在线客服

地形图测绘论文实用13篇

引论:我们为您整理了13篇地形图测绘论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

地形图测绘论文

篇1

大比例尺地形图在工程测量中有着重要的作用,占据工程测量中不可获取的位置,下面我们首先对大比例尺地形图测量的发展及其特点进行简单的概述,然后在主要过对某观测站的站址1比500比例尺地形图进行施测和分析,在进行施测过程中,主要采用的GPS观测、选点等等方式来对其进行的测量,下面我们就简单的对某观测站进行大比例尺地形图阐述和分析。

1大比例尺地形图测量的发展和其优势

随着科技水平的不断进步和发展,科技的进步在给其他领域带来便捷的同时,同样也给我们测绘行业带来了新的工作方向和目标,随着测量仪器的不断更新和换代,更是测绘行业的发展带到了一个新的平台上来了。大比例尺地形图的出现,在很大意义和程度上解决了工程测量中面临的难题,通过大比例尺地形图对范围比较小的地区也能及时的进行工程的测量和检测,一方面提高了工程测量的工作效率,另一方面还在很大程度节约了很多的人力和财力,提高了工作的效率和时效性。

2大比例尺地形图在工程测量中的应用实例

2.1测量实例内容概述

采用大比例尺地形图测试某观测站,在进行测试过程中主要涉及的内容有选点、埋石、GPS监测、水准联测等采集工作,在此项大比例尺地形图工程测量工作中,主要投放的设备有六台、GPS接收机四台、全站仪一台、自动水平尺一天,其观测和测量的时间为15天,然后根据时间要求提供测量的结果。

2.2测量区的基本情况构造

需要测量的观测站的周围范围交通还是非常的便利的,需要测试的地区地形比较开阔、起伏的程度不是非常的大、可以算作是平原,但是在测试区中出现的严重问题就是周围树木角度、可能会对测量的准确度和效率带来一定的影响。

2.3GPS接收机在工程测量中的使用

GPS+RTK在工程测量中说,发挥着非常巨大的作用和意义,其使用程度,在工程测量中,更是非常的广泛,在建筑工程中,测量其建筑地形过程中,我们就可以采用GPS+RTK的完美结合进行的建筑工程中地形的测量,在建筑工程地形测量过程中,通常都是使用不动态的测量方式,来对其建筑工程地形进行的控制和测量,在使用GPS+RTK进行的测量中,只需要通过GPS进行的定位,然后通过RTK来进行碎步测量,在测量过程中一般都是需要一个人背着测量仪器,然后在地形的碎点上呆一下,在进行的移动过程中,还需要输入其测量的特殊编码,最后通过定位,就可以非常方便的测量出建筑工程,在建筑工程中需要的施工地形图了,通过二者完美的融合,一方面使其地形图能够保证其准确度,另一方面大大提高了测量的工作效率和时效性。

2.4采用相应方法统计其精度加以分析

在了解玩测量区的基本构造环境之后,我们通过对测区几条不同的线路进行定位观测之后发现,得出相应的数据如下,点位误差最大值4.4mm,最小值3.21mm;无约束平差后相对精度最低l/47万、最高1/56万;约束平差后相对精度最低l/34万,最高1/41万;同步三角形全长相对闭合差最大值为2.07ppm。而这些都是大比例尺地形图能够满足的(表1《工程测量规范》对大比例尺地形图地位误差精度要求)。

2.5采用大比例尺地形图1比500的施测方法

(1)在对该观测站站址1比500比例尺地形图进行施测过程中,我们可以采用数字化构成图方法来进行观测站的施测,在进行施工过程中,首先采用的作业方法,可以采用GPS不动态定位方法,来对其观测站地区进行的内图根点坐标标注和联想,在进行这一过程中在,还可以采用水平尺联测的方法,施测图根点的高程,进行测试区内部的数据和图像的采集,然后在从测试区外业采取相应的数据,最后测试区外业采集的相关数据和图像,使用光缆传播的方式,传播到测量使用的计算机中,然后计算机机会通过一定的数据处理模式,来对其采集和传输的数据进行的及时有效的分析和处理,最后计算机会将分析和才采集的图像文件通过绘图仪的方式打印传输出来(表2测地貌特征点的视图要求)。

(2)为了能够保证长期保存图根点以及未来将进行施工放样测量的工作,为了今后的施工考虑,我们可以在采用大比例尺地形图测量之后,然后在每个不同的测试区之内预埋一些长久性的埋石点,在进行埋石点的过程中,其石头高度一般都是要在五十厘米左右,所埋石应该在视眼开拓的地方,而且还不容易受到别人的破坏。

(3)通过对上述观测区相关的数据进行分析和研究得发现改观测区采集的点数为652点。在进行分析过程中,主要采用的基本绘图软件是来自于南方CASS的成图系统软件,该软件是通过多年以来很多单位和专家使用之后,都说效果比较好的软件。

3大比例尺地形图在工程测量中的应用实例相应的技术总结

该测量工程在进行大比例尺地形图在工程测量中,主要通过对方式就是通过GPS全球卫星定位系统来进行图像的观测的,在进行GPS网的施测过程中,可能是由于树木角度的情况,使其知点距离和待测图根点距离较长,为此,在进行测量过程中,我们采用了三台GPA接收器的形式,对其观测区进行同步的观测和测量,经过测试才得出了相应的结论,其结果还是比较符合测量的中的规定范围和相应要求的,可以说是相对比较准确的GPS数据测量结果。

在进行大比例尺地形图在工程测量中得出了相应采集外业数据652个,测绘出绘1:500数字化地形图1份,还在测量过程中,在测试区中增添了预埋石的数量,为四个,实际测设临时性图的相应根点有八个左右。

4结束语

综上所述,在上文中我们简单的对其大比例尺地形图的发展,以及在工程测量中的应用实例进行了简单的论述和分析,希望能够在论述过程中为,大比例尺地形图在工程测量中的应用和发展提供可行性思路,同时希望我们相应的实践人员能够在日常工程测量工作中,不断的对其方法进行完善和创新,争取创新和完善出更为科学合理的大比例尺地形图在工程测量中应用的方法,为今后工程测量的发展多提宝贵意见,为大比例尺地形图在工程测量事业的发展做出更多贡献。

参考文献

[1]会议论文.电子平板测量环境下实现大比例尺地形图和地籍图一体化的探讨2007年"信息化测绘论坛"暨中国测绘学会年会-2007(1).

[2]期刊论文.地形图测绘中GPS-RTK用于图根点测量的可行性分析-科学技术与工程-2011,11(36).

[3]期刊论文.GPS-RTK与全站仪联合作业在数字测图中的应用-测绘与空间地理信息-2010,33(6).

篇2

数字化测图不同于传统的模拟法测图,在测量实践中应正确认识与掌握数字化测图的特点。论文格式,城市建设。根据数字化测图的特点和多年在野外工作的经验,和同志们交流一下想法,仅供参考。

在控制测量中,使用GPS测量时,除必要的测量起算数据外,尽可能要自已知检测点,检测合格后,再把检测点加入控制网作为已知点进行平差计算,这样要以有效检测测量精度,防止测量错误。使用全站仪进行碎部点数据采集时,应严格注意输入测站点与后视点。如果测站点与后视点错号(点号与位置均认识错误),实践证明无法检测出来,造成内业处理上的不便。数字化测图内业图形编辑主要依靠外业记录,外业测量时,记录员应详细记清测点点号、点的属性、连线关系,必要时绘制草图。否则,内业处理时,容易造成错乱。数字化测图等高线的勾绘完全取决于野外的测点,因此在地貌测绘时,立尺员应合理选择地貌特征点,并认真了解观察地形,复杂地区应简单绘制地形草图,以便使勾绘的等高线更加符合测区情况。由于数字化测绘相对于传统平板测图具有精度高、作业效率高、劳动强度小等显著经济技术优势,加之近年来数字化测绘设备价格的持续下降,规划、设计等用图单位普遍采用计算机设计而要求提供数字化测绘成果等因素,测量单位普遍采用野外数字化测绘完成大比例尺地形测量工作。数字化测图已基本淘汰传统的平板仪测图技术,成为占主导地位的技术方法。而是数字化时代对测绘成果应用方法变革的必然结果。它引起了一些更深层次的问题,目前对其重要意义尚认识不足,现行的技术规范、测绘产品价格体系均有与之不适应的地方,并就此提出自己的看法:

数字化测绘对作业人员的操作技能要求降低,业务培训应有新的侧重 ,数字化测图是采用全站仪直接测取碎部点坐标和高程,计算机编辑成图的技术方法。论文格式,城市建设。数字化测图按作业方法可分为编码和无码两种,编码方法在测点时必须按碎部点的类型及相互间联系输入特征编码以便事后编辑成图。操作仪器的作业员不仅要熟记编码,还要时刻观察地形才能正确输入,因此,这种方法对操作人员的技术、经验均有较高要求。就处理碎部点间关系而言,实际上与平板仪测图无异。无码方法则不需输入任何编码,而是代之以棱镜处作业员绘制草图记录所测点之位置、点号及与其它点的联系。测站照准目标测取数据后,只需向棱镜处作业员报告碎部点点号而已,测站与棱镜间联络较少,测图工作实际上主要在棱镜处进行。由于测点时不需观察地形,因而测量速度很快,一台仪器可观测二至三个棱镜,相当于两三个平板测图组,外业测图效率很高。作业时,绘制草图的作业员在棱镜处现场绘制,简单而不易出错,只需熟悉地形、地物表示方法即可胜任;而观测员操作全站仪测点精度很高,数据传输又是自动进行,避免了人为的错误和读数误差;内业编辑则是计算机展点,对照草图应用绘图软件的各种编辑工具成图,等高线自动完成,轻松快捷。从理论上讲,数字图中碎部点精度与作业员操作技能关系不大,正常情况下已达到图根点的水平,测量误差可忽略不计。论文格式,城市建设。所以在数字化测绘条件下,对作业人员的操作技能要求大大降低,进一步提高成图质量只能靠提升作业人员的理论水平,即由"测得准"转到"如何测,如何表示"上来。为适应这种新的形势,今后测绘技术人员的业务培训重点要从熟练、准确的技能训练转移到地形、地物的正确表达,计算机绘图理论、不同使用目的下地形图的不同取舍等更深层次的内容上来。

比例尺的概念将淡化,而代之以具体的测绘要求,传统的平板测图由于一定幅面内地形符号的负载及表现能力的局限,不得已分为各种比例尺。而且为了地形图使用时量算方便,大比例尺实际上主要是1:500、1:1000两种。由于纸质地形图上同样长度的距离误差,代表的实际长度不同,所以不同比例尺地图不光细致程度不同,精度也不同,相互间很难转换,常常造成重复测绘。现在数字化测图仍沿用传统平板仪测图的要求划分比例尺,用来确定测绘细部的细致程度和定义绘图输出时点状符号大小,及部分线状符号(坎、斜坡等)的长短、间隔宽窄等。考虑到输出纸质地图并不是数字化测图的最终目的,数字化图的使用主要在计算机上进行。而在计算机中地形元素之间距离、方位关系由其坐标决定,图形缩放时图上数据与实地数据关系换算自动完成,无所谓比例尺,精度也不因图形缩放而异。所以除点状字符及部分线状符号大小定义不同外,不同比例尺数字地图间差别仅仅是细致程度不同而已。目前各地经济建设蓬勃发展,地形、地貌变化很快,新测的地形图很快就会失去现势性。考虑到数字化地图采用不同地物、地形类别分层存储,并且具有无级缩放显示,地图符号负载量限制相对较小,精度与比例尺无关等优势。所以可以设想,应淡化比例尺的概念,用图单位根据实际用途提出具体的测绘内容,不再涉及比例尺大小。而测绘单位也不再根据测量规范按比例尺所限定的测绘内容,花费人力、物力测绘数量众多、存在时期短,从用户的角度来看没有什么意义地形、地物。这对提高作业效率、节省经费都是一个很有实际意义的问题,值得有关方面研究。

在数字化测绘条件下,作业人员的操作技能已不是决定成图质量的重要因素。数字化测绘精度很高,地形图的质量主要取决于碎部点位的确定,地形、地物的合理表达,作业人员根据地形图的使用目的所作出的正确取舍等因素,作业人员技术培训应与之相适应。

篇3

文献标识码:A文章编号:1671-3168(2012)06-0006-04

收稿日期:2012-11-01

作者简介:唐世斌(1963-),男,重庆梁平人,副教授,硕士生导师。研究方向为风景园林建筑工程与规划设计、3S技术在风景园林学中的应用等。Email:

国家技术监督局于1992年12月批准了《中华人民共和国国家标准 国家基本比例尺地形图分幅和编号》(GB/T 13989-92)[1],次年7月1日施行。在实际使用中,将1993年以前按地形图分幅编号标准产生的地形图图幅号称为旧图幅号,1993年以后按新的国家基本比例尺地形图分幅和编号标准(即GB/T 13989-92)产生的地形图图幅号称为新图幅号。

现阶段,我国正在使用中的国家基本比例尺地形图,其图幅编号有新、旧之分,这给人们尤其是市县级以下基层生产单位专业技术人员带来了较大的障碍或困难,造成了使用中的不便。《中华人民共和国国家标准 国家基本比例尺地形图分幅和编号》(GB/T 13989-92)只是规范了新的图幅分幅与编号规则,并未给出我国国家基本比例尺地形图新、旧图幅号彼此间的换算关系;为解决新、旧图幅号之间的换算关系,我国的一些科技工作者从不同角度对此进行了探索研究。笔者通过多渠道检索,查到17篇相关期刊论文[2-18]。最早的关于地形图新旧图幅编号的换算研究文献发表于1997年,其中半数研究文献发表于近5年的相关科技期刊上,这些研究文献基本上是基于国家基本比例尺地形图的经纬度条件下,地形图分幅与图幅编号的新旧图幅号之间的换算,且多侧重于编程自动换算,以方便于科研或生产项目中批量操作管理,但满足不了基层生产单位专业技术人员在实际工作中遇到的少量或个别的只用手工即可进行的新旧图幅号便捷换算方法。

2009~2010年,笔者有幸参与广西新一轮森林资源规划设计调查(即二类资源调查)的部分县区的外、内业工作,尤其是内业制图工作,在工作中常遇到1∶1万地形图新、旧图幅号需要彼此间换算的问题,经过查阅相关规范、文献资料,反复探索研究,找到了适用于工作中遇到的少量或个别的可手工进行的新旧图幅号便捷换算方法,经验证,结果正确,便捷有效,现将研究成果系统整理出来,供业界同仁共享,方便工作。

1国家1∶1万地形图新、旧图幅号的构成及其含义

11地形图旧图幅号

1∶1万地形图的旧图幅编号是以1∶10万地形图为基础进行的,而1∶10万地形图的旧图幅编号又基于1∶100万地形图,其具体的分幅和编号相关知识请查阅相关规范、文献资料。

1∶1万地形图的旧图幅号由4组代码组成,各组代码间用“-”连接:

其中:第1组“×”——1∶100万地形图的图幅列号(纬度方向),为1位“字符码”,由于我国地处地球的东半球赤道以北,图幅范围在纬度0°~56°内,因此,行号为A、B、C、D、E、F、G、H、I、J、K、L、M、N 14个英文字符之一。

林 业 调 查 规 划第37卷第6期唐世斌:1∶1万地形图新、旧图幅号的手工换算方法

第2组“××”——1∶100万地形图的图幅行号(经度方向),为1~2位“数字码”,由于我国地处地球的东半球赤道以北,图幅范围在经度72°~138°内,因此,列号为2位“数字码”,为43、44、45、46、47、48、49、50、51、52、53、54等11组数字之一。

第3组“×××”——1∶1万地形图所在的1∶10万地形图,其在1∶100万地形图中的位置代码,即图位号,为1~3位“数字码”;每幅1∶100万地形图划分为12行(经度方向)12列(纬度方向)共144幅1∶10万地形图,其位置代码(图位号)为1、2、3、……、142、143、144等144组数字之一,在本文中的新、旧图幅号的换算公式里用“m”表示。

第4组“(××)”——“( )” 中的“××”,为1∶1万地形图在1∶10万地形图中的位置代码,即图位号,为1~2位“数字码”;每幅1∶10万地形图划分为8行(经度方向)8列(纬度方向)共64幅1∶1万地形图,其位置代码(图位号)为1、2、3、……、62、63、64等64组数字之一,在本文中的新、旧图幅号的换算公式里用“n”表示。

第1组代码(1∶100万地形图的图幅列号(经度方向))和第2组代码(1∶100万地形图的图幅行号(纬度方向))共同构成1∶100万地形图的图幅号,如广西南宁市所在的1∶100万地形图的图幅号为F-49。

1∶1万地形图是在1∶10万地形图图幅号的尾部加上其在1∶10万地形图中的位置代码,即图位号,如F-49-37-(30)。而1∶10万地形图是在1∶100万地形图图幅号的尾部加上其在1∶100万地形图中的位置代码,即图位号,如F-49-37。

12地形图新图幅号

1∶1万地形图的新图幅编号是直接以1∶100万地形图为基础进行的。

1∶1万地形图的新图幅号由5组共10位代码组成,各组代码间直接相连:

× ×× × ××× ×××

第1组 第2组 第3组 第4组 第5组

其中:第1组“×”——1∶100万地形图的图幅行号(纬度方向),为1位“字符码”,与旧图幅号的第1组代码含义相同,我国的为A、B、C、D、E、F、G、H、I、J、K、L、M、N 14个英文字符之一。

第2组“××”——1∶100万地形图的图幅列号(经度方向),为2位“数字码”,与旧图幅号的第2组代码含义相同,我国的为43、44、45、46、47、48、49、50、51、52、53、54数字之一。

第3组“×”——地形图的比例尺代码,为1位“字符码”,1∶1万地形图的比例尺代码为“G”;其他基本比例尺地形图的比例尺代码见《中华人民共和国国家标准 国家基本比例尺地形图分幅和编号》[1]。

第4组“×××”——1∶1万地形图的图幅行号(纬度方向),即在1∶100万地形图中的图幅行号(纬度方向),为3位“数字码”;每幅1∶100万地形图的行向(纬度方向)划分为96行1∶1万地形图,其图幅行号为001、002、003、……、094、095、096等96组数字之一,在本文中的新、旧图幅号的换算公式里用“x”表示。

第5组“×××”——1∶1万地形图的图幅列号(经度方向),即在1∶100万地形图中的图幅列号(经度方向),为3位“数字码”;每幅1∶100万地形图的列向(经度方向)划分为96列1∶1万地形图,其图幅列号为001、002、003、……、094、095、096等96组数字之一,在本文中的新、旧图幅号的换算公式里用“y”表示。

从1∶1万地形图的新、旧图幅号的构成关系来看,同一幅1∶1万地形图其新、旧图幅号的第1组代码和第2组代码是相同的,只不过是旧图幅号的纬度方向为列,经度方向为行,新图幅号的纬度方向为行,经度方向为列,二者有所不同而已。

其他的国家基本比例尺地形图的新图幅号构成与1∶1万地形图的构成相同。

2地形图从旧图幅号换算成新图幅号

从上述分析知,同一幅1∶1万地形图其新、旧图幅号的第1组代码和第2组代码是相同的,因此在进行新旧图幅号的换算时,只需要考虑旧图幅号中的第3、第4两组代码与新图幅号的第4、第5两组代码之间的关系即可,而新图幅号中的第3组代码为地形图比例尺代码,对于1∶1万地形图来说,为“G”,始终不变。

同4结语

本文只述及在实际工作中经常使用的1∶1万地形图其新、旧图幅号的手工换算方法,此法是基于同幅1∶1万地形图的旧图幅号或新图幅号来解决其新、旧图幅号的换算问题,直接用旧图幅号换算其相应的新图幅号,或直接用新图幅号换算其旧图幅号,而不须该地形图图幅的经纬度或公里网坐标。

文中1∶1万地形图新、旧图幅号彼此间相互换算的关系也可用于编程,实现计算机或计算器进行自动换算;依照本文解决1∶1万地形图新、旧图幅号相互换算的思路,也可解决我国的其他基本比例尺地形图直接利用其图幅号进行新、旧图幅号间的相互换算。

参考文献:

[1]国家技术监督局中华人民共和国国家标准(GB/T 13989-92)国家基本比例尺地形图分幅和编号[S]1992

[2]郑雪萍1∶25万 1∶5万 1∶10万地形图新旧图幅编号的换算与应用[J]测绘通报,1997(6):35-38

[3]刘宏林地形图新旧图幅编号变换公式的探讨[J]测绘学院学报,1998,15(2):125-128,130

[4]刘宏林国家基本比例尺地形图新旧图幅编号变换公式及其应用[J]测绘通报,1998(8):36-37

[5]高允福,樊廷杰地形图新旧图号的互换公式及换算软件[J]三晋测绘,2000(1):15-21

[6]余 旭地形图新旧图幅号自动转换的实现[J]焦作工学院学报:自然科学版,2004,23(3):190-192

[7]王腾军,杨建华,翟 荷国家基本比例尺地形图新旧图幅编号自动互换的实现[J]测绘技术装备,2004,6(3):23-24

[8]田振坤,刘素红,傅莺莺,等地形图新旧图幅编号自动检索算法及其可视化实现[J]测绘通报,2005(2):61-63

[9]陈正年,詹朝晖,孙亦东,等1∶10000地形图新旧图号转换及公式推导[J]江西测绘,2006,66(4):31-32

[10]王德丰,陈丽辉,王年丰CASIO fx-4800计算器在1∶1万地形图新旧图幅编号转换中的应用[J]地矿测绘,2007,23(4):24-26

[11]岑 钢,肖 玲国家标准分幅1∶1万地形图图幅编号的算法[J]贵州林业科技,2008,36(2):35-38

[12]艾光辉,贺冬梅,张永仁用VB实现国家基本比例尺地形图新旧图幅号的转换[J]江西测绘,2009,78(2):43-45

[13]孙万民,毕永良,鲁 强,等新旧地形图编号及范围解算方法[J]海洋测绘,2009,29(5):30-32,36

[14]于树晖利用Excel实现新旧图幅号转换[J]甘肃科技,2011,27(4):40-42

[15]林 辉,唐可平,王苗根,等地形图分幅及图幅号转换[J]华东森林经理,2011,25(1):59-62

篇4

目前我国较大规模的地形图测绘项目的主要内容包括四等水准控制测量、GPS首级控制测量、图根控制测量、碎步点采集、图形整饰、技术设计书与技术总结等文档资料的检查验收、SHAPE数据入库等工作。地形图测绘项目验收与数据入库工作的顺利完成将保障基础地形资料的完整性与准确性,为土地划拨、基础设施及企业建设提供准确的坐标与高程依据。

1 地形图数据入库质量检查的重要意义

数据是地理信息系统运行的源泉,也是GIS最基本、最重要的组成部分之一,是GIS项目中投资比重最大的部分,其对于数据的质量控制尤为重要,而数据质量的高低直接影响GIS建库的成败。由于地形图是根据现实地形的比例缩小而得,所以有针对性的对地形研究中的地面地貌水文、地形、土壤、植被等自然地理要素进行了具体的概括,为了更好的用到现实生活中,城市地形图数据还包括了居民点、交通线、境界线、工程建筑等社会经济要素。地形图是地理专业人员根据地形测量或航摄资料绘制的,误差和投影变形都极小。

1.1 地形图数据的准确与否关系到环境保护和社会发展方向。地形图数据以多种方式表达现实世界的地形和其他相关元素,利用它可以识别用其它方式不能体现的空间分布、关系和趋势。其测绘编制的准确有利于人口统计、疾病研究、街道分布图和建设布局图的准确运用。方便政府进行公共决策、方便农业科学家根据地形进行作物的合理分配,地图可以通过数据的合并或叠加来分析空间问题、省政府可以通过合并多层数据来找到合适的废弃物处理地点,包括城市交通建设的最佳路径设计。正是由于地形图数据具有如此多的作用,其数据正确与否影响到许多决策的实施,关系到环境保护措施的确立以及社会发展方向的科学化和系统化。1.2 地形图数据准确与否决定众多电子系统的成败。地形图包括很多的地理信息,通过这些信息的比对和确定,地理学家将数据电子化以方便运用于各个领域。地形图数据是制作各种电子系统的数据来源,其完整性准确性事关到众多电子系统的完备和现实运作。以现行交通系统为例,智能交通系统的大部分信息都需要通过电子地图来表示,通过电子地图将数据进行可视化处理然后显示在计算机屏幕上以供电子系统更好地运用到现实生活中。此外地形图数据的准确和完整和事关到一些大众化软件的设计,这些软件根据地形图显示的数据进行输入和分析,用以促进各种电子地图的制作和编辑以及建筑物的规划和设计。地形图数据已经不单单运用于地质和地理行业,而是更多的和人们的日常生活以及城市的经济生活相挂钩,所以其数据的准确性对于众多行业电子系统的成败具有决定性作用。1.3 地形图数据的准确关系到现实突发事件处理的及时性。目前针对我国地质灾害多发的地区,地形图数据已用于灾害防治研究和应急服务系统的应用。推动突发事件应急体系建设规划中有关工作任务的落实,切实提高应急影像获取、数据快速处理与传输等装备水平。建设城市应急测绘快速数据采集处理基地,建立测绘地理信息系统内部应急数据共享机制,整合各类测绘成果数据,利用地理信息公共服务平台,做好对地震、洪涝、泥石流、滑坡等灾害多发易发地区及热点地区的各类测绘成果数据的储备工作。抓好各地区突发事件地理信息应急服务系统的推广应用,组织应急演练活动,达到宣传推广、发现问题、改进完善的目的,地形图数据的准确与否对于灾害的防治具有重要意义。

2 地形图数据入库的具体步骤

这一阶段主要的任务是矢量化纸质地形图和进行电子数据之间的转换。其中矢量化地形图的具体方法即通过扫描仪直接扫描纸质地图,以栅格形式存储于图象文件中(如*.TIF),然后经MAPGIS平台的输入编辑模块矢量化后,经图形整饰得到地形的点、线、面文件。经历扫描图纸、校正图像并进行最后的地图矢量化。若采用电子数据转换,可利用MAPGIS平台的数据转换子系统将其他格式的图形数据如AutoCAD、Arc/Info、MapInfo等转换成系统标准的点、线、面文件。

3 数字化地形图入库前的质量检查的必要性和可行性分析

3.1 数字化地形图入库前的质量检查的必要性。地形图的测绘是由人工进行的,在数据采集的过程中难免会有不规范或成图过程中的误操作,包括工作人员的疏忽。由于GIS数据的特殊要求,测量成果需要进行严格的比对和精确的录入。地形图数据的准确和完整事关重大,只有认真对地形图数据进行科学测量并在入库之前进行系统检查才能保证其更好地为人们所运用。

3.2 数字化地形图入库前的质量检查的可行性。(1)数据实体检查。这一检查过程中应该包括地物编码、地物图层,地形图符号、线型、线宽、线字相交检查,是否存在伪接点、悬接点,高程注记检查,建筑物注记检查,面状地物封闭检查,重复实体检查,复合线重复点检查等。这些数据的完整和精确事关到数据的电子化,数字化测图的最终目的是将地形图转入GIS系统的数据库,此外包括位置描述的数学基础,图廓点、格网点、控制点的精度以及平面位置精度,高程精度和图幅边界的接边精度等也都需要进行进一步的检查,在地形图绘制完成之后的初期需要由专门人员对其中的数据根据现实地形进行一次系统规划的检查,将地形图数据的原始数据进行系统的分析和整理,以便输入计算机工作的便利,避免二次工作的浪费。目前勘测管理工作与国家要求的“五统一”原则有距离即:统一的平面坐标系统,统一的高程系统,统一城市地形图的图幅分幅和编号,统一的技术标准,统一管理城市勘测基础资料。[2](2)数据属性检查。属性精度主要检查点、线、面的属性代码及属性值的正确性、惟一性,注记的正确性,数据分层的正确性。要逐层检查是否有多余的属性,逐层检查各属性表中的属性项项名、类型、长度、顺序等是否正确,有无遗漏或多项;检查各要素分层、代码、属性值是否正确或遗漏。此外,地形图数据入库之后还要进行逻辑一致性检查,包括:属性一致性、格式一致性、分层一致性、拓扑关系的正确性和多边形闭合等。要检查各层是否有重复的要素,检查有向符号、有向线状要素的方向是否正确;检查多边形的闭合情况,标识码是否正确;检查各要素的关系是否合理,有无地理适应性矛盾,是否能正确反映各要素的分布特点和密度特征。

4 结束语

目前,地形图数据越来越广泛地运用到信息资源中心、应急指挥中心、共享服务平台及智慧应急、智慧城管、智慧水利、网站群管理系统等示范工程中。城市比例地形图、地形DEM、数字正射影像图、主城区建筑物三维模型等信息数据也陆续进行测绘和入库工作。地形图数据入库的准确性关系到我国地理电子化系统的完整和准确,包括交通系统和地质灾害管理应急系统的准确及时以及我国数字地理系统的长远发展,这就需要地理工作人员在进行地形图数据入库之前进行严密规整有方向的检查,保证数据图原始数据的真实可靠和后期使用的科学规范。只有这样,地形图数据才能更好地运用到经济建设和人们的日常生活中。

参考文献:

篇5

Airborne LIDAR Technology in Railway Survey and Design Application and Benefit Analysis

Han Zujie

(Railway Third Survey and Design Institute Group Co.,Ltd.,Tianjin300142,China)

Abstract:Airborne laser radar technology (LiDAR) is a new remote sensing technology,because of its high precision and efficiency,in terms of rapid development of topographic mapping,currently nearly 20 sets of LiDAR systems.This paper studies LiDAR technology in railway engineering survey and design the content,products,and effects,on the basis of aerial photogrammetry and traditional methods are compared to prove LiDAR technology in the railway survey and design of the feasibility and superiority.

Keywords:LiDAR;Railway survey and design;DEM;DLG

一、引言

机载激光雷达技术(LiDAR)是一种全新的遥感技术,自上世纪90年代在德国首次出现商用样机系统以来,因其高精度和高效率,在地形测绘方面得到快速发展。目前,全球已经有几十套商用系统在使用,主要实用系统有:Topscan、Optech、TopEye、Saab、Fli-map、TopoSys、HawkEye、Leica ALS50/60系列、Falcon等。

上世纪90年代中后期至今,美国、德国、加拿大、澳大利亚、瑞典和芬兰等国家,先后成功应用这项技术进行了地形测量、森林资源调查与评估、三维城市建模等试验与工程实践。特别是芬兰和德国,已经采用这项技术建立了全国或者大部分国土的DEM,达到了理想的效果。目前在国内已经有接近20套LiDAR设备,其中,北京星天地信息科技有限公司、山西亚太数字遥感新技术有限公司、广西桂能信息工程有限公司、广州建通测绘技术开发有限公司以及东方道迩公司等单位已经先后开展了实验和工程飞行,主要用于生产数字高程模型(DEM)、正射影像(DOM),进而制作线划图(DLG)等。本研究将使用LiDAR技术对铁路勘察工程设计进行研究与试验,介绍其主要产品及应用并对经济效益进行评价。

二、机载激光雷达技术系统构成与工作原理

(一)机载激光雷达技术简介

LiDAR系统是一种新型的综合应用激光测距仪、IMU、GPS的快速测量系统,可以直接测得地面物体各个点的三维坐标。机载的激光雷达系统通常还集成高分辨率数码相机,用于获取目标影像。从功能上看,机载激光扫描系统是基于激光测距技术、GPS技术和惯性导航技术这三种技术集成的一个软硬件系统,其主要目的是为了获取高精度的数字表面模型(DSM)。

目前,LiDAR提供的直接数据产品为:点云数据,DSM,DEM,DOM。经过后处理可以快速生成等高线、高程点、横纵断面图,完成路线设计需要的专项测绘内容(如架空管线的净空、交叉角度测绘等),并提供工程设计模型和景观设计模型等。

(二)LiDAR的主要系统构成

主要系统构成包括:

1.扫描仪组件:激光发射器、激光信号接收器、机械组件、扫描镜及窗口、接口板。

2.设备支持系统:系统控制器、飞机位置及姿态测量系统、检流控制器、激光电源、电源分配器、控制计算机、连接电缆。

3.附属软件:包括项目飞行设计及对记录数据进行后处理(滤波、分类等)处理。

4.控制/显示器:激光发射指标器、音频告警器、电路熔断器、系统诊断数据输出、控制接口。

(三)主要工作原理

通过DGPS(或PPP)和IMU求得航机线上任意采样时刻激光发射中心的空间坐标和设备的空间姿态,内插后能够获取任意时刻激光光束的姿态和发射中心的空间坐标,通过激光测量激光发射中心到地面的距离,可以求得每一个激光脚点的空间三维坐标。另外,利用DGPS/IMU可以直接获取每一张照片的外方位元素,可以快速制作DOM成果。最后将激光点数据和数码影像进行联合处理得到高精度的正射影像和数字高程模型。

三、机载激光雷达的应用

机载激光雷达能够快速获取数字地表模型(DSM),同时,配套的中画幅数码相机可以获得同步的数码相片,经过加工处理可获得数字高程模型、分类信息、航空相片的立体像对和正射影像图。目前还没有成熟的专业接口供铁路勘察设计工程中使用机载激光雷达成果,因此,如何将机载激光雷达勘测成果与众多设计专业手段无缝结合,从海量基础信息中快速提取或检索有用的信息为各专业设计所用,是机载激光雷达技术应用于铁路勘察设计的关键。

结合铁路勘察设计特点和工程应用实践,一方面将机载激光雷达技术成果进行加工,提供满足专业应用的专题成果,另一方面,改进专业设计勘察设计流程,提出新的设计理念,以便更加有效地利用海量的基础信息,提高设计质量和设计效率。

利用机载激光雷达技术提供的高精度、高分辨率数字地面模型和正射影像图,结合铁路专业设计要求,主要生产以下几种产品(见图4):

1.工点地形图。它是针对铁路设计的控制工点,在施工图阶段做的更加详细的勘测工作,以保证设计资料的精度和准确性。如:桥址地形、隧道进出口等;

2.断面图。主要包括纵断面和横断面,一般它们的精度高于地形图的精度。主要用于保证设计线路的平顺性和计算工程数量的准确性;

3.数字正射影像地形图。这是线划图的替代产品,通过将正射影像图叠加等高线、专业调查的地质界线、自然保护区等矢量信息,而形成的一种地形图,它的信息量更加丰富,更加直观;

4.专项测绘。针对特殊的专业需求而进行的详细勘测工作。如:水文断面、涵轴测量、电线垂度等;

5.工程中的土石方自动计算、坡度、坡向的计算等;

6.快速构建三维虚拟场景,城市建模等。

此外,还可利用高分辨率的影像进行专业调查、地质判视等,便于指导外业工作,提高外业勘测的针对性和合理性。

四、技术、经济效益和推广应用前景

(一)机载激光雷达测量技术与常规航测方法的经济比较

1.两种技术手段外业控制测量的比较。LIDAR所需的外业控制点与常规航测外控的比较,以II级地形1:2000航测地形图测绘(常规航测单航带100km)为例。

(1)首级平面和高程控制网工作内容和数量是基本相同的。

(2)LIDAR系统要求每5-7km测量一个平面和高程控制点,每30km测量一处高程校正区,这样100km线路需要布设平高控制点17个,高程校正区3个。而常规航测方法,采用150mm焦距的航摄仪拍摄,需要75个平高控制点;采用210mm焦距的航摄仪拍摄,需要150个平高控制点。

(3)LIDAR系统不因地形等级的变化而改变外业平高控制点的数量(适当的宽度,如不大于10km)。而常规航测方法会随着宽度的增加而成倍增加外控点的数量。

2.横断面切绘的经济比较。以张唐铁路定测为例,相对于采用Lidar技术平均1000-1200个横断面/人天的工作效率,常规航测方法每人每天只能切绘300-400个横断面,可见工作效率提高了3-4倍,对企业发展带来了巨大的经济效益。

3.地形图制作的经济比较。以II级地形1:2000地形图测绘为例。

因为LIDAR具有高效生成DEM的优势,所以在生成等高线、高程点等具有高程信息的地形信息时具有更高的效率,在这个方面,采用Lidar技术平均效率为12-15平方公里/(人.天),常规航测方法每人每天只能测绘2-3平方公里;

航测方法在立体模型下获取(除等高线、高程点之外)矢量信息具有更大的优势,而LIDAR则因其自身离散性获取能力比较弱,适合于小面积的(除等高线、高程点之外)矢量信息获取。

(二)成功案例及分析

经过试验与实践,LiDAR技术已成功用于多个铁路项目的勘测设计项目,减少了内业制图的压力,缩短了项目工期,在铁路各专业使用中反映良好,取得了显著的经济效益。以某工程为例,泛亚铁路某段全长257Km,由于距离遥远,地处国外,而且铁路过境区域存在大量地雷区域,给外业工作带来极大不便。考虑到地理因素和方案局部变动的因素,项目在实际操作中抛弃传统外业测量加航测制图的作业方式,直接采用机载激光雷达系统,一次性获取铁路过境区域长257km,宽4km的雷达点云数据和数码影像数据,利用该数据圆满完成了无外业控制测量情形的1:10000和1:2000的地形图成图任务,不仅避免了人力物力消耗和地雷区作业的危险性,而且在内业成图中,大胆使用数字正射影像地形图代替传统的DLG,取得了制作者和使用者均满意的双赢局面。

(三)推广应用前景

机载激光雷达测量技术具有巨大的发展空间和潜力,作为一种新技术,还有许多发展空间,特别是在数据处理算法以及软件和系统的开发等方面。随着用户数量的增加,其应用领域将越来越广,特别是随着激光技术的进一步发展,将促进机载激光雷达技术的革新。在铁三院于2009年率先在国内将机载激光雷达技术应用于铁路勘察设计并取得巨大成功后,今年铁一院、铁二院、铁四院都陆续定购了机载激光雷达并加大了人力投入,可见由于其精度高、成本低、周期短等特点在铁路行业已经被广泛关注。铁路行业之外,水利、公路、电力、农林等行业也在积极开展相关的研究和应用。

参考文献:

[1]孟宪军.铁路勘察设计虚拟现实技术的研究[J].高速铁路精密测量理论及测绘新技术应用国际学术研讨会论文集

[2]王长进.基于机载激光雷达的铁路勘测技术研究[J].高速铁路精密测量理论及测绘新技术应用国际学术研讨会论文集

[3]高文峰,王长进.铁路勘测中使用机载激光雷达测绘横断面相关问题的探讨[J].铁路航测,2010

[4]高文峰,王长进.GPS基站布设对机载激光雷达精度影响的研究[J].高速铁路精密测量理论及测绘新技术应用国际学术研讨会论文集

篇6

2.1基于格网管理地形图信息的含义

根据我国国家标准GB/T20257.1-2007《国家基本比例尺地图图式第1部份:1:5001:10001:2000地形图图式》的规定:1:500、1:1000、1:2000地形图一般采用50cm×50cm正方形分幅和40cm×50cm矩形分幅,10cm×10cm为一个坐标格网。基于格网管理地形图信息是指在空间上以格网为最小单位对地形图信息进行管理。从实现的角度来讲,也可以说是将地形图信息赋予了相应的地形图格网。在基于格网管理地形图信息时,格网的空间大小可以根据实际需求情况来合理确定。

2.2地形图信息的格网化方法

本文主要以1:500、1:1000地形图为例进行研究,地形图格网的划分在地形图图幅的基础上进行,格网的编号也在地形图图号的基础上确定。以格网编号为关键字,建立整个测区的地形图格网的索引。地形图信息的格网化主要包括两个方面:(1)地形图信息范围线的格网化获取的原始地形图信息在空间上一般表现为不规则多边形范围线,所谓地形图信息范围线的格网化,就是将不规则多边形范围线转化为规则的格网范围。该过程必须满足以下两个条件:一是在同一坐标系统下进行,二是规则的格网范围必须完全包含不规则的多边形地形图信息范围线。地形图信息范围线格网化的同时,根据其坐标值,可以计算相应格网所属的地形图图号,进而得到格网的编号。经过地形图信息范围线的格网化,可以得到多个与之对应的格网,这些格网通过编号可在整个测区范围内进行统一管理。(2)地形图信息内容的格网化地形图信息内容的格网化包含两个步骤,一是将原始获取的地形图信息内容作为属性赋予地形图信息范围线,二是将地形图信息范围线的属性以格网编号为关键字,赋予相应的每个地形图格网。为便于管理,不同类型的地形图信息范围线可以设置不同的图层、颜色等。

2.3地形图信息数据库的建立方法

格网化后的地形图信息可以通过格网编号在整个测区内进行统一管理,这种管理主要包括存储、查询和统计等。建立地形图信息数据库是对格网化后的地形图信息进行管理的最为有效的方法。存储在数据库文件中的地形图信息,可以利用数据库的查询语言,根据地形图信息中的某项或者多项具体内容进行单一条件或多重条件的查询和统计。建立地形图信息数据库的主要工作就是定义数据库表,确定其数据结构。本文根据实际需要定义了格网表、格网巡视记录表、地形图变化内容表、格网更新记录表、格网放线记录表、项目信息表、项目类型表等七种相互关联的数据库表。

2.4地形图信息的入库

地形图信息的入库主要包含两个方面的工作,一是在图形编辑软件中完成地形图信息范围线绘制、属性输入,地形图信息范围线的格网化,二是利用数据库应用程序开发接口,以格网为单位将地形图信息范围线的属性数据传输至数据库中相关的数据库表中。

2.5地形图信息查询方法与结果输出

地形图信息查询包括地形图变化信息、更新信息、规划放线信息三类信息的查询。地形图信息查询主要在数据库中进行,查询满足单一条件的地形图格网,可以数据库表中的任一字段为关键字进行,查询满足多重条件的地形图格网,可在满足单一条件的地形图格网中继续查询,进而得到查询结果。从数据库中查询得到的满足设置条件的所有格网,可在图形编辑软件中展绘出来,并根据需要定义图层,输出为图形文件。

3基于格网的地形图信息管理系统的设计与实现

本文以《苏测院数字化地形图现势性格网化管理系统》(以下简称系统)为例,介绍基于格网的地形图信息管理系统的设计与实现。

3.1系统开发环境

系统以AutoCAD2008为平台,MicrosoftSQLServer2005为后台数据库,利用MicrosoftVisualStudio2005(VisualC++8.0)和AutoCADObjectARX2008SDK开发包进行二次开发而成。

3.2系统设计与功能实现

系统从总体上可分为两大类功能,一是基于AutoCAD2008平台的图形处理功能,二是基于MicrosoftSQLServer2005平台的数据库管理功能。系统参考地理信息系统软件工程的原理与方法进行设计。根据系统需实现的功能,将系统分为图形绘制、格网计算、数据交互、数据库管理、查错纠错、成果输出六个模块。

3.3系统应用

3.3.1利用系统实时掌握测区内所有地形图的成图时间

通过查询地形图更新信息,实时掌握测区内所有地形图的成图时间,了解地形图的新旧程度。

3.3.2利用系统快速统计测区内所有地形图的现势性情况

通过查询地形图变化信息,以格网为单位,快速统计出测区内所有地形图的现势性情况,为地形图修测项目的立项工作提供客观、充分并且定量的依据,并可利用系统输出地形图现势性情况统计图。

3.3.3快速获取其他专题信息

利用《苏测院数字化地形图现势性格网化管理系统》,还可以快速获取其他专题信息,如某年内利用建设工程竣工图更新了多少面积的地形图,某年内地形图修测项目更新了多少面积的地形图,某年内完成了多少规划放线测量项目,涉及多少个地形图格网,于是可以预测这些区域的地形图即将发生变化。

4总结与展望

4.1总结

基于格网管理地形图信息是一个效果良好而且切实可行的方法。基于格网管理地形图信息较之基于图幅管理地形图信息,在准确性方面具有明显优势。根据基于格网的地形图变化信息、更新信息及相关规划信息,测绘管理部门可以编制更加详细的、有针对性的地形图修测计划,从而避免重复测绘,节约测绘费用。以AutoCAD2008为操作平台,MicrosoftSQLServer2005为后台数据库开发基于格网的地形图信息管理系统,可以对地形图信息进行系统、高效的管理。可以实现海量地形图信息的安全存储和快速查询,是基于格网管理地形图信息方法的较好解决方案。

篇7

1.概论

传统工程测量技术的服务领域主要包括水利、交通、建筑等行业,随着计算机,网络技术的发展、测量仪器的智能化,数字化测绘技术得到了广泛的应用,而全球定位系统(GPS)、地理信息系统(GIS)、摄影测量与遥感(RS)以及数字化测绘和地面测量先进技术的发展,测量数据采集和处理的逐渐自动化、实时化和数字化,工程测量的服务领域也应进一步延伸,以满足不断提高的社会需要。

2.工程测量中的数字化技术

2.1地图数字化技术

在建立各种GIS系统时,对原有地图进行数字化处理,在建库工作中占据了相当大的工作量,各工程测绘部门都投入相当大的人力和财力。对于已有纸制地图,若其现势性、精度和比例尺能满足要求,就可以利用数字化仪将其输入计算机,经编辑、修补后生成相应的数字地图。当前有手扶跟踪数字化和扫描矢量化两大类仪器,针对大比例尺地形图,大多数扫描矢量化软件能自动提取多边形信息,高效、便捷、保真的对地图进行数字化处理。论文格式。

2.2数字化成图手段

大比例尺地形图和工程图的测绘是传统工程测量的重要内容,常规的成图方法野外工作量大,作业艰苦,作业程序复杂,同时还有繁琐的内业数据处理和绘图工作,成图周期长,产品单一,难以适应社会飞速发展的需要。论文格式。而数字化成图技术具有精度高、劳动强度小、更新方便、便于保存管理及应用、易于等特点。目前,数字化成图技术有内外业一体化和电子平板两种模式。内外业一体化是一种外业数据采集方法,主要设备是全站仪、电子手簿等,其特点是精度高、内外业分工明确、便于人员分配,从而具有较高的成图效率。论文格式。

3.数字测绘在数字地球中的应用

简言之,数字地球就是把经济和社会发展方方面面的信息,加载于一个统一的地理坐标框架中按数字的形式存贮于计算机,任何机构或个人均可通过网络通讯技术,足不出户便获取所需的信息做到“秀才不出门,全知天下事”。数字地球是一个十分庞大的系统工程,技术复杂,涉及部门多,没有任何一个部门或团体能单独承担,它需要地球科学、信息科学,空间技术才众多应用部门的配合。测绘作为地学和信息学的重要组成部分,在国家空间数据基础设施建设中具有不可替代的地位,空间基础信息的获取、处理,向信息高速公路提供内容丰富、形式多样的信息货物等工作已历史地落在测绘工作者肩上。可以说,数字地球始于测绘。我国测绘部门从20世纪八十年代初期开始,对传统测绘技术进行了大规模的数字化改造。传统的光学定位技术已被光电技术,GPS技术所取代,传统的白纸测图已被数字测图和地理信息系统所取代,以地面测量为主向以卫星定位(GPS)、卫星遥感(RS)测绘等高技术为主的对地观测方面转变,被动的静态测量向动态的实时测量方面转变测绘部门在数字地球基础框架建设方面做了大量工作,主要包括:建立了全国A级、B级GPS网;完成了全国1:100万、1:25万基础地理数据库和数据服务设施;建立了国情和省情综合地理信息系统,研制成功了从遥感立体影像自动建立数字地面模型的数字摄影测量系统;研制成功了数字高程模型(DEM)、数字正射影像(DOM)、数字线划图(DLG)、数字栅格图(DRG)等“4D”产品生线。数字地球的雏形已经形成。

4.工程测量中的地理信息(GIS)技术

GIS是集计算机科学、空间科学信息科学、测绘遥感科学、环境科学和管理科学等学科为一体的新兴学科。已成为多学科集成并应用于各领域的基础平台和地学空间信息显示的基本手段与工具。其技术优势不仅在于它的集地理数据采集存储、管理、分析、三维可视化显示与成果输出于一体的数据流程,还在于它的空间提示、预测预报和辅助决策功能。目前,GIS不仅发展成为一门较为成熟的技术科学,而且已经成为一门新兴的产业,在测绘、地质矿产、农林水利、气象海洋、环境监测、城市规划土地管理、区域开发与国防建设等领域发挥越来越重要的作用。采用GIS、数据库、内外一体化测图、扫描矢量化及全数字摄影测量等技术,为专业信息系统提供及时、准确、标准化、数字化的基础空间信息,以建立各类专业信息系统,从而实现管理的科学化、标准化、信息化。

5.工程测量中的数字摄影测量技术

数字摄影测量是基于数字影像与摄影测量的基本原理,应用计算机技术、数字影像处理、影像匹配、模式识别等多学科的理论与方法。航空摄影测量是大面积、大比例尺地形测图、地籍测量的重要手段与方法,可以提供数字的、影像的、线划的等多种形式的地图产品。全数字摄影工作站的出现,加上GPS技术在摄影测量中的应用,使得摄影测量向自动化、数字化方向迈进。随着全数字摄影测量系统的应用,摄影测量产品已经从影像图等向4D产品转化,为建立各类专业的信息系统和基础地理信息平台提供了可靠的数据保证。

6.工程测量中的遥感( RS)技术

遥感(RS)技术由于大面积的同步观测、时效性、数据的综合性和可比性及经济性等优势,得到快速的普及,多光谱航空摄影和高分辨率的遥感卫星将成为对地观测获取基础地理信息的重要手段。各种中小比例尺地形图都可以利用遥感影像来获取,为应用于工程测量领域的城市基本地形图、地籍图以及各种大、中、小比例地形图的快速更新提供了十分便利的方法和手段。

7.工程测量中的3S集成技术

3S(GPS、GIS、RS)技术的结合,取长补短,是一个自然的发展趋势,三者之间的相互作用行成了“一个大脑,两只眼睛”的框架,即GPS与RS为GIS提供区域信息及空间定位信息,而GIS进行相应的空间分析以便从GPS和RS提供的海量数据中提取有用的信息并进行综合集成,使之成为科学的决策依据。诸如三峡工程、南水北调工程、西气东输、青藏铁路等工程,其施工范围大、物流量大、施工周期长等,而3S技术为该类大型工程提供了最有效的数据及信息采集、分析处理、表达决策的工具。

8.结语

伴随着测绘新技术的不断进步,现代工程测量必将朝着测量内外作业一体化、数据获取及处理自动化、测量过程控制和系统行为智能化、测量成果和产品数字化、测量信息管理可视化、信息共享和传播网络化的趋势发展。

【参考文献】

[1]陈俊勇,胡建国.GPS技术的新进展[J].测绘工程,1996,(2).

[2]李建松.地理信息系统原理[M].武汉:武汉大学出版社,2006.

篇8

一.引言。

随着我国经济的飞速发展,当今社会,我国的一个重要的支柱产业首推选的是基础设施建设,尤其是现代建筑的发展更是对基础设施也提出了更高的要求和指标,各种大规模的建筑项目不断的应运而生,譬如奥运会的主体育馆,超高层的建筑大楼,随着我国对建筑行业的工程质量和工程设施安全要求的不断提高,相对的对其建筑前的设计和在建筑施工过程中也提出了更高的要求。尤其以GPS技术在测绘学的领域中起到了革命性的变革。

二.测绘工作在我国建设中的作用。

在新时期我国发展的模式下,现代数字化技术、地理信息技术(GIS)、遥感技术(RS)、全球定位技术(GPS)等各种新技术给测绘学带来了革命性的变革。信息技术的飞速发展对线形工程测量工程施工也相对的起到了巨大的推动作用,随着时间的推移和社会的不断发展,人类的需求内容和层次将不断增加和提高,线形工程测量工程施工管理本身的内涵也不断地从低层次向高层次的实现了跨越式的发展。在我国基础建设中起到了不可磨灭的作用,主要体现为以下五个方面:

1.城市建设方面。

测绘学在城市建设方面所起到的作用是不可比拟的,使之科学的规划和整理居民地,建设城市交通路线、兴建地铁、对地下管线的铺设都起到了很大的作用,使土地资源得到了合理的配置。

2.交通运输方面

当我国修建公路、铁路、地铁及运河等工程师,都需要按地形图来制定方案与规划,在勘察、设计、施工的每个阶段,都离不开测量工作。

3.工程建设方面。

工程施工前的勘测、规划、设计以及工程施工后的检测、维护都需要测量工作,只有将测量的数据经过不断的分析与讨论,才能在工程建设中少走弯路,尽快的确定工程实施方案并运用最少的资源消耗来获取最大的效益。

4.军事方面。

首先有测绘工作提供地形信息,在战略的部署、战役的指挥中,除必须要的军用地图外,还需要进行目标的观测定位,以便进行进攻。至于高尖端的武器,譬如远程导弹、航天发射器等,都需要随时进行目标定位、随时观测、校正飞行轨道,以确保其精确的按照预定的轨道飞行.总之,现代测绘技术与军事紧密的结合在一起,也是军事上决策的重要依据之一。

5.科学实验方面。

近些年来,我国受到了自然灾害的影响,像地震、雪灾、涝灾等,对我国的国民经济造成了很大的影响。可是当今社会我国采用了现代测绘技术,在科学实验方面,可以对地震进行预测、包括对海底资源的探测、对核电站的监测以及对空间技术研究等等,无一不需要测绘科学提供基础数据信息。由此看来,测绘工作的作用和意义是十分巨大的。

三. GPS技术在公路测量中的应用前景。

目前公路勘测中虽已采用电子全站仪等先进仪器设备,但常规测量方法受横向通视和作业条件的作业强度大,且效率低,大大延长了设计周期。利用GPS测量能克服上述列举的缺陷,并提高作业的效率,减轻劳动强度,保证了各级公路测设质量。相对于以往测量来说,GPS测量主要有以下特点:

测站之间无需通视。测站间相互通视一直是测量学的难题。GPS这一特点,使得选点更加灵活方便。

2.定位精度高。一般双频GPS接收机基线解精度为5mm+1ppm,而红外仪标称精度为5mm+5ppm,GPS测量精度与红外仪相当,但随着距离的增长,GPS测量优越性愈加突出。

3.观测时间短。在小于20km的短基线上,快速相对定位一般只需5min观测时间即可。

4.提供三维坐标。GPS测量在精确测定观测站平面位置的同时,可精确测定观测站的大地高程。

5.操作简便。GPS测量的自动化程度很高,在观测中测量员的主要任务是安装并开关仪器、量取仪器高和监视仪器的工作状态,而其他观测工作如卫星的捕获、跟踪观测等均由仪器自动完成。

当前,公路测量的技术潜力蕴于RTK(实时动态定位)技术的应用之中,RTK技术在公路工程中的应用,有着非常广阔的前景

四.RTK技术在公路测量中的应用。

4.1. 实时动态(RTK)定位技术简介:是以载波相位观测值为根据的实时差分GPS(RTK)技术,它是GPS测量技术发展的一个新突破,在公路工程中有广阔的应用前景。众所周知,无论静态定位,还是动态定位等定位模式,由于数据处理滞后,所以无法实时解算出定位结果,而且也无法对观测数据进行检核,这就难以保证观测数据的质量。在实际工作中经常需要返工来重测由于粗差造成的不合格观测成果。解决这一问题的主要方法就是延长观测时间来保证测量数据的可靠性,这样一来就降低了GPS测量的工作效率。实时动态定位(RTK)系统由基准站和流动站组成,建立无线数据通讯是实时动态测量的保证。实时动态(RTK)定位有静态定位和动态定位两种测量模式,两种定位模式相结合,在公路工程中的应用可以覆盖公路勘测、施工放样、监理和GIS(地理信息系统)前端数据采集。

4.2.应用。最新的RTK技术在公路测量中具备以下几个功能和作用。

①绘制大比例尺地形图。高等级公路选线多是在大比例尺(1:1000或1:2000)带状地形图上进行。用传统方法测图,先要建立控制点,然后进行碎部测量,绘制成大比例尺地形图。这种方法工作量大,速度慢,花费时间长。用实时GPS动态测量可以完全克服这个缺点,只需在沿线每个碎部点上停留一两分钟,即可获得每点的坐标、高程。结合输入的点特征编码及属性信息,构成带状所有碎部点的数据,在室内即可用绘图软件成图。由于只需要采集碎部点的坐标和输入其属性信息,而且采集速度快,因此大大降低了测图难度,既省时又省力,非常实用。

②道路中线放样。设计人员在大比例尺带状地形图上定线后,需将公路中线在地面上标定出来。采用实时GPS测量,只需将中桩点坐标输入到GPS电子手簿中,系统软件就会自动定出放样点的点位。由于每个点测量都是独立完成的,不会产生累计误差,各点放样精度趋于一致。

③道路的横、纵断放样和土石方量计算。纵断放样时,先把需要放样的数据输入到电子手簿中,生成一个施工测设放样点文件,并储存起来,随时可以到现场放样测设;横断放样时,先确定出横断面形式(填挖半填半挖),然后把横断面设计数据输入到电子手簿中,生成一个施工测设放样点文件,储存起来,并随时可以到现场放样测设。同时软件可以自动与地面线衔接进行“戴帽”工作,并利用“断面法”进行土方量计算。通过绘图软件,可绘出沿线的纵断面和各点的横断面图来。因为数据都是测绘地形图时采集而来的,不需要到现场进行纵、横断面测量,大大减少了外业工作。而且必要时,可用动态GPS到现场检测复合,这与传统方法相比,既经济又实用。

五.结束语

工程测量的真实性、完整性、科学性是通过严格的管理、科学的组织、规范的施工建立起来的,GPS测绘技术在科学技术的突飞猛进的现实面前是最好的映射。随着时代的发展与进步,计算机技术作为相对社会高科技的结晶,在社会生活中各个领域都起到了相当重要的地位。通过GPS测绘技术在线形工程测量中的应用,以及其在铁路勘察领域所持有的优点,促进了测绘技术的快速发展,同时对测绘技术信息化程度要求也较高。数据的整合、信息的共享,都将促使测绘手段和测绘技术走向先进、准确、完善,使我国最终实现经济及其社会效益。

参考文献:

篇9

概述

为进一步验证GPS—RTK技术在工程测量中的精度情况,本文结合在山西省沁县实施的l:500的地形图测绘任务,通过对比作业方法和精度准确性验证,说明了如果采取适当的测量措施GPS—RTK技术的运用将大大减轻测量作业的劳动强度并提高工作效率。

1、GPS-RTK技术的基本原理及测量方法

(一)RTK的基本原理

RTK实时动态定位技术是一项以载波相位观测为基础的实时差分GPS测量技术,它主要利用两台或两台以上GPS接收机同时接收卫星信号。其中一台安置在已知坐标点上作为基站,其他作为移动站。在RTK作业模式下,基站通过数据链将其观测值和测站坐标信息一起传送给移动站。移动站不仅通过数据链接收来自基准站的数据。还要采集GPS观测数据,并在系统内组成差分观测值进行实时处理,而且RTK技术受外界条件限制小,只要满足工作条件,就能快速、高精度地完成定位作业。

(二)RTK的测量方法

实时动态测量是一种差分GPS数据处理方法,这些数据实时地从基准站传输到一个或多个流动站。具体操作方法为:首先将通过静态观测求得的WGS-84坐标和地方坐标键入接收机中进行转换,或置人静态观测平差时求取的转换参数,然后在一已知点上架设一台GPS接收机(主机)作为基准站,观测另外l-2个已知点,进行校核以防止参数或者坐标输错,最后再将基准站的坐标、高程、坐标转换参数等必要的数据输入GPS控制接收机,另设置一台或几台GPS接收机为流动站同时接收卫星信号,并随时将实测精度和预设精度指标进行比较。一旦精度达到预设精度指标的要求,接收机将提示测量人员是否接收该成果。接收后,测得的坐标、高程及精度将同时存储到接收机中。另一种方法是:直接用接收机在基准站和流动站接收WGS-84坐标.再利用观测得到的WGS-84坐标和相应的地方坐标根据一定的数学模型进行转换,从而求得转换参数。当然,这种方法仅适用于测区范围较小的情况下。

2、GPS—RTK技术在地形图测绘中的应用

某测区附近有3个已知高级平面控制点,精度较高,可以在本次测绘工作中利用。依据这3个高等点在测图范围内布设首级控制网,设置E级GPS控制点9个,采用GPS静态观测模式,每个时段测量45 min,数据采样间隔15s。本次观测使用南方灵锐$82型双频GPS接收机(标称静态平面精度3 mm+1 mm/km,RTK平面精度l cm+l ppm,RTK高程精度2 cm+l ppm)3台套。从测区附近已知三等水准点引入高程,采用四等水准精度施测9个GPS控制点的高程值。

测区首级平面和高程控制网布完后,就可进行图根控制和碎部测量。将灵锐$82型GPS接收机设为动态观测模式,1台作为基准站,其它2台作为流动站。在视线开阔地架设基准站和发射电台,2台流动站开机与基准站链接,输入首级控制点的平面坐标和高程,进行参数转换,用一个已知控制点来校正参数,然后就可以进行动态模式的观测了。图根控制和碎部测量可同步进行。在视野开阔、卫星信号强的地方,可直接进行碎部测量,获得地物地貌点的三维坐标;在大范围居民区、树林繁茂等卫星信号弱的地方,可在这些地方找相对开阔、卫星信号强的地方进行图根控制测量,然后依据这些图根点用全站仪观测碎部点。RTK手簿和全站仪数据传人计算机后,用南方CASS7.1成图系统软件进行内业地形图编辑。

3、GPS-RTK技术的精度可靠性分析

(一)可靠性影响因素

(1)GPS系统误差。包括GPS卫星个数、信号、卫星分布和大气质量状况,统称为系统误差。卫星个数和分布影响测量精度,当分布不均匀时,即使有足够的卫星数目,也未必能提高其观测精度,甚至有时很难得到固定解,因此应避开卫星分布不均的时间段进行测量。相关资料研究结果表明,RTK测量的基线长度与卫星的轨道误差和大气状况关系密切。大气层中的电离层和对流层的误差受基线长度影响,基线越长,观测值的误差也越大,通过数据计算转换,解算结果的可靠性也越低,RTK的作用半径应控制在10km以内。

(2)RTK设备质量的好坏直接影响测量精度,也影响成果的可靠性。市场上的RTK品牌很多,质量也有区别,其中影响其测量精度的主要因素有数据链、无线电类型以及处理软件,

在购置设备时应多参考在工程实际应用中反馈信息较好的,故障率低、可靠性高的设备才是

理想的选择。

(3)测量环境是指地形条件、基站和流动站之间的障碍物、电子干扰、多路径效应等环境因素。它对RTK测量精确性影响比较直接,所有的观测数据都直接发送到基准站,因此在观测过程中,观测者必须始终注意这些环境因素,以减少此类误差。

(4)人员操作带来的偶然误差是随机的、不确定的。这种由于操作水平、个人自身的专业能力和经验所造成的偶然误差对测量成果的精度好坏起着首要作用。因此,相关作业人员应具备相关的素质和能力,在外业采点、室内数据处理、内业成图的过程中都需要具有一定的快速判断、处理的能力。

(5)技术方案的选择。基准站的选择、观测时间的选择、坐标系的选择,都对测量成果的质量起重大影响。例如,基准站的位置选择,应尽量将基准站架设在测区中央且避开障碍物和电子干扰,特别是大功率的无线电发射塔,以减少基准站接受和发送的数据所受的干扰。进而保证数据的可靠性。

(6)转换参数误差。由于GPS-RTK测量是在WGS-84坐标系中进行的,精度较高;而在实

际的测量工作中,通常需要将大地坐标系与西安坐标系或者是大地坐标系与北京坐标系进行转换,因此存在一个坐标转换的精度问题。常用的有四参数和七参数两种参数转换,不同的情况有不同的适用情况。四参数计算简单,方便快捷;七参数求解计算复杂,但是作业范围比较广泛,其精度和成果可靠性也较高。不论选取哪种转换参数,都应多选几组观测结果进行计算分析,避免出现粗差和错误。

4、提高RTK测量成果精确度和可靠性的方法

通过RTK技术在沁县地形图测绘中的应用,在提高成果精确性和可靠性方面总结以下几点:

(1)对于在城市空旷区、山地地形测量等能充分满足RTK接收机数据采集要求的地区,RTK能快速完成碎部测量作业;但在建筑物密集、树林稠密等地区,会使RTK初始化速度大大降低或者出现失锁现象,可以采用RTK施测图根控制点,再利用全站仪测量RTK不能作用的测区。这种GPS RTK+全站仪测量碎部点的方法,能快速完成野外作业,两种作业方法能互相补充,取长补短,最大可能地发挥各自的优势。

(2)在利用RTK技术施测图根控制点时要充分保证RTK高程控制数据的质量。在外业观测时,观测条件要求比碎部点高,注意及时与已知点高程校核,采用合适的数据处理方法剔除粗差。

(3)对于不同型号的GPS RTK接收机所标称的精度不可盲目相信,它是一种理想状态下的技术指标,随着作业环境、时段信号等因素的影响而不同,其值只能作为参考,不可盲目相信。

(4)初始化速度决定着RTK测量的速度,在山区、林区或建筑物密集区,GPS信号受到一定的影响,容易造成失锁想象,需要重新初始化,大大降低了测量的精度和生产效率,解决这个问题的主要方法是选用初始化能力强、初始化时间短的RTK机型。

(5)利用双基准站法施测控制点,可以提高定位测量精度,确保测量成果的可靠性。在利用双基准站法测量控制点时,注意以下几点:①控制点间距离应控制在2 km左右,平面精度能达到一级导线的要求,高程精度能达到四等要求;②流动站宜采用三脚架进行对中整平;③点位校正,应选用精度较高的控制点。

(6)基准站应尽量架设在地势较高且远离强电磁干扰源和信号反射物,流动站距离基准站控制在5 km之内为宜。

(7)小面积的地形图测绘宜采用四参数实施,方便快捷;而超过15 km2的范围宜采用七参数实施,测量成果的稳定性较高。

(8)为保证RTK测量的准确性,在地形图测绘作业过程中宜采用如下质量控制:

①已知点检核验证:用RTK测出高精度的控制点进行比较验证RTK测量模式的正常性,发现问题即可改正。②重新测量已测过的控制点:在RTK初始化完成后,首先重测已有的控制点,确认无误后再进行地形图的测绘。这样可防止各种校正参数、投影参数等指标的设置失误,提高测图速度和质量。

参考文献:

篇10

0前言

目前实际工程项目的业务量随着国家经济的发展而迅速增大,这不仅仅给工程项目里的各种专业技术带来发展机遇也带来新挑战。在每一项工程项目中,工程测量技术都扮演着不可替代的先行者角色,工程前期的勘测、图纸的绘制等等都离不开测量技术。也正是一次次发展的机遇给传统工程测绘技术插上腾飞的翅膀,使得工程测绘技术逐步走向现代化。新型测量技术的产生也给工程测量注入了新的活力,同时也为我国经济发展提供了一份助力。

1工程测量的重要性

如果没有工程测量工作的有效执行,将会使得整个工程项目失去施工、设计依据。下面我们以工程测量技术在实际工程中的应用为例,简要分析测量技术存在的必要性。在一般的土建施工过程中,往往需要现场的技术人员事先做好工程勘探测量工作,否则将无法为后续的工作提供参数指导,而这项工作是决定工程质量好坏的基础。根据测量定位,确定施工机械的布置点。在桩基施工过程中,需要依据工程测量来定位。为保证整个工程的地基承载力,必须通过过程测量准确的确定桩的位置。再次,在建筑物主体施工过程中,要依据工程测量确定墙、柱的位置,与地面的垂直性等,还包括垂直方向的高度,也是工程测量的内容。最后,主体工程完工后,装饰工程中,局部部位的装修的尺寸确定,墙面装饰的垂直度的保证都离不了工程测量。通过上面分析可知:工程测量是整个工程有序施工的前提,在前期工作中一定要做好工程测量工作。

2测绘技术的优点

测绘技术已经迈入数字化时代,不仅精简了流程,提高了准确度,更是大大降低了工作人员的劳动量。不仅如此,现代测绘也方便了存储和数据处理。现代测绘也具备了超越传统测绘的优势,例如:现代测绘技术可以一次测量,多次使用。传统方法则需要每次绘制一次图纸时就要在进行一次测量工作。但是现代测绘技术可以根据所需要的不同表现形式,来调整图纸的比例,真正达到物尽其用。现代测绘技术可以大大提高测绘的精度,现场工作人员利用全站仪记录现场地形数据,室内工作人员直接使用数据,没有读数带来的误差,极大的提高了数据的精度。不仅如此,现代的测绘技术减少了工作人员的工作量,提高了效率和质量。现代测绘技术具备便携式功能,不仅可以存在硬盘中,又可以打印在图纸上,优势明显。

3测绘技术在工程测量中的应用

(1)测绘技术应用之控制测量。由于现在测绘技术的发展,控制测量已经可以快、准、好的为工程测量提供基础数据。GPS测量技术的成熟给控制测量带来了前所未有的突破。只要保证GPS采集设备操作的准确性,加之其内部软件的计算,我们可以得到最终的结果,无需大量人力读数、计算和处理。真正意义上实现了自动化。GPS测量技术已可以轻松完成传统测量方法:如采用经纬仪、水准仪、测距仪等设备完成的三角测量方法和几何水准测量方法等。传统测量方法不仅需要诸多的测量仪器,还要求工作人员具有很高的职业素养,这样才能保证读数的误差控制在一定范围内。控制测量已经越来越依赖于GPS测量技术、全站仪等现代先进的设备和方法,以追求更高的精度,更快的速度,更低的投资,更少的人力。

(2)测绘技术应用之地形图测量。地形图测量就是对土地上的物体进行位置和高度的确定。工程勘测需要测绘技术,同样的,工程末期的一些测量工作也需要用到测绘技术。野外工作人员会使用全站仪等测量设备获取数据,并且需要工作人员进行记录。也可以用获得的数据导入计算机中联合生成所需要的地形图。需要注意的是,当数据由野外人员记录时,要减少数据记录的误差,这样才能保证地形图的质量。让工作人员看到的就是工作人员所测量到的,也就是最终客户所要求的。对于公路、机场等占地面积较大的场地,测绘技术也在不断发展以适应其特殊要求,例如,利用全站仪、GPS技术等多种仪器绘制地形图的系统正在处于研发状态中。当在水下进行工程建设时,需要用到水下测量。其通用的工作方法是将GPS技术与回声探测方法结合进行测量,利用软件进行数据整合,最终得到需要的水底三维图。由于工作人员不能直接进入地下和水下取得数据,所以地下和水下的数据获得很难,对于地下和水下的测量还远远没有做到精确的程度。因此,进行地下数据采集之前,首先要进行导线计算,接下来要选择行之有效的方案将所获得的关键点绘制与于平面图中。只有确定好关键点的位置信息,最终结果的误差才能达到最小。

(3)建筑物的变形等检测。我国法律法规对高楼大厦建设的位移变形的数值等规定了其允许范围,并且需要使用符合要求的一些设备进行测量。建筑物的位移观测要符合照相应法律法规中的二级精度。采用精密全站仪等符合法规的设备,将处理后的结果整理成报告提交给甲方。在建筑物的变形监测过程中,尽量避免人工干预,包括记录数据、数据处理等。要尽最大可能的全部使用计算机来处理数据和绘制成图。全站仪设备和全球定位系统同样也普遍应用在建筑物的变形监测过程中,相较于一般的设备,其有明显的优势,用时少,效率高,数据准确。

(4)3S集成技术的应用。在本论文前半部分的内容中已经部分介绍了3S技术的应用。所谓3S集成技术也就是:全球定位GPS技术、地理信息技术GIS和遥感技术RS。这三项技术基本上可以代表测绘技术的数字化,它们的出现给工程测量注入了新的生命。在有关工程测量的文献中已经详尽的介绍了3S技术的工作原理和使用方法,在此不多赘述。

4结论

工程测量是一种需要获得准确数据的操作方法,而技术的水平的高低是工程质量的关键。测绘技术是地质测量、土木工程施工等的基础。在这些工程应用中,3S集成技术发挥了其本身无可比拟的数字化优势,打破了传统测绘技术的限制。现代测绘技术不仅可以使用更少的工作人员来完成同等工程量,而且大大提高了结果的精度,使得后续工作的顺利开展得到了保证。随着计算机等技术水平的提高,测量最终所得到的结果也越来越精确。通过本文的讨论,我们可以看到测绘技术应用于工程测量的方方面面。测绘人员应当开拓创新,积极引入新的数字化设备、引入新的思想,将工程测量做到更效率,更准确。

参考文献

篇11

南京林业大学是一所以工、农科为主,理、文、经、管、法协调发展的多学科性大学,测量学是开设面广、实践性强的一门专业基础课程。林业类专业如林学、生态学和森林工程等专业都开设测量学课程,测量学课程的授课计划学时依不同专业分别为48学时或64学时,包括课堂授课、课堂实验,外加开课学期末1周或2周的集中实习。

1测量学课程教学中存在的问题

1.1课程内容体系不完全合理

测量学课程教学内容以传统仪器获取地理信息的内容多,获得的成果也以纸质图为主,不利于扩大学生的知识面,也不便于激发学生的创造性,更没能充分体现信息化测绘体系下的测绘成果如何方便快捷地为林业服务,测绘新技术在林业中的应用等交叉融合教学内容比较薄弱。

1.2与课程配套的仪器设备滞后于测绘科技发展

仪器设备的投入严重不足,导致实践教学的内容滞后于生产实践。测绘生产单位早已使用先进的仪器设备进行测绘生产,可是学校由于经费有限,有的购不齐这些仪器,有的虽然仪器种类齐全,但数量太少,学生仅能进行参观性实习,根本不能用于生产性实习。

1.3体现测绘新技术在林业中应用的内容相对较少

开设测量学课程的专业众多,但不同的专业有各自的特点,所以不同专业在掌握测绘基本知识和基本技能的,测量学在不同的专业中的应用应该各有特色。只有不断地完善课程内容设置,强化专业领域特色,才能满足社会对人才的需要,才能充分发挥测量学知识在林业中的应用。对于林业类专业的学生,应突出测量学中的中小比例尺的地形图或遥感影像图在林业资源调查和生态规划等中的应用,发挥大比例尺地形图在精细林业中的作用等。

1.4林业类专业的学生对该课程重视不够

由于测量学不是林业类专业的主干课程,他们认为不过是专业基础课,不太重要,学生普遍对这门课不够重视,加之实验实习使用的仪器设备相对落后,致使很多学生在以后的工作中遇到有关测量的问题不能轻松解决。

实验实习教学环节正是对理论知识进行验证、巩固和提高的过程,同时也是增强学生的动手能力和创新能力的机会。虽然测量学实践教学占有本课程总学时一半的比重,但学生对实践教学重要性认识不足,加之实验实习班级逐渐增多,而实验实习场地并没有相应扩大,实验实习考核较为弹性,学生只是被动地做验证性实验,没能结合林业类专业做些设计性和创造性实验。由于上述原因,导致学生对实验实习环节不是很感兴趣,不能充分达到实验实习教学的目的。

2基于信息化测绘体系的测量学教学改革

基于信息化测绘体系,结合林业科学的特点和要求,从教材建设、教学内容、实验实习环节的建设、考核制度、教学方法和手段以及教师队伍建设等多方面进行测量学教学改革。

2.1教材建设

教材建设是课程建设的—个重要环节。以现代教育理论为指导,前瞻测绘科技发展,面向社会,拓宽测绘领域,组织教师,协同相关高校的教师编写了《测量学》作为林业类专业的测量学教材。正确处理了传统测绘知识与现代测绘理论之间的关系,教材中既有先进的测绘仪器和技术,同时也保留了一部分传统的技术方法。通过学习让学生充分认识到测量学在林业科学和经济建设中的地位和作用。

2.2教学内容

顾及测绘科学技术的发展现状和林业类专业测量学教学的目标定位,将测量学教学内容划分为三部分:基础测绘、专业测绘和现代测绘,基础测绘部分包括:概论、高程测量、距离测量、角度测量、测量误差理论及地形图测绘等;专业测绘部分包括:生物多样性测量、林业资源调查及地形图在林业中的应用等;现代测绘部分包括:数字化测图、GNSS、数字摄影测量、遥感技术及GIS等技术及其在林业中的应用。其中,基础测绘部分是学习专业测绘的基础;专业测绘部分突出体现测量学与林业科学的结合;现代测绘部分主要介绍测绘新技术、新理论在林业中的应用,注重培养学生的创新能力,以适应现代社会和未来发展的要求。授课内容体系按照“基础一应用一提高”的基本思路,循序渐进,既符合高等教育教学规律,又较好的处理了传统测量技术与现代测绘技术内容之间的关系。

2.3加强实验实习环节的建设

(1)加大投入,更新实验设备。

测量学课程的建设和发展,应有基本的设备保障。测绘新科技的发展及新仪器的实用化,对教学硬件提出了更高的要求,学校应加大对测量学教学硬件的投入,建设现代化的测量实验室。教学仪器设备必须进行更新换代,除有传统的必要的仪器设备以外,还要有一定数量的新仪器和新设备,如全站仪、GPS接收机、数字成图软件、GIS软件以及遥感软件等。只有不断引进测绘新仪器和设备,并使之充分发挥效率,学生才能接触前沿知识,与时代同步发展。

(2)加强实验实习基地建设。

集中实习中,实习场地的选择至关重要。在校园内,科学地建设能够基本满足实验实习要求的场地,学生可在基地上进行测绘基本技能的实训。同时,在下属林场建立地形图识读实习基地,此基地地形起伏大、典型地貌明显、生物多样性丰富,可直接将大中小比例尺地形图应用在林业中。若条件允许,也可考虑将测量学集中实习与林业类专业的生产实践相结合。

(3)规范实验室管理。

对实验室实行规范化管理,全天开放实验室,让学生有机会到实验室做实验;建立实验设备共享体系,使学生根据需要选择仪器,以提高学生的动手能力和创新能力;建立仪器借还制度和设备损坏赔偿制度等。对仪器设备进行定期检验和维修,以提高仪器设备的使用效率;正确处理工程生产用仪器与学生实验实习用仪器的关系;加强与兄弟院校或生产单位的交流,到有先进仪器设备的单位参观学习,取人之长补已之短。

2.4考核制度改革

(1)试卷库建设。

为深化考试方法和考试内容的改革,推进考教评分离,使考试管理工作更加规范化、标准化及科学化,促进人才培养质量和办学水平的不断提高,建设了测量学课程试卷库。每份试卷包括选择题、填空题、名词解释、简答题、计算题、综合题和实践操作题等不同类型试题,保证了试卷库从不同角度、不同侧面较为全面考核学生掌握知识的情况,对学生的基本素质与智能进行多角度和多层次的测量,理解记忆、实践操作、综合分析、灵活运用及求异创新等能力应成为测试的重点。

(2)改革课堂教学考核办法。

考试试卷从试卷库中随机抽取,统一进行,阅卷采用流水作业,同一老师评阅同一道试题,评分标准统一了,考试成绩更具可靠性。同时,总评成绩由卷面成绩、到课情况、课堂互动、实验完成情况、作业完成情况及随机回答提问等方面组成。成绩评定方式有效保证了教学质量,端正了学生们的学习态度,认真地对待平时的作业,以更好地掌握测量学课程要求掌握的内容。

(3)改革实践教学考核办法。

由于实践教学自身特点,仅凭上交成果或主观印象来确定学生成绩并不科学,为此必须要量化考核标准,科学合理地安排考核内容和形式。实习成绩以学生在实习过程中的表现、仪器操作技能、成果质量、实习小结和实习日记来综合评定,更为客观公正地评定学生实践成绩。

2.5改革教学方法和手段

学生创新能力来源于学生扎实的学科基础知识、宽广的知识面和较强的动手能力。实现人才培养目标,提高学生的创新能力就必须更新教学观念,加强学生的能力培养。在教学观念上,传统教学只注重知识灌输,不注重技能的训练;只注重动脑能力的培养,忽视动手能力的锻炼;以考试为手段、以高分为目标,使学生偏重死记硬背,以致学生的质疑能力差、辨识能力差、创新意识弱以及创造能力得不到充分发挥。现代教学方法应提倡将学生从被动地学转变为主动地吸取,改变传统的以教师讲为主的教学形式,将“讲课、自学、讨论、实验、答疑”有机结合起来,多运用启发式教学,给学生留有思维的空间,激励学生自己提出问题、思考问题。逐步形成学生参与和师生双向交流的机制,让学生在不同的学习形式中找到学习的兴趣,从而调动学生学习的积极性和主动性。

制作和开发面向教学、面向学生并简单实用的多媒体课件,将复杂、抽象、隐含的原理及过程转化为形象、生动的直观表达,让学生身临其境,充满好奇和主动参与教学。进而达到增强教学效果和提高教学质量的目的。

2.6加强师资队伍建设

篇12

随着计算机技术及数字化技术近些年来的飞速发展,越来越多的测绘工作者把目光聚焦到了利用计算机来进行数字化成图技术上,以此来减轻测量内业人员的工作量,提高工作效率及输出成果的精准度。

CASS地形地籍成图系统是基于AutoCAD平台技术的数字化测绘数据采集系统,本文详细介绍了利用CASS系统绘制河道断面图的两种方法,并对两种方法进行了分析比较,以供给不同需求的读者选择使用。

1. 根据已知坐标绘制断面法

先将外业测量所得各断面高程点数据展开到河道带状地形图上。

1.1 纵断面图

1.1.1绘制纵断面线

利用工具栏里的“多段线”命令,在河道带状地形图上,选择各横断面位于河道中心位置的高程点,绘制出纵断面线。

1.1.2绘制纵断面图

选择菜单栏中的“工程应用——绘断面图——根据已知坐标”,选择所绘制的纵断面线,弹出“断面线上取值”对话框(如图一),已知坐标获取方式选择“由图面高程点生成”,设置采样点间距及起始里程后“确定”。

图一

自动弹出“绘制纵断面图”对话框(如图二),选择距离标注方式为“里程标注”,设定其他各参数后确定,该河道的纵断面图就生成了。

图二

1.2 横断面图

1.2.1绘制横断面线

使用“多段线”命令,将每个横断面上各个高程点连结成线,需要注意横断面线的起始方向就是横断面图的起始节点方向。

1.2.2绘制横断面图

选择菜单栏中的“工程应用——绘断面图——根据已知坐标”,选择所绘制的横断面线,弹出“断面线上取值”对话框(如图一),已知坐标获取方式选择“由图面高程点生成”,设置采样点间距及起始里程后“确定”。免费论文。

自动弹出“绘制纵断面图”对话框(如图三),选择距离标注方式为“数字标注”,设定其他各参数后确定,该河道的横断面图就生成了。

1.2.3里程标注

在所绘制的纵断面图上找到该横断面所对应的里程,以文本的形式添加到该横断面图上。

图三

重复以上步骤绘制其他横断面图。

2. 根据里程文件绘制断面法

2.1 纵断面图

参照方法一绘制出纵断面线。

2.1.1生成坐标数据文件

如测量时无dat文件。可选择菜单栏中的“工程应用——高程点生成数据文件——有编码高程点”,输入数据文件名(如图四),保存为dat格式的文件。

图四

点击保存后有两个命令可以选择:命令1(选取高程点范围),命令2(直接选取高程点或控制点)使用其中一个命令选择好坐标点,系统提示找到点的个数及“OK!”,此时坐标数据文件已经生成。

2.1.2生成里程文件

选择菜单栏中的“工程应用——生成里程文件——由复合线生成——普通断面”,选择所绘制的纵断面线,弹出“断面线上取值”对话框(如图五),已知坐标获取方式选择“由数据文件生成”,坐标数据文件名为上一步所生成的坐标数据文件,输入要保存的里程文件名,保存为hdm格式的文件,设置采样点间距及起始里程后“确定”。

图五

2.1.3绘纵断面图

选择“工程应用——绘断面图——根据里程文件”,选择所生成的里程文件,弹出“绘制纵断面图”对话框(如图二),按需要设置各参数后“确定”。

2.2横断面图

2.2.1修改坐标数据文件

使用记事本将1.1中所生成的坐标数据文件打开。免费论文。

如以下数据所示:

点号点位 Y坐标 X坐标 高程

1,,138.679,69.125,1.000

2,,129.848,69.075,1.000

3,,108.979,69.787,1.000

4,,115.674,69.929,3.000

5,,119.876,69.502,1.000

6,,132.269,78.898,1.000

7,,124.791,79.325,4.000

8,,117.170,79.041,4.000

9,,109.905,79.183,3.000

10,,104.421,79.112,2.000

……

此时需要以横断面编号添加点位标记,纵横断面相交的高程点前需加“m”,以下为修改后的坐标数据文件

1,1,138.679,69.125,1.000

2,1,129.848,69.075,1.000

3,m1,108.979,69.787,1.000

4,1,115.674,69.929,3.000

5,1,119.876,69.502,1.000

6,2,132.269,78.898,1.000

7,2,124.791,79.325,4.000

8,m2,117.170,79.041,4.000

9,2,109.905,79.183,3.000

10,2,104.421,79.112,2.000

……

修改后以dat格式保存文件。

2.2.2生成里程文件

选择“工程应用——生成里程文件——由坐标文件生成”(如图六),简码数据文件名选择修改后的坐标数据文件,输入要保存的里程文件名,自行选择横断面上的点排列方式,保存为hdm格式的文件。

图六

2.2.3绘横断面图

选择“工程应用——绘断面图——根据里程文件”,选择2.2中生成的里程文件,弹出“绘制纵断面图”对话框(如图二),按需要设置断面图间距和其他各参数后“确定”,所有横断面图一并完成。

所绘制横断面图如图七所示。

图七

3.分析

方法一操作步骤简单易懂,每绘制好一个断面图后可即时复核,但无法批量生成和需要手工输入里程,使得此方法在应用中有一定的局限性,较适合河道断面比较少的情况,同时不可形成为中桩为0距离的横断面图。免费论文。

方法二虽然操作步骤比较繁琐,需要生成和修改的文件较多,但设置好各参数后可批量绘制所有横断面图,并且自动标注各个横断面里程,大大提高了绘图效率,适合河道横断面数量多的断面绘制。

两种方法均经过实际操作证明简单易行,各有所长,在应用中应有所思考,选择最适合的方法来提高工作效率和质量。

4.结语

利用CASS成图系统绘制河道断面图的意义不仅仅在于提高了测绘内业工作者的工作效率,也代表了我国数字化进程的发展趋势,由传统的全手工化制作到如今的数字化、自动化成图,飞速发展的科学技术给测绘工作带来了更为广阔的天空,作为测绘工作者更应该注意不断实践与探讨,推动测绘工程任务的顺利完成,保证质量、满足进度,取信于客户、取信于社会。

【参考文献】

[1] 谢刚生等.数字化地形地籍成图系统CASS7.0用户手册[M].南方测绘仪器有限公司,2006(2).

篇13

1引 言

GPS定位技术的快速发展给现在的测绘行业带来了彻底性的革命。它具有操作简便、定位精度高、不受天气与通视条件的限制等优点,越来越受到测绘行业的青睐。为进一步验证GPS - RTK技术在测量中的精度情况,本文结合在金华金东区实施的1 ∶500的地形图测绘任务,通过对比作业方法和精度准确性验证,说明了利用RTK 技术测绘大比例尺数字地形图能大大减轻工作量、提高工作效率。

2RTK工作原理

GPS 实时动态测量(Real- Time Kinematic)简称RTK,具体作业方法是在已知点上设置一台GPS 接收机作为基准站, 并将一些必要的数据如基准站的坐标、高程、坐标转换参数等输入GPS控制手簿,一至多台GPS 接收机设置为流动站。基准站和流动站同时接受卫星信号, 基准站将接收到的卫星信号通过基准站电台发送到流动站, 流动站接收到的卫星信号与基准站发来的信号传输到控制手簿进行实时差分及平差处理, 实时得到本站的坐标和高程及其实测精度, 并随时将实测精度和预设精度指标进行比较,一旦实测精度达到预设精度指标,手簿将提示测量人员是否接受该成果,接受后手簿将测得的坐标、高程及精度同时记录进手簿。

3影响RTK作业精度的因素

1、系统因素

RTK设备本质上是一种动态的GPS设备,它同样也存在GPS 设备的测量误差,包括GPS 信号的自身误差、GPS 信号的传输误差、GPS 接收机的误差。RTK品牌较多,RTK设备的优劣不仅影响测量精度,而且也影响成果的可靠性。RTK设备的影响因子主要包括数据链、天线类型和处理软件等。因此RTK应选择操作方便、性能稳定可靠、故障率低、可靠性高的仪器设备。这些都可认为是RTK 设备的系统误差。

2、人为因素

技术设计方案的合理性和准确性对测量成果的质量和可靠性也起着重大的影响。例如基准站的选择、坐标系的选择、观测时间的选择等。2) RTK进行动态测量作业需要接收基准站的信号,而基准站的对中整平误差和量高误差都直接影响移动站设备的定位精度。3) 移动站的标杆是否立直,标高是否准确也都直接影响其定位精度。

4RTK的转换参数

RTK测量是在WGS - 84坐标系中进行的,而各种工程测量是在国家坐标系统(80, 54)或地方坐标系,这之间存在着不同坐标系间的一系列转换。在GPS静态测量中,坐标转换是在后处理时进行的。而RTK是实时给出需测定的点位坐标,这使得求定转换参数工作尤为重要。转换参数一般是利用重合点的两套坐标值通过一定的数学模型进行计算。重合点数必须至少有3个以上的国家坐标系(80, 54)控制点或地方坐标控制点,利用Bur2sa模型解求7个转换参数。

式中ΔX , ΔY , ΔZ为平移参数, Ex , Ey , Ez旋转参数,δμ为尺度变化参数。当测区范围较小时,可不考虑尺度比和旋转参数, 令δμ = 0, Ex , Ey , Ez为0,

在解求转换参数时应注意:

1、已知点的选取应最好在测区的四周及中心,能有效控制施测范围,且均匀分布。

2、为保证施测精度要求,应选择不少于3 个控制点进行转换参数求解,一般3~5个为宜,采取同一基准或

不同基准点求取2~3组参数值,选择残差较小、精度较高的一组使用,且应预留多余点进行检核。

3、对于高程要求比较高的地区,应根据地区的地形情况求解垂直方向的转换参数,对平地、丘陵地、山地应分别求解垂直转换参数。

5 RTK定位精度验证

1、在0~5 km, 3~10 km范围内,选择同一基准站,求解两组转换参数,对同一点进行两次观测,将其结果与四等GPS点进行比较。。其结果见表1。