引论:我们为您整理了13篇合金工艺论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
篇1
3铝合金部件焊接时容易形成气孔铝及铝合金焊接时极易产生气孔,尤其是纯铝和防锈铝的焊接。焊接时产生的气孔主要是氢气孔,而氢气的来源,主要是弧柱气氛中的水分、焊接材料及母材所吸附的水分。焊接时,液体熔池在高温下溶入大量气体,在凝固时,气体溶解度急剧下降,在焊后冷却凝固过程中来不及析出,而聚集在焊缝中形成气孔。
二铝合金焊接方法的选择
1焊接方法选择需要考虑的因素
1)根据焊接车间和焊接场地的可能性和焊接足够移动距离来选择焊接设备及方法;
2)焊接后零件的性能是否满足使用要求来选择焊接方法:如焊缝强度、冲击韧性、疲劳强度和抗腐蚀性能等;
3)焊接加热是否允许对焊缝附近的基体材料产生软化;
4)焊接方法是否满足焊缝的成形性要求;
5)焊接件的用途和工作环境以及焊接接头设计等。
2大截面铝合金焊接常用的焊接方法惰性气体保护焊(TIG与MIG)是应用最广泛的铝及铝合金熔焊方法。
1)装夹固定在大型截面铝型材焊接时,由于铝合金的热导率比较大,必须采用较大的热输入,焊接时很容易发生变形,这是铝合金焊接时要非常注意的问题。这里主要采用反变形法来控制变形。具体实施过程为:在选用合理的焊接顺序的同时,预先将具有插接口的工件拼接完好,并给工件施加反变形的力,装夹固定。从而达到焊后表光滑并能够恰好消除变形的措施。
2)焊前清理焊接前应对母材接头处的表面氧化物及其它油污等附着物进行打磨清理,并进行点焊固定。清理的方法一般采用有机溶剂进行表面去污,同时采用电动钢丝刷去除表面氧化物。选取有代表性的点进行点焊固定,同时为了焊缝美观,要及时打磨焊点。
3)焊接工艺规范焊条或焊丝一般在母材种类、板厚以及性能等要求的基础上,选用能够保证良好焊接质量的焊接材料。焊接电流和焊接速度根据焊接成型要求设定。焊缝坡口一般为对接接头。为了消除水汽并达到理想的熔深,选取合适的焊前预热温度。
篇2
1.2铸造生产工艺
由于6082合金的特点是含难熔金属Mn,Mn的存在易引起晶内偏析及固液区塑性降低,导致抗裂能力不足,故熔铸工艺主要注意两点:第一,选择合适铸造温度,温度过高会使液穴加深,温度梯度加大,导致铸造应力增加,产生铸造裂纹;温度过低将降低金属流动性,易产生冷隔、夹渣、不易于气体逸出,因此熔炼温度应控制在730~750℃内,且搅拌均匀保证金属完全熔化、成分均匀;第二,控制铸造速度,铸造速度较高,会使液穴加深,延伸到结晶槽之外,易形成中心裂纹,同时铸造凝壳层变薄,偏析瘤加大;铸造速度较低,同液穴在结晶槽之内,易产生表面裂纹及冷隔等缺陷;铸造速度也要适当降低,控制在80~100mm/min内。
2均匀化生产工艺
2.1铸态组织
合金铸态金相显微组织可知合金的铸态组织主要由树枝状α(Al)固溶体、骨骼状非平衡共晶相β(AlMnFeSi)和晶界组成。树枝状晶晶内偏析严重,成分不均匀,晶界处的骨骼状非平衡共晶对合金的塑性有不利影响,铸态合金必须进行均匀化处理才有良好的挤压性能。
2.2均匀化
均匀化保温后的冷却速度对型材的最终力学性能有重要影响,随着冷却速度提高,型材力学性能逐渐升高。当冷却速度低于100℃/h时,抗拉强度只有180MPa,远低于工业型材的要求;当冷却速度为200℃/h时,抗拉强度可达到300MPa,基本满足工业型材的要求,冷却速度继续提高,抗拉强度还有一定幅度的提高。均匀化后,冷却速度不仅对铸锭的组织产生影响,也对挤压在线热处理后型材的组织产生重要影响。铸棒经过挤压在线热处理时,由于挤压变形热的作用,合金温度可以上升至强化相的固溶温度,但由于持续时间很短(一般只有几十秒),铸棒缓慢冷却产生的粗大析出相来不及充分固溶,型材冷却后固溶体的过饱和度不足,甚至还有粗大析出相在基体中分布严重消弱了时效处理后型材的力学性能;而铸棒快速冷却产生的细小颗粒状弥散分布则可以快速充分固溶,型材冷却后得到过饱和固溶体,对强化合金起到主要作用。经过这些变化,6082合金挤压性能得到很大改善,晶内偏析消失降低了挤压时金属流动的不均匀性,提高了挤压型材的表面光洁度;组织中片状粗大Al-Fe-Si相的转变和细化减轻了型材表面裂纹倾向,改善了合金的可挤压性,提高了挤压速度。为保证挤压型材有足够高的力学性能,合理的均匀化工艺为:2.5h升温至580℃,保温1h,然后降温至570℃,保温8h,均匀化后冷却速度≥200℃/h。
3挤压生产工艺
3.1铝棒温度
6082合金变形抗力大,强化相Mg2Si的含量较高,铝棒温度要求尽量高一些,但是温度过高则型材侧边出现裂纹的倾向增加,不利于提高挤压速度,生产效率较低。所以铝棒温度一般控制在470~500℃为宜。
3.2挤压速度
6082合金中Si含量较高,除与Mg元素以1∶1.73的比例形成强化相Mg2Si以外,还含有大概0.3%的过剩Si,导致合金的脆性明显增加。挤压速度提高以后,很容易在型材的侧边出现裂纹现象,所以挤压速度一般选择在10~15m/min,宽展挤压取下限。
3.3淬火生产工艺
6082合金强化相Mg2Si的含量较高(一般在1.3%~1.5%),要使其完全固溶,须保证型材出口温度(淬火温度)在固溶度曲线以上,否则由于固溶不充分,降低冷却后的过饱和度,进而影响时效后的力学性能。反应了出口温度对力学性能的影响,可以看出,随着出口温度的升高,合金的力学性能逐渐提高,当出口温度达到550℃时,抗拉强度达到峰值345MPa,而当出口温度低于500℃时,抗拉强度只有275MPa。为得到较高的力学性能,型材出口温度应大于530℃。由于合金中含有Mn元素,促进晶内金属间化合物形成,对淬火性能有不利影响,导致6082合金淬火敏感性增加,要求淬火冷却强度大且冷却速度快。本试验中所提到的6082铝合金工业型材,由于对表面质量有特殊的要求,不能使用水淬进行冷却,而是采用强风淬进行冷却,这就在一定程度上限制了冷却速度。淬火冷却速度越高,强化相Mg2Si越来不及析出,固溶体的过饱和度也就越高,对时效后型材的力学性能越有利。
4时效生产工艺
合金经过挤压在线热处理后,只是得到溶质为Mg2Si的过饱和固溶体,此时的力学性能远不达标,必须进行时效处理,使过饱和固溶体分解,在基体中沉淀析出细小弥散分布的强化相,以显著提高合金的力学性能。合理的时效工艺既要保证产品性能,又要考虑生产效率及生产成本,经过反复试验证明,时效温度175~185℃,保温时间6~7h,为6082型材最佳时效工艺,时效后抗拉强度σb≥320MPa,延伸率δ≥10%。
篇3
钛合金是一种强度高而密度小、机械性能好且韧性和抗蚀性能也很好的不锈钢材料。TB6不锈钢材料加工工艺性差,切削加工困难,特别是在热加工中,非常容易吸收氢、氧、氮和碳等杂质。其加工工艺性主要表现在:(1)摩擦系数大。该材料导热系数低,刀尖切削温度高,切削时产生的切削热都集中在刀尖上,使刀尖温度很高,易使刀尖很快熔化或粘结磨损而变钝。(2)弹性模量小。切削时易产生弹性变形和振动,不仅影响零件的尺寸精度和表面质量,而且还影响刀具的使用寿命。(3)钛合金化学亲和力较强,极易与其他金属亲和结合,在加工中切屑与刀具的粘结现象严重,使刀具的粘结和扩散磨损加大。
3.精加工工艺试验
(1)工艺方法。考虑到该钛合金零件的加工余量比较大,有的部位很薄,只有2~3mm,主要配合表面的尺寸精度、形位公差要求高,在零件的加工工艺方法及工艺流程安排时,按粗加工半精加工精加工的顺序分阶段安排加工,同时在每个工序阶段安排热处理工艺,消除加工应力,稳定加工尺寸。这种工艺方法特点主要是通过分阶段的反复加工,减少表面残余应力,防止变形,最后达到设计图样的要求。其主要的加工方法有铣削、车削、磨削、钻削、铰削以及攻螺纹等。(2)铣削加工及刀具试验方案。钛合金轴向铰轴颈零件加工中,有大量的铣削余量,为了做好铣削加工,我们做了一些试验,特别是在刀具和切削液的选择方面:①刀具材质选择了高硬度、高抗弯强度、韧性和耐磨性好且散热性好的高速W6Mo5Cr4V2Al、W2Mo9Cr4VCo5(M42)和硬质合金YG8、K30、Y330。②铣削时采用水溶性油质切削液来降低刀具和工件的温度,以延长刀具的使用寿命。为了提高铣削加工效率,在加工中心机床上进行了高效铣削试验,结果效率提升了2~3倍,零件表面质量也得到较大的提高。表1、表2所示分别为通过试验总结的切削用量和刀具参数。(3)孔的精车加工及刀具试验方案。钛合金轴向铰轴颈零件加工中,由于热处理后的表面氧化皮给工艺加工增加了较大困难,为此在加工前用酸洗方法去掉表面薄层氧化皮,然后通过加大走刀量,降低切削速度来车削剩余的氧化皮。在刀具材质的选择、切削用量和切削液的选择方面:①刀具材质选用YG类硬质合金材料。②刀具的几何参数选择前角γ0=4°~8°,后角α0=12°~18°,主偏角j=45°~75°,刃倾角λ=0°,刀尖圆弧半径=0.5~1.5mm。③切削用量按主轴转速n≥230r/min,进给量f≥0.10~0.15mm/r。在同样刀具和切削参数的情况下,选择不同切削液进行切削试验,检查表面粗糙度情况;选定切削液后,使用乳化液冷却,提高了刀具寿度。固定切削参数,选择不同刀具材料进行切削试验,检查表面粗糙度和尺寸控制情况,确定刀具牌号为YG6X、YG10HT;切削液和刀具固定后,选择不同切削参数,对尺寸控制能力进行研究和对目标表面粗糙度实现能力进行验证。(4)内螺纹加工试验方案。由于内螺纹不便在放大镜下观察,也不便进行尺寸精确测量,选择外螺纹进行替代试车观察表面粗糙度,选好参数后进行内螺纹试车验证,并用粗糙度仪检测验证;选择内螺纹车削加工工艺参数试验,验证上述试验确定的切削液工艺要素和刀具材料要素的适应性,螺纹车削的切削接触刃长,功率需求大,切削参数要进行单独的试验验证。(5)孔的磨削加工试验方案。磨削加工阶段,由于TB6钛合金的特质,导致了钛合金磨削非常困难,磨削时砂轮磨损严重,轻易会变钝,同时易在表面产生拉应力及烧伤现象。为此在磨削过程中,通过使用切削液和油,使零件充分冷却,保证了精磨质量。磨削砂轮的材料选用绿碳化硅(TL)、黑碳化硅(TH)两种磨料,选择软砂轮R3、ZR1和ZR2,粒度为46、60。磨削用量的选择如表3所示。(6)铰削加工试验方案。钛合金的钻削加工也比较困难,常在加工过程中出现烧刀和断钻现象,其主要原因是钻头刃磨不良、排屑不及时、冷却不佳以及工艺系统刚性差等。铰孔是最后一道精加工工序,采用钻孔扩孔(粗铰)精铰的加工工艺方法。在刀具和切削液的选择方面:①刀具材料选用M42高速钢或硬质合金K30;刀具的几何参数选择前角γ0=3°~7°,后角α0=12°~18°,主偏角j=5°~18°。校准部分刃带宽度b=0.05~0.15mm,过宽会轻易同钛合金加工表面粘结,过窄会轻易在铰削时产生振动。铰刀齿数为z=4(铰刀直径为12mm)。②铰削时应不断地注入冷却液以获得较好的表面质量,同时应勤排屑,及时清除铰刀刃上的切屑末,铰削时要匀速地进退刀。通过上述几个步骤的试验分析,得出TB6钛合金的各种加工工艺特点,以此为基础,形成TB6钛合金切削工艺方法,并将关键技术点总结出来,拟定了TB6轴向铰轴颈加工的工艺方案。
篇4
化学镀Ni-P具有厚度均匀、硬度高、抗蚀性优异等特点,因此镀层广泛被应用于需耐磨的工件。但是,铝合金表面即使在空气中停留时间极短也会迅速地形成一层氧化膜,以致影响镀层质量,降低镀层与基体的结合力。
本项研究得出了比较好的预处理方案,从而得到结合力良好,表面比较光亮的Ni-P镀层。
2实验方法
2.1实验工艺流程
试样制备配制除油溶液化学除油水洗侵蚀水洗超声波水洗去离子水洗一次锓锌水洗退锌水洗超声波水洗去离子水洗二次锓锌水洗去离子水洗碱性镀水洗酸性镀去离子水洗吹干冷却
2.2除油配方及工艺
除油:Na3PO4•12H2O(30g/L)NaCO3(30g/L)温度(65℃)时间(3min)
2.3浸锌配方及工艺
ZnSO4(40g/l)NaOH(90g/l)NaF(1g/l)Fecl3(1g/l)KNaC4O4H406(10g/L)
温度(42℃)一次浸锌时间(90S)二次浸锌时间(18S)
2.4镀液配方与工艺
碱性预镀液NiSO4•6H2O(30g/l)NaH2PO2•H2O(25g/l)NH4C6H5O7•H2O(100g/l)温度(65℃)PH值(8.2)施镀时间(8min)
酸性镀液NiSO4•6H2O(30g/l)NaH2PO2•H2O(25g/l)NH4C6H5O7•H2O(10g/l)
乳酸C3H6O3(40ml/l)NaC2H302(10g/L)温度(85℃)PH值(4.8)施镀时间(120min)3实验结果与分析
3.1镀层表面形貌及硬度
镀层表面为致密的胞状、非晶态结构。小胞之间有明显的界线,界线基本为直线,说明小胞在长大的过程中相互受到挤压而发生了变形,镀层中存在应力。镀层的含磷量为13.1%,镀层硬度可达686HV。
温度是影响化学镀沉积速率的最重要因。化学镀的催化反应一般只能在加热条件下发生,温度升高,离子扩散速度加快,反应活性增强,当温度高于50℃时,基体表面才有少量气泡生成,化学镀镍磷合金才能进行,随温度升高基体表面可见明显镀层。反应温度低于80℃时,沉积速率较慢;温度高于80℃,基体表面有大量气泡生成,沉积速率变快;当温度高于95℃时,镀液发生分解,镀液迅速变黑,产生大量气泡,在烧杯底部出现黑色沉淀。
3.2pH值对镀速的影响
在酸性化学镀液中,pH是影响沉积速率的重要因素之一。在化学镀过程中,随着反应的进行,H+不断的生成,镀液的pH值不断降低,使沉积速率受到影响,因此在施镀过程中必须随时补充碱液来调整pH值在正常的工艺范围内。pH值升高使Ni2+的还原速度加快,沉积速率变快。
4结语
(1)通过实验研究得到比较适宜的铝合金基材化学镀镍的前处理工艺,并得出了一套完整的铝合金基材表面化学镀镍工艺条件及配方。
(2)温度和pH值是影响反应速度重要的因素,温度的最佳工艺范围为85~95℃,超过95℃,镀液自分解现象严重;pH值的最佳范围是4.5~5.5,pH值超过5.5沉积速度开始下降。
(3)通过性能检测表明此工艺获得的镀层,镀层硬度可达686hHV,含磷量为11.17%且表面光亮、均匀、结合力好。
参考文献
[1]齐晓全.化学镀Ni-P工艺在制药设备上的应用[J].电镀与涂饰,2006,25(7):15-16.
[2]ParkerK.ElectrolessNickle.StateoftheArtplatingandSurfaceFinishing,1992,34(3):29-33.
篇5
当我们全面衡量公司法的立法历程,我们不得不由衷的感叹其间的艰辛。1983年,国务院有关部门开始起草公司法,因为认识的局限,制定的两个条例虽数易其稿,终未能提交立法机关审议;1992年,公司立法又提上议事日程,至1993年12月终获通过并正式颁行。[1]认识方面的原因,始终贯彻公司法的制定历程。即使1993年公司法诞生,其负载的一项重要历史使命是国企改革,突出的表现就是第1条“为了适应建立现代企业制度的需要……根据宪法,制定本法”。建立现代企业制度,正是国企改革的中心。而计划经济体制下的国企,承担着更多的社会保障和职工福利功能。公司法的目的,自然也就包容着保障职工的福利,因为在1993年制定公司法时职工的普遍收入,尚无法完全满足职工的所有福利,尤其表现为住房紧张;何况,由传统的对社会主义的认识和计划经济体制形成的“大企业、小社会”的根深蒂固的观念造成公司法带有一些时代的烙印,例如,提取公益金的强制性规定,在所难免,也本无可厚非。只是应该保持清醒的是,在人类的历史极大迈进、公司理念植入人心的今天,我们需要反思。不再有存在合理性的过渡型的制度不再延续,而具有旺盛生命力的,则应得到立法的确认和实现的张扬。我们不能否认公益金制度曾经发挥的作用,只是今天或者明天,它的价值又如何定位?或者说,它还有存在的基础吗?
二、公益金的提取与投资者权益的冲突
公司是商品经济高度发展的产物,同时也是当今市场经济发达国家普遍采用的企业资本组织形式。公司的迅速发展和壮大,是与其强大的筹资功能分不开的。从法学上看,公司的筹资就是公司在集资过程中恰切的运用了权利义务相对称和有限责任的法学原理。[2]股东之所以向公司投资,是基于自己利益的需要而对公司的预期收益。而公司对股东投资形成的公司资产有经营使用的权利,但同时也承担保值增殖责任,并在有利可分时向股东分配红利。企业资金将越来越多来源于资本市场而不是国家拨款或银行贷款,因此,《公司法》的重要原则,就是保护出资人权益。对投资人来说,公司的净资产收益率和税后利润是体现其投资权益的重要参数,它决定着资本市场的股票交易价格。
按照公司法第177条的规定,公司在分配当年税后利润的顺序是,如上一年有亏损的,先弥补亏损,再提取利润的10%的法定公积金和5~10%的法定公益金。然后,经股东会决议,可以提取任意公积金。剩下的利润才在股东之间分配。这样一来,用于分配给投资者的利润所剩无几,甚至无利可分。不仅使所有者权益和净资产收益率掺入5~10%的水份,而且,投资者如果得不到较满意的收益,对公司将失去信心和积极性,甚至抛售股票,从而必将抑制股份制的活力,甚至断送公司的前程。同时也导致决定公司股票交易价格的市盈率指标不真实。还有,规范的公司法律和会计制度决定职工福利的提取在税前列支,事实上等于免缴所得税,而《公司法》的这一规定却要求公益金在税后利润中提取,事实上增加了缴纳所得税的基数,损害了公司出资人的合法权益。
三、公益金的运用与公司利益的冲突
公司对投资者投资形成的财产以及公司积累的财产享有独立的支配和使用的权利,同时公司以独立的公司财产对债权人承担责任。这既是公司得以独立和发展的一个基本条件,又是公司法人制度的一个基本理念。
强制公司提取法定公益金,不利于公司灵活使用资金应对激烈的市场竞争。公益金提取与公积金提取的一个区别是提取公益金没有最高额限制,而且公益金只能用于集体福利。所以,当公司亏损严重,其公积金(法定公积金、资本公积金、任意公积金)全部已用于弥补亏损,此时仍急需为扩大生产而增加资本,面对可能是巨额的公益金,公司的经营者也不敢冲破法律的,这无疑束缚了公司法人的手脚。公益金所转化的集体福利实践中平均主义的发放,造成的不容忽视的浪费,也与公司的经营规则相悖。
既然我们把股份制作为企业改革和实现公有制的有效模式,就必须按股份制的基本理论运作。在现代公司的法律和会计制度中,劳动者与所有者在财务和产权两方面的利益界定十分清晰,劳动者的收益和福利均通过费用形式摊入公司成本,在税前列支,其中由劳动者享有的职工福利作为负债科目体现为公司对雇员的负债,年初提取,年末摊销。而作为企业主体的所有者,则享有公司的全部税后利润,税后利润是股东权益的重要组成部分,它既包括所有者拿走的权益,如红股和红利,也包括作为公积金的未分权益。显然,现代公司无论从产权制度还是财务分配制度看,都不能在税后利润中提取公益金。
公益金从产权归属上看,是所有者权益的组成部分,但从使用权看,则用于公司职工的集体福利。所以,公益金在实践中的运作,也留下了困惑。已经分配给职工并消耗掉的公益金无疑是职工的福利。但是,待分配的公益金、公益金使用所形成的固定资产(如不属于职工个人的住房)自然应该是公司财产的一部分。在资产负债表上,公益金是计入股东权益栏目的。那么,当公司进入破产清算,未分配的公益金以及未归职工个人所有的福利设施作为破产财产,与公益金的提取初衷相悖。
四、公益金的初衷如何实现?
公司姓资姓社的争论已经得到澄清,公司作为由股东出资的社会化大生产方式的确认,导致公司分配方式的变化在我国已经得到广泛的承认和保障。因此,曾经为人们所倡导的“公益金体现社会主义优越性”的观念已经丧失根基。
其实,职工的福利并非公益金所能够解决。法定公益金制度不利于体现“法人自主经营”的原则,在一定程度上抵销了公司制度内在活力。且它只着眼于职工的眼前利益,而忽视了激励机制将会给企业和职工带来的长远受益的机遇和利益。只有公司发展与壮大,公司的市场竞争实力的增强,职工长远的福利才能够得到解决。而且,现行会计制度上的职工福利基金由公司按照职工工资总额的一定比例提取备用,在会计核算中列入成本费用管理。所以,公司发展带来的职工收入的增长和职工福利基金的运用对职工福利能够起到积极的作用。
五、立法的价值协调—废除该规定
综上所述,公益金制度的设计尽管是立法者不可跨越的历史认识,一定程度上也发挥了它的作用。但是,投资者的利益保护、公司的权益维护和应对市场挑战对法人财产的合理利用,以及加入WTO公司适应国际潮流的需要,公益金制度的历史使命已经完成。在《公司法》修改中,我们必须清醒的认识到这一点,我们不能因认识的的片面和误区给整部法律留下瑕疵。同时,我们必须清醒的认识到,尽管我国没有形式意义上的商法典,但是,单行商事法律对效率的重新认识与追求,负有迫切的历史使命。“我们的晚餐并非来自屠宰商、酿酒师和面包师的恩惠,而是来自他们对自身利益的追求”[3]
注释:
篇6
1.树木的修剪
树木是依赖在叶片上进行光合作用而获取能量的.因此对树木过量的修剪,会削弱整个树势。修剪次数愈多.修剪愈重,对造成树木的伤害也愈重,从而也为大量真菌和细菌提供了侵染通道。因此,应尽可能减少对树木的修剪。常规修剪树冠,无论全部剪去分枝或分枝重截,都会发出较修剪前更为旺盛和密集的枝丛。出于减少遮荫的需要或由于树木根系受损或其他类似原因必须去掉大部分枝时应进行疏剪。这样较通常将树修剪得残缺不全的方法效果要好.并且省工。修剪方法以在嫩枝或分枝基部剪截为宜,因为这个部位营养供应充分,伤口易于愈合,而且不会留下轮痕。
2.修剪整形
修剪整形是通过人工手段对枝条的保留、疏剪或短截,培养出优美、理想的树形,具有更好的艺术性和观赏性,同时还可改善通风透光条件,使树木具有更强的生命力。
3.修剪按苗木的生长与休眠时期,修剪分为生长期修剪和休眠期修剪,前者也叫夏季修剪,后者则称冬季修剪。夏剪在4~l0月,冬剪则在l0月~翌年4月进行。一般落叶树种适宜冬剪,伤流严重的应早剪或伤流过后再剪;常绿树种既适宜冬剪也适宜夏剪。修剪的技法有截、疏、伤、变、除蘖等多种,一般休眠期以截、疏为主,而生长期修剪各种技法均可采用。
4.整形整形结合修剪进行,其形式有自然式整形、人工式整形、自然式与人工混合式整形等。
5.灌水休眠期灌水在秋冬和早春进行,秋末或冬初灌水可提高树木越冬能力,并可防止早春干旱;早春灌水有利于新梢和叶片的生长。并有利于开花坐果。生长期灌水有花前灌水、花后灌水和花芽分化期灌水。就不同季节而言,夏季是树木生长旺盛期,尤其是新植树木、小苗、灌木的树根较浅,抗旱能力较差,树叶蒸发量大,需水多。应勤灌溉。灌水量与树种、品种、砧木以及不同的土质、气候条件、植株大小、生长状况等有关,耐旱树种灌水量要少些,不耐旱树种灌水量要多些。灌水沟应开在树冠投影的垂直线下。不要开得太深以免伤根。沟壁培土要紧实以免伤根及被水冲坏,沟底要平坦。保证灌水均匀。水量足、灌得匀是最基本的要求,若发现漏水现象应及时用土填严。再进行补灌。水渗透后及时封沟中耕,通过中耕、封沟可切断土壤毛细管,防止水分蒸发。夏季可早晚进行灌溉。冬季可于中午前后进行。
二、施肥管理
施肥是通过人工补充养分来提高土壤肥力,可供给树木生长充分的营养,并改良土壤性质,提高土壤温度,改善土壤结构,提高透水、通气和保水性能,有利于树木根系生长。
同时还为土壤微生物的繁殖与活动创造有利条件,促进肥料分解,使土壤盐类成为可吸收状态,有利于树木生长。
1.根据不同的物候期施入不同种类的肥料
早春和秋末是根系的生长盛期,需要吸收更多的磷素,根系才能强大、伸入土壤深层。抽枝发叶期,细胞分裂迅速,叶量增加,树体扩大,此时需要从土壤中吸收大量氮肥,建造细胞和组织。
2.根据不同树种,在不同时期施入不同种类的肥料
早春开花的树木在休眠期施肥,对花芽萌发、花朵开放有重要作用。花后是枝叶生长盛期,应及时施入以氮为主的肥料,促进枝叶形成;在枝叶生长缓慢、花芽形成期,应施以磷为主的肥料。
三、防止建筑工程伤害树木
每当建筑工程完工之后,常常发现附近的树木死亡,这是由于树木生长的环境受到干扰破坏的结果。采取某些措施可以消除这些伤害,特别是对树木根区的伤害。
1.水泥和其他铺装地表处树木的养护
水泥、沥青和其他铺装地表,都可能对树木产生与埋土过深相同的影响。处理办法是取走不透气层,并在树冠范围内铺设厚层沙子,使土壤保持通气、透水。在街道和广场,采取的办法是用铺石或有孔洞和缝隙的石料铺装地面,下面垫一层沙子。
2.对树木根区采取的措施
人行道上往往要在行道树根区附近铺设通信、燃气、电缆和下水道,这些都属于对树木危害很大的工程。原则上应在树木分枝分布范围以外铺设管线,但由于施工过程中树木总会丧失一些根,而且树木根系范围的变化幅度也很大。
四、防治病虫害
在园林植物病虫害治理时,应全面考虑生态平衡、社会安全、防治效果和经济效益,放宽防治指标,将有害生物控制在可容许为害范围之内。必须以搞好植物检疫为前提,养护管理为基础,积极开展生物、物理防治,合理使用化学农药,协调各种防治方法。
1.把好植物检疫关
在调入苗木时,实行严格的植物检疫,发现有害生物则要进行除害处理,严重者予以销毁,防止新的病虫害传入,以免给园林树木带来更大的损失。
2.搞好城市园林植物的种植规划
在考虑城市绿化美化的基础上合理配置植物品种,要注重长远解决病虫害问题。针对本地区发生严重的害虫种类,减少其喜食植物的种植,多规划和栽植抗病虫的或耐性强的植物,减少有害生物的适生寄主。
3.加强养护管理以提高植物的抗逆能力
病虫的发生和危害在相当程度上与植物的生长势相关。对生长势弱的应及时施肥、浇水、松土锄草,提高植物自身的抗病虫能力,并结合秋冬季修剪,除去染病虫枝条。这样不但可以调节植物养分,还可以减少病虫来源,通风透光增强树势,营造不利于病虫害越冬、繁衍、为害的环境条件。
五、结语
总之,如何进一步做好园林绿化养护工作,是目前摆在园林工作者面前的一个重要课题,值得大家去研究和探讨。
参考文献:
篇7
一、引言
模具是一种重要的加工工艺装备,是国民经济各工业部门发展的重要基础之一。随着工业生产的发展,对工业产品的品种、形状、数量、质量等的要求越来越高,对模具的需要量相应增加,对模具质量的要求也越来越高;模具性能好坏,寿命高低,直接影响产品的质量和经济效益。
模具寿命是直接影响产品质量、加工效率和成本的重要因素之一,也是衡量模具制造水平的重要指标。目前在我国的许多企业中,模具的使用寿命还比较低,仅相当于国外的1/3~1/5。模具寿命低,精度保持性差,必将影响产品质量,还会造成模具钢和工时的巨大浪费,大大增加产品的成本并降低生产效率,严重影响产品的竟争力。模具的失效分为偶然失效和工作失效。偶然失效是指模具因设计错误、使用不当引起模具过早破损;工作失效是指模具因正常破损而结束寿命。总的失效形式主要以表面损伤、塑性变形、断裂为主。论文参考,模具材料。影响模具寿命的因素是多方面的,其中,热处理不当约占45%,选材不当、模具结构不合理约占25%,工艺问题约占10%;问题、设备问题等因素约占20%,由此可见模具材料与热处理是影响模具寿命诸因素中的主要因素。
二、冷冲模具材料及其热处理的选择
冷冲模具的使用寿命通常和模具的硬度、强度、耐磨度及抗冲击韧性有着直接的关系。因此,对模具材料和热处理工艺过程的要求就更高。对冷作模具材料的主要性能要求是:良好的耐磨性、高强度、足够的韧性、良好的抗疲劳性能、良好的抗擦伤和咬合性能以及良好的工艺性能。
(一)低淬透性冷作模具钢及其热处理
满足这些性能要求的冷作模具材料有低淬透性冷作模具钢、低变形冷作模具钢、高合金工具钢等,其中碳素工具钢是使用最多的低淬透性冷作模具钢,其特点是含碳量高,马氏体转变温度点(以下简称Ms点)低,临界冷却速度快,在快速淬火冷却时,产生热应力变形,使模具沿主导方向收缩变形,材料的含碳量越高,收缩量越大。这种收缩会在模具内部产生很大的内应力,必须通过回火或其他的方法有效地消除内应力。当然这种变形量的大小要受模具截面尺寸、淬火加热温度、淬火冷却方式和回火温度等因素的影响。论文参考,模具材料。因此,淬火和回火工艺是影响低淬透性冷作模具寿命的主要因素。
因为碳素工具钢模具多为中、小截面(10~50mm)。为减小淬火变形,T10A,T12A一般选择较低的淬火温度。当采用硝盐浴或碱浴冷却时,淬火加热温度可选择810~820℃;如果是水-油冷却,加热温度为760~780℃。对于T8A钢,根据模具截面尺寸的增大适当提高淬火温度以提高模具的淬火后硬度。采用水淬时,对于截面厚度t小于15mm的制件,加热温度应选择800~820℃;截面厚度t在30~50mm时,加热温度应选择820~830℃。采用硝盐浴分级淬火时,可在以上所述淬火温度上做适当调整。
(二)低变形冷作模具钢及其热处理
低变形冷作模具钢是在碳素工具钢基础上加入少量合金元素发展起来的,CrWMn是其典型钢种。CrWMn钢具有高淬透性,淬火时不需要强烈的冷却,淬火变形比碳素工具钢明显减少。但是,这类钢的变形同样受到淬火加热温度、冷却方法、回火工艺和模具截面尺寸的影响。该钢淬火温度的选择,由于钨形式碳化物,所以这种刚在淬火及低温回火后具有比铬钢和9SiCr钢更多的过剩碳化物和更高的硬度。当采用800℃加热淬火时,既能获得较高的硬度(63HRC)还可以获得较高的抗弯强度和韧性。如果继续提高淬火温度,硬度上升但冲击韧度、抗弯强度会降低。当淬火温度大于850℃时,硬度也开始下降。因此,为减小变形并获得高的耐磨性,由这些钢制造的模具,其淬火加热温度不宜过高。论文参考,模具材料。
CrWMn钢淬火常用的冷却介质是硝盐浴和矿物油,其中硝盐浴的使用温度较高而冷却能力却比油大。对于精度要求高的模具,根据硬度要求选择不同的温度进行等温淬火,等温时间不宜过长,等温后随硝盐浴一起缓冷。这样不仅能显著减小组织应力,还能有效控制变形量。CrWMn钢等温淬火后比普通淬火的强韧性高,对于易产生断裂的模具可采用等温淬火。该钢淬火后于150~160℃回火,可使原来淬火后膨胀的体积产生收缩。回火温度升高到220~240℃,又开始出现尺寸膨胀,在260~320℃回火时,会出现尺寸膨胀的最大值,而继续提高温度,变形又趋于收缩。当CrWMn钢要获得大于60HRC的硬度时,回火温度应不超过200~220℃。因此,在选择回火温度时应根据模具的结构、尺寸和硬度要求合理选择回火温度。论文参考,模具材料。选择合理的回火温度可以最大限度地消除由淬火产生的内应力,有效提高模具的寿命。论文参考,模具材料。
(三)高合金工具钢及其热处理
高耐磨微变性冷作模具钢、高强度高耐磨冷作模具钢、高强韧性冷作模具钢主要是高合金工具钢,用来制造模具的常用牌号有Cr12,Cr12MoV,Cr6WV,Cr5MoV和Cr4W2MoV等。这类钢的含碳量高,同时含有大量的碳化物形成元素,具有高的淬透性、耐磨性和热硬性。高合金工具钢由于淬透性高淬火时不需要快速冷却,因此产生的内应力小。高合金钢模具淬火温度的选择应首先考虑控制淬火变形。试验证明:当淬火温度为1030~1040℃时模具的变形量最小,接近于零。低于这个温度淬火,制件发生胀大变形;高于这个温度淬火,制件收缩变形。淬火温度为1100℃时,收缩量会急剧增大。为防止模具在高温下氧化和脱碳,一般应在盐浴炉中加热。冷却方法的选择则根据模具的具体情况和要求而定。论文参考,模具材料。截面尺寸大的模具可用150~200℃的油来充当淬火冷却介质,停留一段时间出油后空冷;大多数中、小尺寸的模具可以采用250~300℃的硝盐浴分级冷却;精度要求高、形状不对称的模具可以采用540~600℃的氯化盐和250~300℃的硝盐浴2次分级冷却;精度要求很高,需要严格控制变形的模具,可以采用2次分级冷却,并在硝盐浴中停留一段时间后随硝盐浴一起缓慢冷却,这样可以最大限度地减小内应力,避免模具开裂或产生细小的裂纹,从而提高模具的使用寿命。高碳高铬钢的回火抗力高,回火时马氏体的分解和残余奥氏体的转变是影响模具尺寸变形的两个主要因素。Cr12MV钢采用低温淬火和低温回火时,可以获得高度硬度、强度和断裂韧度;若采用高温淬火与高温回火,将获得良好的热硬性,其耐磨性、硬度也较高,但抗压强度和断裂韧度较低;而采用中温淬火与中温回火,可以获得最好的强韧性配合。在生产中,采用何种淬回火工艺,应根据模具的工作条件来确定。
三、结论
模具材料是模具制造业的物质基础和技术基础,其品种、规格、质量对模具的性能、使用寿命起着决定性作用。模具热处理是保证模具性能的重要工艺过程。它对模具的寿命有着直接的影响。当热处理工艺不当时,热处理造成的组织结构不合理、晶粒度超标等会导致主要性能如模具的韧性、冷热疲劳性能、抗磨损性能等下降,从而影响模具的工作寿命。因此,对于不同的冷冲模具应该选择不同的模具材料以及相应的热处理工艺。
参考文献:
[1]程培源.模具寿命与材料[M].北京:机械工业出版社,1999.
篇8
与常规处理工艺相比,超滤具有出水水质稳定,占地面积小,能耗及维护成本相对较低等优点,加之膜造价的不断降低,超滤技术已成为替代传统处理工艺的适宜选择。但是,由于超滤膜的截留相对分子质量较大,单纯超滤工艺去除溶解性有机物的效果不佳,易造成膜污染、膜通量降低等问题。因此,超滤膜常与其他工艺组合,组成超滤膜组合工艺,以提高对溶解性有机物的去处效果。混凝/超滤、常规处理/超滤和活性炭/超滤等工艺是最为常用的超滤膜组合工艺,在饮用水处理领域得到广泛应用。
1混凝/超滤组合工艺
混凝工艺通过电性中和、卷扫、吸附架桥等作用可改变原水中悬浮颗粒的尺寸分布,从而增强了超滤膜不能去除的小颗粒和溶解性污染物的去除作用。此外混凝还可改变颗粒物的表面电性,使滤饼层不会紧密附着在膜表面。因此,采用混凝作为预处理,可与超滤工艺形成互补,降低膜过滤阻力,提高对低分子有机物、无机物和无机离子等污染物的去除率[1,2]。
混凝/超滤组合工艺一般可分为两类,一是将混凝形成的矾花去除后进膜过滤,二是不去除矾花直接过滤,即在线混凝/过滤工艺。比较而言,后者的预处理流程较为简单,且基建费用较低,具有良好的应用前景[1,3]。
1.1混凝/超滤工艺的处理效果
1)对浊度及微生物的去除
混凝/超滤组合工艺对浊度及微生物的去除效果在众多研究中都予以了肯定。一般情况下,混凝/超滤工艺出水可保持在0.1NTU以下,且出水水质稳定,出水水质明显优于常规处理工艺。
从表1中可以看到,不同水质的原水,不同的混凝剂,经过混凝/超滤工艺后的出水浊度都能稳定在一个较低的水平。
表1 混凝/超滤工艺对浊度的去除效果
序号
原水浊度(NTU)
出水浊度(NTU)
混凝剂
参考文献
1
12.3~26.9
<0.1
聚合氯化铝
[1]
2
16.3~75.5
<0.1
聚合氯化铝/硫酸铝
[4]
3
3.0~18.0
0.057~0.13
氯化铁
[5]
4
6.17~8.54
篇9
所谓金属半固态加工 [1 , 2] 就是将凝固过程中的合金进行强力搅拌,使其预先凝固的树枝状初生固相破碎而获得一种由细小、球形、非枝晶初生相与液态金属共同组成的液、固混合浆料,即流变浆料,将这种流变浆料直接进行成型加工的方法称为半固态金属的流变成形(rheoforming);而将这种流变浆料先凝固成铸锭,再根据需要将此金属铸锭分切成一定大小使其重新加热至固液相温度区间而进行的成型加工称为触变成形(thixforming),流变成形和触变成型合称为半固态加工(semi-solidprocessing method),简称SSM.
2半固态浆料制备工艺的研究
半固态加工的第一步,也是非常重要的一步就是制备合金半固态浆料,浆料质量的好坏对后续工序以及铸件质量的影响很大。最早使用的浆料制备方法是机械搅拌法,经过30年发展,陆续出现了诸如电磁搅拌、SIMA、SCR、喷射沉积、液相线铸造等制备方法 [3] 。下面对一些应用较为广泛,目前研究较多的制备方法进行介绍和分析。
(1) 机械搅拌法 [4]
机械搅拌法是最早用于半固态浆料制备的方法。其原理是在合金凝固过程中,使用搅拌器对合金熔体进行强烈的机械搅拌,树枝晶由于剪切力的作用而断裂成为颗粒状结构。免费论文参考网。机械搅拌分间歇式和连续式两种,如图1. 1所示:
(a) 间歇式(b) 连续式
图1.1 两种机械搅拌装置示意图
1.搅拌器 2.合金熔体 3.加热线圈
搅拌时产生的剪切速率一般为100~300S - 1 。剪切速率受搅拌器结构,材料耐腐蚀、耐高温磨损性能的制约。浆料的质量主要由搅拌温度、搅拌速度以及冷却速度这三个参数控制。然而,由于这些工艺参数不易控制,容易发生卷气等缺陷;搅拌器和合金熔体是直接接触的,因而容易造成污染;另外搅拌器与容器间存在搅拌死角,影响浆料的质量。机械搅拌法在工业生产中应用较少。
最近几年,华中科技大学和英国Brunel大学分别采用一种新型的搅拌方法——双螺杆机械搅拌 [5] 制备出了初生 相细小、圆整的镁合金和Sn-Pb合金半固态浆料。采用双螺杆结构的搅拌器大大增大了搅拌的效率,具有强烈的搅拌效果,其剪切速率可以达到1000~15000S -1 。免费论文参考网。但是该方法不适合于铝合金半固态浆料的制备,因为搅拌器会受到熔体的腐蚀。
(2) 电磁搅拌法 [6,7]
电磁搅拌法是应用最为广泛的一种方法。它利用旋转磁场使金属液内部产生感应电流,并在洛伦兹力的作用下发生强迫对流,从而达到搅拌的目的。产生旋转磁场的方法有两种,一种是在感应线圈中通入交变电流,另一种则采用旋转永磁体的方法。电磁搅拌所引起的对流是三维对流,剪切速率在500S -1 左右,搅拌效果较好。它最大的优点是对合金熔体没有污染,卷入的气体量少,合金不易氧化。使用该方法可以实现连铸,生产效率高。但是,电磁搅拌设备昂贵,且工艺也比较复杂。
(3) 应变诱发熔化激活法 [8]
应变诱发熔化激活法(SIMA)是对铸锭加压进行一定量的预变形,使其组织具有强烈的拉伸形变机构,然后将其加热到半固态温度保温一段时间,熔化的部分液相渗入到小角度晶界中,使固相粒子分开,树枝晶破碎,从而得到半固态组织。预变形量、保温温度以及保温时间是SIMA法中的三个最重要的工艺参数。增加预变形量以及等温温度都可以促进铸锭中 相由枝晶组织向半固态颗粒状组织转化,但是过度提高预变形量以及等温温度会使晶粒明显长大。
SIMA法主要适合于各种高、低熔点的合金系列,尤其在制备高熔点合金的半固态铸锭方面具有独特的优越性。迄今为止,该方法已经成功的应用于不锈钢、工具钢和铜合金等。然而它也存在缺点,比如需要一道额外的变形工序,而且制备的半固态坯料尺寸较小。
(4) 超声波处理法 [9]
超声波处理法由V.I. Dobatkin 等人提出,其原理为在液态金属中加入细化剂,并使用超声波处理,由于超声波的空化作用,使得枝晶组织变为半固态组织。
超声波在介质中传导的时候,产生周期性的应力和声压变化,在局部产生周期性高温高压效应,使液体产生空化和搅动。一般认为,超声波可以产生气蚀作用,促进形核,且可以使枝晶臂断裂,成为新的形核核心,促进半固态颗粒状初生相的生长,而抑制树枝晶的发展。超声波处理法的优点在于对熔体污染较小,但是其工艺较为复杂,设备投资大。
(5) 液相线铸造法 [10]
液相线铸造法是将合金熔体冷却至液相线温度附近保温一段时间后进行浇注,获得所需要的半固态组织。日本的Toshio等人利用图1.2所示的装置制备半固态铝合金浆料,装置中的水冷斜板用于降低合金熔体的过热度。实验结果表明,在A356型铝合金的流变成形过程中采用低的过热度(10℃)和低于50%固相率就可以获得较为理想的半固态组织。
图1.2 液相线法制备半固态合金浆料
然而,液相线铸造法要求严格控制工艺条件,否则得到的半固态浆料组织不均匀,一部分初生 相容易长大成为粗大的枝晶,导致浆料组织恶化。液相线铸造法具有工艺简单,适用合金范围广,生产效率高等优点,尤其对变形铝合金半固态浆料的制备具有极其重要的意义,对流变铸造的应用及发展将起到积极地推动作用。
3 前景与展望
虽然现有的半固态制浆技术在工业中有一定的应用,而且在制造业具有一定的地位和优势,但它们仍存在许多的缺陷,如工艺复杂、成本高等,制约了它们在工业中进一步的推广。我们正探索一种新的半固态浆料制备工艺---机械振动法,振动可以使处于半固态温度区间的合金熔体产生强迫对流,改变晶粒的生长方式,从而获得晶粒圆整的半固态浆料。与其它制备工艺相比,具有以下优点:
(1) 机械振动属于无接触扰动方式,因而熔体受到的污染较小;
(2) 对工艺条件要求不是特别严格,工序简单,易于操作。免费论文参考网。
(3) 设备简单,易于设计维护,成本相对较低。
如果我们能够研究探索出振动制浆的规律,制备出晶粒细小、圆整的半固态浆料,那么我们就开辟了一条半固态浆料制备的新途径,必将为降低工业生产成本作出一定的贡献。
参考文献
[1] 谢水生,黄声宏.半固态金属加工技术及其应用[M].北京:冶金工业出版社,1999.
[2] 毛卫民.半固态金属成形技术[M]. 北京:机械工业出版社, 2004, 6.
[3] 闫淑芳,杨卯生.半固态金属浆料制备工艺的研究进展[J].铸造技术,2005,26(2):155-158
[4] D.B. Spencer, R.Mehrabian, M.C. Flemings.Reologicalbehavior of Sn-15%Pb in the crystallization range[J].MetallurgicalTransactions,1972,3(7):1925-1932
[5] 李东南.半固态镁合金材料及其制备技术的研究[D].武汉:华中科技大学图书馆,2005.
[6] 冯鹏发,唐靖林,李双寿等.半固态合金流变成形技术的研究现状与发展[J].铸造,2004,53(12):963-967
[7] 吴炳尧.半固态金属铸造工艺的研究现状及发展前景[J].铸造,1999,(3):45-52.
[8] W. Lapkowski.Some studies regardingthixoforming of metal alloys[J].Journal of MaterialsProcessing Technology,1998,80-81:463-468
篇10
1概述
硬质合金与结构钢的焊接,因焊接质量较差,只能作为量具对表件或普通硬质合金车刀焊片时使用,不能用于高精度(要求同轴度0.02以内)回转类刃具的刀杆与刀刃部分对接使用,通过此论文说明一下高精度回转类刃具的刀杆与刀刃的钎焊工艺过程及后期试验结果。
2硬质合金与结构钢的钎焊
2.1硬质合金的焊接特点
硬质合金主要用于制造刀具、量具等双金属结构。切削部分为硬质合金,基体为碳素钢、低合金钢通常为中碳钢。这类工件在工作时受到相当大的应力作用,特别是压缩弯曲、冲击和交变载荷,要求接头强度高、质量可靠。硬质合金有高硬度和耐磨性好的特点,但是存在脆性高、韧性差等缺点。
2.1.1一般焊接特点
(1)线膨胀系数与钎焊裂纹的关系
硬质合金的尺寸较小,一般固定在一个比较厚大的钢支撑材料上。钎焊是把硬质合金和基体金属连接在一起的焊接方法。硬质合金的线膨胀系数(4.1-7.0X10-6/℃)与普通钢的线膨胀系数(12X10-6/℃)相比差别很大,硬质合金只有钢的1/3--1/2左右。加热时硬质合金和钢都自由膨胀,但冷却时钢的收缩量比硬质合金大的多。此时焊缝处于受压力状态,在硬质合金表面则承受拉应力,如果残余应力大于硬质合金的抗拉强度时,硬质合金表面就可能产生裂纹。这是硬质合金钎焊时产生裂纹的主要原因之一。
(2)硬度与裂纹敏感性的关系
硬质合金的硬度与耐磨性和焊接裂纹敏感性成正比,硬质合金的硬度越高,钎焊时产生裂纹的可能性越大。而且,一般精加工或超精加工所用的硬质合金,在钎焊时容易发生裂纹。
(3)焊接残余应力的影响
焊接区域的残余应力是一种潜在的危害,尽管焊接硬质合金工件上不一定马上发现裂纹,但随后的刃磨、保管或使用过程中却容易产生裂纹,造成工具报废。焊接时必须采取措施减小钎焊应力,可采取降低钎焊温度、焊前预热及缓冷、选用塑性较好的钎料、加补偿垫片、改进接头结构等措施。钎焊大面积硬质合金时,无论强度高低,均应采取特殊措施,以减小焊接应力和防止裂纹的产生。
(4)氧化问题
硬质合金在空气中加热到800℃以上时,硬质合金表面开始氧化,生成疏松的氧化物层,同时伴随脱碳现象。加热至950-1100℃时,表面层会发生剧烈氧化,形成的氧化薄膜使硬质合金变脆,降低力学性能。表面氧化层的存在,也降低了焊缝的强度、硬度。在焊接时采取措施尽量减少硬质合金焊接部位的氧化现象,是提高焊接质量的重要措施。
2.2基体材料的选择和槽型设计
2.2.1基体材料的选择
硬质合金通常与基体材料连接在一起使用,基体材料的选择主要考虑硬质合金使用时所受载荷的大小。一般载荷的刀具基体材料可用45钢或40Cr钢。需要淬硬的刀体可选用9SiCr钢,因为9SiCr钢焊后淬火用的冷却介质温度比40Cr高,对硬质合金有利。
2.2.2槽型设计
钢与硬质合金刀具钎焊质量的好坏还决定于刀槽形状的设计是否合理,硬质合金槽型的设计是否合理。硬质合金槽形设计原则如下:
(1)尽量减少钎焊面,避免采用封闭和半封闭槽型结构,以减少钎焊应力,防止产生裂纹,尽可能采用自由焊槽形,使钎焊应力降低到最低。
(2)焊接前装配硬质合金时应尽量靠硬质合金自重或靠基体上的凸台、凹槽等部位定位,尽量避免使用夹具固定硬质合金。
(3)设计槽型时应考虑在钎焊过程中便于排渣,避免因焊缝中夹渣而使焊缝强度降低或脱焊现象。
(4)钎焊后刀头部分不应黏附过多的焊料,以免刃磨困难,尤其是在设计硬质合金多刃刀具时应特别注意。
2.3硬质合金与钢的钎焊
硬质合金与钢的钎焊方法主要有氧气--炔火焰钎焊、高频感应钎焊、接触电阻钎焊、浸铜钎焊以及炉中钎焊等种类。
2.3.1钎焊方法-高频感应钎焊
高频感应钎焊使用频率为600KHz,功率为10KW-100KW之间的高频感应加热源,产生高频电流。当高频电流穿过感应器时产生高频交变磁场,在感应器中的被焊金属产生感应电流。高频加热速度很快,可以在很短时间内加热到很高的温度,使焊料熔化。
2.3.2硬质合金钎料与钎剂
(1) 钎料的选择
①钎料应对被钎焊硬质合金和钢基体有良好的润湿能力,保证钎料具有良好的流动性与渗透性。
②硬质合金的使用特点有较高的红硬性,所以要保证钎焊焊缝在常温下有足够的硬度。
③钎料的熔点要尽可能地低,以减少钎焊应力,防止发生裂纹,但钎料的熔点要高于焊缝的工作温度300℃,保证正常切削。
我厂多使用常温钎料H62。
(2)钎剂的选择
钎剂的作用是使刀杆和钎焊表面的氧化物还原,使钎料能很好的润湿被钎焊的金属表面,一般钎剂的熔点低于钎料100℃以上,并有较好的流动性和较低的黏度。
我厂使用硼砂作为硬质合金与钢钎焊的最常用钎剂,使用中应该注意各种硼砂的适用范围。
①工业硼砂在钎焊加热过程中会产生大量泡沫,不但使钎焊操作困难,而且也影响焊缝质量,最好不要采用。
②脱水硼砂可用于各种牌号硬质合金工作,钎焊温度范围850℃-1150℃左右,不能用于800℃以下钎料,保存应注意防潮。
2.3.3硬质合金与钢的钎焊工艺
(1)焊前准备
①焊前应检查硬质合金是否有裂纹、弯曲等缺陷,保证钎焊面平整并保证有一定几何形状,保持与基体间有良好接触。
②对硬质合金进行喷砂处理去除钎焊表面的氧化层和黑色字母,防止脱焊。
(2)钎焊过程
①焊接硬质合金工具时均匀加热刀杆和刀头是保证焊接质量的基本条件。如果硬质合金部分温度高于刀杆,熔化后的钎料润湿硬质合金而不能润湿刀杆,接头强度降低,沿焊缝剪切硬质合金时,钎料不破坏,而随硬质合金脱开。如果相反,现象相反。
②钎焊后冷却
冷却时硬质合金片表面产生瞬时拉应力,硬质合金的抗拉应力大大低于抗压应力。通常焊接后工件立即插入石灰槽或木炭粉槽中,使工件缓慢冷却。有条件的可在钎焊后立即将工件放入220℃-250℃炉内回火6h-8h。采用低温回火处理能消除部分钎焊应力,减小裂纹和延长硬质合金工具使用寿命。
③焊后清理
要对焊好的硬质合金工件进行焊后清理,以便将焊缝周围残余的溶剂清理干净,常用清除方法是将焊后冷却工件放入沸水中煮1-2h左右,然后再进行喷砂处理,即可清除焊缝四周黏附的残余钎剂和氧化物。
(3)钎焊的质量检验
正常的焊缝应均匀无黑斑,钎料未填满的焊缝不大于焊缝总长10%,焊缝宽度小于0.15mm。硬质合金裂纹倾向可用下面方法检测。
①刀具经喷砂处理后,用煤油清洗,用肉眼和放大镜观察。有裂纹时有明显黑线。
②用65%煤油、30%的变压器油及5%的松节油调成溶液,加入少量苏丹红,将检查的刃具放入该溶液中浸泡10-15min,取出用清水洗净,涂上高岭土,烘干后检查表面,如果有裂纹,溶液的颜色将在白土显示出来,肉眼可查。
3 刃具焊接及后续试验
3.1刃具焊接结构:
3.1.1焊接结构分类
插入式结构
3.1.2焊接后刃具
焊接后刃具
3.1.3焊接体常温力学实验报告通过实际测量刀杆可抗拉力18070N。
3.1.4试件的加工
通过使用CrWMn为试验切削材料,淬火到HRC50-55,用数控铣机床进行切削试验。
结论
刃具可以完成预先设计好试验加工过程,加工中刃具性能稳定可靠。
结语
通过此项目达到硬质合金与结构钢钎焊刀杆的现场应用,能够更好利用现有设备、人员完成此项目所要求的工艺过程。
参考文献
篇11
教学内容直接关系到教学质量和效率,如何根据人才培养方案对学生的综合能力进行提升,增加学生的应用能力及动手能力,对于教学内容进行改革势在必行。由于以往的教材与日新月异涌现的新材料、新工艺、新技术的发展越来越脱节,部分陈旧的课本内容已无法和时代相顺应,所以首先需要对课本内容进行整改。将传统内容和现代内容很好的结合起来,增强教材的实用性,可引入一些较新的与材料类相关教材加以辅助。同时在制定教学改革时,对教学课时也应加以调整。由于主要是针对机械设计专业学生进行讲授。重点应放置在铁碳合金和合金钢章节,其次是钢的热处理,讲授时金属材料部分重点讲解,复合材料部分次重点讲解,合金钢部分可侧重介绍几种典型合金钢的牌号、特点及应用,热处理部分可着重介绍几种常见热处理的方法、特点及应用,铸铁与有色金属部分以介绍相关材料的类型、牌号、特点及应用。
3.改革考核方式
大部分对学生成绩的评定方法方法,主要是采取期末考试这样一锤定音的方式,很显然这是不全面的,如果采用这种方式那么考核的只是学生对内容的记忆,而考核的目的是了解学生对基础知识、概念的掌握以及实践能力、创新能力等综合能力的考查。工程材料概念多,内容繁杂涉及面广,学生在学习的过程中往往感到困难复杂不好学,进而导致厌学的情绪。想要扭转这种不好的局面,让学生对学习的热情变被动为主动,除了从教学方式方法上进行改革,在学生的考核成绩测评上也非常有必要改革。对于考核方法的改革,在这里笔者通过平时成绩(考勤、作业、课上表现等)10﹪,阶段小测试10﹪,实验20﹪,小论文10﹪,期末考试50﹪的方式进行综合评定。与以往的教学相比,实验成绩的比重增加了10﹪,其次新增了小论文撰写测评。工程材料本身是建立在科学及生产实验上的一门科学,坚持理论联系实际,将课堂理论教学、实验教学有机的结合起来,培养学生运用理论知识解决实际问题的能力,实现“知识-能力-方法”的同步提高。在实验教学中,我们安排了“金属材料试样制备及组织分析”、“金相材料热处理”、“硬度计操作培训及材料表面硬度研究”、焊接及砂型铸造。要求学生在做实验前充分预习了解实验,给出实验报告,在实验过程中认真完成实验,将课程理论与实际实验结合起来,在实验完成后总结实验,分析实验过程、数据。而增加论文考核内容,可以提高学生的自学及写作能力,在给出高质量的论文前,学生必须大量阅读文献及查阅相关书籍,并且自行树立论文观点,增加了学生自学的能力和创新精神。
篇12
1 前言
H型钢作为一种经济断面钢材问世已有几十年,现已广泛应用于高层建筑、桥梁、车辆、码头、电力、制造业等领域。与世界发展水平相比,我国H型钢生产起步较晚,从1998年马鞍山钢铁公司引进德国工艺技术与设备的大H型钢生产线投产以来,经过十多年时间的发展,已先后培育出马钢,莱钢、津西、日照、长治等H型钢主流生产企业,加快了我国H型钢生产的发展,为推动我国钢铁工业结构调整和钢材品种优化做出了重要贡献。
随着H型的广泛应用,对H型钢的力学性能要求也越来越高,从而引发了对H型钢控制轧制、控制冷却技术的研究。国外已有了相关的研究成果,并运用于生产,但技术仍未成熟①。而我国尽管近几年H型钢生产水平不断提高,为研究控轧控冷技术提供了平台,但认识较晚,正处于起步阶段,运用控轧控冷技术改善H型钢强度、韧性和焊接等性能的工艺还比较少。本文结合热轧工艺特点,分析了控轧控冷中需要注意的几个关键因素。
2 研究现状
2.1 国外H型钢控冷技术的发展及现状
早期一些国家如比利时,瑞典等国的钢铁厂首先采用控轧来代替常化处理,解决了钢的脆断性问题,这确立了控冷技术的原始技术。以后随着控冷技术的发展,60年代采用控轧控冷解决了含Nb钢VTs偏高的问题。近年来国外有关控冷应用基础研究日益深入,发表了许多水平较高的学术论文,进一步指导和推动控冷技术的发展和应用。
20世纪60年代上半期,日本新日铁为在提高韧性的同时保持良好的焊接性能,采用了微合金化加上控轧控冷的措施。轧制中对H型钢翼缘进行控制冷却,以减少温度差,细化铁素体晶粒,同时使得H型钢的断面各部分的组织均匀,防止产生较大的内应力,以及翘曲和弯曲。
20世纪80年代后期卢森堡的阿尔贝德在开发低温高冲击韧性钢中也取得了较大的成功,采用了TM-SC工艺(控轧-局部冷却工艺)开发出的低温高冲击韧性钢,在轧后采用了QST工艺(淬火自回火)。通过对钢材的微合金化处理,结合采用TM-SC工艺和QST工艺,产出了传统工艺无法获得的高韧性高强度的产品,同时保持了其良好的焊接性能。为克服普通的TM热轧工艺在轧制H型钢的缺点,卢森堡的阿尔贝德公司与其它公司合作开发了TM-SC工艺,生产的产品截面的性能均匀,提高了轧机的生产效率。可以看出这个局部冷却工艺与H型钢翼缘冷却工艺几乎是相同的。卢森堡的阿尔贝德公司与其合作伙伴进一步开发了QST技术,鞍山科技大学硕士论文第一章课题综该工艺是在终轧后对钢梁进行快速水冷,使其表面生成马氏体,在钢梁中心冷前停止水冷,利用中心余热进行回火。
目前世界上H型钢控冷技术以卢森堡的阿尔贝德公司为代表,开发了H型TM-SC轧制技术和QST控冷技术,代表了目前H型钢生产及控冷技术的最高水QST控冷技术设备.
2.2 国内H型钢控冷技术的发展及现状
20世纪60年代初,我国在控制冷却和钢材形变热处理工艺方面己经起步,取得初步的成果。70年代初,控冷技术先后被列为“六五”、“七五”“八五”科攻关项目,有关大专、科研院所及生产厂家,结合常用钢种和国内的控冷技件,在控冷技术的基础理论与实际应用方面做了许多卓有成效的工作,如测钢种的基础数据,对Nb、V、Ti微合金元素在钢中的作用,形变奥氏体再结晶控冷工艺与组织性能的关系,微合金元素碳氮化合物固溶析出,钢的变形抗力进行了广泛深入的研究;某些生产厂应用控冷工艺取得了提高产品质量的良好果。另外还在重钢五厂等建成了国内第一条独具特点的控冷生产实验线。这些作为我国进一步发展和应用这项具有明显经济效益的轧钢新技术奠定了可靠的石出。
1991年12月,马钢在改造了630轧机试轧后,成功地轧制了ZO0rnrn以下H型钢,但由于种种原因没有批量生产。1992年6月,马钢向外商提出了万能钢轧机的项目询价书,最终德国曼内斯曼德马格萨公司(MPs)中标。这是我国投兴建的第一条万能轧机生产线。至1998年又引进建成我国第一条热轧腰200一700~的H型钢生产线,该厂的设备是从德国和美国引进的,是我国目前产H型钢装备水平最好、自动化程度最高的生产线。前后不过10年时间,因此H型钢的控制冷却方面,国内开展的研究工作还很少。我国鞍山第一轧钢厂于年从美国内陆钢铁公司引进了一套H型钢二手生产设备,该生产线设置了控山科技大学硕士论文第一章课题综述,可以在成品孔出口辊道上进行强化喷水冷却,同时在冷床入口侧设有立冷翻装置。
从总体上来看,我国H型钢生产还处在起步推广阶段。如何使热轧H型钢尽
快在国内工程建设中广泛应用,充分发挥其优越性,是当务之急。
3 控制冷却技术
控制冷却是通过控制轧后钢材的冷却速度达到改善钢材组织和性能的目的。由于热轧变形的作用,促使变形奥氏体向铁素体转变温度(Ar)的提高,相变后的铁素体晶粒容易长大,造成力学性能降低。为了细化铁素体晶粒,减小珠光体片层间距,阻止碳化合物在高温下析出,以提高析出强化效果而采用控制冷却工艺。
控制冷却条件(开冷温度、冷却速度、终冷温度)对相变前的组织和相变后的相变产物、析出行为、组织状态都有影响。因此为获得理想控制冷却钢材的性能,就要选择良好的冷却方式。一般可把轧后控制冷却过程分为三个阶段,称为一次冷却、二次冷却和三次冷却(空冷 )[1][2][3]。三个阶段的冷却目的和要求是不同的。
4 对控轧可行性分析
控制轧制(TMCP)技术的核心是晶粒细化和细晶强化,用以提高钢的强度和韧性的方法。控制轧制原理是应用了奥氏体再结晶和未再结晶两方面理论,控制奥氏体再结晶的过程,利用固溶强化、沉淀强化、位错强化和晶粒细化机理,使内部晶粒达到最大细化改变低温韧性,增加强度,提高焊接性能,是将相变与形变结合起来一种综合强化工艺。根据奥氏体发生塑性变形的条件控制轧制可分为三种类型。(1)再结晶型的控制轧制(2)未再结晶型控制轧制(3)两相区控制轧制。
H型钢控制轧制即对轧件温度和变形量进行控制,可以参考中板的低温控轧技术,但由于H型钢断面复杂,二者存在差异。
5 轧后控冷现状
轧后控冷是继控制轧制后进一步提高产品性能的一项技术,与棒线材控制冷却原理相同,对轧后的H型钢进行快速冷却使表面生成马氏体组织,在轧件中心冷却之前停止冷却,表面马氏体组织利用中心余热进行自回火。由于H型钢断面复杂,冷却工艺要求很高,需要保证终轧断面温度均匀并且冷却过程中冷却均匀。与国外技术相比,我国研究和实践已显落后。国外已出现轧后超快速冷却技术,得到均匀的铁素体+珠光体组织,且晶粒较细,提高了产品的屈服强度。
6 结语
目前国内外H型钢控轧控冷技术还没有趋于成熟,但控轧控冷已成为国内外公认的发展方向。我国H型钢生产已初具规模,现已有条件加快步伐开展这方面的研究。
(1)发展近终形坯短流程技术,简称CBP技术。该技术以近终形连铸坯为原料,用一架轧边机代替原来的开坯机,轧制得到万能轧机需要的断面尺寸。通过这种途径可以降低轧制温度,实现温控轧制。
(2)在轧线设立保温罩,降低开坯温度,对轧件温度实行控制,研究低温轧制的可行性。
(3)尝试开发万能轧机机架间冷却装置,对翼缘中心表面及R角冷却,使轧件温度均匀。
(4)加强对精轧后冷却技术的理论研究,在短时间降温阻碍奥氏体晶粒长大,使晶粒细化,均匀提高产品强度,对内部组织和力学性能实行控制。
篇13
1.国内外轧后控制冷却的发展
90年代,欧美各国也相继在现有设备改造、新技术的引进、全面生产跟踪、管理系统自动化等诸多方面做了大量的工作。苏联伊里奇-日丹诺夫1700mm热带钢轧机层流冷却装置,采用了一种新型的“管套管”喷嘴,内管输送压缩空气,外管送水,形成细雾化的水汽混合物喷柱,实现了在线水-空冷却。在供水量不变的条件下,解决了厚度5-10mm带钢冷却不足问题。日本钢厂针对冷却设备存在的问题再次进行改造,使卷取温度的精度大幅度提高。截止1994年,对于厚度2.4mm,卷取温度550℃的普碳钢,99%的热轧带钢卷取温度可控制在士20℃以内。日本水岛厂热带钢轧机冷却设备进行了一系列改造,流量控制阀采用了响应时间仅为0.5秒,使用寿命超过75万次后仍不漏水的活塞阀,设计出I/D=28(过去为20)的新喷嘴,确定喷嘴最佳安装高度,从而提高了冷却能力,提高了冷却精度,尽管末架精轧机出口温度有波动,卷取温度仍控制在10℃目标范围内。为了保证带钢宽度方向冷却均匀,日本还设计出冷却水流量为凸型,使带钢沿宽度方向能均匀冷却。为了特殊考虑边部的低温区,有的厂采用边部遮挡,减少边部水量,以保证边部和中间温度一致。
由于神经网络等方法在轧制过程中的应用,使预报精度和控制水平大幅度提高。目前,美国、德国、日本、英国、法国、意大利、加拿大和前苏联等国家都通过研究、改造轧后冷却方式及设备,成功生产出高寒地区油气管道用板、双相钢板、造船板、桥梁板和压力容器板等。
90年代,重钢五厂、邯钢、柳钢、新余钢厂等均配备了水幕冷却装置,但后期都未能正常投入生产;随后几年,酒钢的气雾冷却、济钢的水幕冷却以及鞍钢的高密集管层流冷却等应用成功。
目前,我国热轧带钢生产线轧后冷却主要采用层流冷却、超快速冷却UFC、水幕冷却、高压喷嘴冷却、喷射强化冷却等冷却方式。
2.控制冷却中的先进技术
自60年代第一套层流冷却系统应用于热轧带钢生产以来,在各国科技工作者的共同努力下,使轧后控制冷却技术得到迅速发展。一是工艺技术的发展,体现在冷却工艺和层流冷却装置的进步;二是控制技术的发展,体现在控制模型、控制策略的进步。出现的先进的技术包括:
2.1.在普通层流冷却的基础上增加了加强型层流冷却段ILC,Intensive Laminar Cooling或超快速冷却装置UFC,Ultra Fast Cooling,使冷却速度提高了5~10倍,满足了不同钢种的生产、开发要求,特别是多相钢、超强钢、超细晶粒钢等冷却需求,获得了很好的细晶强化和析出强化效果。
2.2.较先进的层流冷却装置采用细化精调段,可以实现单独控制一排鹅颈管,使热轧带钢卷曲温度控制在土2℃。
2.3新型层流冷却装置采用水塔供水加机旁高位水箱的结构方式,稳定了喷嘴处压力,达到了提高冷却效率和冷却效果的目的。水塔供水可以达到节能的目的,因为用供水能力较小的水泵就可以获得短期的大水量。根据冷却水最大耗水量和水泵供水能力的差值可确定水塔容积,在层流冷却控制阀门频繁开闭和供水系统压力波动的情况下可以采用机旁高位水箱来稳定喷嘴压力。
3.控制冷却方式及比较
轧后控制冷却技术从上世纪20年展至今,出现的各种冷却方式主要有压力喷射冷却、层流冷却、水幕冷却、雾化冷却、板湍流冷却、水-气喷雾法快速冷却、喷淋冷却、超快速冷却UFC、风冷、空冷、缓冷或堆冷等,各种冷却方式都有其优缺点,可根据具体工艺选择采用哪种冷却方式。
4.结语
实验证明,层流冷却系统对于热轧带钢控制冷却效果比较好。目前,所建的热连轧带钢生产线,绝大部分采用层流冷却方式进行带钢冷却。当前我国钢铁企业虽然具有先进的装备轧机,却生产的是落后轧制产品,究其原因就是没有采用先进的工艺和制定先进的标准,为了能够逐步和国际标准接轨,生产高强度的钢材产品,就要使具有先进工艺手段的轧机生产出更经济的产品。而生产出国际上通用的英标同样强度的钢材,可以有两条路,一是微合金化;二是控制冷却。但是微合金化方式与控制冷却方式相比不仅成本高,而且还造成资源消耗,所以微合金化与我们低成本高质量方针是不适应的。因此控制冷却才是最佳途径,同时与国际钢材生产标准相吻合。因此钢材的控制冷却必将在我国钢铁企业中成为一种趋势,以适应国际市场的形势。
参考文献:
[1] 孙本荣,王有铭.中厚板生产[M].北京.冶金工业出版社.1993,336~338.
[2] 孙决定,丁世学.控制冷却技术在中厚板生产中的应用[J].钢铁研究.2005.(2):48.
[3]裴红平.莱钢1500mm带钢热连轧卷取温度控制系统的研究[D].硕士学位论文.北京.北京科技大学.2005.