在线客服

电压表设计论文实用13篇

引论:我们为您整理了13篇电压表设计论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

电压表设计论文

篇1

在电路应用中,AD678采用同步工作方式,12位数字量输出采用8位操作模式,即12位转换数字量采用两次读取的方式,先读取其高8位,再读取其低4位。根据时序关系,在芯片选择/CS=0时,转换端/SC由高到低变化一次,即可启动A/D转换一次。再查询转换结束端/EOC,看转换是否已经结束,若结束则使输出使能/OE变低,输出有效。12位数字量的读取则要控制高字节有效端/HBE,先读取高字节,再读取低字节。整个A/D操作大致如此,在实际开发应用中调整。

由于电路中采用AD678的双极性输入方式,输入电压范围是-5~+5V,根据公式Vx10(V)/4096*Dx,即可计算出所测电压Vx值的大小。式中Dx为被测直流电压转换后的12位数字量值。

RS232接口电路的设计

AT89S51与PC的接口电路采用芯片Max232。Max232是德州仪器公司(TI)推出的一款兼容RS232标准的芯片。该器件包含2个驱动器、2个接收器和1个电压发生器电路提供TIA/EIA-232-F电平。Max232芯片起电平转换的功能,使单片机的TTL电平与PC的RS232电平达到匹配。

串口通信的RS232接口采用9针串口DB9,串口传输数据只要有接收数据针脚和发送针脚就能实现:同一个串口的接收脚和发送脚直接用线相连,两个串口相连或一个串口和多个串口相连。在实验中,用定时器T1作波特率发生器,其计数初值X按以下公式计算:

串行通信波特率设置为1200b/s,而SMOD=1,fosc=6MHz,计算得到计数初值X=0f3H。在编程中将其装入TL1和THl中即可。

为了便于观察,当每次测量电压采集数据时,单片机有端口输出时,用发光二极管LED指示。

软件编程

软件程序主要包括:下位机数据采集程序、上位机可视化界面程序、单片机与PC串口通信程序。单片机采用C51语言编程,上位机的操作显示界面采用VC++6.0进行可视化编程。在串口通信调试过程中,借助“串口调试助手”工具,有效利用这个工具为整个系统提高效率。单片机编程

下位机单片机的数据采集通信主程序流程如图2所示、中断子程序如图3所示、采集子程序如图4所示。单片机的编程仿真调试借助WAVE2000仿真器,本系统有集成的ISP仿真调试环境。

在采集程序中,单片机的编程操作要完全符合AD678的时序规范要求,在实际开发中,要不断加以调试。最后将下位机调试成功而生成的.bin文件固化到AT89S51的Flash单元中。

人机界面编程

打开VC++6.0,建立一个基于对话框的MFC应用程序,串口通信采用MSComm控件来实现。其他操作此处不赘述,编程实现一个良好的人机界面。数字直流电压表的操作界面如图5所示。运行VC++6.0编程实现的Windows程序,整个样机功能得以实现。

篇2

该新型数字电压表测量电压类型是直流,测量范围是-5~+5V。整机电路包括:数据采集电路的单片机最小化设计、单片机与PC接口电路、单片机时钟电路、复位电路等。下位机采用AT89S51芯片,A/D转换采用AD678芯片。通过RS232串行口与PC进行通信,传送所测量的直流电压数据。整机系统电路如图1所示。

数据采集电路的原理

在单片机数据采集电路的设计中,做到了电路设计的最小化,即没用任何附加逻辑器件做接口电路,实现了单片机对AD678转换芯片的操作。

AD678是一种高档的、多功能的12位ADC,由于其内部自带有采样保持器、高精度参考电源、内部时钟和三态缓冲数据输出等部件,所以只需要很少的外部元件就可以构成完整的数据采集系统,而且一次A/D转换仅需要5ms。

在电路应用中,AD678采用同步工作方式,12位数字量输出采用8位操作模式,即12位转换数字量采用两次读取的方式,先读取其高8位,再读取其低4位。根据时序关系,在芯片选择/CS=0时,转换端/SC由高到低变化一次,即可启动A/D转换一次。再查询转换结束端/EOC,看转换是否已经结束,若结束则使输出使能/OE变低,输出有效。12位数字量的读取则要控制高字节有效端/HBE,先读取高字节,再读取低字节。整个A/D操作大致如此,在实际开发应用中调整。

由于电路中采用AD678的双极性输入方式,输入电压范围是-5~+5V,根据公式Vx10(V)/4096*Dx,即可计算出所测电压Vx值的大小。式中Dx为被测直流电压转换后的12位数字量值。

RS232接口电路的设计

AT89S51与PC的接口电路采用芯片Max232。Max232是德州仪器公司(TI)推出的一款兼容RS232标准的芯片。该器件包含2个驱动器、2个接收器和1个电压发生器电路提供TIA/EIA-232-F电平。Max232芯片起电平转换的功能,使单片机的TTL电平与PC的RS232电平达到匹配。

串口通信的RS232接口采用9针串口DB9,串口传输数据只要有接收数据针脚和发送针脚就能实现:同一个串口的接收脚和发送脚直接用线相连,两个串口相连或一个串口和多个串口相连。在实验中,用定时器T1作波特率发生器,其计数初值X按以下公式计算:

串行通信波特率设置为1200b/s,而SMOD=1,fosc=6MHz,计算得到计数初值X=0f3H。在编程中将其装入TL1和THl中即可。

为了便于观察,当每次测量电压采集数据时,单片机有端口输出时,用发光二极管LED指示。

软件编程

软件程序主要包括:下位机数据采集程序、上位机可视化界面程序、单片机与PC串口通信程序。单片机采用C51语言编程,上位机的操作显示界面采用VC++6.0进行可视化编程。在串口通信调试过程中,借助“串口调试助手”工具,有效利用这个工具为整个系统提高效率。单片机编程

下位机单片机的数据采集通信主程序流程如图2所示、中断子程序如图3所示、采集子程序如图4所示。单片机的编程仿真调试借助WAVE2000仿真器,本系统有集成的ISP仿真调试环境。

在采集程序中,单片机的编程操作要完全符合AD678的时序规范要求,在实际开发中,要不断加以调试。最后将下位机调试成功而生成的.bin文件固化到AT89S51的Flash单元中。

人机界面编程

打开VC++6.0,建立一个基于对话框的MFC应用程序,串口通信采用MSComm控件来实现。其他操作此处不赘述,编程实现一个良好的人机界面。数字直流电压表的操作界面如图5所示。运行VC++6.0编程实现的Windows程序,整个样机功能得以实现。

篇3

    (1)伏安法测电阻

    伏安法测电阻就是用一个电压表和一个电流表来测待测电阻,因为电压表也叫伏特表物理论文,电流表也叫安培表,因此,用电压表和电流表测电阻的方法就叫伏安法测电阻。它的具体方法是:用电流表测量出通过待测电阻Rx的电流I,用电压表测出待测电阻Rx两端的电压U,则可以根据欧姆定律的变形公式R=U/I求出待测电阻的阻值RX。最简单的伏安法测电阻电路设计如图1所示,

    用图1的方法虽然简单,也能测出电阻,但是由于只能测一次,因此实验误差较大,为了使测量更准确,实验时我们可以把图1进行改进,在电路中加入滑动变阻器,增加滑动变阻器的目的是用滑动变阻器来调节待测电阻两端的电压,这样我们就可以进行多次测量求出平均值以减小实验误差,改进后的电路设计如图2所示。伏安法测电阻所遵循的测量原理是欧姆定律,在试验中,滑动变阻器每改变一次位置,就要记一次对应的电压表和电流表的示数,计算一次待测电阻Rx的值。多次测量取平均值,一般测三次。

    (2)伏阻法测电阻

    伏阻法测电阻是指用电压表和已知电阻R0测未知电阻Rx的方法。其原理是欧姆定律和串联电路中的电流关系,如图3就是伏欧法测电阻的电路图,在图3中,先把电压表并联接在已知电阻R0的两端,记下此时电压表的示数U1;然后再把电压表并联接在未知电阻Rx的两端,记下此时电压表的示数U2。根据串联电路中电流处处相等以及欧姆定律的知识有:

    I1=I2

    即:U1/R0=U2/RX

    所以:

    另外,如果将单刀双掷开关引入试题,伏阻法测电阻的电路还有图4、图5的接法,和图3比较,图4、图5的电路设计操作简单物理论文,比如,我们可以采用如图5的电路图。当开关掷向1时,电压表测量的是R0两端的电压U0;当开关掷向2时,电压表测量的是RX两端的电压Ux。故有:。同学们可以试一试按图4计算出Rx的值。

    (3)安阻法测电阻

    安阻法测电阻是指用电流表和已知电阻R0测未知电阻Rx的方法。其原理是欧姆定律和并联电路中的电压关系,如图6是安阻法测电阻的电路图,在图6中,我们先把电流表跟已知电阻R0串联,测出通过R0的电流I1;然后再把电流表跟未知电阻Rx串联,测出通过Rx的电流I2。然后根据并联电路中各支路两端的电压相等以及欧姆定律的知识有:

    U0=UX

    即:I1R0=I2RX

    所以:

    显然,如果按图6的方法试验,我们就需要采用两次接线,可能有的同学怕多次拆连麻烦的话,那我们还可以将单刀双掷开关引入电路图,这时我们可以采用如图7的电路设计。当开关掷向1时,电压表测量的是R0两端的电流I0;当开关掷向2时,电压表测量的是RX两端的电流Ix。通过计算就有:。

    以上三种测电阻的方法是最简单的测电阻方法,也是必须掌握的方法,大家会吗,除此以外,还有常用的易于学生理解的测电阻的常用方法吗?当然还有:

    二、特殊方法测电阻

    (1)用电压表和滑动变阻器测量待测电阻的阻值

    或者

    用电压表和滑动变阻器测量待测电阻的阻值,我们也可以采取以下方法:

    1.如图8所示,当滑动变阻器的滑片滑至b端时,用电压表测量出Rx两端的电压Ux,当滑动变阻器的滑片滑至a端时,用电压表测量出电源的电压U,根据串联电路的电流关系以及分压原理我们可以得到:。

    2.如图9所示,当滑动变阻器的滑片滑至b端时,用电压表测量出电源的电压U,当滑动变阻器的滑片滑至a端时物理论文,用电压表测量出Rx两端的电压Ux,根据串联电路的电流关系以及分压原理我们可以得到:

    (2)用电流表和滑动变阻器测量待测电阻的阻值

    如图10所示,当滑动变阻器的滑片滑至b端时,用电流表测量出Rx和R滑串联时的电流I1,当滑动变阻器的滑片滑至a端时,用电流表测量出Rx单独接入电路时的电流I2,因为电源电压不变,可以得到:,故有:。

    (3)用等效法测量电阻

篇4

1 概述

光伏发电技术关系着开发利用绿色能源、改善生态环境和人民生活质量等重大问题,是目前研究的热点方向。光伏照明系统是应用光伏发电技术的实例,具有丰富的学术研究价值和经济社会效益。其中,光伏照明系统中的控制器是整个系统的核心,不仅要调节光伏电池的输出功率使之具备最大的转换效率,还要控制蓄电池充放电,所以控制器性能的优劣直接关系到整个光伏照明系统的效率。这就要求在搭建实际光伏照明系统前要对系统的进行测试。相关参数的获取,对于优化选取实际光伏照明系统的单元组件,设计出高效实用的光伏照明系统具有非常重要的意义。本文设计了能够测试控制器和照明系统其他组件各种性能参数的测试系统。该系统能够实现同时测试控制器的多项性能参数。通过实际测试,可以确定使太阳能转换效率最高、照明系统工作最稳定的控制器。

2 光伏照明系统的组成

太阳能照明系统包括:太阳能电池组件、蓄电池、太阳能充放电控制器、直流负载及其驱动电路,如图1所示。系统各部分容量的选取配比,需要综合考虑效率、成本和可靠性等问题。在带负载实际应用过程中,应该考虑到连续阴雨天的情况,对系统容量留出一定裕度。

作为光伏照明系统的输入,光伏电池为整个系统提供电能,蓄电池是整个系统的储能部分,白天将太阳能电池输出的电能转换为化学能储存起来,夜间将化学能转换成电能输出到照明负载。太阳能控制器是整个系统的控制核心,它是以单片机为核心辅以逻辑控制电路来实现系统中光伏电池最大功率点跟踪(MPPT)、蓄电池容量预测和蓄电池充放电精确控制,以满足太阳能照明系统在不同工作状态下的稳定运行与准确切换的要求,从而提高太阳能照明系统效率,确保系统运行稳定,并延长蓄电池的寿命。

3 测试系统设计

在实际中检测控制器的电流电压,时间控制等参数需要分开多次测量,不能一次完成,这加长了实验的时间,降低了实验的准确度,使整个检测过程显得繁琐而复杂。本测试装置制作目在于:通过一次实验检测出所需要的控制器的主要参数,将电流、电压、时间等参数的测量综合到一个系统中,检测出控制器的性能好坏,得出系统中各个组成部分的最佳配比。

光伏照明测试系统的原理是通过光伏系统的电路设计,将电流表,电压表,定时器连接到测试系统中,设计阳光模拟装置,用来模拟太阳光,提供太阳能电池板光源,在整个系统的运行过程中通过对充放电过程的测试,并用电流表,电压表进行数值记录,来了解控制器的各项参数,方便快捷的检测试过充过放参数时可以快速,方便的更换为稳压电源来进行测试。

4 太阳能控制器特性测试

选择两种型号的太阳能控制器,用本论文中自行设计的光伏照明测试系统对控制器的性能参数和整个系统的效率进行测试,选择出性能最优良的控制器。测试的参数项目有太阳能控制器的光控点、自耗电、过充、过放电压、过放返回电压和延迟时间。

测试过程:将控制器连接进测试系统,并将系统通电(交流 220V),交流电是为了给测试系统的电流表,电压表和定时器供电。在空载情况下测试控制器的自耗电,从放电测试的电流表中显示的数值即是控制器的自耗电。测试完控制器的自耗电后将蓄电池接入系统,将光伏照明测试系统各个组成部分全部连接到系统中,太阳能电池组件为2 块 12V/5W 的板并联,总功率为 10W。负载是3并联的LED 灯泡,电压都是12V,其功率分别为1W、3W、4W。蓄电池选择12V/10AH 的铅酸电池。测试环境中无光,为了模拟测试过程中的黑天情况。

将滑动变阻器的主调旋钮和微调旋钮全部调至最大值,使模拟光照度达到最大,太阳能电池板将光能转化为电能通过控制器为蓄电池充电,在充电电流表上显示电流数值,充电电压表上显示太阳能电池板的电压值。在电池板给蓄电池的充电过程,负载不亮,相当于室外的白天情况,将滑动变阻器的主调旋钮和微调旋钮全部调至最小值,相当于夜晚情况,观察负载 LED灯泡是否立刻亮,如果即刻变亮,说明控制器的延迟时间为零,即没有延迟时间。如果负载没有立刻亮,则通过定时器来记录时间,当负载LED 灯泡亮时,定时器上显示的数值即为控制器的延迟时间。

将系统选定在给太阳能电池板给蓄电池充电状态,阳光模拟箱中的灯泡调到最亮,太阳能电池板给蓄电池充电的充电电压不断升高,当升到某一数值时,控制器开始保护,切断充电电路,保护蓄电池,从充电电压表上记录这个电值,这个值就是控制器的过充电压。 将系统选定在蓄电池给负载 LED 灯放电的状态,为了方便试验测试和保护蓄电池用直流电源来代替蓄电池,模拟放电过程中电压的变化,调节直流电源的电压值,不断降低,当降到某一数值时,控制器开始保护,切断放电电路,负载 LED 灯熄灭,记录放电电压表上的电压值,这个数值就是控制器的过放电压值,当负载 LED 灯熄灭后,调高直流电源的电压值直到负载 LED 灯再次亮起,记录此刻放电电压表上的数值,这个临界电压值就是控制器的过放返回电压值。这些测试的数值就是控制器的性能参数值。

5 结论

本论文的主要工作是设计了光伏照明测试系统,以具体数值的形式直观的显示出光伏电池板对蓄电池的充电参数值以及蓄电池对负载LED的放电参数值。测试系统最重要的测试功能是对系统核心部件太阳能控制器的测试,在系统的实际工作过程中测试出控制器的性能参数,对各款控制器进行检验和评估,选择出最优化的太阳能控制器,使整个太阳能LED照明系统的效率最大化。并在实际工程中进行应用。

篇5

科学探究是科学家运用一系列科学方法通过一定程序解决自然领域或科学问题的研究过程,其本质是以科学态度揭示大自然奥妙并发现科学真理的思维方式。《物理课程标准》将科学探究作为课程目标与重要内容,旨在使学生通过与科学家相似的研究过程,经历提出问题、猜想与假设、实验设计等一系列感受和体验,在获取知识与技能的同时,形成实事求是的科学态度,激励积极主动的探索精神,提升标新立异的创新能力。

一、感受科学探究,创设学习环境

1.感受科学探究,创设学习概念环境。物理概念是从自然现象、物理事实或过程中抽象出来的,在教学过程中必须把相关的现象或过程展现出来,给学生创设一个学习概念的环境。创设环境有运用实验、联系实际等许多方法,但不管采用什么方法,都必须从被动地接受知识向主动地获取知识转化,体现“提出问题”和“猜想与假设”等“科学探究”要素。例如,运用实验引入摩擦力的概念,将放在桌面上的木块与跨过滑轮的绳子相连接,绳子的另一端悬挂掉盘,盘上放重物,木块在绳子的拉力作用下会运动起来。这时让学生猜想,如果逐步减少盘中重物质量,木块将如何?实验之后,再让学生相互交流,分析论证这是为什么。如此,通过科学探究,加深学生对看不见、摸不着的摩擦力的理解。

2.感受科学探究,创设学习规律环境。物理规律揭示的是物理量之间的必然联系,是客观存在的,人们只能去发现规律,而不能凭主观意志去发明创造规律。因此,物理规律教学必须首先提供一个便于探索规律、发现规律的学习环境,使学生通过观察和感受,有所发现、有所联想,萌发或提炼出科学问题。例如,在导入《闭合电路欧姆定律》时,首先将完全相同的8个“6V、0.3A”小灯泡分成两组分别并联在6V的蓄电池和6V的干电池两端,并在电源两端并联电压表监视电路电压,让学生猜想,接通电源后,两电路电压是否相同?两组小灯泡是否一样亮?根据部分电路欧姆定律,两电压表示数必然相同,两组小灯泡也一定一样亮。实验结果却发现,与蓄电池连接的电压表示数基本没有变化,而与干电池连接的电压表示数降低了2V左右,且与干电池连接的小灯泡比与蓄电池连接的小灯泡暗。进一步启发引导学生寻找两电路的不同,猜想现象原因,发现对电路的研究必须考虑电源内阻,引出考虑电源内阻的全电路定律。

二、体验科学探究,建构物理知识体系

1.体验科学探究,形成物理概念。有些概念是在观察、交流、探究等感受和体验过程中,获得感性认识并对感性材料思维加工而形成的。例如,利用人推车,牛拉犁,手提水桶,运动员举起杠铃,磁铁吸引铁钉等常见现象,引导学生分析论证、抽象概括出力是“物体与物体之间的相互作用”。有些概念则需要通过实验来建立,涉及到科学探究的更多要素。例如,电阻的概念首先引导学生回忆“什么叫导体?有哪些常见的导体?”之后,猜想“导体除了能够导电,对电流是否还有其他作用?”“要研究导体对电流是否还有其他作用,可以用什么方法?”“如果需要实验,应使用哪些仪器与材料?如何设计实验?”通过师生、生生互动制定实验方案。在电源、开关、电流表、小灯泡串联的电路中分别串入铅笔芯与镍铬导线之后,引导学生观察灯泡的亮度和电流表的示数,通过讨论、比较、分析、判断,发现镍铬导线对电流的阻碍作用比铅笔芯大,得出在物理学中用电阻表示导体对电流阻碍作用大小的概念。

2.体验科学探究,认识物理规律探索。物理规律需要学生以科学的态度和对科学探索的浓厚兴趣经历科学探究过程,去发现、思考、探讨。首先是通过发现问题、猜想与假设,设计实验,收集证据等一系列活动,探索事物的内在联系,提供实事求是的科学依据;之后再通过分析与论证、评价、交流与合作,得出结论。整个过程要使学生充分体验科学探究,在获取知识的同时,实现培养科学素养的目标。

3.再次经历科学探究,运用巩固物理知识。要真正理解概念掌握规律,还需要在运用物理知识的过程中再次经历科学探究,进行巩固、深化和强化。一是在运用物理知识解决具体问题的过程中强化科学探究。二是在进行实验设计和仪器教具制作的过程中深化科学探究。三是在探索解决问题的思路、方法过程中活化科学探究。

篇6

    1 轨道电路参数的传统测量方法

    轨道电路参数测量的目的是通过测量确定轨道电路的一次参数和二次参数,检查轨道电路是否符合钢轨阻抗和道碴电阻的标准,以保证轨道电路的正常工作,并且为轨道电路的研究和设计提供依据。

    1.1开路、短路相位表示法

    选取需要测量的轨道电路区段,设长度为l,将电流表A、电压表U、相位表接在轨道电路上,测得开路阻抗Zk和闭路阻抗ZB的模值,并用相位表读出Zk和ZB的相角 Φk和ΦB。然后推导出规定电路的一次参数和二次参数。开路、短路相位表法长期以来被用于50Hz轨道电路的一次参数测量工作,这种方法对相位表要求不高,对电压表、电流表要求比较高。

    1.2三电压表法

    选取需要测量的轨道电路区段,设长度为l,按照图 所示方法连接三个电压表,测得交流轨道电路的开路电压U1k、U2k、U3k和短路电压U1B、U2B、U3B,通过计算推导出电压与电流之间的相角关系,从而也能算出开路阻抗和短路阻抗的有关相角,再通过上述相位表法中的有关公式计算求得轨道电路的基本参数。值得注意的是,测量时应调节R或者轨道变压器次级线圈电压,尽量使得U2=U3。

    2 轨道电路参数优化测量方法

    2.1轨道电路干扰分析

    (1)由于两条钢轨的阻抗,对地电阻,传输通路中连接设备的接触电阻都不尽相同,必然造成牵引电流不平衡,工频50Hz及其谐波对轨道电路和机车信号造成干扰。

    (2)当有电力机车通过时,牵引网有电流通过,在它周围会产生电磁场,对附近的传输线产生干扰,这是一种电磁感应干扰。

    (3)运动中的电力机车上的电动力系统对下面的轨道电路的感应性干扰

    (4)相邻线路机车信号之间存在相互干扰,本线机车会收到邻线轨道电路发送的机车信号,从而影响到本线机车信号的显示。

    2.2轨道电路的在线测量

    使用传统的开路短路等方法测量轨道电路参数时,需要停止行车,要时间,"要点"进行,俗称为"开天窗"的测量方法,即将被测区段上方的电力牵引电网电源断电,再进行一系列的信号参数测量。此种测量方法给行车带来了严重干扰,在运输繁忙的区段,这项工作很难进行;在电力牵引区段,构成开路的条件十分麻烦,考虑不周会给行车带来危险;道碴电阻大小受环境影响十分明显,比如天气或者温度变化都会随着变化,而“开天窗”以及“要点”进行测量的方法会导致错过较好的测量时机;为了构成开路条件需断开被测区段的牵引电流,这样测得的参数与有实际上牵引电流时的参数势必有偏差。加上所有测量仪表均为机电工业用仪表,这既影响测量结果的准确度,又没有反映出电气化铁路有电力机车牵引时的牵引电流干扰情况下的各种电参数的大小及其相互关系,而且要经过一系列复杂的运算过程。所以研究在线测量轨道电路参数仪表是一项非常重要的工作。所谓"在线"测量,是指测量过程中,尽量不给轨道电路的正常工作带来影响,或者是与传统测量方法相比,大大减少了对轨道电路正常工作的影响,比如说避免"开天窗"情况的出现等。

    2.3轨道电路的调整

篇7

掘进机电气系统是设备的控制核心,控制着各个电机的启动停止,同时对掘进机其他组成部分的工况进行监控和综合保护,与液压系统及水路系统互相配合,可控制整机完成掘进生产作业。

1 电气系统概述

掘进机电气系统主要由隔爆兼本质安全型掘进机控制箱(以下简称 电控箱)、隔爆兼本质安全型按钮操作箱、隔爆型声光报警装置、隔爆型照明灯、隔爆型控制按钮、低浓度甲烷传感器以及整机多个工作机构部分的电机组成。其总体布置如图1所示。

2 电气系统构成

掘进机电控箱大多采用PLC可编程逻辑控制器作橹骺氐ピ,人机界面采用彩色液晶显示屏,这种控制系统的优点是编程简单、性能稳定、系统主参数以及故障可视化,方便日常检修维护。电控箱位于掘进机整机的左后方,左右箱门和接线腔盖板均用标准螺栓与箱体紧固连接,保证安装于内部的电气元件不受外界恶劣环境影响。电控箱壳体由钢板焊接而成,壳体分为上下两个腔,均为隔爆型结构。下腔为电气件安装腔,腔内装有驱动板、控制板(两块)、视窗板及隔离开关等;上腔为接线腔,腔内装有数组接线柱。

控制板分两块,一块左门板,装有FX3U系列可编程控制器及模拟量模块、本安电源等。另一块右门板,装有中间继电器、电机集成保护器、开关电源等电气件。

视窗板装在电控箱体的前侧中间部分,有四个显示窗口,依次装有电压表、电流表以及两块焊接有LED指示灯的发光板。其中电压表显示系统供电电压、电流表显示切割电机的实时电流,两块发光板指示系统故障及各个电机的故障。

电控箱的上腔为接线腔,其中有一组陶瓷接线端子用于连接电控系统的供电电缆,五组接线端子用于连接整机电机和十二个七芯接线端子用于连接系统元件,此外接线腔内装有两个接地端子用于连接地线。电控箱两侧及背面设置有不同尺寸的十六个电缆引入装置,供控制箱与其它元件连线。

与电控箱配套连接有一个隔爆兼本质安全型按钮操作箱,操作箱箱体采用钢板焊接而成,分为本安元件腔和隔爆元件腔两部分。本安元件腔布置有十二个操作按钮,用以控制各个电机的启动停止,通过一根19芯控制电缆与电控箱连接;隔爆元件腔布置有一个液晶显示屏,用以显示电控系统的主要参数,例如电压电流,电机温度,电机运行状态等,当电控系统出现故障时,该显示屏也会实时显示故障内容,方便使用者及时排除故障。显示屏通过一根7芯控制电缆与电控箱连接。

电控箱及操作箱外观如图2所示。

3 小结

本论文研制的掘进机电气系统具有防护等级高、体积小、操作简便、集成有多种保护等优点,可长期工作在煤矿隧道等恶劣环境中。该电控系统人机界面采用工业用液晶显示屏,工业用液晶显示屏可图文显示,显示容量大,参数及故障直观可见;同时系统采用总线通信技术,可减少大量接线,拆装十分方便。

参考文献:

篇8

目前在应试教育的影响下,物理实验教学难以发挥它应有的作用。许多教师很少做实验,不愿花时间从事实验教学,实验只被作为收集数据,验证理论,应付考试的工具。学生实验形成了教师讲,学生做,教师示范,学生模仿的教学,学生成为被动的接受者,以至于学生很少提出问题。没有养成实事求是的科学态度,没有学会解决问题的科学方法,学生的主体地位远没有得到重视,学生缺乏主动探究的欲望和热情,忽视了实验对学生科学思维方法和创新能力的培养。新课标指出高中物理课程应促进学生自主学习,让学生积极参与,乐于探究,勇于实验,勤于思考。通过多样的教学方式,帮助学生学习物理知识和技能,培养其科学探究能力,使其逐步形成科学态度和科学精神,因此,高中物理实验教学迫切需要改革。探究性实验由于其重视过程和方法,有利于提高学生发现问题、解决问题的能力,培养与他人合作的精神,养成实事求是的科学态度,有利于学生创新能力的提高和主体性的发挥。强调通过实验探究提高学生的科学素养,已成为当前实验教学改革的主要方向。

二、强化新课程理念,改革实验教学模式

物理实验为培养创新精神提供了最佳环境,尤其是开发一些联系生活实际的应用型实验,可使学生亲身感受到物理实验的实用价值,能强烈激发学生的创造动机。教师应成为勇于进取、善于创新的模范,无论实验方法的革新、教具的创造、实验的新颖设计,对学生都有很强的感染力,会不知不觉在学生心里播下创造的种子。具体做法:进一步加强了对学生实验兴趣的培养。物理学家爱因斯坦曾经说过:“兴趣是最好的老师。”而兴趣的培养,一要靠老师的正确引导,二要靠学生亲身到实验中去激发。教师要善于把握实验的科学性,挖掘实验的趣味性,制定切实可行的督促、检查方案,或展示、或竞赛、或讨论,使学生饶有兴趣地完成课本或课外小实验、小制作,对活动中表现突出的,及时给予表扬和鼓励,这对提高学生的实验兴趣很有帮助;物理实验教学中,既要发挥教师的主导作用,又要突出学生的主体地位,充分调动学生的积极性和主动性,使学生积极主动的参与实验。课本让学生看,实验让学生做,思路让学生想,疑难让学生议,错误让学生析,并且多给学生提供独立设计实验的训练机会,最大限度地发挥学生的探索潜能,培养学生的实践能力和创造能力。

三、探索实验原理,发展科学思维素质

学生实验的“灵魂”是实验原理,只有把实验原理放在处理实验教学的首要位置,才会使物理实验教学“活”起来。若能在教师有目的的引导下,对实验原理进行挖掘和探索,将能有效地培养学生按科学方法思考解决问题的习惯,发展学生的科学思维素质。在基本实验教学中,必须抓好以下两点:(1)对实验原理的正确理解。要知道这个实验为什么这样做,它的理论根据是什么,不这样做还能怎样做,那一种做法更好,更可行。这是培养学生实验设计能力的一个关键。(2)对常用的物理仪器要熟练使用,这是实验的基础,是实验的工具。常见的实验仪器有以下十三种:刻度尺、游标卡尺、螺旋测微器、天平、秒表、打点计时器、弹簧称、温度计、电流表、电压表、多用电表、滑动变阻器、电阻箱等。对这些常见实验工具不仅要能正确熟练地使用,甚至要知道实验仪器的原理。例如,在《把电流表改装为电压表》实验中,需要测定电流表的内阻,书中直接给出了半偏法,对这一方法的出现学生普遍感到很突然。我们可以这样做,先让学生自己设计一种测电流表内阻的方法,然后对学生中使用最普遍的两种方法进行分析。转贴于 第一种是常见的伏安法,该方法在测一般电阻时可用,但在测电流表内阻时却是不可取的,因为我们测定电流表内阻的目的是用它来改装为电压表,若电流表内阻测量不准确会直接影响改装后的伏特表的精确程度。第二种方法的原理是由伏特表测出电流表和变阻箱两端的总电压U,从电流表读出电流值I,则电流表内阻Rg=U/I-R,这一方法可以消除伏特表分流作用所带来的误差,但却暴露出学生对灵敏电流计的作用不甚清楚,其实灵敏电流计不能准确的测量电流强度,只能作为检流计,既然电流强度的准确值不知道,自然也就无法求出电流计内阻Rg的准确值。在分析了以上两种方法的不足之后,利用并联电路的电流分配关系引导学生得出半偏法已是水到渠成。

四、营造主动探究的氛围,强化学生参与意识

新课程的实验课是要学生通过实验来学到知识,训练技能,并经历一个科学探究的过程。教师在课堂教学中起着主导作用,而一堂课中教师的情感投入往往影响着每个学生的情感投入。教师能否营造一个和谐民主的教学氛围是能否让学生主动探究的前提。在一节课中,有师与生、生与生之间的人际交流,在这个交流环境中,若要使学生有好的课堂氛围,有热烈的讨论,有激烈的争论,有独特的发言,甚至有创造性的思维,都必须让学生从心理上有一种安全感,有一种无拘无束的自然情感的流露。因此,要求教师从尊重学生出发,有和善的语言,温文尔雅的教态去创设这个环境。民主、有序的学习环境有利于激发学生主动探究的欲望,教师要有与人为善的教态,尊重学生、鼓励学生发表独立的见解。实验课中学生的“哇”、“喔”等声音,是学生最真切的情感体现。

当然,在物理实验的教学改革实施中,我们还将面临着许多新的问题,还需要在今后的工作中进一步的研究与探索,我们将在不断的反思中,不断地改进、不断地总结经验,使物理实验的教学改革工作不断地深入,不断地完善。

[参考文献]

篇9

1 概述

随着无线电技术通讯技术和单片机技术的发展,无线智能远传水表系统以其安装便利、维护快捷、不受安装环境和布线限制等优点,成为了水表行业智能管理的主导系统。无线智能远传水表是整个系统的基础部分,是信息的产生单元,其参数的准确度决定了整个系统的性能指标。无线智能远传水表参数的测试是根据GB/T 778.3―2007封闭管道中水流量的测量---饮用冷水水表和热水水表第3部分--试验方法和试验设备的要求进行。无线智能远传水表的技术指标应符合表1.1的要求

2 无线智能远传水表的测试

2.1 供电参数(静态工作电流)的测试

(1)测试仪器要求:

电流表:测量范围0μA~200μA,准确度等级1.0级;

电压表:测量范围0V~10V,准确度等级1.0级;

稳压电源:电压0V~5V连续可调,输出电流0A~1A。

(2)测试过程:

取出被测设备内电池,按图2.1连接,将电源调至被测设备所标明的工作电压3.6V,接通电源,当电流表在大部分时间呈现较小读数且静止不变时,其读数即为静态工作电流实测值。

2.2 无线电性能测试

2.2.1无线远传水表发射功能测试

(1)测试仪器要求:

频谱仪:测量范围10kHz~1000MHz;

综合测试仪:0.4MHz~1000MHz。

(2)测试过程:

按图2.2连接被测设备和测试仪器,并使被测设备处于发射状态。使用频谱仪显示被测设备发射的无线信号的频谱。测上、下限频率值在规定使用频率范围之内(433.00MHz~434.79MHz)即可。计算其中心频率,设定指配频率,计算带宽BW,主要满足BW≤200kHz的要求即可。频谱仪工作在发射功率测量模式,在显示区读取和记录被测设备的发射功率,实测值≤10mW满足设计要求即可。测将测算得出的中心频率与指配频率相比较,计算相对误差≤10×10-6满足设计要求即可。杂散发射功率是指落在占用带宽之外的发射功率,实测值≤10μW即可满足设计要求。

2.2.2 无线水表的接收灵敏度测试

(1)测试仪器要求

频谱仪:测量范围10kHz~1000MHz;

综合测试仪:0.4MHz~1000MHz;

示波器:模拟带宽40MHz,灵敏度2mV/格。

(2)测试过程:

按图2.3连接被测设备和测试仪器,并使被测设备处于接收状态。通过天线接口输入10kHz方波调制高频信号,在被测设备的输出端应有方波输出,通过示波器显示。逐步减少输入高频信号的幅值,直至被测设备的输出消失。方波刚刚消失时指示的高频信号强度,即为该被测设备的接收灵敏度,其值应优于90dBm。

2.3 信号输出测试

2.3.1 数据的保持与恢复测试

(1)测试仪器要求

电流表:测量范围0mA~200mA;准确度等级1.0级;

电压表:测量范围0V~10V;准确度等级1.0级;

稳压电源:电源0V~5V连续可调,双输出,输出电流0A~1A。

(2)测试过程:

按图2.4连接,调整稳压电源至被测设备额定电压,通入适当水量,使无线远传水表系统正常工作。然后下调无线远传水表和集中器的电源电压使其中断工作。再下调抄表器的电源电压使其中断工作。10min后恢复正常供电,系统应能正常工作,此时各被测设备存储的数据应与断电前保持一致。

2.3.2 电源欠压提示测试

按图2.4连接,调整稳压电源至被测设备额定电压,通入适当水量,使被测设备正常工作。然后下调稳压电源使输出电压至被测设备欠压值,此时:无线远传水表和集中器的欠压提示信息通过抄表器下载,在抄表器显示屏上显示;抄表器的欠压提示信息在抄表器显示屏上显示。

2.3.3 断线保护测试

当发讯水表与电子控制单元之间连线断开时,电子控制单元应发出报警信号。

2.4 控制功能测试

2.4.1 磁保护功能测试

将无线远传水表安装在试验台上,使其正常工作。用符合CJ/T 133-2007《IC卡冷水水表》中规定的磁环贴近发讯水表信号输出部位时,无线远传水表仍可正常工作。当使用大于上述磁环磁力的磁钢重复上步操作时,无线远传水表发出报警信号,根据设计要求可自动关闭阀门。

2.4.2 电控阀门执行功能试验

按照图2.4连接,并使控制式无线远传水表正常工作,然后按非正常用水的设定发出关闭电控阀门指令,阀门驱动装置正常工作,使阀门关闭,并且能够检测到关阀门的限位电平信号。

2.5 水表性能测试

2.5.1 电源电压影响测试

将无线远传水表按照图2.4连接,在电源电压为2.7V及4.2V时,在常用流量(qp)下,控制无线远传水表按指令正常开关电控阀门5次,无线远传水表能正常工作。

2.5.2 电子计数精度测试

(1)测试仪器要求:

脉冲发生器:9999脉冲±1脉冲。

(2)测试过程:

按图2.5连接,使脉冲发生器发出1000个脉冲给被测设备,读取抄表器显示的水量,按公式(1) 计算,被测设备计数精度在范围即为合格。

计数精度计算公式:

(1)

式中:a―被测设备转换系数(L/脉冲);V―抄表器显示的水量(L)。

3 结语

无线智能远传水表依照以上设计的测试方法进行测量,满足规定参数指标要求的水表,在安装后工作状态稳定,水表数据采集准确,质量均为合格。以上测量仪器仪表常用、测试方法简单高效、值得同类企业学习和借鉴,具有推广和应用价值。

[参考文献]

[1] 刘金生.水表性能参数的分析及规范性表述.科技资讯,2009 35.

篇10

本章课程标准的要求为:从能量转化的角度认识电源和用电器的作用;会读、会画简单的电路图;能连接简单的串联电路和并联电路;能说出生活、生产中采用简单串联或并联电路的实例;会使用电流表和电压表。

这些内容既是学生学习电学的准备知识,又是生活中的必备知识,所以它在整个电学部分有着极其重要的地位。

从本章内容来看,大多数教师认为本章知识浅显不值得花过多时间,因而采取了快速且直接的教学方法,学生的学习兴趣难以提高。很多知识内容教学不够细致透彻,造成“夹生饭”,甚至有些学生在学习串、并联电路时就开始害怕学电学,教学效果较差。有些教师教到第十五章时很难讲,才发现是第十三章《电路初探》的基础没有打好。因此,很有必要探索该章的教学方法,通过各种教学方法和手段来培养学生的应用能力,提高教学质量,改善教学效果。

2 《电路初探》学情分析

通过一年的物理学习,学生已经具备了一定的实验探究能力和空间想象能力,形象思维和抽象思维都有了不同程度的发展,分析问题、解决问题的能力也更加进步。几乎每个学生对电源和用电器都有了较直观的认识。因而,第一次接触电路时,对电学感到既紧张又兴奋。但是,九年级的学生往往不爱发言,不主动表现自我,课堂气氛比八年级沉闷,需要教师调动他们的积极性。大多数学生不喜欢枯燥的理论分析和教条式的计算,但乐于参与动手实验、观察现象。他们喜欢探索自己熟悉的或与所学知识有关的生活现象、科学事件,这样才更能激发和培养他们的创造性。因而,教师在教学时要充分考虑九年级学生的学习特点。

3 《电路初探》教学方法探究

本章内容繁多,有电路图、实物图和实验操作,有各种基本电路元件和电表。因此,教学的难度较大。在教学方法上笔者进行了创新,效果较好,主要体现在以下几个方面。

3.1 补充课本素材,开阔学生的视野,激发学生的学习兴趣

本章第一节是《初识家庭电路》,教材首先介绍了电路组成的各个部分:电源、开关、用电器、导线,然后画手电筒的电路图,最后是实物连接手电筒电路。其实,这一节课本知识可挖掘的内容很多。比如:电源有干电池、蓄电池、电池组,电源符号,干电池的各种规格等;开关有闸刀开关、拉线开关、声光控开关、滑动开关、按钮开关、旋钮开关等;毕业论文导线有螃蟹夹、鳄鱼夹等;用电器除了小灯泡之外,实验室能提供的还有电铃和电动机。能拿来的实物尽量拿来让学生看,学生看到很新奇,都很感兴趣。除了介绍学生练习用的器材之外(与课本要求一致),还要介绍教师演示用的电路板;除了介绍电路元件的电路符号之外,还要介绍实物的简单画法。毕竟学生还是要自己画实物图。接下来画电路图和实物图时,用电器可以选择的就很多样,灯泡、电铃、电动机等就可以不重复地练习,这样就扩充了课本素材。通路、断路和短路要多举些例子,多画一些电路图和实物图,让学生多见识见识。电源短路的情况可以让学生观看视频,这样学生才能认识到电源短路的危害,自然就不会接错。

3.2 调整教材顺序,重组教材内容,打破传统框架

“苏科版”在教材上的安排是:第二节是电路连接的基本方式(串联和并联);第三节是电流和电流表;第四节是电压和电压表。学生往往在第二节就开始对串、并联电路感到难学和厌烦,从而影响了对电流表和电压表使用的学习。现在笔者调整为:第二节串联电路、短路和电流表;第三节并联电路和电压表;第四节串、并联电路的电流和电压特点;最后,学习断路和短路的电路故障分析。这样安排是因为电流表本来就是串联使用的,电压表本来就是并联使用的。将课本进行这样的调整,能更好地体现学生思维的步步深入,也有利于学生掌握知识、应用知识,对串、并联电路的认识也更深刻了。

3.3 结合串联电路,学习局部短路,联系生活实际

串联电路相比较而言要简单一些,但也不可大意,这是因为画串联电路能检验学生是否能把刚刚学到的元件符号正确画出。在学生画图中发现容易出现的问题是:画电路图时,电源的正负极标反,电铃的元件符号半圆没有封口。实物连接时容易出现的问题是:导线没有连接在接线柱上,电池组横放或竖放时正负极乱连,电铃、蓄电池分不清接线柱在哪,等等。因此,这并不是一件简单的事,基础打好了,后面的画图才能正确。此外,还可以利用串联电路让学生学习局部短路,让学生先观察局部短路的性质:用一根导线直接接在某灯泡两侧,结果出现该灯泡不亮,另一灯泡更亮。然后分析原因,指出电流具有“偷懒”的现象:导线无阻碍,电流(几乎)全部流过导线,灯上没有电流,灯被短路,灯不亮,但也不坏。实际生活中不会有人故意去短路,但有时不该挨在一起的导线挨上;若导线外皮破损,也会发生短路现象。这样解释学生就清楚了实验与实际的关系。最后,学习串联和短路的应用,笔者采用叙述加推理的方法,“某银行有一笔巨款,行长、副行长、会计各有一把钥匙,会计偷偷用钥匙打开保险柜的门,盗走了巨款……”学生赶紧着急地说:“不对,不对,应该3个人同时开锁。”由此,趁机让学生设计出3个开关的串联。“晚自习后,同学们纷纷走出教室,走廊里很暗,灯很及时地亮了,你能画出电路图吗?”这些联系生活实际的例子,使学生感到枯燥的电路图变成了十分有用的东西,因而很有兴趣地画图。学习局部短路的应用时,学生感到十分好奇,“短路竟然还有应用?”利用这种心理,教师给出了吹风机的电路和饮水机的电路,从而让学生体会到合理设计电路的必要性。以上的教学使串联知识内容丰富起来,让以前不重视串联电路的学生认真地学习,为第十五章的电功率知识打下了良好的基础。

3.4 借助实物演示,层层递进连线,学好并联电路

并联电路的连接往往是学生感到难的地方,原因是路径多,节点多,开关多。因此,重点是连接方法,但需要层层递进学习。利用实物展台演示,能起到很好的作用。

第一、展示并联电路,对比串联电路,得出并联电路的概念(图1)。

第二、学习并联电路的特点,分为以下几个步骤:

首先,观察并联电路有多条路径,引出干路和支路(图2)。

其次,学习一个开关在干路,支路各有一个灯的电路。通过实物演示连接方法——先串成一个电路再并联。连好后演示该开关的闭合和断开对灯亮灭的影响,得出干路开关控制整个电路,并与串联电路进行对比。同时,还要在黑板上画出电路图和实物简图,标出分支点A和汇合点B(图3)。

再次,学习改变分支点的位置,让这个开关接到其中一个支路上去。结合实物演示,得出支路开关控制所在支路。并指出这个电路连接存在安全隐患,即一个灯始终亮着(图4)。由此,学生很自然地想到要在干路和支路各加一个开关。此时,让学生自己画出电路图和实物图,让学生自己进行实物连接,很多学生都掌握了(图5)。

总之,采用以上的方法能充分调动学生的积极性,也降低了电路连接与分析的难度,基础打好了,后面几章学习起来就感到轻松了,何乐而不为呢?

篇11

一、培养学生的创新思维能力

精心创设情境,激发学生的创新思维。兴趣是激发学生思维能力的重要因素,它能提高学生学习的积极性,主动性,探究性,使学生以一个被动的知识接受者,变成一个主动的参与教学活动的合作者。教师必须精心备课,对所设置的教学问题必须具有趣味性、新奇性、生活性、开放性和适宜性。只有这样才能激发他们的创新思维,例如,在学习光的折射时,提出一些问题,透过圆形金鱼缸看鱼,鱼会变大,筷子斜插入水中,侧面会看到筷子在分界处弯折,学生带着这些问题去学习,会产生兴趣,达到一定的效果。

基础知识,基本技能是培养学生创造性思维能力的前提条件,首先在教学中要狠抓“双基”的落实,让学生学透知识,练实知识,用活知识。用基本的科学知识去解决实际问题,其次要克服定向思维,培养发散性思维和思维的变通能力,对于一个问题,能从不同角度.不同方向去探索解决问题的方法。传统的教学注重解决问题的唯一性。这样不利于培养学生的创新能力,实际中的许多问题,往往是开放的,多变的,答案不是唯一的。在习题教学中要加强一题多问,一题多解,一题多变,多题同解等形式的训练,培养学生的多种思维方式。例如,有这样一道开放题:现有一杯纯净水和一杯食盐水,仪器不限,用那些方法可以鉴别它们,通过各小组的热烈讨论和交流,利用密度、浮力、蒸发结晶、凝固点、导电性等知识,同学们得出了10多种方法,并用实验加以证明,开阔了学生的思路,在教学中还要培养学生的逆向思维。例如有一重为10斤的一个瓶子,用手拿着不动。手与瓶子的摩擦力为多少?当手握瓶子的力增大,此时,瓶子与手之间的摩擦力是否增大。一般的学生会认为摩擦力会随着压力的增大而增大,这是一种定向思维。如果用逆向思维去分析瓶子的状态未变。即静止(受平衡力的作用)f=G,就不难理解。通过这些思维方式的训练和解题的指导,培养学生严密的逻辑推理能力和思维能力。

二、从实验和生活中培养学生的观察能力和问题意识

科学实验离不开观察,观察是科学研究的最基本方法,是创新思维的基础,每个科学实验都有其明确的实验目标。因此,在实验教学中,对每个实验教师首先要让学生明确为什么观察和观察什么?使学生掌握观察的具体内容。例如在观察水沸腾实验中,教师提出让学生观察水在沸腾前后实验现象。实验后有的学生就观察到沸腾前气泡上升中变小,消失,沸腾后气泡会变大,破裂,并提出了相应的问题。又如,在研究液体内部压强时,指导学生观察:当金属盒中的橡皮膜在不同深度,不同液体,不同方向时,分别观察U型管两管液面的高度差是否发生变化,来得出液体内部压强的规律。使学生掌握实验观察的具体方法。如顺序观察法,对比观察法,重点观察法,全面与重点观察法,归纳观察法等。

在平时教学中,学生往往不提问题,也提不出问题,不管是实验还是作业都是按照教师的要求去完成。鉴于这种情况,教师应帮助学生学会观察,鼓励学生在观察的基础上提出问题,培养学生的问题意识。在平时的教学中,教师要把课本知识同生活实际联系起来,提出一些问题。三、注重科学研究,培养学生的科学探究能力

初中阶段的实验大多数是一些验证性的实验。用人为控制的实验条件去验证这些结论,加深对科学知识的理解、掌握,这样不利于充分发挥学生的主动性,培养学生的创新能力。为此,在教学中把演示实验改为分组实验,把一些验证性实验改成探索性实验,增加学生的动手机会,培养他们的实践能力,例如,探索电流与电压、电阻的关系时,让学生按照探究的过程进行,在实验中强化用控制变量法探究,在这个实验中,最难的是电路的设计,教师可采用让学生独立设计——小组讨论合作——各组讨论交流——师生共同补充。整合完成设计的方法,让学生在原有能力的基础上相互学习取长补短。培养学生的观察能力,动手实验能力,严谨求实的科学态度和与他人合作的精神。通过分析实验数据,得出结论,通过评估与交流,让学生发现问题,分析原因,培养学生的实事求是的科学态度。

加强实验设计,培养学生的实践能力和创新意识,开始时,可先让学生设计一些简单的实验。如,用2只开关控制一个灯泡,并且闭合任一只开关都能使灯泡发光等,在这样的基础上教师可采取少给器材,设置故障电路,把仪器调乱,让学生设计实验方案,解释实验中出现的问题,分析实验误差,改进实验等。又如在“测定小灯泡额定功率”的实验中,除按教材上的方法外,教师可提出问题,用一只已知阻值的电阻代替电压表,其他器材不变,设计实验,然后教师再深入引导学生。如果在这个实验中,电压表的量程小于灯泡的额定电压时,怎样测出小灯泡的额定功率,通过这样的引导和启发,激发了学生的求知欲望。

篇12

Keywords: grounding resistance influence factors measured value extremely extremely voltage current soil resistivity

中图分类号:TU74文献标识码:A 文章编号:

引言:顺德位于广东省的南部,珠江三角洲平原中部,正北方是广州市,西北方为佛山市中心,东连番禺,北接南海,西邻新会,南界中山市,顺德地处北回归线以南。属亚热带海洋性季风气候,日照时间长,雨量充沛,常年温暖湿润,四季如春,景色怡人,随着佛山市的发展,城市建筑物越来越多,对建筑物的防雷装置的接地电阻也非常重要的。本文对防雷装置内接地电阻测量的方法写了几点要求,供大家参考。

1影响接地电阻测量值的因素

1.1土壤电阻率的影响

土壤含水量为15%时,电阻率显著低。当土壤含水量增加时,电阻率急剧下降;当土壤含水量增加到20%-25%时,土壤电阻率将保持稳定;当土壤温度升高时,其电阻率下降。土壤电阻率这些特性在实际检测工作中有重要的实用意义。一年之中,在同一地点,由于气温和天气的变化,土壤中含水量和温度都不相同,土壤电阻率也不断的变化,其中以地表层最为显著。所以接地装置埋得深一些(湿度和温度变化小),对稳定接地电阻有利,通常最少埋深0.5-1.0m。至于是否应埋更深,那就要看更深得土壤电阻率是否突变,在均匀土壤电阻率的情况下,根据有些防雷专家的计算,埋得太深对降低接地电阻值不显著;在很多地方深层土壤电阻率很高,埋得太深反而会使接地电阻值增加,同时也增加接地工程成本。

1.2仪器自身的因素

在检测大型地网时,依据其工作原理,理论计算和实践证明:电压表内阻大于或等于电压辅助地极散流电阻的50倍时,误差则会小于2%,测量所用的电压表、电流表、电流互感器等的准确级,不应低于0.5级。测量时电压级引线的截面不应小于1.0-1.5mm2;电流极引线的截面积,以每平方毫米5A为宜,并要求接地体的引线需除锈处理,接触良好,以免测量误差。

1.3测量方法因素

一般情况下,三极法测试接地电阻中被测接地极、仪表的电压极和电流极三者间的相互位置和距离,对于接地电阻结果有很大影响。在施工现场,往往是哪里能打下电压极、电流极就往哪里打,这样就不能保证测量数据的准确性[1]

1.4环境因素的影响

早期建筑物结构比较混乱,接线零乱,有时零地电压差甚至在100V以上,被测试接地装置带有漏电流和杂散电流。由于地阻仪测量时回路一般为小电流,当测量回路中有干扰电流时,就会在测试线路上叠加交流信号,直接影响到接地电阻的测量误差。

检测接地电阻时的电压、电流极的放置方向和距离对测量值影响很大,通常表现为随着方向和距离不同,数值也不一样。在检测加油站及高层建筑物接地电阻及静电接地电阻时,埋入地下的金属(油、气)管道和接地装置以及金属器件的布置不是很正确的在建筑图纸上标出。由于地下金属管道的存在,实际上改变了测量仪各极的电流方向,如果同一场地存在不同的土壤电阻率,甚至会引起测量值出现负值的现象。

1.5 人为操作因素的影响

在检测高层建(构)筑物天面接闪器、电气设备或金属物体的接地电阻时,测试导线(接地线)从大楼顶接到地面的地阻仪上,测试线很长。除了要考虑增长的测试线所增加阻抗、感抗和线阻外,还应该考虑在很长的导线所包围面积里由于干扰信号电流引起的磁通量变化所产生的干扰电动势。接地导线接触不良也会影响接地电阻测量值。

1.6季节因素

接地电阻的测试应在土壤电阻率最大时期进行,即在夏季土壤最干燥时期和冬季土壤冰冻时期进行,且每次检查测试都要将情况逐点记录在册,不宜在雨天或雨后进行(土壤含水量增高),以免产生误差,接地电阻值在一年四季时,要用公式进行季节修订。

2排除方法

2.1由于接地电阻测试仪是通过铁钎发射和接收电流来测试地体的地电阻,所以两铁钎之间及两钎与接地体之间距离太近将产生相互干扰,并由此产生误差。因此,在测量时,接地体、电压极、电流极应顺序布置,三点成直线,彼此相距5-10m,尽量减小误差[2]。

2.2红黄铁钎插地深度应大于铁钎长度的1/4,否则,将产生测量误差。因此,在测量时应尽量将铁钎打深。

2.3被测接地极在“公用地”情况下,因设备绝缘不好或短路,引起接地装置对地产生一定的地电压。测量时可引起指针左右摆动,使读数不稳定。此时应断电进行检测,或有断接卡的地方断开进行检测,避免地电压对检测的影响。

2.4接触不良。被测物体生锈或者检测线折断时,检测时会发现时断时通或者电阻较大的现象。此时应首先除锈,如果仍不能排除,用万用表的电阻档检查检测线的导通性。

2.5检测高层建筑时,使用线过长、过粗,使线阻和感应电压增大而引起测量误差。此时应使用线阻比较低的导线,尽量减小测量误差。

2.6当所测的地方有垫土或沙石等材料时,因上下两层土壤电阻率不同而引起测量误差。此时应打深铁钎,使它和垫层下的土壤充分接触或避开垫土层,使测量误差减小。

2.7当所检测的接地装置和金属管道等金属物体埋地比较复杂时,可能会改变测量仪器各极的电流方向而引起测量不良或不稳。此时应首先了解接地体和金属管道的布局图,选择影响相对较小的地方进行测量。

2.8因地表存在电位差或强大电磁场而引起测量不准确。此时应尽量远离电位差大的地方或强大磁场的地方,如不可避免,应相对缩短检测线,减小测量误差。

2.9未按说明书操作,仪器有故障没有及时维修,仪器不准确或长期没有鉴定等因素,也会引起测量误差。

参考文献:

[1]董小丰.接地电阻值测试的影响因素.第六界中国国际防雷论坛论文摘编.2007:667.

[2]中国建筑东北设计研究院.民用建筑电气设计规范[M].北京.中华人民共和国建设部.2002:220.

篇13

一、电工实验室的安全问题分类

电工实验室的安全问题同其他类似实验室一样,分为两个部分:实验者的人身安全和实验室设备安全。

1.实验者的人身安全

在所有的实验室中,实验者的人身安全总是要放在第一位的。在电工实验室中,实验者的不安全隐患主要是触电。根据触电电流的大小不同,人体受到的伤害也不尽相同,从肌肉抽搐到灼伤、炭化,直至心脏停跳及死亡。所以在实验室安全建设方面,防止触电及触电保护总是最重要的问题。

2. 实验设备的安全

在保证实验者安全的基础上,实验设备的安全也是非常困扰实验室管理者的一个问题。在每学期的实验过程中由于各种原因导致仪器、仪表、电源、元器件、开关的损坏现象都比较高。面对这一情况,教育部组织的高校基础课实验室评估中,把电工实验仪器的完好率要求仅定在80%这个较低的水平上。这个评估数据完全是对于电工实验高损坏率的无奈。

二、影响实验室安全的因素

1.安全意识问题

电工实验室所有的实验都是要由人来操作完成的,所以实验者的安全意识对于实验室安全起着至关重要的作用。根据2002年教育部的《学生伤害的损害赔偿》第四条规定:学校举办者应当提供符合安全标准的校舍、场地,其它教育、教学设施和生活设施。因此,电工实验设课应该“符合安全标准”。根据这一要求,现有的电工实验室总是加装了全套的安全保护措施,比如加装漏电、开路、短路、过量程等保护装置;直流稳压电源采取过压、过流、过热保护等安全措施。甚至连学生使用的导线都换成了安全插头式,根本没有裸露的金属部分。所以虽然电工实验室存在着对人体产生伤害的可能性,但是随着各种安全措施的应用,实验者在实验室中基本上不会遇到严重的触电事故。实验室这样长时间的安全运行,在实验者的安全意识培养上产生了很大的负面作用。因为在实验过程中,学生往往不会注意到这些幕后的措施,如果实验教师也没有向学生指出,那么学生就会想当然认为电工实验是很安全的,这就造成学生的安全意识总是很低,因为他们看不到安全事故造成的后果,也就无法对工频市电交流电产生“敬畏”的心理。这种情况造就了很多非常“大胆”的学生,他们在操作中基本没有培养起安全意识,在毕业后的生产领域,这样的学生会非常令用人单位头疼。最极端的例子是企业向学校反映,一位毕业生在车间供电故障的情况下,非常“主动”地在没有切断输入电压的情况下准备拆卸车间用35kV变压器,如果不是发现及时,其后果将不堪设想。

2.操作技能

实验者在电工实验室的操作技能包括对基本仪器仪表和器件性能和使用规范的了解;遵循组装电路过程中的操作要求;线路故障的分析与排除等。如果实验者的操作技能不合格,往往会对实验设备造成很大的伤害。比如选择错误测量电表的量程,在使用时非常容易引起内部部件烧毁;或者干脆就是错误使用电表,如将电流表和电压表弄混,在市电220V或者380V的情况下,肯定烧毁。操作中的另一类错误主要体现在复杂线路连接错误上,比如电动机的降压启动控制,其电路非常复杂,连接错误很容易形成短路,造成断路器跳闸,或者烧坏控制装置触点。

3.设备老化

设备老化也是影响实验室安全的一个重要问题。比如在电源中,由于电压或者电流旋钮损坏,造成电压或者电流不匹配,或者时间继电器的老化造成控制电路无法正常工作等。

三、教学中采取的对应措施

1.演示违规操作的后果

针对学生中普遍存在的对实验安全的麻痹思想,在教学中,使用了一种“事故教学方法”。具体来说,在教师的演示试验中,预先设置电路中的一个错误,比如把一个电容放置在远超过其额定电压的电路中,工作一段时间后,由于电容器过压产生爆裂,会有比较大的像爆炸一样的声音,这样会使听课的学生“吓一跳”,给学生以非常深刻的印象。等到学生平静下来后,再引导学生对电路进行详细的分析,找出问题所在,进而改进电路,排除故障。这一方法中最重要的是要有非常明显的故障现象,这样才能给学生很深刻的印象。此外,教学中还可以搜集一些网络上的人员触电的视频给学生放映,通过这样看似“可怕”的视频来给学生灌输对电的“敬畏”的心理。同时还要对学生进行触电急救方面的常识教育。通过这些方法可以使学生能够主动地提高自身的安全意识,使学生在进行电工实验时总是显得很“严肃”。不过这种教学方法在实践中对教师的心理素质也是一种考验,应该由不同的教师进行适合自己的演示设计。

2.强调操作规范

(1)要求学生能够正确识读电气原理图。只有正确识读电路图,才能避免盲目接线,错误接线。具体做法是,实验开始前要求学生通过对电路图的解读,能够对各个元件的动作过程及其作用准确无误地叙述,不发生任何错误。比如在电动机的降压启动控制电路中,要求学生能够给出电路中每一个按键按下识图中各个接触器、继电器的动作过程,作用,以及电路中的保护、电机的运行状态等。此外还要求学生能够在电路图中正确区分主电路、控制电路等。

(2)训练学生对电路进行检测,避免发生事故。一般使用“电阻法”来在供电前排除故障,使用万用表的电阻档测量电路在各个状态下的电阻,即连接两根电阻表笔到待测量电路的两端,然后逐一改变其中控制元件的状态,来观察电阻的变化,如有电阻数值与预期不符,则要分析原因,排除故障。这样检查完毕后,应该不存在短路情况,如果通电后电路不动作,或者动作与预期不符,则可使用电压表测量各个元件电压值是否与预期相符,进而排除故障。

(3)接线时要注意一些具体的细节。比如要严格区分相线和零线,保证开关安置在相线上;绝对不带负载改变线路;在带电操作中,身体绝不直接接触线路中金属裸露部分,不管电压多高多低;实用工具改装线路时要避免同时接触两根导线头;注意电压表的并联,电流表的串联;在进行电机实验时,绝对不准用身体触碰旋转中的电机转轴、女生的长头发必须盘起来等等。这些细节都需要在大量的实践环节中不断地要求学生注意,如有违反,教师需要予以严肃的批评。

(4)实验中的团队配合。实验中每组学生需要统一对电路的认识,由一人主导,其他人配合。在连接简单线路时由一人连接,其他人监督并配合,切忌几个人七手八脚同时连接。对于复杂电路,可以将电路分成几个模块,分别连接,然后再组合,组合后,同组同学相互检查对方连接是否正确。操作时要注意操作者之间保持一定距离。绝对禁止当一人正在操作线路时,其他人随意打开电源。电源打开时一定要确认同组实验者的状态,保证安全的情况下才能加载电压。

通过以上几个方面的训练,让学生了解到,虽然电很可怕,有危险,但是只要规范操作,就完全能够保证自己和实验设备的安全。

3.加强设备的保护力度

国家教育法第七十三条规定:教育教学设施有危险,而不采取措施,造成人员伤亡或者重大财产损失的,要依法追究刑事责任。所以为了保护学生,保护实验设备,需要大力加强安全防护措施。在实验室的总的电源输入部分,要加装三相熔断器、总控制开关、空气断路器、隔离变压器等保险设备。确保低压中性点接地,所有在故障情况下可能带电的金属部分,如电机外壳、各种仪器设备的金属外壳等尽可能采取接零保护措施。但是为了不影响学生安全意识的培养,以上这些安全措施应该能够让学生直观地看到、感受到。

四、实验室运行中的安全管理