8m深度的大溶洞我们拟选择灌注C10砼填充预处理法。
3.2方案实施要点
(1)考虑到回旋钻操作麻烦,不能及时处理溶洞,拟采用JK-15型冲击钻机成孔,配备3.0m直径钻头。(2)在钻孔顺序的选择时,首先应选择未勘测出溶洞的孔位开钻,以最大程度地降低危险,并可有效的阻断各溶洞间的贯通。对于其中的特大型溶洞,应放在最后处理。另外为确保平台安全度汛,优先上游侧成桩。(3)在钻进中应时刻关注护筒内液面变化,防止钻进过程中碰到融隙发生漏浆塌孔的危险。一旦发现护筒内的浆液面下降,须迅速采取措施,补充浆液。现场配备两台60m3/h的给水泵,可随时为护筒内补充浆液。按照上述布置每小时可往孔内补浆120m3,冲击钻冲孔泥浆比重大,可同时往里面补水,即每小时补给量至少达到120m3,可防止泥浆面突然下降。(4)对于1~3m的中小型溶洞,拟采用抛填片石粘土筑壁法。岩中钻进时必须控制钻进速度,正常地段冲程控制在3m以内,在击破溶洞前50cm位置处,或处理溶洞时改用0.5~0.8m小冲程,防止卡钻。当相邻桩发现溶洞存在时(相邻桩基未处理),在同一标高位置放慢进尺,加强观察,防止溶洞贯穿。一旦溶洞击穿,须在第一时间往护筒内补浆,并根据实际情况抛填粘土和块石。由于事先在两个墩子的支栈桥上储备有充足的黄土、块石和水泥,并且起重设备履带吊、浮吊、装载机24小时待命。所有溶洞都得到了及时妥善的处理。
篇4
1 无垫铁安装与有垫铁安装的比较
一是有垫铁安装法:这种安装方法比较的传统,主要是将垫铁放置于设备底座同基础表面年,以便调整设备标高和水平,向基础传递设备重量和载荷,并且将一定的空隙留置于设备底面和基础平面之间,这样二次灌浆工序就可以顺利进行。但是这种方法存在着很多的去诶单,因为二次灌浆层只可以对垫铁进行保护,但是却无法承受低荷载,并且垫铁有着十分粗糙的表面,那么接触效果较差。垫铁效果有着不均匀的压力,那么就不容易维持基础和设备的安装精度。如果有动负荷产生于设备运行过程中,就会有永久性变形发生于垫铁中,影响到安装精度。
二是无垫铁安装法:目前,在机械设备安装领域内,已经开始广泛应用这种新型的安装技术。主要是利用斜铁器、千斤顶以及其他的工具来调整设备的水平和标高,之后利用混凝土来进行二次灌浆工序,完成了养护工作之后,拆除斜铁器、千斤顶等,并且补灌这部分空间。采用无垫铁安装技术,可以对有垫铁安装技术中存在的问题进行有效解决,并且还具有其他的优点,设备底座可以牢固的粘结基础,因此基础部门就有着较为均匀的受力,设备安装的稳定性也可以得到保证。
2 600MW汽轮发电机组无垫铁安装工艺
一是对混凝土的基础表面进行凿毛时,需要凿掉混凝土基础中的不稳定层,测量并校准汽轮机的中心高度和所凿基础的标高,保证所凿基础的稳固性,并严格控制其平均粗糙度,基本在20毫米左右。
二是要清理凿毛之后混凝土基础的表面,将灰尘、凿屑等清理干净。
三是在制作和安装灌浆模盒时,需要依据基架厚度、顶部设计标高以及基础混凝土凿毛后的标高来计算水泥垫块大致高度,在加工模盒时,将这些数据作为参考,并且要充分考虑基架的高度;结合汽轮机厂提供的水泥垫块分布图,合理定位基础混凝土表面的水泥垫块,按照所划定的位置来安装各个灌浆模盒,使用灰浆对模盒进行密封和固定,测量同侧基架首尾地脚螺栓的标高,做好标记,标记处用线连接起来以便统一调整模盒高度。使用双面胶粘贴基架和灌浆模盒之间的接触处,用角尺测量,确定双面胶需要粘贴的层数和高度,通常双面胶厚度达到4层左右。
四是在基架就位之前,需要认真清洗基架底面,同时将基架底部螺钉调整至最大高度。由于螺钉与混凝土是点接触,可能会使基架的调整受到影响,所以需要加工小垫块置放在混凝土和调整螺栓之间,以方便基架的找平工作。要用砂浆来固定垫块底部。
五是调整基架的标高及水平,在调整的过程中,可以使用水连通管、水准仪以及百分表等仪器仪表。其中,使用水准仪来测量基架的标高,使用合像水平仪来调整单块基架的水平,而基架同非基架间相对标高的找平工序则需要通过水连通管和百分表来配合完成。
六是要保养好混凝土基础面,因为混凝土基础有着较强的吸水性,因此在灌注灌浆料之前,需要对基础进行喷水保养,控制时间为一天左右,在养护期间,要保证其有足够的湿润度。另外,在灌浆料灌注前,要使用压缩空气和抹布去除掉混凝土基础表面的游离水,保证没有油、灰尘或者其他物质等粘附于模板以及螺栓孔中。
七是使用搅拌机来搅拌灌浆料。搅拌时,需要依据准备加入灌浆料的重量,然后利用量杯来量好需要加入的水,在提桶中加入百分之八十的水量,倒入灌浆料,进行充分的搅拌。在搅拌的过程中,向桶内加入剩余的水,经过九十秒的搅拌之后,灰浆就变得均匀和稳定。每隔30秒,就需要变换搅拌机的开关,这样可以将灰浆中的空气有效地排放出来。灰浆进行灌注时,首层灌注需要连续进行,要保证灌注灰浆的水平性。通常情况下,在首层灌注后的30分钟左右,再进行第二层灌注,一直到出口和浇筑口都溢出了灰浆为止。养护水泥灰浆时,需要严格控制它的温度和模板温度,同时在浇筑口和溢出口的灰浆上敷设一层塑料薄膜用以隔离空气。灌浆后第三天,可以拆除基架,结合相关养护要求,需要松开基架地脚螺栓螺母,再吊开基架。拆除基架之后,需要继续养护已经硬化的水泥垫块。
八是养护期满三天之后,就需要将模板给拆除掉;在模板拆除的过程中,利用铅锤对台班上表面及侧表面进行轻轻的敲击,台板松动之后,将台板和模板给移除掉,然后仔细清理灰浆垫块周围的无用灰浆,利用湿布来盖上垫块;将水分洒在垫块和基础上,促使其达到饱和状态,并且维持一周的湿润状态,在拆卸的过程中,不能够将外力施加到灌浆垫块上。另外,还需要做好灌浆层的检查工作,对灌浆层和基础表面的附着力进行检查,并且利用铅锤来进行锤击检查,如果有脱层或者粘结不良的问题存在于灌浆层和基础之间,那么就需要将灌浆层给凿掉,并且重新进行灌浆。其次是接触检查,利用锉刀或者角磨机来对垫块的锐边进行倒角,然后对台班和垫块的接触情况进行检查,一般在检查过程中,将涂红丹粉的方法应用过来,要控制接触面积在百分之八十以上,并且足够的均匀,如果有着太多的气泡,或者混凝土灌实程度不符合要求,那么就需要砸掉存在着缺陷的混凝土垫块,之后重新浇灌。
3 结语
通过上文的分析我们可以得知,随着时代的发展,如今已经开始广泛地将无垫铁安装技术应用到600MW汽轮发电机组安装中,这是因为其具有一系列的优势。在具体的实践过程中,需要严格依据相关的要求和规定来进行,控制每一个环节的质量,保证600MW汽轮发电机组的正常稳定运行。本文简要分析了600MW汽轮发电机组无垫铁安装技术,希望可以提供一些有价值的参考意见。
参考文献:
[1]朱瑞斌.柳州电厂2*200MW汽轮发电机组安装中无垫铁施工新工艺的应用[J].广西电力建设科技信息,2002(1).
篇5
某综合办公大楼建筑概况:共12层,框架结构,建筑总高度为41.40 m,建筑总面积17338 m2。该工程中央空调系统包括:冷冻站、空调风系统及空调水系统。
2 中央空调安装
整个空调工程的安装、工艺制作质量应符合《通风与空调工程施工质量验收规范》《建筑工程施工质量验收统一标准》的要求。各工序认真把关,各施工作业组应执行班组自检、互检、质检员专职检的“三检”制度,并做好记录。按其工艺流程为分体设计、整体规划,做到上不清,下不接,不经驻地监理验收签字(含隐蔽工程),不进行下道工序的施工。
安装完成后,系统调试是不可缺的一项工作。调试方案的制定,这是确保系统达到预定功能的关键,也是对系统安装结果的整体测试,调试之前应检查各系统的安装完成情况,如供电、供水、排水系统是否正常,阀门位置、方向启用是否正常,冲洗是否完成,有无管道敞El,排气塑料软管是否固定,调试使用的材料、工具、人员是否备齐,有无成品保护措施等,排除一切影响运行的不良状态。设备单机试运转及调试、系统无生产负荷下的联合试运转及调试、系统测定与调整三部分内容,应依次进行。设备单机试运转及调试必须逐台进行,试运转持续时间不少于规范所规定时间;系统测定与调整,包括通风机的风量、风压及转速测定,系统与风口的风量平衡,空调水系统压力、温度、流量测试,带冷(热)源的正常联合试运转不少于8h,通风系统的连续试运转时间不少于2h。
3 设计与安装常见问题及对策分析
在本工程设计与安装过程中,曾出现过图纸与实际不相符、管道太多无法安装等一系列现象,给安装带来了极大的不便,一定要严格遵循相关规范和设计要求。
3.1 空调设计
1)机房布置不合理。在布置机房设备时,既要考虑冷凝器、蒸发器检修空间,又要考虑主机操作人员观察仪表的视线,还要给运行人员提供隔声值班室。2)未考虑降声防噪措施。空调机运转时的噪声在选用空调机组时,应根据噪声标准规范选用机组。如选用的机组噪声超标,应考虑消声隔声措施。为防止主机与辅机发生共振,主机与辅机管道之间应装设减振器,避免主辅机共振。装设减振器既可延长设备使用寿命,同时又降低了运转噪声。对于多台机组来说,还应考虑安全保护措施,或在设计文件中提出多台机组运行的程序。3)负荷取值计算问题。《设计规范》规定,冬季供暖系统的热负荷应包括加热由门窗缝隙渗入室内的冷空气的耗热量,但有的工程在计算供暖热负荷时出入较大;《设计规范》对围护结构耗量计算各朝向修正率做了明确规定,北0%~10%,东、西0%~5%有悖于规范要求。4)设计图纸与计算书不一致。暖通空调设计,所有设备、管道、部件的选择均是通过计算确定的,从某种意义上讲,设计图纸即是计算书的体现,所以设计图纸与计算书应完全一致。但有的供暖设计,散热器数量、立管管径等设计图纸与计算书不一致,甚至差别相当大。计算完毕,绘制图纸时发现不合理之处,允许调整,但应有调整计算书或调整说明,使设计图纸与计算书最后统一起来。5)经济性比选。经济性比较是目前暖通空调方案比较中考虑最多的一个问题。在经济性比较时首先应注意比较基准必须一致。应采用相同的设计要求、使用情况、设备档次、能源价格、舒适状况、美观情况等基准条件进行比较,这样才能保证方案比较结果的科学性和合理性。如果对采用名牌设备和采用低档设备的方案进行经济性比较,显然是不合理的;如果不考虑舒适性的区别,对有新风供应和没有新风供应的方案进行经济性比较,显然不可能做出正确的选择;如果不考虑美观性和舒适性进行经济性比较,对集中式空调方案显然是不公平的。
3.2 空调安装
设备安装施工质量的好坏直接影响到设备的运行使用。如果在施工中,能加强施工人员的责任心,并提高施工人员的技术水平,问题是可以避免的。空调安装过程中,常常出现以下问题:1)各种管道交叉作业的处理不当。这是目前建筑工程上普遍出现的问题,许多设计施工图中各专业的设计管道定位尺寸、标高所注数据与实际施工脱节,甚至管道与结构、装修之间的矛盾时有发生,给管道安装和监理带来许多麻烦,造成管道安装施工困难。2)冷冻水管穿墙、穿楼板处设保温层。按规范要求,冷冻水管应连续保温,但实际施工时,在穿墙、穿楼板处未设保温或已保温但在堵墙洞时被破坏,导致冷冻水管局部暴露在空气中,产生冷凝水,形成尿墙、楼板积水等。一方面很不美观,另一方面浪费了大量冷量。3)空调机房新回风管未接至空调机组。由于新回风管未接至空调机组,导致新回风短路,运行工况不同于设计工况,空调机房为较强负压,房门启闭困难。4)与其他工种的配合不到位。在功能较全的建筑物里,吊顶的净空是有限的,而各专业工种的布管又是复杂的。如:暖通专业的送风管、回风管、新风管、排烟(风)管、供水管、回水管、冷凝水管等;给排水专业的生活给水管、排水管、污水管、喷淋管等;电气专业的强弱电桥架、母线槽、电线管等。现在许多暖通施工图上,设计师只给出了主要设备的定位尺寸,没有注明风管、水管的定位尺寸及标高。或者即使有尺寸,但与其他工种相冲突,因为有些图纸设计院根本就没有进行会签,给施工带来诸多不便。
3.3 对策分析
1)设计人员应加强对现行设计规范、规定、标准的学习,提高贯彻执行规范的自觉性。设计过程中缺乏多方案技术经济比较,随意性较大。空调设计应像建筑方案设计一样,进行多方案比较,作出合理的设计。2)在设计时,与建筑专业、结构专业配合设计。比如设备间的布置问题,应考虑到高层建筑一般在建筑的裙
篇6
1 电气安装工程中存在的技术问题
1.1 管线安装问题
1.1.1 线管的安装不符合标准
电线管埋在墙内的深度太浅,埋在墙体外的粉刷层中,造成墙面抹灰层顺管开裂。管口不齐,管口插入箱、盒体的长度不一致;弯曲半径太小,管子出现死弯、痛折、凹痕现象。
1.1.2 管内穿线不标准
在穿线前不戴护口帽就用穿线管穿线,导致绝缘层受到损伤;不同的回路在同一穿线管内或线管内导线过多,相、零、地导线混色。
1.1.3 导线连接不符合要求。
焊接时焊料不饱满,致使焊接的不结实;剥切绝缘层时使线芯损伤;未做过渡处理就让铜铝线连接;未用压线端子排就让多股导线连接。
1.2 元件安装问题
1.2.1 箱子体安装不符合要求
箱子体变形、移位,四周嵌缝不严;箱子安装标高不一致,箱盒体不整齐;盒内砂浆、杂物未清理干净。
1.2.2 电器安装不符合要求
花灯安装时吊链不平衡,引下的安装线没有编叉,出现上、下八字,成排灯具中心偏位、直线度偏差较大。
1.2.3 开关、插座安装不符合要求
线盒预埋在墙内太深,盒内留有杂物;插座安装不牢固,盒内导线余量不足,面板与墙体间有缝隙,面板有胶漆污染,不平直;暗开关。
2 电气安装工程技术问题预防解决措施
2.1 线管安装技术措施
首先,管口下锯垂直的同时,锯条要与下料管形成90°的角;锯完后用锉刀进行修整,以防毛刺划破线皮;其次,进入配电箱的电线管要平整,外露长度为3~5mm,吊顶内钢穿线管口和箱体必须用锁紧螺母来连接,且要焊接时候要跨接地线;再次,控制弯曲的电线管的半径不能小于管子外径的10倍,同时也控制扁度不大于该管直径的1/10;电线管煨弯时,要用弯管机或拗棒使弯曲处平整光滑,不出现有损伤的痕迹;最后,楼面敷设管应在楼板缝内,电线管埋入砖墙内,离其表面的距离不应小于20mm,管道敷设要“横平竖直”。
2.2 管内穿线技术措施
第一,必须在穿线前戴好穿线帽再进行穿线,如果没有也可以用塑料内护口代其使用,严禁划伤导线的绝缘层或降低其绝缘强度等行为。第二,不能穿在同一电线管内的是不同电压的导线,也不应穿在同一个穿线管内的是不同一个回路导线;在导线穿线时要注意电线管的空闲面积,一般导线截面积不应超过电线管孔内面积的40%。第三,管内穿线施工人员应该严格按照标准,分清相线、零线、接地保护的作用与色标的区分。
2.3 导线连接技术措施
首先,导线塑料绝缘层应使用专业的剥线钳进行剥切;剥刀刃要以斜角剥,切橡皮绝缘层。把线头拧紧牢固后,采用烫锡的方法把铜芯与铜芯线材相连;铝芯与铝芯线材相连接时,应把线拧紧后,用气焊加焊粉处理。其次,在施工过程中可以使用端子板来连接铜芯线与铝芯线,也可以使用螺旋压线帽压接,或者将铜烫锡之后再缠线连接。多股铝芯线与多股铜芯相连接时,可先将铜线烫锡后再用铝套管压接,也可以用铜、铝转换卡处理;多股铝芯线连接电器时,均采用铜铝过渡端子压接。最后,在施工过程中多股铜芯线和多股铝芯线一起进入配电箱连接时,均采用压鼻子,然后再与接线端子排连接。两股以上的接地保护线应采用压线鼻子后,再与接线端子相连接。
2.4 箱子体安装措施
(1)在安装箱子时,应该用水平仪调校水平这样才能平衡达到预期效果,保证安装高度的一致性。还应准确牢靠固定线盒。总之在完工时要保证安装箱子的高度误差控制在5mm之内。
(2)箱子开孔眼正常情况下在出厂时就已经机械开孔完毕,有时也送回生产厂家要求重新机械开孔,或订货时严格按照设计好的尺寸生产,禁止用电焊或气焊这样不规范的方法来切割。
(3)箱子安装在混凝土墙、柱内的时候,为了防止其变形和移位,可在箱子背面让主筋与加设的6个钢筋套子一起进行焊接定位。在砖砌体固定箱子时,需要用水把四周的砖砌体湿润后用M10水泥砂浆逐层嵌实。安装箱子罩面板前,要把墙面与箱子的四周用相同的腻子抹平,然后再安装箱子罩面板。
(4)先清理好箱子内的灰碴及杂物再穿线。如果发现防腐层有腐蚀现象,应该及时进行防腐处理。因为土建装修喷浆完会有许多要清理的物体,所以在穿好线之后,最好用临时箱子板遮挡,等完工后再拿掉箱子板,安装电器、灯具,这样可保证盒内干净免于再次打扫了。
2.5 电器安装措施
(1)大型吊灯在安装连接时应该先作好重力测试,就是其重量1.5倍的测试,应填吊装试验记录,存入档案。
(2)安装日光灯之前要对日光灯两吊链间距进行测量,安装圆木和吊盒时,使其间距尺寸与日光灯两吊链间距相等使之达到平行,且两根吊链长度要相等;日光灯导线要沿吊链编叉,防止导线受力。
(3)按照规范来施工,成排灯具安装的偏差应该不大于5 mm。因此,在施工过程中需要拉线定位,使灯具在纵向、横向、斜向及主体低水平均为一直线。
2.6 开关、插座安装措施
首先清理干净盒内的沙子等混杂物体再安装开关、插座,当预埋的线盒太深时,应加装一个线盒。另外,安装面板后饱满补缝,不允许留有缝隙,做好面板的清洁保护。
其次,插座安装不牢固,正常情况是固定螺母与螺丝之间空隙过大或者螺丝没有拧到位。如果间隙过大予以更换就可以了。
最后,插座、开关的导线应该留长一点,一般在100~150 mm左右;不要为了节约一点工料而影响整个工程的质量。
3 电气安装工程管理问题及对策
3.1 施工人员不够专业
施工人员不够专业与现代电气工程的要求有一定差距是建筑电气安装工程中比较突出的一个问题。在我国20世纪90年代以前,施工工程的电气质检人员大部分是由资格比较老的电工担任,他们虽然有比较丰富的实践经验,但也缺乏专业理论知识。在此同时质量检查的内容偏重于施工方面,缺乏对专业技术性内容的检查与施工图纸的设计要求的检查。
3.2 施工质量不过关
由于经济市场竞争激烈,生产厂家为了降低成本,降低了产品元件的质量,以致影响电气安装的质量并形成隐患,甚至酿成大祸,造成重大的经济损失。施工单位未经设计许可,擅自修改开关规格型号、导线截面、增加负荷等,往往使系统的选择性、可靠性降低,致使保护电器不动作或误动作,给用户的安全使用留下隐患。
3.3 应对策略
首先要培养专业化的人才,使其知识与技能兼顾。其次要施工管理专业化。在过去的检查方法中不断地进步运用现在的科学方法来严格规划检查方法,在保留过去对施工检查数据的同时,还应要求施工人员留下图纸的质量备份来进行检查,严格检查图纸的设计数据有没有可疑的问题,在此同时也需严格检查电气设备的产品质量.并制定相关设备进场的保管条例,严格执行。
篇7
随着高层建筑的兴起和持续发展,在高层建筑基础研究领域,随着城 市化程度不断进步,经济的发展,高层建筑越来越多。目前,超高层建筑基础设计在很多方面还不够完善,可谓是理论研究远远落后于工程实践。而针对超高层建筑基础设计工作的需要来看,对一些问题还需要深入的研究。工程现场实测和模型试验均已证明结构桩基础的地基反力,既不是直线型分布,也不符合弹性地基理论的计算结果。为此有必要开展对高层建筑结构桩基础的设计研究。
近来,虽然对结构桩基础进行了理论研究,但是对其工作机理认识还不够深刻,对桩土分担荷载,及其各部分的应力计算还需要深入分析研究。此外,对上部结构、基础与地基的共同作用问题的研究尚未进入工程实用阶段,特别是地震作用下的共同作用分析,现有的工程规范涉及很少。本论文重点对高层建筑结构桩基础的设计进行简化分析设计,以期从中能够找到合理可靠的简化结构桩基础设计方法,并以此和广大同行分享。
2 高层建筑结构桩基础设计与工程应用现状
目前实际工程中,很多桩基工程试桩设计与静载试验结果不相符。静载试验结果达不到设计要求,设计师通过调整设计参数,修改加密桩基设计图予以补救,这样静载试验结果超过设计要求太多,虽然安全性更易得到保证,但太保守的设计降低了经济效益。在建筑业这种情况是要进行优化的,超过设计太多需要进行二次试桩,项目建设周期也随之延长。如果设计师等静载试验结果出来再进行桩基施工图的设计,既影响整个设计的进度,也满足不了建设的需要。解决单桩静载试验结果与试桩设计偏差过大的问题,也就是怎样使试桩设计尽量接近单桩静载试验结果,又简便又精确地对单桩静载试验结果进行预估计是值得研究的。
在桩基工程实践中,应用最广的是在竖向荷载作用下的桩,竖向荷载作用下的桩土相互作用问题对桩基的设计和施工影响很大,因此,国内外的大量的研究工作者在这一领域里做了很多工作,提出了很多计算方法。但关于桩群向邻近土传递应力的机理,至今还有许多方面尚未弄清。
多年来,许多学者致力于“桩基础”理论和试验研究,得出了了众多的成果。但是由于问题本身的复杂性,桩基础受承台刚度、桩基承台连接条件、桩基体系传力机制及单桩和群桩工作形态差别等的影响,使其与一般的土一结构相互作用的问题大不相同,是岩土工程界目前尚未很好解决的难题。远未形成一套系统的理论和简便实际的计算方法。特别是在工程应用上,所进行的工作相对较少,有必要进行更加系统地分析研究。
3 高层建筑结构桩基础简化设计分析
高层建筑结构作用在基础上的荷载大,基础埋置深,一般设置地下室并常常有作为人防工程或地下停车库等要求,因此,基础工程的材料用量多、施工复杂且施工周期长,其技术经济指标对建筑总造价有很大影响。高层建筑的基础除极少数可直接建于坚硬的岩石上以外,一般采用钢筋混凝土片筏式基础、箱形基础或桩基础,而桩基础是高层建筑最常用的基础形式。桩基础具有承载力大、稳定性好、沉降量小且均匀等优点,还能承受一定的水平力和上拔力,承受动荷载的性能也较好。
就高层建筑物的上下部相互作用问题来讲,传统的设计计算理论所采用的许多假定使其在不同程度上回避了桩-土-结构间相互作用的全面分析。如:地基反力系数法把土体对桩的反力作用等复杂因素通过Winker假定,简化成单纯的反力系数作用于桩上,传统设计计算理论本质上都未彻底解决桩-土相互作用力学机制的分析问题。对于高层建筑物的相互作用分析,必须将结构-桩-土体系作为一个整体来考虑。显然用传统的设计计算理论来更贴切地分析这一实际问题还是有些困难的。就目前的分析手段来讲,有限元法是个前景较好的方法,除了有限元数值模型能够充分地考虑诸如:土体材料性质的空间差异性、力学响应的非线性,复杂的几何边界条件等,而且还能够通过适当的数值技术模拟工程施工过程,以及由此而带来的一些施工力学问题等各类复杂的耦合因素外,其思想和实现过程也都较为简单和统一,因此适于编程和电算,极大的简化了桩结构基础的计算设计工作量。
在设计方法上进行简化考虑,由于结构分析的有限元法(特别是子结构分析技术)的进展和计算手段的极大改善,在力求从理论上回答工程实践中提出的各种问题的艰苦努力过程中,逐步发展到了这个阶段。其主要特点是统一考虑上部结构、基础和地基三者的共同作用,以离散形式的特征函数――地基刚度矩阵[Ks]表征地基土支承体系的刚度贡献,运用空间子结构方法,将上部结构的刚度与荷载逐层向下凝聚到基础子结构的上部边界,形成全部上部结构的等效边界刚度矩阵[场]和等效边界荷载向量{SB}。将它们叠加到基础子结构上去,并根据基础与地基按触点静力平衡和位移协调条件,就可得到考虑三者共同作用的基本方程(并可反映根邻建筑的影响):
上式中:
[K]――基础子结构刚度矩阵;
[KB]――上部子结构的边界刚度矩阵;
[ ]――地基刚度矩阵;
{U}――基础子结构的位移列向量;
{Q}――基础子结构的荷载列向量;
{SB}―上部子结构的边界荷载向量;
{ }相邻建筑引起的沉降列向量。
求解该方程后得到基础子结构的节点位移{U},再从下向上逐层进行子结构回代即可得到上部结构各节点的位移,从而进一步给出所需节点处的内力。除采用子结构法外,对上部结构的刚度贡献先后作过许多简化考虑,提出不少简单可行的分析途径,它们与子结构有限元法相辅相成,例如弹性杆法、有效工作刚度法、加权残数法等,不过一般都将上部结构处理为平面结构。
4 结语
高层建筑已经成为当前建筑领域的发展趋势和发展潮流,如何面对高层建筑下的结构桩基础的受力分析和结构设计,是当前建筑工程技术人员重点解决的问题之一。本论文结合高层建筑的结构桩基础的受力特点,利用有限元的计算方法,对结构桩基础的设计计算进行了简化分析设计,对于进一步提高高层建筑结构桩基础的简化设计,实现有限元技术下的结构桩基础的受力计算应用,具有一定的指导意义,本论文的简化计算方法是值得推广的。
参考文献:
篇8
前言:混凝土钻孔灌注桩由于对各种地质条件的适应性、施工简单易操作且设备投入一般不是很大,因此在各类房屋及民用建筑中都得到了广泛的应用。钻孔灌注桩的施工大部分是在地下进行的,其施工过程无法观察,成桩后也不能进行开挖验收。所以在施工过程中任何一个环节出现问题,都将直接影响到整个工程的质量和进度。因此,加强混凝土灌注桩在施工阶段的质量控制和成桩后的质量验收,就变的尤为必要。
1.测量质量控制
建筑工程桩基础施工测量的主要任务有:①把设计总图上的建筑物基础桩位按设计和施工的要求,准确地测到拟建区地面上,为桩基础工程施工提供标志,作为按图施工、指导施工的依据;②进行桩基础施工监测;③在桩基础施工完成后,为检验施工质量和为地面建筑工程施工提供桩基础资料,需要进行桩基础竣工测量。
在进行质量控制时,应注意一下两点:
1)建筑物定位矩形网点需要埋设直径 8cm、 长35cm的大木桩,桩位既要便于作业,又要便于保存,并在木桩上钉小铁钉作为中心标志,对木桩要用水泥加固,在施工中要注意保护,使用前应进行检查。对于大型或较复杂、工期较长的工程应埋设顶部为 10cm ×10cm,底部为 12cm × 12cm,长为 80cm的水泥桩为长期控制点。
2)必须加强检查工作,对桩位测量放线图的所有计算数据,必须经第二个人进行 100%的检查,确认无误后才能到现场测设。在建筑物定位测量成果经检查满足要求后,才能测设建筑物桩位轴线进行建筑物的定位测量。
2.成孔质量的控制
在成孔的施工技术和施工质量控制方面应着重做好以下几项工作。
2.1确保桩身成孔垂直精度
这是灌注桩顺利施工的一个重要条件,否则钢筋笼和导管将无法沉放。为了保证成孔垂直精度满足设计要求,应采取扩大桩机支承面积使桩机稳固,经常校核钻架及钻杆的垂直度等措施,并于成孔后下放钢筋前作井径、井斜超声波测试。
2.2 进行严格钻进控制。
钻进时须严格控制泥浆的比重、粘度、砂率等指标。特别象本桥淤质砂层较厚的地层,控制适当的钻时速度,不可急进;并采用适当增大泥浆泵的单位小时循环量等措施,以减轻钻机钻进时的负荷。钻进时,泥浆比重可适当大点,泥浆池要设2~3级的沉淀池,使粉砂、 碎岩等物充分沉淀,并经常清理泥浆池,以保证泥浆具有良好的悬浮功能。在土层变化处应经常捞取碴样,判明土层,详细记录并和地质剖面图核对,及时反馈调整施工工艺。
2.3保证钢筋笼制作质量和吊放准确
钢筋笼制作前首先要检查钢材的质保资料,检查合格后再按设计和施工规范验收钢筋的规格、数量和制作质量。论文参考。在验收中还要特别注意钢筋笼吊环长度能否使钢筋准确地吊放在设计标高上,这是由于钢筋吊笼放后是暂时固定在钻架底梁上的,因,吊环长度是根据底梁标高的变化而改变,所以应根据底梁标高逐根复核吊环长度,以确保钢筋的埋入标高满足设计要求。同时,要注意钢筋笼能否顺利下放,沉放时不能碰撞孔壁;当吊放受阻时,不能加压强行下放,因为这将会造成坍孔、钢筋笼变形等现象,应停止吊放并寻找原因,如因钢筋笼没有垂直吊放而造成的,应提出后重新垂直吊放,如果是成孔偏斜而造成的,则要求进行复钻纠偏,并在重新验收成孔质量后再吊放钢筋笼。
2.4保证清孔质量
清孔的主要目的是清除孔底沉渣。论文参考。清孔是利用泥浆在流动时所具有的动能冲击桩孔底部的沉渣,使沉渣中的岩粒、砂粒等处于悬浮状态,再利用泥浆胶体的粘结力使悬浮着的沉渣随着泥浆的循环流动被带出桩孔,最终将桩孔内的沉渣清干净。灌注桩成孔至设计标高,应充分利用钻杆在原位进行第一次清孔,直到孔口返浆比重持续小于 1.10-1.20 ,测得孔底沉渣厚度小于50mm ,即抓紧吊放钢筋笼和沉放砼导管。由于孔内原土泥浆在吊放钢筋笼和沉放导管这段时间内使处于悬浮状态的沉渣再次沉到桩孔底部,最终不能被砼冲击反起而成为永久性沉渣,从而影响桩基工程的质量。因此,必须在砼灌注前利用导管进行第二次清孔。当孔口返浆比重及沉渣厚度均符合规范要求后,应立即进行水下砼的灌注工作。
3.成桩质量控制
混凝土灌注质量是影响成桩质量最重要的因素。
(1)在灌注前, 首先要严格检查验收进场原材料的质保书 (水泥出厂合格证、化验报告、砂石化验报告) 和配合比试验报告, 核对进场材料是否与抽检样品一致, 拌合及计量设备能否能正常工作,并根据理论配合比和现场实际情况计算施工配合比。其次,水下混凝土主要采用导管灌注,由于落差较大,很可能出现混凝土离析现象,但良好的混凝土配合比可降低离析程度。因此,配合比要随水泥品种、砂、石料规格及含水率的变化进行调整。在混凝土搅拌前复核配合比并严格计量和测试管理。为防止发生断桩、夹泥、堵管等现象,在混凝土灌注时应加强对混凝土搅拌时间和混凝土坍落度的控制。
(2) 在灌注过程中, 随时注意每米桩的混凝土用量,并对每根桩的用量进行记录, 以及时判断是否发生塌孔及缩孔, 并以此确定每段桩体的充盈系数,要求充盈系数 > 1。灌注混凝土应连续施工, 否则导管内产生气囊高压; 容易将两节导管间的封水橡皮垫挤出,致使接口漏空而进水。如果中断灌注超过半小时或确认发生塌孔、缩孔, 则必须立即采取补救措施或重新钻孔。每根桩至少应作混凝土试件一组, 以其28 d试压强度作为质量评定的依据。论文参考。
(3) 注意:在施工过程中,要控制好灌注工艺和操作方法。抽动导管的力度应适中,保证有序的拔管和连续灌注,升降幅度不能过大,否则容易造成混凝土冲刷孔壁,导致缩颈或坍落、桩身夹泥、夹砂。
4.工程验收阶段的成桩检测和质量评价
(1) 成桩检测: 包括桩位偏差、 桩身质量、桩的承载力检测等。可以采用超声无损检测法检测桩体质量,有未发现严重的缩颈、夹层和混凝土不密实等缺陷。桩的承载力检测包括静载试验、动力测试两项。规范要求:作静载试验的桩数不少于总桩数的 1% ,且不少于 3根;检验桩体竖向承载力的动力测试取桩总数的 10%~15%。
(2) 质量评价: 完工后应根据桩基施工过程记录、成桩检测及试块试验结果对施工质量做出评定质量结果。
结语
由于灌注桩基的特殊性和隐蔽性,施工人员要根据实际情况采取合理的施工组织设计和施工工艺,精心施工,加强管理,并充分考虑施工中可能出现的意外,提前提出质量控制和检验标准,施工过程中严格遵守和执行,同时充分重视工程验收阶段的检测结果,并认真分析总结,从而不断提高施工水平。
参考文献
[1] 李龙江.建筑工程桩基础施工测量的质量控制. 施工技术,2009,38(6):147-149。
[2] 余才勤.浅谈钻孔灌注桩基础施工及质量验收要点[J].中小企业管理与科技,2008,(6):145
[3] 张明,金畅.钻孔灌注桩的施工质量控制[J].长春工程学院学报 (自然科学版), 2005, 6(4):19-20
[4] 张会远,钟亚伟.钻孔灌注桩施工质量控制[J].路基工程,2007,3:145-147
篇9
中图分类号:TU761文献标识码: A 文章编号:
冲孔桩一般适用于工业和大小建筑中,一般在填土层、粘土层、粉土层、淤泥层、砂土层、碎石土层、岩溶地层、裂隙发育地层施工。冲孔桩桩孔直径一般为600~1500mm,而最大直径可达2500mm,冲孔桩的深度最大大约可达50m。
建筑工程离不开冲孔桩的施工作业,但在施工过程中也出现各种施工问题,由于地质不同、环境各异也影响着冲孔桩质量,例如;在岩溶地区冲孔桩施工难度较大,质量隐患出现的概率较高,岩溶地层难以控制极易出现卡钻、漏浆、塌孔、偏孔、斜桩、混凝土流失等问题。
一、冲孔桩基础
冲孔桩基础是由冲孔桩机下桩成孔后构成的一种常用的地基形式,由冲孔桩构成,在土建工程方面广泛用到,桩基础在工艺上可分为预制桩和冲孔桩灌注桩,是一种挤土挤石成孔的桩深埋入地下作为建筑地基、桥梁基座所用,可保证建筑物的牢稳性。在建筑工程中冲孔桩基础是重要环节。
二、岩溶地质的情况
岩溶地区地质形成主要由于在灰岩中碳酸钙类溶解于含有二氧化碳的水中,经过一系列水解、电离等化学反应,灰岩特质改变,形成独特的岩溶地貌。在熔岩地区易形成溶洞、也有地下暗河的交错、而且溶洞内的内充填物复杂,不易估测;也有一部分空溶洞,不利于冲孔桩操作。
三、冲孔桩的施工
1、冲孔桩施工前的桩位检测
施工前要严格按照静压管桩的定位轴线并参照图纸进行测量放线,确定桩位中心,确定桩位,在每个桩位打入小木桩,并测出桩位的实际标高,在场地外设2-3个水准点,便于日后检测。
2、施工的主要流程
冲孔桩位的测量、冲孔桩平台的的搭建、冲孔桩护筒的制作、桩位的复测检查、冲孔机钻进、检测冲孔桩孔的深度、冲孔钻头钻到终孔处、第一次清孔、检测孔底沉渣;制作钢筋笼、钢筋笼吊装焊接、吊放导管、第二次清理冲孔桩孔、检测冲孔桩孔中沉渣的厚度、检测泥浆比重、灌注混凝土、拔出冲孔桩护筒、检测成品。
3、在冲孔桩基础的施工控制技术
冲孔桩基础中在埋设护筒时,要采用外“十”字的方法,在施工时先挖好护筒坑,要把护筒坑的底面整理平整,再放入护筒并检查护筒的正确位置,用粘土填充护筒的周围,保证坚实牢固,在冲孔桩基础建造中要随时检测护筒的位置,防止护筒的偏位,在操作过程中护筒的偏移不得超过50mm。冲孔桩基础中要避免护筒及桩锤的不良工作状态,要调试好机位平衡,正常施工中冲孔桩核心的偏差要根据冲孔桩桩长定。
4、冲孔桩的成孔
在岩溶地区,要根据溶洞分布及成分类型,施工过程按照冲孔施工的先易后难、先短后长、先内后外的原则确定施工顺序,要避免同时下桩;在单护筒时要注意泥浆的护壁,及早把冲孔中的土石破碎或挤入孔壁中,最好用高压泥浆泵清除悬浮渣。
5、清洁冲孔
完孔后,用掏渣筒掏渣,之后投入水泥、泥浆、黄土混合物按比例反复掏渣,为使冲孔桩混凝土与孔壁岩体接触良好,在灌入混凝土之前要用高压泵冲水冲洗排除残渣。
6、钢筋笼的吊装
钢筋骨架需要现场制作,在接头数清后,起钻、用吊车吊放钢筋骨架,钢筋骨架在井口处分段焊接,焊接时注意,在同一截面不大于50%,钢筋骨架型号,安放位置必须测量准确。
7、注入混凝土
清空后,吊装钢筋笼,钢筋笼要分段装入孔中,钢筋笼的接口用搭接焊焊接;根据冲孔桩的深度计算扎入导管的节数,清除桩顶附着的泥浆。
8、砼浇灌桩施工
(1)砼浇筑前,首先检查桩孔内沉渣清理干净,要符合监理要求,检查浇筑砼的支架是符合格,在申请砼浇筑的批注。
(2)浇筑砼是要分段分层进行,砼要自由倾落高度不超过2m,浇筑高度若超过3m时必须采取措施,利用串桶或槽管等。浇筑混凝土应连续进行,在间歇时,间歇时间必需要短,必须在混凝土凝结时浇筑完毕。
(3)素砼桩地基检测应在桩身强度满足试验荷载条件时,再28天后检测。试验次数在总桩数的0.5-1%,每个单体工程时点数不少于3点。
五、冲孔桩常见问题
1、漏浆
冲孔桩过程中若出现冲孔钻的进入尺度突然加快并导致漏浆现象,可根据现象判断,施工过程遇到了溶洞、裂岩地区产生的沟壑、裂隙和空洞,极易架空,在溶洞地区,由于岩溶水侵蚀、机械的坍塌,造成近地水平方向延伸的洞穴。在这种多孔地区由于不明溶洞范围易发生漏浆,此时应减少冲孔桩的冲程,或者选择悬距慢慢穿过,在情况严重时,往孔中回填粘土块、碎石至桩位以上2~3米,再进行冲孔,使粘土或碎石挤进溶洞或土洞、裂缝处充当填充物做骨架。再根据冲孔桩基础中,在特殊岩层和环境地域中,在施工前要预先准备充足的泥浆,做好泥浆的回填工作,并在灌注的过程中向孔中投入粘土或碎石,来加强泥浆的浓度。
2、塌孔:在岩溶地区和流沙中要控制冲孔桩尺寸,要选用比重较大、优质的泥浆,避免碎石挤入冲孔壁中,也要控制好冲孔的高度;经常检查冲孔桩机的转向设备的灵活性能,应尽量选用浓度、粘度和比重较大的泥浆,适时掏渣、冲洗孔桩;在用低冲程时,要有时间间断的更换冲程,冲孔机保持在最佳的工作状态,有足够时间避免斜桩。,
3、偏孔
岩溶地带,遇到空洞,溶洞,不知内填充物时,要采用低冲程冲孔机,减缓冲击的频率;在发生斜桩时,应在冲孔中填充碎石纠正桩位,重新钻孔,再检测冲孔桩桩位,施工过程中,要经常检查冲孔桩机底座是否水平安装,是否存在不均匀的衡沉降现象,如存在应及时调整机位,在遇到孤石或块状石造成的偏位斜孔时,应及时填充优质量的粘土快、碎石块或碎砖块,将偏斜的孔径部分填平,根据冲孔桩基础中的要求改变冲孔机下钻速度,采用密击法调控,反复扫孔纠正。
五、卡钻
在施工中,在地貌处溶洞不知内填充物的情况下,流沙地区,没掌握好冲孔桩机下钻的速度,冲程较大或较小容易卡钻;在施工时桩锤遇见块石、沉渣也会出现卡钻现象,依据冲孔桩基础中,在此情况下:(1)应通过仪器检测核对出现的碎石来判断,该施工地的地质情况,一般先采用低冲程施钻,渐变为高冲程,在此过程中随时注意冲孔桩机的工作状态。
(2)再遇块石时,桩锤容易被施工过程中震下的块石卡住,在冲孔桩基础中必须用泥浆清孔,反复提拉钢丝绳,让桩锤保持松动,提起桩锤。如果桩锤无法提出,用冲孔桩基础中的水下爆破法解决,震动卡桩锤的地面使之松动取出桩锤。若桩锤被沉渣砂层埋住,冲孔桩基础中要利用导管把桩锤以上的沉渣砂层清理去,提出桩锤。
六、个人总结
在建筑过程中很好的掌握冲孔桩基础,有利于施工队伍在恶劣的地貌环境中施工减少施工过程出现的不利因素,更好更快的完成建筑工程。在建筑过程中,所面临重大问题莫过在岩溶地区施工,例如;我所在的广西壮族自治区属于喀斯特地貌是在其建筑过程中对施工质量最大的威胁,在冲孔桩基础中易出现漏浆、偏孔、卡钻等现象。在此篇论文中有关于在岩溶地区施工过程中出现的一些难题疑点;也阐述了对冲孔桩施工过程出现的漏浆、偏孔、斜桩等一系列问题的解决处理措施。
篇10
0 前言
随着科学技术的不断发展,带来了各方面工艺技术上的日趋成熟。交通运输行业,也是在不断的发展和进步当中。由于交通运输行业不断的发展,交通运输产业的不断的壮大与进步,使得铁路工程也逐步的发展,铁路建筑也越来越多,但是也相应的带来了很多的安全问题。由于建筑物的荷载在不断的加大,原有的软弱地基土等已经不能满足在安全稳定方面的需要,存在着一些严重的安全隐患。在现阶段,常用的是通过采用桩基础来完善铁路桥梁建筑。[1]但是考虑到铁路建设过程中需要通过河流、山谷等大型沟壑的时候,就需要设计桥梁与就近路基进行顺接,这样才能够满足铁路在运行等过程中自身承受的负荷要求与铁路桥梁质量寿命建设的要求。现阶段,我国的桥梁工程设计,最常用的桩基施工方法主要是陷入桩和钻孔灌注桩施工两个方面。下面就对我国铁路桥梁桩基础的施工工艺所存在的问题、解决措施和关于加强质量规范方面进行探讨。
1我国铁路桥梁桩基础的施工工艺常见的问题及对策分析
1.1对铁路桥梁桩桩底持力层所能承受的压力的估算与实际情况差距大
铁路桥梁桩在施工的过程中,常会在山谷、岩石、沟壑上作业,由于地层下的岩石较多,地质成分复杂,且岩石在不断的运动变化中,施工人员无法计算桩底持力层的承受能力限度,也无法进行精确的测量,因此,对铁路桥梁桩桩底持力层所能承受的压力无法进行预测,从而导致桥梁在施工过程中容易出现坍塌的现象。另外,由于地质勘察的局限性,地质勘探孔间距太大,部分孔深太浅,桩端的嵌岩深度不够,土工的取样程序不规范,常会出现实际的地层情况与地质勘察报告不符,从而对铁路桥梁桩桩底持力层所能承受的压力的估算不准确,给施工带来了难度和危险性。
针对上述问题,施工人员在平时的操作作业工应注意积累实际经验,注意观察地表岩石的变化,总结规律,还应当在满足桩的入岩深度时,应多次经过取样鉴定,满足施工的要求,经专家测评后,对桩底持力层所能承受的压力进行科学的估算。
1.2桩顶混凝土密度不够
在对铁路桥梁桩施工的过程中,由于施工人员施工操作的不规范性,造成施工过程中的过分离析或者泌水,导致混凝土密度不够;对于混凝土计量上的要求没有进行精确的计算,混凝土没有进行随拌随用,时间上也没有进行很好的把握;混凝土应进行随浇随捣,由于施工人员工作上的疏忽,出现漏倒或过捣的现象。另外导致混凝土密度不够的一个重要原因是,是对孔内混凝土面测试的不准,泥浆比重过小或者泥浆注入量不足。导管自重较轻,导管口的深度不大,以上在施工操作上的不规范都容易导致混凝土密度不够,严重时可能形成断桩的现象,从而导致整个工程的失败,危害到人民的生命财产安全,给国家造成经济上的损失。
对于解决上述问题,在灌注混凝土前,应进行水,水泥合理的比例分配,严格按照精确的数值进行分配。混凝土的浇筑要一气呵成,不可中断,时间上要有严格的要求。因此,对于解决混凝土密度不够的问题,应在材料上按照严格的比例分配,严格的时间分配,根据标准数值进行施工作业。
1.3钢筋笼制作的不规范
钢筋在弯制前必须要进行除锈处理。但是由于在钢筋绑扎和焊接的过程中,施工人员操作上的不规范,同一截面的接头数量超过了规定的数量要求。由于对钢筋笼初始位置的定位不准确,与孔口固定的不牢固,在绑扎过程中,工作人员操作不当,导致钢筋笼没有足够的稳定性,在混凝土浇注的过程中钢筋笼变形、移位,从而增添了工程的危险性,为工程施工埋下了不安全的因素。
针对这一问题,在钢筋绑扎和焊接的过程中应严格规范施工人员的操作,尽量避免操作的错误,还应在防止混凝土顶层进入钢筋笼是流动性变小,应随时掌握混凝土浇注的标高及导管埋深。从而降低钢筋笼的不稳定性。
2对铁路桥梁桩基础的施工工艺中关于加强质量规范方面的研究
2.1铁路桥梁桩基础的施工工艺中关于桩制作上的规范要求
铁路桥梁桩基础的施工工艺中,对于桩的制作要求严格,大多采用的是钢筋混凝土桩。钢筋混凝土桩由于承载力大,环境适应性强。因此在铁路桥梁桩的应用上十分的广泛。在设计这种钢筋混凝土桩的时候,考虑到交通运输以及其它一些方面的原因和规范设计等设计要求,需要将钢筋运输到施工现场,进行闪光对接焊,并且需要确保主筋受力在一条直线上,钢筋笼主筋和箍筋间距应该满足设计的要求,主筋与箍筋之间需要采用扎死或者电焊进行点焊,以确保连接的紧密性和牢固性。[2]在整个铁路桥梁施工中,混凝土的质量控制对工程施工的质量有着直接影响。对于每根桩基混凝土的要求,必须连续不间断的进行浇筑施工。在混凝土浇筑之前,搅拌站应该根据混凝土的配合比进行严格的配料监督,并且需要充分搅拌均匀,对于塌落度、含气量、入模温度等都需要达到要求后,才可以进行铁路桥梁桩的施工。当桩基浇筑完成后,应该对桩身同条件养护试块进行标识、编号,并且注明浇注日期、混凝土强度等级和试块编号等。在混凝土初凝之前,需要拆除钢护筒,当强度达到设计要求以后,才可以进行桩基完整性的检测,从而在确定桩基的完好无损的情况下,然后可以进行下道工序的施工。
生产钢管桩的材料需要符合设计的一些基本要求,并且还应该具备工厂质量证书和测试报告等相关资料的证明。同时,对于钢管桩的长度,还应该满足分段高度的有效桩架、地形条件、运输和承载力等一些特殊的要求。钢管桩的材料选择,可以是一些进口钢管和国产钢管。质量把关上一定要严格。对于焊管的生产技术,需要符合有关技术上的规定,焊接钢管桩应符合设计的基本要求,在生产的时候,还应该注意在焊接范围内对于生锈、耐油性、耐水性等相关指标进行硬性要求,同时进行各式各样的清洁等处理。[3]在进行焊接之前,需要保持一个干燥的环境。在进行焊接的时候,应该考虑到阳光照射而造成商务桩身弯曲等问题。当焊接完成之后,对于每一层,都要进行焊接检验,清除焊渣。一旦有钢管桩的位置坐落在河流中,还应该考虑高桩承台的底线问题,其最起码应该在冲刷面以上,同时进行必要的防腐处理。在防腐前,需要进行喷砂除锈的工作,直到具有金属光泽为止,当其表面没有锈点的时候,才能够进行除锈处理。对于在运输、吊装过程中的桩、防腐层破坏等问题应该及时进行修理。
2.2铁路桥梁桩基础的施工工艺中关于围堰定位的规范要求
对于铁路桥梁的施工规范要求,在各个方面都有明确的规定。对于吊箱围堰,必须进行准确的定位,对于其具体的数值也有明确的规定,围堰中心位置的偏差不得大于50mm。在实际的施工过程中,需要采用钢丝绳或者锚索等对围堰进行定位调整校准,以确保双壁仓库或泵水围堰相对垂直度处于一个可控制的范围内,可以采用后牵引锚绳对平面布局进行适当的调整,控制平面位置的误差等。[4]对于围堰的施工,应该在一个可测量的范围内进行,而且要考虑河流冲刷的作用力以及安全稳定性的严格要求,在立式活动范围内对其进行合理的控制。
2.3 铁路桥梁桩基础的施工工艺中对于护筒插打的规范要求
对于铁路桥梁桩基础的施工工艺的设计规范,在护筒插打方面也有明确的要求。为了确保钢管的安全位置以及围堰平面位置的准确性,钢管在其自身重力的作用下,把围堰定位桩联合支护,而且检查其直径、吊耳等各个方面的工作性能,同时进行超声波焊接检测检查。[5]一般在和手工焊接的位置处,采用测量仪器进行一边观察一边调整保护管的垂直度,进而采用连接环在围堰周围进行调整,一直到保护管处于一个平滑稳定的深度的时候,然后才可以进行下一道工序的施工。
2.4 铁路桥梁桩基础的施工工艺中对于钻孔的规范要求
对于铁路桥梁桩基础的施工工艺的设计规范,在钻孔方面也是有明确要求的。采用水准仪对桩基进行放样定位之后,才可以进行钻孔。一旦地质条件发生变化的时候,可以选取不同的钻头进行应急处理,同时要确保钻孔的垂直度要精准无误,可以多考虑减压钻头的使用情况。在钻井的过程当中,应该把握好“重锤定位、降低钻井”的基本原则,避免一味盲目的依靠提高钻井进入的压力进行。同时,在利用钻孔机进行开孔的时候,应该首先进行的是砂泵施工处理,一切正常后才可以进行打开钻头,继续其它的操作。在刚开始的时候,对于钻探的要求是要轻压、慢慢地进行钻孔的操作,当钻机工作趋于正常后,再逐渐的提高钻头速度与调整压力的大小,而且在进行操作的过程中,要确保咬口处不漏水,在钻井的过程中控制泥浆的比重,保持一个良好的稳定性。[6] 另外,在进行钻孔作业过程中,应经常对钻孔进行检查测试,在不符合作业要求时,应随时进行调整。应该注意地质地层的变化,并进行详细的记录,以应对地质的突发性变化。
2.5 铁路桥梁桩基础的施工工艺中关于对于清孔的规范要求
对于铁路桥梁桩基础的施工工艺的设计规范,在清孔方面也是有明确要求。当钻孔达到要求的深度之后,才能采用泥浆泵、掏渣工具进行清孔操作,清孔时一定要清的彻底,同时要保持孔内水头高度达到指标,避免塌孔现象的发生。有一点值得注意的是,为了方便,用加深孔深来代替清孔,这是极其不可取的,会给整个工程带来不安全的因素。[7]桩孔在吊入钢筋骨架之后,灌注水下混凝土之前,应再次检查孔内泥浆性能的指标和孔底沉渣的厚度,如果超过了相应的有关规定,应进行多次的清孔,孔底沉渣厚度不大于0.15D(D为桩基直径),泥浆比重控制在1.03~1.1之间,符合上述要求后,才能进行灌注水下混凝土作业。
2.6 铁路桥梁桩基础的施工工艺中对于成桩的规范要求
对于铁路桥梁桩基础的施工工艺的设计规范,在成桩方面也有明确的要求。铁路桥梁桩在施工的时候,一定要严格按照配比进行拌制砂浆,严格控制水泥和水的用量。一般具体操作如下:通常是先把水泥等进行搅拌,搅拌设备一定要用专用的砂浆搅拌机,并且搅拌一定要均匀。当搅拌过一段时间以后,加入60%比例的水,继续搅拌。同时,对于混凝土的搅拌时间和灌注的时间,二者的时间间隔不应该大于3小时。在搅拌的时候,可以适当的添加一些外加剂,是为了减小其初凝时间。[8]在浇筑的时候,应该主要注意的是,混凝土的浇筑需要连续的进行,不可以中断。在确定混凝土强度满足施工要求的情况下,应降低用水量和水泥的用量,从而降低混凝土的水分蒸发量和,以达到降低混凝土收缩的作用。[9]对于面对一些桩径很大或者是深桩基过深的情况的时候,应该采用多台搅拌机进行混凝土及时的搅拌,避免在等待过程中混凝土出现初凝的状况,发生断桩的现象。
3结束语
铁路桥梁在施工的过程中,常会有穿越河流,穿越山谷等情况,因此,在设计的时候,一般设计为大直径钢筋混凝土桥梁桩基础来平衡桥梁上部进行承载。其作用是为了承载其巨大的压力。铁路桥梁桩基础设计非常的重要,并且受到了高度的重视,因为这关系到人类的生命财产安全,关系到国家的铁路运输安全的问题。所以对于其质量的管理和施工质量的要求需要严格把关,并且进行反复的检验。[10]但是在设计的时候,由于难以了解到地质内部的具体情况,无法预测到地质变化的速度和成度。因此,在桥梁桩基施工的过程中,容易出现很多未知的问题和困难。并且在现阶段无法找到根本性的措施去解决,但是相信在未来科学的不断发展过程中,在人们不断的科技探索中,通过实践经验的积累与应用,对于铁路桥梁桩基础的施工工艺会有更进一步的完善,人类的生命财产安全也会得到进一步的改善。
【参考文献】
[1] 谢征勋,何志英.试论桩基础的可靠度[A].工程结构可靠性――中国土木工程学会桥梁及结构工程学会结构可靠度委员会全国第三届学术交流会议论文集[C].1992.
[2] 赵春风,严文彪,高大钊.钻孔灌注桩极限承载力的可靠性分析[A].中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会论文集[C],1999.
[3] 程文才. 广珠铁路岩溶地区桥梁桩基础施工技术[J]. 铁道勘察, 2012, (08):15 -16.
[4] 韩鹏, 王君杰, 黄勇, 等. 美国和日本桥梁桩基础抗震设计方法对比[C]. 低碳经济与土木工程科技创新――2011中国(北京)国际建筑科技大会论文集卷Ⅲ[Z], 2010.
[5] 赵永辉,刘桂玲.桥梁混凝土施工裂缝的产生原因及防治策略[J].科技促进发展(应用版),2010(08).
[6] 王子生.宁阳城区岩土工程地质及钻孔灌注桩的设计与应用研究[D].中国海洋大学,2005(03)
[7] 徐庆元.高速铁路桥上无缝线路纵向附加力三维有限元静力与动力分析研究[D].中南大学,2005.
篇11
我国的冻土分布为世界第三大冻土分布国家,有百分之二十的国土被冻土所覆盖,既有高纬度的多年冻土,也有季节性冻土。这些冻土地区的多会发生冻融和冻胀的冻害,因此,严重影响干寒区的工程施工与安全,是制约该地区经济发展的主要因素。钻孔桩基础是冻土地区主要的工程基础形式,它拥有桩定沉降位移小、承载能力高以及适应性强等优点,但是在冻土地区,仍旧会因为冻害的发生产生桩基不均匀下沉、整桩冻拔甚至拔断等情况,严重影响着工程的整体稳定与安全。因此如何选择桩基础成桩形式、如何确定桩基础抗冻拔承重稳定性成为了冻土地区工程设计的难点。因此,研究冻土地区的钻孔桩基础设计是很有实现意义的事。
一、冻土的特性
1.冻土的性质
冻土可以看做是由土颗粒、液态未冻水以及气体和粘塑性冰组成的温度敏感性土体,在冻土建设工程中,冻土一般会处于六种不同状态:冻结、融化、未冻结、已融化、正冻结、正融化。建设冻土地区工程的基础工作是要掌握和理解冻土的性质,一般来说,冻土的物理性质和状态可以用四个指标来衡量:冻土的总重量含水量、单位体积的土颗粒重和冻土重、冻土的未冻水含量。
2.冻胀特性
多年冻土地区的冻土发生冻胀的主要原因是冻土中的水分发生了冻结,以冰的形式来填充土颗粒间隙,是的体积产生膨胀致使土体冻胀。而季节性冻土一般则只会在冬季发生冻胀。尤其是当温度持续负温的时候,冻胀现象更为严重。影响冻胀的主要因素有:土中水分以及补给来源、土的粒度、外荷作用、冻结条件以及交换盐基。当桩基础与地基土发生冻胀的时候,二者会牢固的冻结在一起,地基土冻胀变形,为了克服桩基础的约束力,便会产生冻胀力。在切向、法向以及水平方向对桩基础产生力的影响,引起地桩基础的结构变形或者产生结构唯一。因此冻胀力分析是桩基础设计的指标之一。
二、冻土地区桩基础的分类与选择
冻土地区一般选用钻孔桩基础是因为钻孔桩基础横截面较小,在施工过程中对冻土的扰动面和破坏面小,上限下移不明显,对冻土本身的冻结状态干扰较小。但是根据冻土地区的自然气候环境、地质条件的不同,会选择不同形式的桩基础的构造形式。桩基础选择的主要依据是在充分考虑到冻土的融沉变形的时候,桩基础的变形是否在结构物的承受范围之内。钻孔桩基础可以分为三类,分别适应不同地质条件的冻土地基:钻孔插入桩基础、钻孔灌注桩基础、钻孔打入桩基础。
钻孔插入桩基础:这类桩基础适用于一般种类的冻土地基以及岩性地基,在施工中,对地基的热扰动小,因而地基回冻快,但是整体性能相对较低,承载能力低,不适应高水平负荷的桩,而且由于技术限制,目前建造的桩基直径长度有限。试用范围有一定的局限性。
钻孔灌注桩基础:这类桩基础适用于处于坚硬的冻结状态下的地基,它的有点在于制作方法简单,整体的承载能力比较强,并且能够节省材料,同时还不受地下水条件的限制,能够建造直径较大的桩,但缺点在于施工过程中,对地基的热扰动较大,因而地基回冻较为缓慢,施工效率低。
钻孔打入桩基础:这类桩基础主要适用于沙土类冻土地基,整体性能不错,承载负荷能力也不错,对地基的热扰动干扰最小,但是回冻时间因为地质的原因仍旧比较慢,并且容易发生沉桩困难的问题,同时因为其沉桩过程需要的设备比较复杂,因而设计师较少选用此类型桩。
在进行冻土地区桩基础设计的时候,应该考虑到各方面的因素,既要综合考虑冻胀作用与融陷作用给地基带来的破坏,还要考虑到冻土地基的实际自然条件以及地质区别,同时还要尽可能预先的设计好有效的防冻防破坏等防护措施,在这样的条件下,选择最适合最经济的桩基础设计,保证桩基础的建筑安全以及正常使用。
三、冻胀程度分析
根据冻土地基的冻胀特性,在冻胀过程中,冻土会对桩基础产生水平方向、法向、切向的冻胀力。在自然条件下,冻土地基的地质条件不尽相同,土壤中粘土含量、颗粒矿物成分不同使得不同冻土土体的冻胀情况不同。因此,在发生冻胀情况是,土体会产生不同方向和数值的冻胀力,目前对冻胀力的计算大都分为两部分:法向冻胀力与且切向冻胀力。冻土土体的法向冻胀力是沿着桩基础表面的法线方向,主要对桩基础的侧面和地面产生冻胀力作用。法向冻胀力的数值大小主要取决于冻土的性质以及土层的压缩性质。切向冻胀力是沿着冻土与桩基基础接触表面的切线方向的,主要对桩基础侧边作用。因为冻土的性质不同,因此对冻胀力的取值不具有确切的方法,许多工程师做过大量的研究,一般在工程设计中多运用经验公式来计算冻胀力。设计过程中需要计算到切向冻胀力条件下桩基础是否满足到承载力的要求,需要进行抗拔稳定性验算。
一般情况下,基桩的抗拔极限承载力的计算公式为:T=∑λi Qsik Ui,Qsik为桩侧第 i 层土的极限侧阻力标准值;Ui为桩身周长,T为基桩抗拔极限承载力,λi为抗拔系数。基桩的抗冻拔稳定性数值与冻深影响系数、切向冻胀力、冻土的标准冻深、桩身周长的乘积,如果基桩的抗拔极限承载能力T小于这个值的话,那么该桩基的抗冻拔稳定性较差。
四、单桩竖向承载力常用计算方法设计计算
桩基设计的一个重要工作的就是单桩竖向承载力的设计计算,极限承载力为桩基土极限侧阻力与端阻力之和。常用的集中计算方法有以下几种:
静载荷实验法:最传统可靠的方法,通过在桩身与桩底埋设的元件来测定桩端阻力喝桩侧阻力,同时还能够进行单桩垂直承载能力的实验,能够为设计提供合理的单桩承载能力。
静力计算法:将桩当作深基础,在假设的不同地基破坏模式中算的竖向极限承载力,之后除以该环境下的安全系数,确定竖向极限承载力,需要分别计算桩端阻力与桩侧阻力。
经验法:根据多年来对冻土地区钻孔桩基础的研究以及实践经验,有许多经验方法被收入了计算单桩竖向承载力的规范中。例如《建筑桩基技术规范》(JGJ94-2008)中规定的钻孔灌注桩的极限承载能力的计算公式为:桩底底面积与桩尖处土的极限承载力二者乘积,桩周长、桩底部的有效长度、桩侧土的平均极限摩擦阻力三者乘积,取二者乘积之和作为单桩的极限承载能力。
五、结语
冻土地区的桩基础设计需要严格考虑到各方面的因素,进行详细的冻胀分析,选择合理的成桩形式,并且要仔细计算单桩竖向承载力,确保冻土地区桩基础的稳定性和可靠性。对于自然环境相对恶劣的冻土地区,桩基础设计还需要考虑到结构的耐久性问题,保证桩基础结构在一定的时间内能够保证正常的功能实现。
参考文献
[1]PetersonH.Ar,PlieationofTheFiniteElementMethodinTheAnalysisofContaet Problems[A].Proe.Int.Con.fOnFiniteElementsandMeehanies[C],Geilo,Nowra
[2]举.多年冻土地区钻孔灌注桩的有限元分析.东北林业大学硕士学位论文.2004.:3
篇12
基础施工属于桥梁工程建设的主要构成部分,基于桥梁工程的特殊性,促使基础施工项目复杂程度较高,且工程量也相对较大,为确保整体施工质量,需要在施工技术选择、施工过程控制等几个方面加强管理。本文主要针对桥梁工程的钻孔灌注桩基础施工技术的应用进行了探究,钻孔灌注桩施工技术属于桥梁基础施工环节中常用技术之一,其优势体现在工艺流程简单、安全性高、承载力高等几个方面。
2钻孔灌注桩基础施工要求
钻孔灌注桩施工结构如图1所示,钻孔灌注桩基础施工的要求包括以下几个方面:(1)骨架存放与运输方面。钢筋骨架的存放需要确保施工环境的平整及干燥,在存放期间各加劲筋与地面接触位置均需要做好铺垫,且骨架各节需要依照一定顺序进行摆放,便于后期装卸。在运输期间,需要加强对骨架的保护,避免在运输过程中基于碰撞而出现变形情况。(2)护筒方面。护筒的埋设属于基础施工环节之一,需要确保护筒平面位置与垂直角度的准确性,同时还需要确保护筒周围与护筒底脚的紧密度及防水效果等[1]。(3)骨架起吊与就位方面。在骨架起吊与就位过程中,首先需要确保骨架不会受到损伤,其次为控制就位点的精准度。
3钻孔灌注桩基础技术在桥梁工程中的应用流程
3.1工程简述
以Y桥梁工程为例,整个桥梁长度约为15266m,为双向四车道,宽度约为25m。在基础施工过程中,选择钻孔灌注桩基础施工技术,实践证实对于此种技术的应用有助于对成本的控制,且技术的适应性较强,施工工艺较为简单。
3.2埋设护筒
一般条件下,护筒内径应大于桩径约30cm,且在护筒周围需要设置加劲筋,上端加设1道溢浆口。Y工程的护筒埋设施工环节中,结合工程需要,其深度需要控制在1.5m之内,顶部高出施工地面约0.3m,高出地下水位约1.5m。另外,施工期间需要维持护筒的垂直状态,其中心与设计中心桩基础中心偏差要控制在50mm之内,倾斜度误差控制在1%之内。埋设施工完成后,需要对护筒的角度进行调整,确保位置无误后进行回填及固定,避免后续钻孔施工期间护筒出现下降的情况[2]。
3.3钻孔施工
结合Y工程来讲,在钻孔施工环节中,Y工程选择泥浆护壁,泥浆构成材料为黏土、水、添加剂,依据一定比例进行配制[3]。钻孔实际施工之前,需要明确开孔位置,尽量以匀速缓慢钻进,开动泥浆泵同步循环钻进,钻进期间需要对钻进尺寸进行严格控制。钻进到护筒底部时,需要应用低档慢速钻进策略,在钻头或导向部位完全进入地层后,转变为快速钻进策略。
3.4钢筋笼安装
钢筋笼制作期间,需要将钻架高度及设计尺寸作为参考,选择分节、整体制作手段,在整个制作施工环节中,需要在清孔之前完成。钢筋笼分节制作可保障其不会出现变形情况,但各节之间接头需要错开。在钢筋笼外侧应设置垫块,结合实际施工情况,横向分布4个,竖向分布间隔距离为2m。若钢筋笼存在节点不良或是弯曲等情况,将会导致钢筋笼与桩孔的接触过紧,为此,需要在制作期间严格控制钢筋笼的精准度[4]。
3.5混凝土灌注
混凝土初次灌注期间,工程选择连续关注方式,具体操作为:混凝土到场后,结合预先设定的方案明确初次灌注质量,将充足的混凝土放置到漏斗中,快速打开阀门,促使混凝土能够快速下落,确保其可在压力充足的条件下将套筒中的水压出,且借助中和水的压力,确保混凝土顺利封底。初次灌注完成后,综合施工设备及施工环境条件等调节灌注,在混凝土初步凝固前完成整个灌注施工。
篇13
根据"十二五"可再生能源规划,未来5年我国海上风电将进入加速发展期。与内陆风电相比,海上风电具有不占用耕地以及高风速、高产出等优势。为了承受上部平台结构巨大自重及其设备所引起的竖向荷载、强风荷载和波浪冲击等,海上风电机组的基础远比陆上的结构复杂、技术难度高。根据资料显示,海上风电基础成本约占整个工程成本的15%-25%,被公认为是造成海上风电成本较高的主要因素之一。因此,设计和建设安全、合理且经济的近海风机基础成为开发近海风电资源的关键问题之一。
由于海上风机受到的作用荷载复杂,在对风机基础的强度设计时不仅要考虑多荷载组合后的极大值,而且应考虑动荷载下风机的动力响应特性。当今国内外结构设计的发展趋势是应用可靠性理论、推行结构概率设计方法以取代传统的安全系数设计法。在结构可靠性研究领域,经过世界各国学者的努力,已取得了非常多的研究成果。因此有必要引入可靠度理论对风电基础的失效概率进行分析,这对保证其安全性有着极其重要的工程价值。
2针对风机本构关系的动力响应研究
2.1针对不同基础形式的研究
近海风机采用的桩基础广泛用于各个工程领域,其动力响应的研究要求对风机所处环境的荷载和本构关系进行等效模拟。近年来专家学者针对风机不同的基础形式进行了一系列的研究。
对于不同的基础结构形式,其在荷载下的承载特性均会出现一定的差异,因此有必要针对不同基础形式选用合适的有限元模型。刘琳[1]讨论了特定海区1.5MW风机单桩基础结构的动力和静力特性。考虑海洋环境荷载,以及风机不同工况下的不同荷载,选择SESAM软件来建立有限元模型,计算结构在极端环境荷载下的静强度和屈曲,运用API规范中的工作应力法来校核结构的刚度、强度和稳定性。郇彩云[2]选用四桩风机基础结构进行研究,采用软件ANSYS,考虑波流荷载和地震荷载,对结构进行静力分析、动力分析计算。沈玉光[3]建立了海上风电同型基础结构体系的模型,把筒型基础和塔架连接的过渡段等效为大直径圆筒,针对风浪荷载,对该模型进行了动力响应分析,并对不同工况的荷载进行了组合。
2.2针对桩土相互作用机理的研究
就桩基础而言,上部结构承受的荷载由桩基传递到下部土层,因此桩土相互作用机制是结构分析的另一要点。
王国粹、王伟[4]以我国某海上风电场为例,对风机基础进行了单桩基础形式的基础方案设计,并在设计计算中就文章采用的理想弹塑性桩土相互作用计算模型与国际上其他单桩分析方法的对比分析。张卫平,孙昭晨[5]以一离岸深水桩柱为例,依据JTJ 2132―1998《海港水文规范》的环境条件和环境荷载规范,考虑流固耦合效应,计算了在海洋极端规则波以及不规则波条件下桩柱的运动响应,并对比分析了在考虑桩土耦合相互作用下桩柱的响应与基岩面固结解下的响应;考虑到海洋地基为两相饱和土介质,对比了在不同简化阻抗处理下的运动响应结果。此外,对海上风机基础与土层相互作用以及桩基承载性能在理论和实验中的研究还很多,在海上风机基础可靠性研究建立模型时具有参考价值。
3针对风机环境荷载的研究
在多荷载的共同作用下,风机不仅由于产生振动放大作用,而且其竖向位移也会收到影响。任文渊采[6]用数值分析的手段,利用大型通用软件ADINA进行模拟,建立了风机、基础、水、海床的三维计算模型。分别对单桩基础以及四桩基础的风机结构进行了模态分析,得到结构的自振频率和振型。同时,作者还对上述两种基础形式的风机整体结构进行了静力分析以及考虑流固耦合的动力响应的分析,得到了结构的沉降特性、水平位移、应力分布以及塑性区的分布情况。其研究结果表明,风荷载是影响风机水平位移的主要响应源,对结构沉降影响不大;风荷载与水流力荷载耦合会导致桩体、塔身均不发生沉降,相反会向上抬升;四桩基础的应力分布较单桩基础小,有利于结构稳定。丁明华[7]在其硕士论文中,重点研究了1.5MW海上风机的动力特性,基于ANSYS的参数化设计语言(APDL)开发了风机叶片的几何建模模块,分别对风机叶片、涡轮机、塔架和基础、集中质量模型以及风机整体进行了模态分析,计算得到了结构的振动特性。王鹏[8]主要对特定海区3MW风电单立柱三桩基础结构的动力特性及在环境荷载作用下的响应和基础结构优化等问题进行研究。利用ANSYS建立了满足动力特性要求的有限元模型。
3结论与展望
目前,近海风机基础的动力响应研究已经比较系统和全面。但其研究多停留在理论分析和数值模拟层面,缺乏实地的、专门的模型试验,并且在多
荷载的互相耦合方面还缺少深入研究。研究中近海风电基础的型式多停留在桩式和导管架式,对吸力式和悬浮式的研究存在空白。随着海上资源的利用发展,海上风机的安装的水深必然逐渐增大,因而对新型式基础的研究势在必行。
参 考 文 献
[1] 刘琳,特定海区海上风电单立柱结构动力耦合特性研究[D].中国海洋大学,2008.
[2] 郇彩云,海上桩式风机基础结构设计与研究[D].大连理工大学,2009.
[3] 沈玉光,海上风电筒型基础风机结构体系动力响应分析[D].天津大学,2011.
[4] 王国粹,王伟等,3.6 MW 海上风机单桩基础设计与分析[J].岩土工程学报,2011,32(增2):95-100.
[5] 张卫平,孙昭晨,波浪作用下考虑桩土相互作用的桩柱响应[J].水运工程,2012,3:55-59.