建筑结构设计论文实用13篇

引论:我们为您整理了13篇建筑结构设计论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

建筑结构设计论文

篇1

历史的教训足已充分说明,插入式建筑结构体系受到了严峻的检验,即似地球为相当好的惯性参考系,又将建筑物体插入地球,形成不可分割的刚体。在过去的年代,建筑物还处于低层范围时,问题还不严重,而在现代化高层、重型建筑中,仍然是采用插入式刚箍捆住内力的结构,在实际的地震灾害中存在着严重的隐患。插入式整体建筑物结构体系在正常情况下,即非地震静止状态,是没有问题,而在地震灾害爆发时,插入式整体建筑物体系的结构受力传力路线明显发生混乱,建筑结构设计的极其重要的力学原则:

(1)、不论在任何情况下,结构的传力路线必须清楚。

(2)、以当地的最不利外界因素为设计依据,如很多地区必须考虑可能发生的最大地震破坏力。这就是说建筑物抵抗地震破坏的正确条件是:运动中建筑结构内力的传递必须正确、清楚。

插入式整体建筑结构在地震时,将地震破坏力直接传递给上部结构,使上部结构发生摇晃,由于上部结构是刚箍捆住内力的结构,因而在摇晃中产生的巨大能量没有释放点,而被迫返回基础,地震又很快的不断的冲击建筑物的基础,向上部结构输送地震能量。这样上部结构返回的作用力,同基础传来的地震内力发生冲撞,冲撞最厉害的集中点,就是能量集中释放的突破点,也是结构的破坏点,通常都在基础与上部结构的交面上,破坏的形式是剪切破坏,而整个建筑物不是倒塌就是倾斜。

目前,许多国家在高层建筑的抗震设计方案中,已经出现了新的结构,如:美国纽约的42层高层建筑物,建在于基础分离的98个橡胶弹簧上,日本的建在弧型钢条上防地震建筑物,前苏联的建在与基础分离的沙垫层上的建筑物,以及在中国已经获得了美国、中国和英国发明专利权的,刚柔性隔震、减震、消震建筑结构与抗震低层楼房加层结构,都十分成功的应用于工程实践中,都明显的在建筑结构体型上,改变了传统的插入式刚箍捆住内力(吸收地震能量)的结构体系。总之都在建筑设计的结构方面设法摆脱在地震灾害时,严重威胁着人们的生命安全的插入式刚箍捆住内力的结构体系。其实质都反映了对“似地球为相当好的惯性参考系”为指导理论,所制定的现行抗震硬抗、死抗地震打击设计规范的动摇,本质上也是改变了建筑结构受力体系,而不在似地球为绝对静止不动的惯性参考系了。

1、现行建筑结构抗震设计与地震场地效应的问题现行建筑结构的抗震设计,是根据结构力学和建筑结构设计的理论基础而来的。结构力学和结构抗震设计规范,将地震破坏力简化并规定为在建筑物上部结构中的水平运动力,对建筑物的水平作用力与反作用力的硬抗平衡,这一规定实质上存在着严重的问题和错误。

其一:地震爆发时,首先是大地在做往覆水平运动,由于建筑物基础插入大地,因而必然随大地的往覆水平运动而运动,建筑物上部结构也因此被迫运动,但是建筑物上部结构的运动形式不是水平运动(因而根本就没有受水平的作用),而是因基础在受地震水平力运动中,产生的运动力传递到上部结构,迫使上部结构沿地震受力方向,作反方向S形式倾斜摆动;

其二:地震爆发时的冲击波只有两个方向,而现在所有城市的建筑物的规划设计,是根据城市的道路按东西南北方向和建设的需要各自排列的。将建筑物上部结构视为受水平运动,也只能有30%的建筑物的结构抗震设计受力方向与地震冲击波受力方向相同,而70%的建筑物的抗震设计受力方向与实际地震冲击波的冲击方向,处于非常不利的位置,当地震爆发时,只有少数正好与地震冲击波方向协调一致的建筑物不一定破坏,而大多数与地震冲击波方向不一致的建筑物,自然就很难逃脱地震冲击破坏倒塌的后果。地震对建筑物的冲击破坏,主要是对建筑物基础产生的水平往覆冲击剪切力,从而使基础被冲击破坏失去稳定后,造成上部建筑物的破坏和倒塌,地震冲击波首先是破坏了基础,而不是破坏上部建筑结构,所谓万丈高楼从地(基)起,就是这个道理。基础都破坏了,上部建筑自然就保不住了;

其三:城市中建筑物的类型是多种多样的,主要反映在超高层、高层、多层和轻重型建筑之分,而这些不同类型的建筑,又以基础深度的差别体现在地震冲击波的大小上,基础越深、越大,受地震冲击波的冲击自然很大,在加上城市地下建筑设施不少(如:地下建筑、地铁、地下大型管道等),都是构成城市地震场地效应发生互相变化的种种直接因素。现行抗震设计中,都没有考虑地下建筑设施的自身抗震,以及对地面建筑物基础和地基的地震场地效应所产生的严重问题。

2、现行建筑结构抗震桩基设计与地震场地效应的严重问题现行抗震设计中的桩基础的设计有两种类型,一种是端承桩类型,另一种是摩擦桩类型。端承桩是将深层的地基反作用力通过桩传递给地面,构成对上部建筑物作用力(压力)的平衡。摩擦桩是通过桩基础与一定深度的地基土层十分紧密的挤压结合中产生足够的反作用力,通过桩传递到地面,构成对上部建筑物的作用力(压力)的平衡。这里必须指出的是,这两种类型的桩基础在对上部建筑物的作用力(压力)构成平衡的充分条件是:静力荷载,即在没有外力的作用下成立的。

在端承桩中,端桩是反作用力的顶点,桩身是传递反作用力的通道,桩身四周的土层是给桩身起到了极其重要的稳定作用,由此,可以定义:桩端的承载力,桩身的强度是和桩身四周的土层构成了端桩基础的整体,缺一不可。

在摩擦桩中,桩身的强度与桩身四周土层紧密挤压所产生的反作用力,构成了摩擦桩基础的整体,也是缺一不可的。这两种类型的桩基础在地震爆发时,强大的地震水平往覆冲击波,完全改变了上述状态,使端承桩在地震冲击波中,使端承桩的承载力发生水平往覆运动,不但失去对桩身的稳定,反而对桩身构成了往覆水平冲击,其结果:端承桩不是破坏,就是下沉失稳。随着端承桩的破坏和失稳,建筑物上部结构自然也就处于破坏倒塌的危险境地,而摩擦桩的危险就来的更快了,地震冲击波迫使摩擦桩桩身必须与四周土层与桩基松开,失去摩擦桩身必须与四周土层紧密挤压的必要条件,并且土层对桩身构成水平冲击力,随着摩擦桩中四周土层与桩身摩擦力的解除和改变,桩不是破坏就是失稳,其上部建筑物随之处于时刻会破坏和倒塌的危险之中。

3、现行予应力建筑结构在地震中的严重问题所谓予应力建筑结构,是人为的在建筑结构的主要承力构件中,对主要承力构件中混凝土施加予应力,一般是通过对结构中承力构件的钢筋进行张拉,利用钢筋的回弹力挤压混凝土来实现的。根据对承力构件中钢筋的张拉,与混凝土的先后关系,又可分为先张法和后张法两大类。

从建筑结构中的予应力构件,到予应力结构的发展,已经有较长的时间了,在建筑结构中应用予应力构件和发展予应力结构的优势,在很多城市的建设中,得到了较广泛的应用。在城市建设和发展中,推广和应用予应力构件和予应力结构,的确能起到一定的积极作用。但是,有一个十分重要的结构动力学问题需要特别注重,所谓建筑结构动力学方面的问题,也就是地震爆发时,地震冲击波迫使建筑结构产生振动的动态反应,地震冲击波冲击建筑结构,使其产生的内力在结构中传递,而予应力构件和予应力结构的力学模型是:1)予应力张拉两端的固端成支座,是不允许有任何改变的;2)予应力构件或予应力结构在使用过程中,其构件和结构是不允许发生水平推动,振动弯曲和上下振动的。也就是说,予应力构件和予应力结构,只有在没有任何外力的情况下,才能达到予应力构件和予应力结构设计的使用要求。因此可以定义:予应力构件和予应力结构的安全使用条件,是不能承受任何外力(尤其是地震冲击力)的静力使用状态。

地震冲击波在建筑结构中,将无情的迫使建筑结构中的所有梁、柱、板、墙体等受力构件发生变形,即地震冲击力能完全改变予应力构件和予应力结构的两端边界条件,使其构件和结构中的予应力偿失。任何在使用中的予应力构件和予应力结构,当予应力衰退和偿失后,其构件和结构必然破坏。因此,在地震设防城市的建设中,是不能使用予应力构件和予应力结构的。但是,现在许多城市的建设中都使用了予应力结构,这是十分危险的。因此,应尽快在地震爆发之前,采取补救措施,否则,后果一定是十分严重的。

综上所述,现行世界各国所实行的建筑结构体系,是与地震冲击波相对抗、硬抗(死抗)的捆住地震内力的结构体系。从结构动态平衡的根本原理来分析,这种与地震力相对抗的结构体系的静态平衡在地震中完全破坏了。也就是说,现行的建筑结构体系,只能满足静态(无地震冲击波)状况下的作用力与反作用力的平衡。当地震爆发时,建筑结构内力的静态平衡被破坏了。这就是现行建筑结构体系抵抗不了地震冲击破坏的根本原因所在。现行建筑结构的抗震设计,只是加大了建筑结构的刚变,使其增加了对地震冲击力的对抗力(死抗力),没有从结构动态平衡的基础上去寻求,建筑结构与地震冲击波的动态平衡,建立一个与地震内力相适应(不是相违背)的“释放地震内力的建筑结构动态平衡体系”。

总之,几百年来,人类所推行的静态(加大刚度)的建筑结构体系,违背了地球地震的客观规律。因此,给人类自己造成了巨大的灾难。人类为了在地球上更好的生存和发展下去,就得从根本上解决适应地球地震客观规律的建筑结构体系。因此,一种与地震力相适应的“释放地震内力的建筑结构动态平衡体系”的动态平衡的力学理论的建立,并制定新的建筑结构释放地震冲击波的设计标准(在也不是对抗的标准),将是人类发展的方向和目标。

二、释放地震内力的建筑结构体系1、释放地震内力建筑结构体系的理论基础我们从现代地球物理学家关于地球板快运动理论的力学分析中,以及对地震客观规律的不断揭示,更进一步对地球的认识,有了新的力学见解,我们认为地球是一个在运动中自身求得内力平衡的结构体系,它有两个阶段的运动规律:

(1)、地球内力的平衡阶段:地球结构体,在自转和围绕太阳周转运动的过程中,所产生的内力,在平衡阶段,地表运动处于内力平衡,地球运动处于静止状态,此阶段可似地球为惯性参考系阶段。

(2)、地球结构体系处于内力平衡阶段后,其内力仍然在不断的增加,而地球结构体不能承受日益增大的内力,而在运动中,通过地球板快的运动,地震和火山等形式释放出来,以求得新的内力平衡,这个阶段是地表的活跃阶段。其不断增加的内力将在地球内力集中点释放出来,此阶段可似为非惯性参考阶段。地球内力平衡过程中的这两个阶段,在地球内部不断循环下去,形成了地球生态平衡的必然规律。

人类是在地球生态的环境中生存的,因此,人类必须遵循地球生态环境中的各种自然规律去发展。从人们开始认识到对过去认识的不足,即理论上的不足和错误,又不断的在生活实践中,提高了对地球生态环境的认识,进而不断的揭示自然规律,掌握和运用规律为现代人类和将来造福。应该明确的指出,人类对地球认识的提高和深化,其指导人类如何适应地球生态的科学理论,也就随之进入了更高的阶段。

2、释放地震内力建筑结构体系新技术的应用:已经获得中国、美国和英国发明专利权的新技术“建筑物抗震减震装置”、“建筑物消震装置”和“高层建筑隔震消能装置”完全改变了传统的插入式刚箍捆住地震内力的建筑结构体系,将建筑物整体有机的隔离成两个受力体系,这样地震破坏力的传递媒介改变了,由直接传递转化为间接传递。不言而喻,“建筑物抗震减震装置”将大大减少地震对上部结构的冲击,反之,上部结构对基础的作用力也大大减小。

篇2

2.1种类划分

对于装配式建筑来说,拥有多种类型,按照形式划分有剪力墙形式、框架与核心筒形式、框架与剪力墙形式等;按照高度划分有多层混凝土式、高层混凝土与低层混凝土式[2]。在我国应用最多的装配式建筑结构形式为剪力墙结构,但在商场等建筑项目中多采用框架式。

2.2抗震性能

在自然灾害频发的今天,任何建筑最重要的一点莫过于具有良好的抗震性能。通过研究可以发现,装配式混凝土建筑结构大致可以分为两种,一种是全装配式;另一种是半装配式,无论哪种装配形式,其装配程度的高低不会影响到建筑整体刚度,能够影响结构刚度的只有受力构件刚度与节点刚度,如果它们的刚度不达标,那么在地震等自然灾害发生以后,建筑使用者的安全将受到极大威胁,因此,应提升受力构件与节点刚度[3]。同时,在装配式建筑中有多个节点形式,不同结构刚度所带来的影响也不会不同,尤其是抗震性能存在一定差异,所以,在装配式建筑结构体系设计过程中,应加强与现实情况的联系,提升建筑结构的抗震性能。

3装配式建筑结构设计

3.1框架结构体系设计

对于装配式建筑框架结构体系来说,在我国商场建设中应用较多,也是应用力度较大的装配式建筑结构。之所以采用这种结构体系,主要是由于该体系质地相对较轻,便于运输,同时它属于综合性能相对较好的高层框架。在利用框架结构体系的过程中,无论是叠合板还是合梁都会在工厂内部完成,然后利用运输设备将这些框架运输到施工场地,再在现浇处理节点或梁端键槽等方式的作用下完成下一阶段的设计。为提高框架结构体系装配式建筑的受力能力,在实际设计中还需要关注以下几点问题:一,强度等级控制。无论是柱混凝土还是预制框架柱底的强度等级至少要达到C30左右;二,平面设计原则。在设计梁柱中心线的过程中应做到竖向平面相同,且呈现对齐形式,在纵向上也要以对齐为主;三,预埋件的处理。对于框架结构体系设计来说,预埋件属于不可缺少的一部分,所以,在实际设计过程中应保证处于不同区域的预埋件能够很好的连接在一起,无论是承受轴力还是剪力都处于良好状态。

3.2剪力墙结构体系设计

剪力墙结构体系在我国居民保障住房中的应用较多,在设计这种结构体系的装配式建筑时,可以根据需求与工厂实际情况选择剪力墙结构,既可以是半预制式,也可以是全预制式,无论哪种形式都能满足设计需求。为确保装配式建筑结构质量,满足使用需求,应关注以下几点内容:一,设计好承重墙板。承重墙是装配式剪力墙结构体系设计中不可缺少的一部分。为做好承重墙设计,保证建筑质量,需要将承重墙搭建在两侧的山墙上。同时,做好内力计算结果与抗侧力设计。此外,在结构竖向抗侧力设计的过程中,应保证现浇方式能够将竖向主承力钢筋浆锚与连接带组合在一起,并做好抗震设计与连接设计,以便提升建筑结构的整体性,避免出现中断的情况;二,控制好钢筋直径与强度。在剪力墙结构体系设计中应保证各个预制构建间的连接性处于良好状态。在实际设计的过程中不仅要确保传力良好,还要提高构造的可靠性。如果发现该结构的抗震能力较差,应适当提升钢筋直径与强度;三,注意与现场吊装环境的联系。对于剪力墙结构体系来说,如果在设计中采用的是分块设计,那么在实际设计中应注意与现实情况的联系,如房间构造、拼接位置等。对于竖向接缝的部位,应做到避免应用到暗柱中,且尽量避免在同一个建筑结构中应用多个构件。此外,在实际设计中应严格按照相关要求操作,做好验算,避免出现配筋变形等情况,只有这样才能保证设计合理,满足人们实际需求。

4结语

通过以上研究得知,装配式建筑是现代建筑中应用较多的一种形式,它不仅可以降低劳动强度,还有利于生态环境保护,但不同的装配式建筑在结构体系与设计上的方式并不相同,注意要点也存在差异,因此,本文联系实际情况,分别对框架式装配式建筑与剪力墙装配式建筑的结构设计进行了研究,希望能为相关人士带来有效参考,加大装配式建筑在我国的设计与应用力度。

作者:黎静 单位:青岛博雅置业有限公司

参考文献:

篇3

20世纪50年代的结构设计方法,与现在近似,当时所用的混凝土强度很低,只有110~140号,比现在的C15还低。20世纪50年代初期施工手段也很落后,混凝土用体积配合比,人工搅拌,没有振捣器……而当时施工发生安全事故的较少。有一些建筑物使用至今近50年,因此可以说,现在的安全事故,与结构设计安全度是没有连带关系的。只要施工质量保证,设计不出错误,安全程度已能满足要求。所以不必作出全面的变更,个别地方有不够的,则可作局部修补。规范对安全度的要求只是最低值,设计人员完全可以根据不同的工程对象,必要时采用高于规范规定的数值。

2结构设计,提倡节约

我国是发展中的国家,还是要尽量提倡节约,目前我国规范中的构造要求,并非都比外国低。有的已经超过。外国大企业在北京买了按我国规范设计的大楼,说明我国规范不是进不了国际市场。现在对安全度进行讨论,应注意不要引起误导,千万不要误解提高建筑结构安全度建筑物就安全了,造成不必要的浪费。有人认为现行规范安全度与国际相比虽然偏低,但使用十年来已成功建成约100亿平方米的建筑物,实践已经证明,现行规范安全度是可以接受的,这是重要的经验,不能轻易放弃。但考虑到客观形势变化,国家经济实力增强和住宅制度改革现状,可以将现行设计可靠度水平适当提高一点,这样投入不大,却对国家总体和长远利益有利。

3我国现行规范中的构造规定,并非都比别国低

在20世纪60年代初编制我国混凝土规范时,对当时工程事故频繁状况,不少专家曾提出增大安全度,但限于当时政治形势和经济状况而未能实现。现在条件变了,安全度应该提高。现行我国规范规定的是最低用钢量,设计者一般根据结构重要性,予以适当提高,所以下能以此来判定我们在工程中的材料用量,更不能以我们的最低值来与人家比。我国规范规定的柱子最小含钢量力0.4%,是不考虑抗地震时的数量,我们大多数城市设计时都考虑抗震,高层建筑更是都要考虑,这时柱子的最小含钢量就是0.5%~1.0%。而且设计单位在设计高层建筑的柱子时,用钢量常比规范要求的还大,因此与国外相比,实际用钢量并不太小。

我们有些构造要求,已与国外持平,如剪力墙的最小配筋率为0.25%,与美国相同。至于墙的暗柱配筋量,在许多方面已是世界领先。我国规范对于梁受压钢筋的配筋率,有明确规定。且数值与美国基本相等,并非“无此规定”。至于受拉钢筋的最小配筋率,有设计经验的人都知道,在一般梁板构件中,此值并不起作用,有影响的是在类似基础厚板一类构件中。这种构件中,我国规范与国外规范相比,在某些情况下配筋更多。

4规范要根据国家政策而定

一个国家的规范,不仅仅是技术性的,还有根强的政策性,许多方面,是一个国家经济条件的直接反映。因此,我国规范的材料用量,当然应该比发达国家低,也即安全度应该低一些。这方面我们完全可以理直气壮地说,我们过去的设计标准,是符合我国国情的,是安全的。当然某些局部有不足,要不断修改。国外的规范也不是十全十美,也在不断的修改。我们过去的结构成功地经受了几十年的考验,那就是说,我们的规范,基本是正确的,安全度基本是能满足要求的。

我国经济发展地区不平衡,分布不均,不能单看我国这些年沿海地区的经济发展,我国广大中西部地区,还是相当穷的。我国钢产量虽大幅度提高,但人均产量仍就很低,而且品种不全,质量较低。所以,我不赞成说现在就可以大量用钢。中小城市现在还在发展冷轧变形钢筋,这种钢筋性能并不太好,就因为能省钢,所以还在发展,这就是我国的国情。

篇4

1工业建筑结构设计

工业建筑结构设计应秉承安全性强、建设成本合理、结构质量高三个基本原则,并严格按照国家的规范标准,结合企业自身生产模式、工艺流程、设备选型、管理方式等进行系统化设计。首先,根据企业对建筑强度的要求,合理选择钢材型号。选用钢材必须通过国家质量检测体系的认证,确保钢结构的强度与质量。在合理选用钢材型号的同时,对钢结构进行防腐防锈处理也是保障其刚度及强度的重要措施。根据所选的钢材型号,对建筑结构进行系统的应力分析,选择对应的焊条,保证其焊缝的结构强度。同时也不能忽视结构附件的性能要求,应按照实际需求及相关规范进行选型配备。此外,还应格外注意对地基的处理,根据建筑结构进行针对性的地基处理,确保工业建筑结构的稳定性与抗震等级要求。

2工业建筑结构设计的优化

2.1工业建筑结构设计优化概念

现代工业建筑结构设计优化概念较之以往有很大不同。与传统工业建筑结构设计优化只重视建筑结构的分析、设计相比,现代工业建筑结构设计优化更加注重对生产模式、工艺流程、设备选型、管理方式等进行多方面多角度综合评价、分析,权衡性能、成本、结构、舒适度等多方因素,确立科学、合理的工业建筑结构设计方案。通过对工业建筑结构设计进行最大程度优化的方式,达到有效提高企业生产效率、管理效率,降低企业生产运营成本,提高企业利润率的目的。

2.2工业建筑结构设计优化中存在的问题

结构优化与建筑美学的矛盾在当前工业建筑结构设计优化过程中尤为突出。通常在结构设计中很难做到对结构强度、建筑性能、实用性与现代设计理念、建筑美学兼顾。过多关注设计理念与建筑美学的优化,会造成设计方案对结构布局、工艺流程的考虑不足,使得优化方案缺少实用性,对工业生产的提升效果不明显,很难得到企业的认可。另一个主要问题是工业建筑结构设计方案中工程造价优化与结构强度优化的矛盾。钢结构的设计除了要保障刚度、强度的同时还要做到兼顾经济合理性。如何在保证设计要求的情况下尽可能优化结构工程造价、减少钢材使用量,也是设计人员在工业建筑结构设计优化中主要考虑的问题。

3工业建筑结构设计优化的探讨

3.1建立工业建筑结构设计优化模型

科学、合理的开展工业建筑设计优化工作离不开一个好的结构设计优化模型。在工业建筑设计优化过程中,针对重点变量进行函数模型的建立,对多种结构参数进行模拟、分析。函数模型的建立与运用有助于实现设计参数的最优化,从而根据实际需要,找出最科学的优化方案。在工业建筑结构优化模型的建立中,针对工程的基础结构、屋盖系统、围护结构三个重要方面进行重点优化,对其进行选型分析、受力分析、工艺分析、造价分析等全面评价,确保优化方案的有效性。工业建筑结构设计优化模型构建的重点在于确定参数变量,根据约束性条件与结构设计的主要影响因素确定模型中的参数内容。参数内容确定后,应根据企业对工业建筑结构设计的优化目的与优化方向选定合适的函数模型,确定最终的优化方案。

3.2完善工业建筑结构设计管理体系

在工业建筑结构设计优化中,常因为缺乏指导性的优化理念与量化标准,使得结构优化方案有很大的变动性,并对设计管理与施工管理造成不利影响。为了保障工业建筑结构设计优化工作的有效进行,满足现代工业建筑结构设计优化的需要,必须完善与之相匹配的管理体系,建立专业的指导思想与量化标准。对工业建筑结构设计的优化活动进行有效的管理与评估,采取针对性措施对优化进行规范管理,根据相关标准规范与思想理念对设计人员的工作进行指导和考核,实现对工业建筑结构设计优化的质量控制。

4结语

工业建筑的结构设计是一项专业性强、内容复杂的工作,对设计人员的专业素养与综合能力都有着很高的要求。必须充分结合企业自身特点,综合考虑生产模式、工艺流程、设备选型、管理方式等进行多种因素,对设计方案的性能、成本、结构、舒适度、建筑美学等多方面进行科学合理的取舍,选择合适的参数变量,根据优化方向针对性选择函数模型,确立科学合理的参数内容,做出最佳的工业建筑结构设计优化方案,实现设计的最优化。

作者:李雷 单位:山东省冶金设计院股份有限公司

参考文献:

篇5

地下车库采用框架剪力墙结构,局部增加的剪力墙,主要有两个作用:一是为了使得地下1层与地上1层的剪切刚度比大于2,满足正负零作为地上单体嵌固端的要求,二是为了更好地保证室内外高差处水平力的传递。商业楼室内及室外相关范围内,正负零零层采用梁板式结构,板厚180~250,双层双向配筋,且配筋率不小于0.25%。

三上部结构设计

(1)超限情况的判定

根据“住房和城乡建设部关于印发《超限高层建筑工程抗震设防专项审查技术要点》的通知(建质〔2010〕109号)”,对商业楼的超限情况判定如下:①商业楼结构高度29.2m,采用现浇钢筋混凝土框架结构,属于A级高度高层建筑,高度不超限。②商业楼3层以上竖向构件缩进大于25%,属尺寸突变(立面收进);③商业楼地上楼层存在多处楼板有效宽度小于50%,开洞面积大于30%的情况;④商业楼3层和4层之间质心相差达18m,大于相应边长的15%,同时,考虑偏心扭转位移比大于1.2,小于1.4。综合以上分析,商业楼属于超限高层建筑。

(2)上部结构计算分析

在小震作用下,全部结构处于弹性状态,构件承载力和变形应该满足规范的相关要求。根据《高层建筑混凝土结构技术规程》JGJ3-2010第5.1.12条的要求,本工程采用SATWE与PMSAP两种不同分析软件分别进行了整体内力及位移计算,两种软件的计算结果基本一致,结构体系满足承载力、稳定性和正常使用的要求。楼层最大位层间移角小于1/550,满足JGJ3-2010第3.7.3的要求;在刚性楼板假定下,虑偶然偏心影响的规定水平地震力作用下,竖向构件的最大水平位移和层间位移与该楼层平均值的比值均小于1.4。根据建筑抗震设计规范GB50011-2010第5.1.2条,对不规则建筑应采用时程分析进行多遇地震下的补充计算。本工程所选的三条波为TH2TG035、TH4TG035、RH4TG035,每条时程曲线计算得到的结构底部剪力均大于CQC法的65%,三组时程曲线计算得到的底部剪力平均值大于CQC法计算得到的底部剪力的80%,故所选三条波满足规范要求。时程分析的结果表明,结构体系无明显薄弱层,时程分析法包络值较CQC法计算结果小,故结构的小震弹性设计由CQC法计算结果控制。根据高层建筑混凝土结构技术规程JGJ3-2010第5.1.13条的要求,对商业楼采用弹塑性静力分析方法进行了补充计算。两个方向罕遇地震下性能点最大层间位移角均小于1/50,小于规范弹塑性位移角限值,因此宏观上商业楼所用结构体系能保证大震不倒的设计要求。在通过二阶段设计实现三个水准的基本设防目标以外,针对本工程的具体情况,提出了以下抗震性能化目标:①设防地震作用下,中庭连廊等薄弱处楼板内双层双向钢筋不屈服;②设防地震作用下,悬挑梁根部框架柱及大跨梁两端相连框架柱斜截面抗剪按弹性设计,正截面抗弯按不屈服设计;PMSAP楼板应力分析结果表明,中庭连廊根部、平面凹口阴角位置一般为应力集地区域,在多遇地震作用下,楼板主拉应力不大于混凝土抗拉强度标准值,楼板不会开裂,在设防地震作用下,应力集中位置楼板主拉应力略大于混凝土抗拉强度标准值,但适当加大楼板配筋,即可满足楼板内钢筋不屈服。在设防地震作用下,利用SATWE进行弹性设计和不屈服设计,分别校核悬挑梁根部框架柱及大跨梁两端相连框架柱的箍筋和纵筋,并与多遇地震计算结果一起进行包络设计。计算结果表明,配筋值均在合理范围,配筋切实可行。通过以上性能化设计措施,在对结构的经济性影响较小的情况下,提高了结构的抗震性能,增加了建筑的安全性。

(3)上部结构设计

针对偏心布置和扭转不规则,设计时,尽量使结构抗侧力构件在平面布置中对称均匀布置,避免刚度中心与质量中心之间存在过大的偏离;加强构件的刚度,增强结构的抗扭性能。计算时,考虑偶然偏心的影响,设计时适当加强受扭转影响较大部位构件的强度、延性及配筋构造。通过调整结构布置,将考虑偶然偏心下的最大位移比严格控制在1.4以下,第一扭转周期和第一平动周期比严格控制在0.9以下。针对立面收进带来的扭转不利影响而采取的抗震措施详第(1)条。构造上,对收进楼层(4层)加厚至140mm且双层双向加强配筋,配筋率不小于0.25%,但为减小大跨部分楼板自重,室内大跨度区域楼板厚120mm,屋面大跨度区域楼板厚130mm,收进部位上下层楼板(3层和5层)厚度不小于120mm,并双层双向加强配筋。根据《高层建筑混凝土结构技术规程JGJ3-2010》的相关规定,体型收进部位上、下各两层塔楼周边竖向结构构件的抗震等级提高一级,框架柱在此范围内箍筋全高加密,提高纵筋配筋率;收进部位以下两层结构周边竖向构件配筋加强。针对因开洞形成楼板不连续情况,整体计算时按实际开洞情况建模,并将以上楼层定义为弹性膜,以考虑楼板不连续对结构的影响;同时,构造加厚连廊等薄弱区域楼板至130mm厚,并双层双向配筋,配筋率不小于0.25%。

篇6

商业楼基础设计等级为甲级,采用桩加防水板基础。根据前期试桩检测报告结论,采用Φ700钻孔灌注桩,抗压兼抗拔桩。基础埋深12.1m,远大于建筑结构高度的1/18。经复核,风荷载及水平地震作用下基底均不出现零应力区,可满足高层建筑结构抗倾覆稳定要求。

3地下车库设计

地下车库采用框架剪力墙结构,局部增加的剪力墙,主要有两个作用:一是为了使得地下1层与地上1层的剪切刚度比大于2,满足正负零作为地上单体嵌固端的要求,二是为了更好地保证室内外高差处水平力的传递。商业楼室内及室外相关范围内,正负零零层采用梁板式结构,板厚180~250,双层双向配筋,且配筋率不小于0.25%。

4上部结构设计

(1)超限情况的判定根据“住房和城乡建设部关于印发《超限高层建筑工程抗震设防专项审查技术要点》的通知(建质〔2010〕109号)”,对商业楼的超限情况判定如下:①商业楼结构高度29.2m,采用现浇钢筋混凝土框架结构,属于A级高度高层建筑,高度不超限。②商业楼3层以上竖向构件缩进大于25%,属尺寸突变(立面收进);③商业楼地上楼层存在多处楼板有效宽度小于50%,开洞面积大于30%的情况;④商业楼3层和4层之间质心相差达18m,大于相应边长的15%,同时,考虑偏心扭转位移比大于1.2,小于1.4。综合以上分析,商业楼属于超限高层建筑。(2)上部结构计算分析在小震作用下,全部结构处于弹性状态,构件承载力和变形应该满足规范的相关要求。根据《高层建筑混凝土结构技术规程》JGJ3-2010第5.1.12条的要求,本工程采用SATWE与PMSAP两种不同分析软件分别进行了整体内力及位移计算,两种软件的计算结果基本一致,结构体系满足承载力、稳定性和正常使用的要求。楼层最大位层间移角小于1/550,满足JGJ3-2010第3.7.3的要求;在刚性楼板假定下,虑偶然偏心影响的规定水平地震力作用下,竖向构件的最大水平位移和层间位移与该楼层平均值的比值均小于1.4。根据建筑抗震设计规范GB50011-2010第5.1.2条,对不规则建筑应采用时程分析进行多遇地震下的补充计算。本工程所选的三条波为TH2TG035、TH4TG035、RH4TG035,每条时程曲线计算得到的结构底部剪力均大于CQC法的65%,三组时程曲线计算得到的底部剪力平均值大于CQC法计算得到的底部剪力的80%,故所选三条波满足规范要求。时程分析的结果表明,结构体系无明显薄弱层,时程分析法包络值较CQC法计算结果小,故结构的小震弹性设计由CQC法计算结果控制。根据高层建筑混凝土结构技术规程JGJ3-2010第5.1.13条的要求,对商业楼采用弹塑性静力分析方法进行了补充计算。两个方向罕遇地震下性能点最大层间位移角均小于1/50,小于规范弹塑性位移角限值,因此宏观上商业楼所用结构体系能保证大震不倒的设计要求。在通过二阶段设计实现三个水准的基本设防目标以外,针对本工程的具体情况,提出了以下抗震性能化目标:①设防地震作用下,中庭连廊等薄弱处楼板内双层双向钢筋不屈服;②设防地震作用下,悬挑梁根部框架柱及大跨梁两端相连框架柱斜截面抗剪按弹性设计,正截面抗弯按不屈服设计;PMSAP楼板应力分析结果表明,中庭连廊根部、平面凹口阴角位置一般为应力集地区域,在多遇地震作用下,楼板主拉应力不大于混凝土抗拉强度标准值,楼板不会开裂,在设防地震作用下,应力集中位置楼板主拉应力略大于混凝土抗拉强度标准值,但适当加大楼板配筋,即可满足楼板内钢筋不屈服。在设防地震作用下,利用SATWE进行弹性设计和不屈服设计,分别校核悬挑梁根部框架柱及大跨梁两端相连框架柱的箍筋和纵筋,并与多遇地震计算结果一起进行包络设计。计算结果表明,配筋值均在合理范围,配筋切实可行。通过以上性能化设计措施,在对结构的经济性影响较小的情况下,提高了结构的抗震性能,增加了建筑的安全性。(3)上部结构设计针对偏心布置和扭转不规则,设计时,尽量使结构抗侧力构件在平面布置中对称均匀布置,避免刚度中心与质量中心之间存在过大的偏离;加强构件的刚度,增强结构的抗扭性能。计算时,考虑偶然偏心的影响,设计时适当加强受扭转影响较大部位构件的强度、延性及配筋构造。通过调整结构布置,将考虑偶然偏心下的最大位移比严格控制在1.4以下,第一扭转周期和第一平动周期比严格控制在0.9以下。针对立面收进带来的扭转不利影响而采取的抗震措施详第(1)条。构造上,对收进楼层(4层)加厚至140mm且双层双向加强配筋,配筋率不小于0.25%,但为减小大跨部分楼板自重,室内大跨度区域楼板厚120mm,屋面大跨度区域楼板厚130mm,收进部位上下层楼板(3层和5层)厚度不小于120mm,并双层双向加强配筋。根据《高层建筑混凝土结构技术规程JGJ3-2010》的相关规定,体型收进部位上、下各两层塔楼周边竖向结构构件的抗震等级提高一级,框架柱在此范围内箍筋全高加密,提高纵筋配筋率;收进部位以下两层结构周边竖向构件配筋加强。针对因开洞形成楼板不连续情况,整体计算时按实际开洞情况建模,并将以上楼层定义为弹性膜,以考虑楼板不连续对结构的影响;同时,构造加厚连廊等薄弱区域楼板至130mm厚,并双层双向配筋,配筋率不小于0.25%。

篇7

摘要:随着国家社会经济与技术的飞速进步发展,高层建筑在我国各大城市越来越多。高层建筑结构设计给工程设计人员提出了更高的要求,本文就结构设计中常见的几个问题进行探讨。

关键词:高层建筑结构设计 问题

1高层建筑结构受力性能对于一个建筑物的最初的方案设计,建筑师考虑更多的是它的空间组成特点,而不是详细地确定它的具体结构。 建筑物底面对建筑物空间形式的竖向稳定和水平方向的稳定都是非常重要的,由于建筑物是由一些大而重的构件所组成,因此结构必须能将它本身的重量传至地面,结构的荷载总是向下作用于地面的,而建筑设计的一个基本要求就是要搞清楚所选择的体系中向下的作用力与地基土的承载力之间的关系,所以,在建筑设计的方案阶段,就必须对主要的承重柱和承重墙的数量和分布作出总体设想。 对于低层、多层和高层建筑,竖向和水平向结构体系的设计基本原理都是相同的,但是,随着高度的不断增加。竖向结构体系成为设计的控制因素,其原因有两个:其一,较大的垂直荷载要求有较大的柱、墙或者井筒;其二,侧向力所产生的倾覆力矩和剪切变形要大得多。 与竖向荷载相比,侧向荷载对建筑物的效应不是线性增加的,而随建筑高度的增高迅速增大。例如,在所有条件相同时,在风荷载作用下,建筑物基底的倾覆力矩近似与建筑物高度的平方成正比,而其顶部的侧向位移与高度的四次方成正比,地震的作用效应更加明显。在高层建筑中,问题不仅仅是抗剪,而更重要的是整体抗弯和抵抗变形,可见,高层建筑的结构受力性能与低层建筑有很大的差异。 2结构选型阶段 对于高层结构而言,在工程设计的结构选型阶段,结构工程师应该注意以下几点: 2.1结构的规则性问题。 新旧规范在这方面的内容出现了较大的变动,新规范在这方面增添了相当多的限制条件,例如:平面规则性信息、嵌固端上下层刚度比信息等,而且,新规范采用强制性条文明确规定“建筑不应采用严重不规则的设计方案。”因此,结构工程师在遵循新规范的这些限制条件上必须严格注意,以避免后期施工图设计阶段工作的被动。 2.2结构的超高问题。 在抗震规范与高规中。对结构的总高度都有严格的限制,尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为A级高度的建筑外,增加了B级高度的建筑,因此。必须对结构的该项控制因素严格注意,一旦结构为B级高度建筑甚或超过了B级高度,其设计方法和处理措施将有较大的变化。 在实际工程设计中,出现过由于结构类型的变更而忽略该问题。导致施工图审查时未予通过,必须重新进行设计或需要开专家会议进行论证等工作的情况,对工程工期、造价等整体规划的影响相当巨大。 2.3嵌固端的设置问题。由于高层建筑一般都带有二层或二层以上的地下室和人防,嵌固端有可能设置在地下室顶板,也有可能设置在人防顶板等位置,因此,在这个问题上,结构设计工程师往往忽视了由嵌固端的设置带来的一系列需要注意的方面,如:嵌固端楼板的设计、嵌固端上下层刚度比的限制、嵌固端上下层抗震等级的一致性、在结构整体计算时嵌固端的设置、结构抗震缝设置与嵌固端位置的协调等等问题,而忽略其中任何一个方面都有可能导致后期设计工作的大量修改或埋下安全隐患。 2.4短肢剪力墙的设置问题。在新规范中, 对墙肢截面高厚比为5-8的墙定义为短肢剪力墙。且根据实验资料和实际经验,对短肢剪力墙在高层建筑中的应用增加了相当多的限制,因此,在高层建筑设计中,结构工程师应尽可能少采用或不用短肢剪力墙,以避免给后期设计工作增加不必要的麻烦。 3地基与基础设计方面 地基与基础设计一直是结构工程师比较重视的方面,不仅仅由于该阶段设计过程的好与坏将直接影响后期设计工作的进行,同时,也是因为地基基础也是整个工程造价的决定性因素,因此,在这一阶段,所出现的问题也有可能更加严重甚至造成无法估量的损失。 在地基基础设计中要注意地方性规范的重要性问题。由于我国占地面积较广,地质条件相当复杂,作为国家标准,仅仅一本《地基基础设计规范》无法对全国各地的地基基础都进行详细的描述和规定,因此,作为建立在国家标准之下的地方标准。 地方性的“地基基础设计规范”能够将各地方的地基基础类型和设计处理方法等一些成熟的经验描述和规定得更为详细和准确,所以,在进行地基基础设计时,一定要对地方规范进行深入地学习,以避免对整个结构设计或后期设计工作造成较大的影响。 转贴于 中国论文4结构计算与分析方面 在结构计算与分析阶段,如何准确,高效地对工程进行内力分析并按照规范要求进行设计和处理,是决定工程设计质量好坏的关键。由于新规范的推出对结构整体计算和分析部分相当多的内容进行了调整和改进,因此,结构工程师也应该相当地对这一阶段比较常见的问题有一个清晰的认识。 4.1结构整体计算的软件选择。目前比较通用的计算软件有:SATWE、TAT、TBSA或ETABS、SAP等,但是,由于各软件在采用的计算模型上存在着一定的差异,因此导致了各软件的计算结果有或大或小的不同。所以,在进行工程整体结构计算和分析时必须依据结构类型和计算软件模型的特点选择合理的计算软件,并从不同软件相差较大的计算结果中,判断哪个是合理的、哪个是可以作为参考的,哪个又是意义不大的,这将是结构工程师在设计工作中首要的工作。否则,如果选择了不合适的计算软件,不但会浪费大量的时间和精力,而且有可能使结构有不安全的隐患存在。 4.2是否需要地震力放大,考虑建筑隔墙等对自振周期的影响。 该部分内容实际上在新老规范中都有提及,只是,在新规范中根据大量工程的实测周期明确提出了各种结构体系下高层建筑结构计算自振周期折减系数。 4.3振型数目是否足够。 在新规范中增加一个振型参与系数的概念,并明确提出了该参数的限值。由于在旧规范设计中,并未提出振型参与系数的概念,或即使有该概念,该参数的限值也未必一定符合新规范的要求,因此,在计算分析阶段必须对计算结果中该参数的结果进行判断,并决定是否要调整振型数目的取值。 4.4多塔之间各地震周期的互相干扰,是否需要分开计算。一段时间以来,大底盘,多塔楼的高层建筑类型大量涌现,而在计算分析该类型高层建筑时,是将结构作为一个整体并按多塔类型进行计算,还是将结构人为地分开进行计算,是结构工程师必须注意的问题。如果多塔间刚度相差较大,就有可能出现即使振型参与系数满足要求,但是对某一座塔楼的地震力计算误差仍然有可能较大,从而便结构出现不安全的隐患。 4.5非结构构件的计算与设计。在高层建筑中,往往存在一些由于建筑美观或功能要求且非主体承重骨架体系以内的非结构构件。对这部分内容,尤其是高层建筑屋顶处的装饰构件进行设计时,由于高层建筑的地震作用和风荷载均较大。因此,必须严格按照新规范中增加的非结构构件的计算处理措施进行设计。5结束语 总之,在高层建筑结构设计中,结构工程师不能仅仅重视结构计算的准确性而忽略结构方案的实际情况,应做出合理的结构方案选择。高层建筑结构设计人员应该根据具体情况进行具体分析,处理建筑设计中遇到的各种问题。

参考文献 [1]肖峻,高层建筑结构分析与设计[J],中化建设,2008[2]范小平,高层建筑结构概念设计中相关的几个问题应用分析[J]福建建材,2008 [3]李国胜,多高层钢筋混凝土结构设计中疑难问题的处理及算例,中国建筑工业出版社,2004 中国论文下载中心 省略

篇8

本工程为办公楼,初步方案为框架结构,但是为了减少造价改为砌体结构。根据建筑抗震规范规定该建筑所在的城市抗震设防烈度为7度,设计基本地震加速度为0.159,设计地震分组为第一组,设计使用年限51年。建设场地为II类,基本风压为0.35KN/m2,基本雪压为0.35KN/m2。结构层数为4层,结构形式采用砖混结构,基础采用条形基础。

2结合案例

进行对建筑节诶狗优化设计措施进行分析

2.1建筑结构形式设计

户型选择主要由建筑类型与功能决定,而建筑设计方案决定建筑类型与功能。在建筑结构形式优化没计中,砌体结构与底部框架剪力墙结构是设计的主要部分。根据本次案例的实际情况,文章做一下具体设计:

(1)加强砌体结构设计。砖砌体是建筑承重与抗侧移的结构部分,可以灵活的布置建筑平面,但不适于做跃层结构与受力大的突兀结构。为了有效减少建筑构造柱的配筋,可在保证建筑安全性的基础上,建至少道纵向墙体,而且门窗开洞宽度不超过2.1m。

(2)加强底部框架剪力墙结构设计。在该设计中,如果底部框架剪力墙竖向抗侧力构件不连续,极易出现受力不平衡问题,所以必须严格要求建筑平面。设计底部框架剪力墙结构时,应尽可能将承重墙设计在框架梁上,若将墙体设于次梁上,则需加大建筑部分结构的配筋,如该次梁、主梁、框架梁,并加厚该次梁楼板。下图1为优化后的梁布置图。(3)此外,结构楼板应在填轻质材料的基础上,才能进行错层。在建筑户型设计中,为便于布置临街面柱网,应在临街面布置大房间,而背面则布置小房间,如卫生间、厨房等。

2.2建筑剪力墙设计

在剪力墙设计过程中,连梁设计是其中的关键部分。连梁连接建筑各墙肢形成联肢墙,增加了制约墙肢的条件。建筑结构的地震作用随着连梁剐度的增大而增大,而连梁与墙肢的分配内力也随之而增大,因此需适当增加构件配筋量,才能保证建筑的安全.性,但会浪费建筑材料。所以,设计建筑结构时,经验丰富的设计师通常不采用刚度大的衡下墙作为连梁,而是将连梁设计为弱连梁,减小截面与刚度。此外,建筑结构设计不仪要符合刚度和变形条件,还必须综合考虑建筑抗力、变形、经济等方面,尽可能合理布置建筑抗侧力构件。可见建筑结构抗侧力刚度随着剪力墙数量的增多而加大,结构位移也随之减小,但建筑结构地震力会因此增大,从而不利于控制建筑结构造价。所以在进行布置剪力墙时,要把周边弄的更加均匀,可以运用对称、分散等原则,在设计的时候一定要以建筑规定的水平位移限值为标准,适当的控制剪力墙数量。

2.3建筑细节设计

建筑结构设计优化中主要体现以下几个方面:加强建筑结构局部构件精细设计,如设计现浇板时,尽可能将异形板划为矩形板,从而使建筑合理受力,并避免拐角出现裂缝;选择冷轧带肋钢筋作为建筑底部框架抗震墙的底框梁箍筋,减少箍筋量,达到降低造价和便于施工目的;结合结构优化设计理念与计算机技术,使计算仿真优化设计思路广泛应用于建筑工程结构设计。利用计算机建立建筑结构优化设计模型,并利用计算机高效的优化设计方法,使建筑结构设计达到优化目的。优化设计大型复杂的建筑结构时,利用计算机优化设计建筑结构,具有传统设计方法无法比拟的优势。所以,建筑结构设计人员必须具备一定的计算机知识与运用能力,有效利用计算机优化设计分析建筑结构。总而言之,对于构造措施,要紧密联系规范进行设计,不要盲目的加大构造尺寸和钢筋直径大小,减小不必要的浪费。梁板柱的布置体系和受力体系尽量简单合理,对于不需要设置梁的部位要简化设置。控制砌体砂浆等级。控制基础的埋深和合理选用基础形式,对承载力特征值进行修正。

篇9

大底盘多塔建筑结构在设计时首先要考虑到该结构的抗震效果,关于多塔楼建筑的抗震效果也是现代人们越来越关注的问题。在大多数的大底盘多塔结构设计中主要采用“调”、“抗”、“放”的整体结构设计思想,因此设计出了一种适用于高层建筑的新型连体刚结构。同时通过现场实践对该系统进行了技术服务和工程质量方面的研究,实践结果表明该项设计结构经受住多种受力考验,达到了预期的效果。此外,从整体的设计模型中可以看出,在大底盘多塔结构中距离塔楼较远的结构构件受到的振动影响较小。换句话说,在水平力的作用下,多塔楼对于距离塔楼较远的构件的影响较小。由此,我们可以得出,在满足大底盘顶层上部塔楼嵌固层的条件下,可以对塔楼各部分结构进行拆分计算,并且这样的大底盘塔楼结构计算符合塔楼结构的实际受力情况,对于这些结构的计算将用于后续的工程设计当中。另外,大底盘顶层楼板平面要具有足够的刚度来满足其嵌固功能,可以采用大底盘顶层楼板与人防结构相结合的方式,得到顶层楼板的板厚厚度要达到300mm。对于板配筋设置采用双重双向拉通的方式,板的配筋率要在0.3%之上。针对落地的剪力墙的配筋要满足设计计算要求,其配筋值应为其对应上部短肢剪力墙配筋值的1.1倍以上。

3高层建筑大底盘不规则多塔结构的设计计算分析

对高层建筑大底盘不规则多塔结构进行计算时要采用两种不同的力学模型结构分析软件进行计算,以确保对此不规则结构的力学分析的可靠性。对于B级高度的高层建筑大底盘不规则多塔结构的设计要满足的计算要求如下:首先,采用两个或两个以上力学模型三维分析软件对此类建筑的整体内力位移进行计算;其次,在对此类建筑进行抗震计算时要考虑到结构的扭转效应,其振型数值要在塔楼数值的9倍及其以上,并且还要满足振型的参与质量不小于总质量的90%;最后对于此结构设计的补充运算采用弹性时程分析的方法。对于结构中薄弱层的弹塑性变形的验证,采用弹塑性静力或动力分析方法。针对那些竖向不规则的多塔结构或是高层建筑中某一层建筑的抗侧刚度在其上一层抗侧刚度的70%之下,或是其抗侧刚度值是其上相邻3层楼层侧向刚度平均值的80%之下,或是高层建筑中某层建筑的竖向抗侧力构建之间不连续,此楼层的薄弱层抗震标准值的地震剪应力需要乘以1.15的增大系数。对于高层建筑大底盘不规则多塔结构的设计需要满足JGJ3-20025.1.13的规定。

4高层建筑大底盘不规则多塔结构的设计

针对高层建筑的9度抗震设计,进行多塔结构设计时,其结构选用要尽量避免带夹层、连体、转换层等结构。针对高层建筑的抗震度在7度或是8度时,在选用建筑结构时,选用两种或以下种类的建筑结构,对于剪力墙结构错层的建筑房屋高度要分别≤80m和≤60m,其框架剪力墙结构错层建筑房屋的高度与剪力墙结构高度的要求相同。

篇10

1当前的建筑物安全事故,与结构设计安全度无关

50年代的结构设计方法,与现在近似,当时所用的混凝土强度很低,只有110~140号,比现在的C15还低。50年代初期施工手段也很落后,混凝土用体积配合比,人工搅拌,没有振捣器……而当时施工发生安全事故的较少。有一些建筑物,如王府井百货大楼、北京饭店等,使用至今已逾45年,而且经过了唐山地震影响的考验。因此可以说,现在的安全事故,与结构设计安全度是没有连带关系的。

2结构设计,仍宜提倡节约

关于节约钢材的问题。作为一个结构设计工程师,重要职责之一,就是以较少的材料去完成建筑物各种功能的要求。如果将构件截面任意加大,材料用量任意增多,这个工作,建筑师也能做。

在发达国家,节约材料也是工程师所追求的。1998年美国《商业周刊》登载由美国建筑师学会(AIA)举办的最佳建筑设计竞赛,"节省材料"是该次竞赛的主题之一。纽约时报新印刷厂的设计,因采用规则的矩形平面和常规材料,节约五千万美元而获奖:又如香港中国银行(贝聿铭设计)因其结构方案布置得当,比同样高度的其他结构大量节约钢材,所以若干个杂志上都发表文章加以表扬。

3我国规范中的构造规定,并非都比别国低

我国规范规定的是最低用钢量,设计者一般根据结构重要性,予以适当提高,所以下能以此来判定我们在工程中的材料用量,更不能以我们的最低值来与人家比。我国规范规定的柱子最小含钢量力0.4%,是不考虑抗地震时的数量,我们大多数城市设计时都考虑抗震,高层建筑更是都要考虑,这时柱子的最小含钢量就是0.5%~1.0%.而且设计单位在设计高层建筑的柱子时,用钢量常比规范要求的还大,因此与国外相比,实际用钢量并不太小。

我们有些构造要求,已与国外持平,如剪力墙的最小配筋率为0.25%,与美国相同。至于墙的暗柱配筋量,在许多方面已是世界领先。

我国规范对于梁受压钢筋的配筋率,有明确规定。且数值与美国基本相等,并非"无此规定"。至于受拉钢筋的最小配筋率,有设计经验的人都知道,在一般梁板构件中,此值并不起作用,有影响的是在类似基础厚板一类构件中。这种构件中,我国规范与国外规范相比,在某些情况下配筋更多。因为如美国或新西兰规范,对于控制最小配筋量还有一些放松要求的措施,可使配筋减少,所以在一定情况下,配筋可以比我们更少。因此也不能一概而论,说我国的构造配筋比国外如何的少。

4关于能否进入国际市场

最近在北京大北窑建成的航华中心,其中三栋最大的办公楼,为三家外国大公司买去,即美国的惠普公司、摩托罗拉公司和韩国三星公司。这些工程都是按我国规范设计建造的,建成主体结构后,先后被这三家公司卖下。其他国际知名的公司购买或长期租用我国建筑物者还很多。这些大公司都愿意购买,说明我们的设计,能为国际接受。

有人以为,低安全度有损于我国建筑业的国际形象.有损于国际形象的事情有,但不是结构设计安全度问题。我曾多次遇到在华投资的外商来向我咨询,所提问题,一是施工质量低劣,二是结构设计大浪费。后者都是用钢量大高或混凝土构件截面过大,超过了他们国家的常用水平!有一个工程,单是基础就多用了钢筋500吨!

5规范要根据国家政策而定

一个国家的规范,不仅仅是技术性的,还有根强的政策性,许多方面,是一个国家经济条件的直接反映。因此,我国规范的材料用量,当然应该比发达国家低,也即安全度应该低一些。这方面我们完全可以理直气壮地说,我们过去的设计标准,是符合我国国情的,是安全的。当然某些局部有不足,要不断修改。国外的规范也不是十全十美,也在不断的修改。我们过去的结构成功地经受了几十年的考验,那就是说,我们的规范,基本是正确的,安全度基本是能满足要求的。

至于抗震规范,更与政策密切相关。美国抗震专家MarkFintel说过,一个国家的抗震政策(体现在规范上),实际上是一个国家的政府愿意为他的人民在抗震方面投多少保险。所以国家富了,可多投些保险费,穷国只能适当少投。

不能单看这些年我国沿海地区的经济发展,我国广大中西部地区,还是相当穷的。我国钢产量虽已与日本齐平,但人均产量只有日本的1/10,而且品种不全,质量较低.所以;我不赞成说现在就可以大量用钢。

中小城市现在还在发展冷轧变形钢筋,这种钢筋性能并不太好,就因为能省钢,所以还在发展,这就是我国的国情。

再回到抗震。地震的情况各国不同,日本的地震发生很频繁,有的城市每三、四十年就会有一次大地震;美国的加州也是每几十年就有一次大地震。我国虽是多地震国家,但同一个地区发生大震的机遇一般不很频繁。例如北京,根据历史记载,大约每300年有一次大震。地震的机率不同,设计所用的抗震规范当然也不同。

但是,按照我国规范没计的抗震工程,还是安全的。近年云南省发生过几次较强地震,凡是按规范正常设计、正常施工的工程,都经受住了考验。

篇11

1.结构组成

张拉膜结构是一种新型的结构形式,它和以刚性材料为主要结构材料,受弯为主要受力方式的传统结构不同,它是以柔性的薄膜作为结构材料,通过支承张拉系统对薄膜施加预应力使其形成稳定的负曲面造型,获得结构刚度,能够覆盖大跨度空间的一种空间结构体系。如后附图1是张拉膜结构的两种最基本的结构形式马鞍形结构单元和锥形结构单元的示意图。它们都是由支承张拉系统和膜面组成。支承张拉系统包括桅杆、拉索、锚点、边索、脊索等,它们是对薄膜施加预应力的结构构件,并且是张拉膜结构重要的造型要素。在张拉膜结构中薄膜既承受建筑荷载是结构的一部分,同时又是建筑的维护结构。

2.膜面的几何要求

张拉膜结构和其他传统结构形式最大的区别在于它所使用的结构材料。传统的建筑结构采用的都是刚性材料,结构可以直接从材料中获得刚度。而张拉膜结构使用的结构材料是薄膜,它是一种柔性材料,只能受拉不能受压,它必须满足一定拓扑关系的几何造型,通过施加预应力来获得结构刚度,从而使结构具有承载能力。张拉膜结构需要满足的几何要求就是形成负高斯曲面。负高斯曲面上每个点的的两个主曲率半径分别位于曲面的两侧,如膜结构中的鞍面和锥形面,这类曲面也称为互反曲面(anticlasticsurface)。那么为什么张拉膜结构的曲面形式必须是负高斯曲面呢?假设空间有一个点要通过索来维持该点的平衡,由于索是柔性的不能受压,所以该点至少需要连接4根索,而且其中两根索需要向上弯,以承受节点受到的向下的力;另两根索向下弯,以承受节点受到的向上的力。如此类推要使一个柔性面上每个点都要保持平衡,那么这个面必然是的负高斯曲面。

当曲面曲率较小时为了保持膜面的平衡必然需要较大的预应力,曲率较大时可以减少膜面所需的预应力,因此张拉膜结构设计中一般都要尽量避免出现扁平区域,这会造成膜面应力分布不均,难以保持结构的稳定。负高斯曲面是维持张拉膜结构稳定的基本几何要素,在此基础上对曲面施加预应力使其产生足够的刚度,满足建筑结构的要求。张拉膜结构的曲面造型与结构受力是紧密联系在一起的,是膜面内部受力情况的直接表现。充分了解张拉膜结构的工作原理和机制对于建筑师进行张拉膜结构设计有十分重要的意义,可以帮助建筑师在进行造型设计时进行初步判断分析,避免设计出一些不合理的膜面造型甚至是根本不可能实现的形式。

关于张拉膜结构设计的论述

1.张拉膜结构空间设计的特殊性

张拉膜结构是一种以柔性薄膜材料作为主要结构材料,受拉为主要受力方式的结构形式和传统的结构形式有很大区别。结构特殊性决定决定了它内部空间设计的特殊性。

2.张拉膜结构的空间特点

(1)结构形式与建筑空间的高度一致性

结构与建筑空间的高度一致性是张拉膜结构最大的空间特点,它的其他空间特点都是由此而来。建筑的结构为内部空间提供了一个基本骨架。在传统结构形式的建筑中常常会对结构形成的原始空间进行进一步塑造和修饰,例如通过使用吊顶,掩盖一些较粗糙丑陋的结构构件,重新限定空间大小和形状,改变原有空间界面的肌理、质感和色彩,形成建筑师所需要的室内空间效果,这些建筑的结构和内部空间是不完全一致的有时甚至是相背离的。在张拉膜建筑中,结构形式和内部空间是高度一致的,结构本身就是内部空间的围合界面,它的形状、质感和色彩等决定了空间围合界面的形状、质感和色彩。在张拉膜建筑空间设计中,建筑师必须改变通常的先建筑后结构的空间设计方法,在进行空间设计构思时就要充分考虑结构的实现问题,把结构当作空间设计的手段和语言。

(2)透明的负双曲面空间

通常的建筑空间都是由直线元素构成的,即使是曲面的也都是各种正高斯曲面和零高斯曲面,例如圆柱面,半球面等,而张拉膜建筑的内部空间是一种负高斯曲面构成的空间。张拉膜建筑的内部空间更加自由流畅,空间之间的过渡平滑柔和,室内外的空间互相交融在一起。薄膜材料具有透明性,当我们站在张拉膜结构覆盖的空间里向上仰望,明亮的屋顶波浪般起伏,显得那么的轻巧和优美;阳光透过屋顶洒满室内,让人觉得室内和外面的天空发生了联系,屋顶宛若是漂浮在建筑上空的一朵云彩。张膜建筑的空间效果改变了人们对建筑空间的传统印象,对建筑产生了新的认识。

(3)新的空间限定元素

在张拉膜建筑中的结构本身就是内部空间的围合界面,张拉膜结构的各种结构构件:索、桅杆、膜面等就构成了空间的限定和表现元素。膜面是面元素,桅杆、拉索和膜面拼缝等是线元素而各种结构节点则形成了点元素。在这种情况下,结构构件不是简单的完成结构功能就可以了,还必须进行艺术化的处理承担起空间表现的任务。结构构件的艺术化处理包括对构件造型的美化,例如桅杆进行收分处理,设计膜面拼缝的图案,结构节点的造型设计等。此外更为重要的是,在张拉膜建筑中结构构件之间的视觉逻辑关系会影响到建筑的空间表达,就如同肋骨拱之间的视觉关系对于歌特教堂内部空间表达的作用一样。因此要处理好构件与构件之间的关系形成清晰的结构逻辑和有序的视觉层次。

3.张拉膜结构与建筑空间要求的契合

(1)张拉膜的结构空间形态

张拉膜结构的基本形态有鞍面、锥面、拱承面、波形面等。这些基本形态除了上述的张拉膜结构共同的空间特点之外还有着不同的空间形态特点。鞍形面张拉膜结构的高点和低点都在膜面周边,空间形态流畅开放,中央区域高度适中,空间利用率较高。锥形面高点在膜面中间,低点在周围,空间形态比较内聚。由于膜面中部升起较高,且空间越向上越狭小,相对来说其内部空间不容易被充分利用。拱承张拉膜膜面中央拱承部分较高,然后向两边逐渐降低,当多个拱承膜面组合在一起时所形成的内部空间比较容易被充分的利用。波形面张拉膜脊谷索交替排列,内部空间也高低起伏,一般来说脊索和谷索间隔距离不会太大,波形部分空间很难被利用。从上述的分析中我们发现,虽然张拉膜结构的结构厚度是所有结构形式中最小的,只有薄薄的一层膜的厚度,但是整个膜面结构的高度却比一般的结构来的大(这里的膜面结构高度指的是膜面结构的最低点至最高点的长度)。这是由于张拉膜结构的膜面曲率越大,获得同样刚度所需要的预应力越小,结构越稳定。为了减少膜面内部应力,增加结构的稳定性,张拉膜结构必须保持合适的膜面曲率。锥形张拉膜单元顶高度与平面跨度之比一般大于1:5,小于1:1,鞍形面要求中央平坦区域的曲面曲率大于3%。过大的结构高度会造成空间和材料的浪费,建筑供热制冷空调通风的过重荷载,建筑维护费用的上升。因此张拉膜建筑的结构设计要特别关注如何使结构的形态与建筑的空间要求相契合。建筑的空间除了满足使用功能对内部空间提出的要求外还要满足人们对建筑空间提出的精神需求,如空间气氛、意境、心理舒适度和其他美学要求。张拉膜结构所覆盖的空间与建筑物的使用空间和美学空间越接近,空间的使用效率越高,维护费用越低,这是降低建筑物全寿命周期费用,取得最大效益的重要途径。张拉膜结构可以通过以下方式达到结构形态与建筑空间要求的契合。

(2)充分利用结构空间

张拉膜结构的结构高度虽然比较大但只要我们合理的安排平面功能和结构剖面之间的关系,结构所占据的空间是可以被充分利用的。常用的办法是把建筑中需要较高空间的功能安排在膜结构的高点区域,而把只需要低矮空间的功能放在低点区域。张拉膜结构是空间的连续曲面,当建筑不同区域有不同的高度要求时它比通常的结构形式具有更大的灵活性和适应性。德国慕尼黑奥林匹克游泳馆通过飞杆内部支承和桅杆外部悬挂在中央比赛区域设置了两个高点结构。位于跳水池上方的高点稍高而位于游泳池上空的高点略低,整个屋面从两个高点向四周逐渐降低。建筑的结构形态与建筑的空间要求达到了吻合。(后附图3)意大利M&G研究试验室这座建筑采用连续拱承膜面作为建筑的外皮结构,把办公、实验室、车间、测试设备等功能包裹在其中。建筑内部各个功能单元,顺应拱形膜结构形态布置,在空间较高处安排较为高大的实验设备而较低处则作为休闲活动区域,充分利用了结构所覆盖的内部空间,提高了空间的使用效率。(后附图4)

(3)增加膜面内部支撑减少结构高度

有的建筑内部空间高度比较均匀,这就要求更加平缓的膜面形式,膜面的起伏不能太大,以减少空间的浪费。由于张拉膜结构的稳定性要求,曲面形式越平缓,结构的跨度也会越小。以损失整个结构的跨度来获得平缓的曲面形式显然不是一个可取的办法,那么该如何协调两者的矛盾呢?解决的方法是在原有膜面的内部增加支撑,使一个完整单一形式的膜面被分成若干部分的组合,这样就减少了每个区域的跨度,整个膜面就可以设计的更加平缓了。为了继续保持原有的无柱大空间,我们可以使用外部支承结构或者内部飞柱来提供膜面的内部支撑。1972年建成的德国雷根斯堡某游泳池由奥托设计。该游泳池主要用于休闲娱乐,只有少量的看台也没有跳水池,因此建筑的内部空间要求比较具有亲和力,高度不宜过高。奥托使用多高点的张拉膜结构作为游泳池的屋顶结构,18个高点通过钢索悬挂在外部的桅杆上。膜面内部多点高点支撑使整个膜面呈现出比较平缓的形态,满足了建筑的空间要求。(后附图5)此后奥托又在德国慕尼黑奥林匹克游泳馆临时看台屋顶的设计中采用了相似的结构。(后附图6)

(4)在膜面内部设置低点结构

膜面内部的支承点通常都是作为张拉膜的高点结构,如锥形和拱承式张拉膜。如果把它们膜面内部的高点颠倒过来作为低点,这样形成的膜曲面是向建筑内部凹进的,能大大压缩它所覆盖空间的大小,提高空间效率。美国佛罗里达州某度假设施需要建造一个膜结构屋顶来覆盖它的内庭院。膜结构屋顶由霍斯特伯杰设计。由于膜结构屋顶的跨度较大,如果采用常规的中央高点的锥形张拉膜结构,过大的结构高度会造成空间的巨大浪费,而且支撑高点所需要的结构也会增加许多建造费用。霍斯特伯格设计了两个巨大的倒锥形张拉膜结构作为屋顶结构。内凹的曲面使庭院空间控制在一个较为合适的大小,增加了空间使用效率。倒锥形的膜面周边固定在庭院周围建筑的屋顶上,低点由互相交叉的钢索直接锚固在庭院中间的地面上,省去了不必要的高点支撑构件,较少了造价。低点被设计成一个罩有透明有机玻璃的天窗,在雨天时,雨水从球罩与膜面之间的空隙流入室内,形成一处瀑布景观,为庭院增添了趣味。(后附图7)奥托在蒙特利尔博览会德国馆的设计中也在膜面内部设置了类似的低点结构。这些低点有效的起到了调整结构形态控制结构高度的作用。这些低点结构还使屋顶膜面自然的延伸到地面,建筑空间变得更加有机生动,对于表现膜结构特点,营造空间气氛起到了很好的作用。(后附图8)

4.拼逢在张拉膜结构空间表现中的作用

物体表面的图案和线条对于物体的识别有很大的影响。这些作用其实早就被建筑师发现并在建筑设计中加以利用。在歌特建筑中肋骨拱形成的韵律和图案是表现空间的主要工具,相互交错重复出现的肋骨拱突出了建筑空间高耸挺拔的效果,烘托出神秘、崇高、奔腾向上的宗教气氛。砖结构建筑中砖缝形成的图案和肌理;摩天楼玻璃幕墙的划分也都是建筑师设计建筑表面的线条元素表现建筑的手段。张拉膜结构的膜面是由膜材经过剪裁后拼接起来的,在拼缝的地方材料相对密实,透明度比较小,在光线下就会形成暗色的线条。张拉膜结构中的拼缝在结构上是无法避免的,但是它也为我们增强膜结构可识别性,形成合适的尺度比例,营造特殊的装饰效果提供了条件。

(1)可识别性线条可以强化曲面的造型,类锥形的膜面为了强调膜面的造型一般采用由高点向四周放射的拼缝。巴黎德方斯拱门的膜结构屋顶就是类锥形单元的组合。每个膜结构单元采用放射形的拼缝,使原本曲率较小的膜面造型变得清晰。放射性的图案使重复排列的膜结构单元变得十分生动,增加了许多耐看的细节(后附图9)。M&G实验室的膜结构屋顶在钢拱架方向上曲率较大而与拱架垂直的方向上曲率较小。垂直于拱架布置的拼缝突出了膜面的起伏变化,增强了可识别性。(后附图10)

(2)比例尺度膜面上的线条图案能使人获得正确的尺度感觉。美国想象公司的总部改造工程中采用了大面积起伏不大的张拉膜结构屋顶。屋顶平面接近于矩形,10个飞杆支撑的高点使膜面有轻微的起伏变化。膜面采用均匀大小的长方形拼缝,每个高点都支撑在拼缝交点处。长方形的拼缝图案使屋顶获得了尺度感,突出了高点布置的内在秩序和规律(后附图11)。巴黎的某城市改造工程中膜面拼缝没有进行恰当的设计,拼缝间隔大小不一,使人难以获得正确的尺度感,显得比较凌乱且缺少秩序(后附图12)。

(3)突出节点膜面的某些部位比如高点,低点,边缘张拉构件等是膜面应力汇聚转移的关键部位,这些部位自然的就会成为视觉的关注点,草率失当的节点处理会影响到整个结构的表现效果。对这些节点区域的强调除了通过构件造型的精心设计之外还可以通过节点部分膜面的拼缝图案和透明度变化来表现。2002年韩日世界杯足球赛在韩国仁川市所建造的门鹤体育场的屋顶是由桅杆支撑的规则悬挂式张拉膜屋顶,膜面在高点处使用星形的曲面切割和拼接实现了受力传递,解决了张拉膜带在高点处变窄的问题。双层膜面使星形的拼缝图案十分的清晰醒目,很好的起到了烘托高点结构的作用。(后附图13)在1998年建造的马兰西亚吉隆坡的国际游泳馆中,膜面主体采用平行拼缝,在每个悬挂点处拼缝进行了特别设计,呈花蕾状。花蕾形拼缝是由放射形拼缝和周边的双层聚酯条围边组成,使其具有比周边平行膜带更大的结构强度。在平行膜带的衬托下悬挂点处的拼缝图案强化了结构的构造特点和重要的结构意义,并为整个内部空间增添了几分诗情画意。(后附图14)

篇12

引言

随着市场经济的快速发展,建筑工程的规模越来越大,而且结构设计也越来越复杂,建筑结构设计的质量对于建筑工程施工的质量也有一定的影响,因此,在进行建筑结构设计时,设计人员要充分考虑设计的合理性和科学性,提高建筑结构设计的质量,以有效提高建筑工程的施工质量。

一、建筑结构设计的基本要求1.1结构形式

建筑的划分标准,基本上以建筑使用功能、建筑材料、结构形式等进行分类。根据建筑使用功能的不同,可大体上划分为工业建筑和民用建筑,民用建筑又可分为住宅建筑和公共建筑;根据建筑物材料的不同,可以划分为混凝土结构、钢结构、砌体结构、木结构等;根据建结构形式的不同,可以划分为框架结构、剪力墙结构、框架-剪力墙结构、框架-核心筒体结构等。高层建筑结构形式主要以剪力墙为主,并根据建筑使用功能要求,进行结构形式的变化。

1.2建筑结构的设计要求

(1)整体设计要求

整体设计指标是建筑结构设计的基本要求,是进行结构构件设计的前提,必须认真对待。

(2)构件设计要求

在进行建筑物结构构件设计时,首先,结构构件要进行在极限状态的承载能力的计算,在满足承载能力的要求下,可以保证结构的安全性;其次是要进行正常状态下承载能力的计算,保证结构能满足建筑功能的正常发挥,同时,实现建筑专业对建筑物的设计构想。

二、在设计的时候要遵循的理念

在设计的时候,要切实的确保其合乎如下的理念规定,即安稳,节省费用,外在合理,方便建设等。不论是何种建筑,它都是多方面的综合体。任何优秀的设计都是在不断的追逐这些要素的集合的。一般来说,结构的设计是开展在建筑以后的,很显然其就会受到前者的干扰,不过又会出现一定的反作用给前者。它们不应互相反作用,要确保合乎建筑体的多项规定。规定针对建筑开展的设计活动不应该大于针对构造开展的设计的水平区域,不应该忽略安稳性以及节约费用等等的一些设计理念。结构设计决定建筑设计能否实现,站在这个层次上来看的话,针对结构进行的该项活动,意义就更加的关键了。虽说当一个项目形成以后,我们能够知道的只是建筑师是谁,不过任何优秀安稳的建筑也是这些人的自豪。

三、建筑结构设计应注意的问题

3.1地基与基础方面的问题

构造工程师一直在地基与基础设计方面比较重视,这是因为该阶段设计过程的好坏将直接影响后期设计工作的进行,并且地基基础对整个工程造价也起着决定性因素。但是目前多层房屋建筑不做地质勘察研究报告,仅依据建设单位口头或笼统参照类似建筑物的基础设计资料就进行施工图设计。地基与基础设计要做到合理,安全适用,设计人员必须依据地质勘察资料,统一考虑多方面因素进行基础类型选择和设计。尤其是软土层覆盖层厚度较大地区的多层建筑,一般都需要经过地基处理的方式来达到控制建筑物沉降的目的。仅凭地耐力这一不全面的数据是不安全的,更不能盲目的把地耐力容许值取得小一些就认为万无一失了。有时设计者对软弱地基的危害性没有足够全面的认识,认为只需采用砂垫层加强一下地基的承载力而不进行挚层宽度和厚度的计算,这样做既不安全又不经济。设计人员设计多层民用建筑时,在计算梁、柱和基础的负荷时应选用整体性好,满足地基承载力和建筑物容许变形的要求,并能调节不均匀沉降的基础形式。高层建筑宜设置地下室,以减小地基的附加应力和沉降量,有利于满足天然地基的承载力和上部结构的整体稳定性。进行多方案比较,最终选定安全实用、经济合理的方案。

3.2建筑结构分析的基本假定

高层建筑结构是由竖向抗侧力构件(框架柱、剪力墙等)通过水平构件(楼盖)连接构成的大型空间结构体系,要想完全精确地按照三维空间结构进行分析是十分困难的。各种实用的分析方法都需要对计算模型引入不同程度的简化。以下是常见的一些基本假定:

(1)弹性假定:目前,工程上使用的高层建筑结构分析方法均采用弹性的计算方法。在垂直荷载或一般风力作用下,结构通常处于弹性工作阶段,这一假定基本符合结构的实际工作状况。但是,在遭受地震或强台风作用时,高层建筑结构往往会产生较大的位移而出现裂缝,进入到弹塑性工作阶段。如果此时仍按弹性方法计算内力和位移,则不能反映结构的真实工作状态,而应按弹塑性动力分析方法进行设计。

(2)刚性楼板假定:许多高层建筑结构的分析方法均假定楼板在自身平面内的刚度无限大,而平面外的刚度则忽略不计。这一假定大大减少了结构位移的自由度,简化了计算方法,并为采用空间薄壁杆件理论计算筒体结构提供了条件。一般来讲,对于框架体系和剪力墙体系,采用这一假定是完全可以的。但是,对于竖向刚度有突变的结构,如楼板刚度较小、主要抗侧力构件间距过大或是层数较少等情况,则楼板变形的影响较大,特别是对结构底部和顶部各层内力和位移的影响更为明显。可对这些楼层的剪力作适当调整来考虑这种影响。

(3)小变形假定:小变形假定也是各种方法普遍采用的基本假定。有不少研究人员对几何非线性问题(P-Δ效应)进行了研究。一般认为,当顶点水平位移Δ与建筑物高度H的比值Δ/H>1/500时,则P-Δ效应的影响就不能忽视。

3.3箱、筏基础底板的挑板问题

从结构角度来讲,如果能出挑板,能调匀边跨底板钢筋,特别是当底板钢筋通长布置时,不会因边跨钢筋而加大整个底板的通长筋,较为节约;出挑板后,能降低基底附加应力,当基础形式处在天然地基和其他人工地基的坎上时,加挑板就可能采用天然地基;能降低整体沉降,当荷载偏心时,在特定部位设挑板,还可调整沉降差和整体倾斜;窗井部位可以认为是挑板上砌墙,不宜再出长挑板。虽然在计算时此处板并不应按挑板计算。当然,此问题也并不是绝对的,当有数层地下室,窗井横隔墙较密,且横隔墙能与内部墙体连通时,可灵活考虑;当地下水位较高,出基础挑板,有利于解决抗浮问题;从建筑角度讲,取消挑板,可方便柔性防水做法。

3.4主梁有次梁连接处附加筋的问题

在建筑结构设计中,主梁与次梁连接处一般是建筑设计中注意的重要问题之一,在进行设计时,要优先考虑如何进行加箍筋和附加箍筋,保证二者衔接的稳定性,将主梁的箍筋衔接在次梁的箍筋附近,将次梁的箍筋绑扎在主梁的钢筋上,保证二者之间的牢固性。同时,在钢筋绑扎的过程中,要按照相应的建筑结构设计的要求进行。U过规范中说的比较清楚,位于梁下部或梁截面高度范围内的集中荷载,应全部由附加横向钢筋承担。也就是说,位于梁上的集中力如梁上柱、梁上后做的梁如水箱下的垫梁不必加附加筋。位于梁下部的集中力应加附加筋。但梁截面高度范围内的集中荷载可根据具体情况而定。还有当主次梁截面均很大,如工艺要求形成的主次深梁,而荷载相对不大,主梁也可不加附加筋。总的原则是当主梁上次梁开裂后,从次梁的受压区顶至主梁底的截面高度的混凝土加箍筋能承受次梁产生的剪力时,主梁可不加附加筋。梁上集中力,产生的剪力在整个梁范围内是一样,所以抗剪满足,集中力处自然满足。主次深梁及次梁相对主梁截面、荷载较小时,也可满足建筑结构设计的要求。

结束语

综合上述,建筑结构作为建筑工程的重要组成部分,是建筑安全应用的前提与基础。因此做好建筑结构设计是一项关系到建筑、经济、人民安居乐业的重要工作,也是一项需要我们每一个建筑结构工作者全心全力为之付出的工作。

参考文献

篇13

1 房屋建筑结构设计常见问题的原因分析

1.1 由于过于笼统的建筑结构设计规范,导致设计人员在理解上出现了差异

业内人士都清楚,在房屋建筑结构设计过程中,都需要参照《建筑结构设计统一标准》、《荷载规范》、《混凝土结构设计规范》等规范标准进行系统的研究分析。但是在实际的操作过程中,却发现这一类型的纲领非常笼统,没有将规范表达细致,导致设计人员在进行房屋建筑结构设计时由于对设计因素的量化从而产生困难。特别是随着现代化理念的改革以及科学技术的飞速发展,这一类属于纲领性的规范就很到满足结构设计面面俱到的要求。对于这一类规范标准的理解,设计人员也是“仁者见仁,智者见智”,使得理解上出现了过多的偏差,这样对设计出来的作品质量也会产生不同程度的影响。

1.2 设计人员盲目的结构设计,从而导致恶性循环出现

在房屋建筑结构设计中,由于设计人员自身的主观原因或是客观原因,就很可能造成结构设计上过于盲目,从而出现恶性循环。考虑到社会大众对房屋建筑结构要求的提升,及房屋建筑结构设计的特殊性,科学、合理的设计理念就显得尤为重要。但是,在实际的设计过程中,大多数设计人员在设计中常常会用到“大约”二字。比如:在使用附加钢筋时,出于对建筑整体牢固性的考虑,很多设计人员会设置附加钢筋。但是在设计过程中却没有在脑海中内化科学的设计理念,由于只有通过力学的分析之后,才能够科学地设置附加钢筋。如果没有通过力学分析,仅仅依靠自身的经验,就会大大提升设计的盲目性,这样不仅会导致附加钢筋出现不必要的浪费现象,同时还会出现意识上的错误,影响到后续的设计。

2 地基与基础方面

由于多层房屋建筑没有是事先进行地质勘察,无法取得详细的勘察报告,在施工图纸设计仅仅是依靠建设单位的口头阐述或者是参照附近建筑物的基础资料。想要做到地基与基础设计的合理性、安全性、适用性,设计人员就需要对地质勘察资料进行系统分析,对基础与上部结构进行综合统一的分析,仅仅凭借地基承载力这一项数据不仅缺乏安全性,而且也欠缺完整性。当然,也不能盲目地认为将地基承载力的特征值取小一点就可以做到没有缺陷了,这些都是需要规避的。

对于软弱地基通过换土垫层法进行处理,完全凭借经验,没有考虑到换土垫层的设计。由于设计人员没有认识到软弱地基所造成的危害,在承载力的提升上仅仅是简单地采用砂石垫层。因此,首先需要对垫层的厚度与宽度加以计算,验算软弱下卧层,才能确保其安全性与经济性。

在房屋建筑的中柱设计中,基础与梁的负荷都没有按照荷载规范标准进行基表。在多层房屋建筑的设计中,在计算基础、梁、柱的负荷时,只有按照现行的荷载规范乘以有关荷载组合相应的分项系数才能确保荷载值的准确性。

3 上部结构方面

3.1 梁

做好框剪结构连梁的设计对于房屋建筑整体结构而言非常重要,但是很多结构设计上却是忽略了这一点。重视程度、认识程度的不足,都是影响其设计的因素之一。简单来说,连梁就是连接两片剪力墙,一旦遇到了中大地震时,就会出现开裂现象,起到一定的耗能作用,以此让建筑物具有一定延性的梁。只有满足这一要求,才能够称之为连梁,或者说我们在设计上才能够让其按照连梁进行设计。

3.2 板

在设计上,由于对板受力状态的认识度不够或是为了方便计算,就会讲双向板当作单向板来计算。这样的计算假定就会与实际状态存在差异,就容易出现配筋不足,导致板出现裂缝的现象。因此,在设计上,不能凭借主观意愿,方便计算,避免一个方向的配筋过大,另一个方向仅仅按照构造配筋的情况出现。当板承受线荷载时对弯矩的计算。在房屋建筑结构设计中,一般都会讲一些非承重隔墙设置在楼板上,因此,在设计大楼板时就会将该部分的线荷载换算成为等效的均布荷载之后,再对板的配筋加以计算。但是在设计中,要注意避免出现将隔墙综合再除以板总面积这种情况。

双向板有效高度取值相对偏大。在两个方向上,双向板都会有弯矩产生,所以,双向板跨当中的正弯矩钢筋都是纵横叠放的。其中,短跨方向的跨中钢筋应当放置于下部位置,长跨方向的跨中钢筋就应当放置在短跨钢筋的上部,在计算时也需要应用两个方向上的有效高度,一般来说,短向方向的有效高度都要比长向方向的大。在设计中,要注意避免设计人员没有充分认识到板的受力或是图省事的情况出现,避免为结构构件埋下质量隐患。

3.3 柱

一般来说,在6 度抗震设防区常常会出现承重柱截面高度设计过小的情况。很多房屋建筑结构设计人员误以为6 度设防区域就不用考虑设防,为了方便受力分析,设计人员估计将柱子截面高度设计的过小,这样能够增大梁柱的线刚度比,在计算简图中将梁柱节点简化为铰支,将梁简化成为铰支梁,梁柱也按照轴心受压来进行计算,虽然这样对于接受受力分析很简单,但是却忽视了这样会给房屋结构埋下质量隐患,这主要是因为忽略了梁柱之间的刚结作用,也就是将柱对梁的约束弯矩忽略了,再加上柱截面配筋一般都不会很大,一旦结构受力,柱顶抗弯刚度必定就会存在不足的情况,这样在梁底附近的柱子就会出现一条又一条的水平裂缝,从而有塑性铰的形成。

4 目前高层建筑结构设计中的问题与策略

4.1 建筑物超高问题

高层建筑物最明显的特征就是楼层多,建筑物本身高。但是,随着建筑物高度的不断加大,在抗震性能和建筑质量方面都面临着更严峻的问题。出于高层建筑抗震性能的较高需要,建筑规范对建筑物的高度作出了严格的规定,在高度设计方面要确保满足抗震的实际需要。在目前的高层建筑市场中,仍然存在着严重的超高问题。针对建筑物的超高问题,建筑规范逐渐将限制的高度设为A 级高度,还在一定程度上细化了高度规则,增加了B 级高度。这种较为明细化的建筑物高度规范使得高层建筑结构设计的方法和措施有了一定的改进。

4.2 短肢剪力墙设置问题

在高层建筑结构设计过程中,需要重视短肢剪力墙设置问题。在我国新的建筑规范中,明确规定了短肢剪力墙的定义,也对短肢剪力墙的使用作出了相关限制。短肢剪力墙是指建筑物墙肢截面的高度比和厚度比在5~8 的墙,根据实际经验和相关数据,高层建筑结构设计应该尽量使用短肢剪力墙。

5 结语

在房屋建筑结构设计中,只有严格按照规范标准与构造要求,才能够避免设计出现质量隐患,才能促进房屋建筑结构设计更加趋于完善。

参考文献