引论:我们为您整理了13篇农药化学论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
篇1
1除草剂药害的症状与危害
药害是指在农田化学除草过程中,由于除草剂的作用,导致作物受害。从整株来看,主要表现为植株矮缩、畸形、丛生;从根系上看,主要是根系生长受抑制,根尖膨大,根短而粗,无次生根或很少,无根毛;从茎上看,主要是茎缩短、变粗、弯曲、脆弱易折断;从叶片上看,皱缩、卷曲、失绿、变黄、干枯;从芽上看,生长点坏死或畸形,导致生长停滞;从花上看,萼片、花瓣、雄蕊、雌蕊数增多或减少,形状异常,花而不实,由此造成减产,甚至死苗绝产。其种类有以下4种:一是对当茬作物产生药害;二是对敏感作物产生药害;三是对下茬作物产生药害;四是“二次药害”。
2除草剂药害产生的主要原因
2.1用药不对路
除草剂具有很强的专一性和选择性,其防除对象有一定的范围,一旦用错就会产主药害。如2,4-D丁酯主要是在麦田使用防除阔叶杂草的除草剂,如果错用于棉花、瓜菜等,就会产生药害。如果把灭生性除草剂草甘膦或克芜踪错误地当成选择性除草剂使用,喷到作物上,也会产生药害。
2.2用药时间不当
除草剂的适用期是很严格的,有些除草剂只能是播种前或播后苗前使用,苗后使用就会产生药害。有的除草剂需在苗期使用,在苗较大时用就会产生药害。如麦田除草剂用在春天防除杂草,必须在小麦苗期至拔节前使用,小麦拔节后再用就会发生药害;玉米田使用的2,4-D丁酯,用晚了就会产生药害。
2.3随意加大用药量
除草剂的使用量是有规定的,任意加大用药量也会造成药害。当前农民在购买和使用除草剂时,为了保证除草效果,随意加大用药量,这势必造成一定的药害。
2.4环境不适
除草剂的使用是有一定环境条件要求的。如果把除草剂用于砂性土地,则很容易产生药害,特别是水溶性大、移动性强的除草剂。在温度过高或低温时作物抗逆性差,此时使用除草剂也易造成药害。不同作物品种对除草剂敏感性也有差异,敏感性强的品种也容易产生药害。在大豆田应用甲草胺、异丙甲草胺以及乙草胺时,喷药后如遇低温、多雨、寡照、土壤过湿等,会使大豆幼苗受害,严重时还会出现死苗现象。
2.5土壤残留
在土壤中持效期长、残留时间久的除草剂易对轮作中敏感的后茬作物造成伤害。如玉米田施用西马津或阿特拉津,对后茬大豆、甜菜、小麦等作物有药害;大豆田施用广灭灵、普施特、氟乐灵、氟磺胺草醚,对后茬小麦、玉米有药害;小麦田施用绿黄隆,对后茬甜菜有药害。此种现象在农业生产中易于发生而造成不应有的损失。
2.6药械性能或清洗不彻底
如多喷头喷雾器流量不一致、喷雾不均、喷幅连接带重叠、喷嘴后滴等,造成局部喷液量过多,使作物受害。用过除草剂的喷雾器,没经彻底清洗,又喷杀虫剂或其他药剂,往往致使敏感作物发生“二次药害”。
2.7雾滴挥发与漂移
高挥发性除草剂,如短侧链苯氧羧酸类、二硝基苯胺类、硫代氨基甲酸酯类、苯甲酸类等除草剂,在喷洒过程中,<100μm的药液雾滴极易挥发与漂移,致使邻近被污染的敏感作物及树木受害。而且,喷雾器压力愈大,雾滴愈细,愈容易漂移。在这几类除草剂中,特别是短侧链苯氧羧酸酯类的2,4-D丁酯表现得最为突出,在地面喷洒时,其雾滴可漂移1000~2000m。禾大壮在地面喷洒时,雾滴可漂移500m以上。
2.8混用不当
不同除草剂品种间以及除草剂与杀虫剂、杀菌剂等其他农药混用不当,也易造成药害。如酯类除草剂与磷酸酯类杀虫剂混用,会严重伤害棉花幼苗,敌稗与2,4-D丁酯、有机磷、氨基甲酸酯及硫代氨基甲酸酯农药混用,能使水稻受害等。此类药害,往往是由于混用后产生的加成效应或干扰与抑制作物体内对除草剂的解毒系统所造成的。
2.9除草剂质量差
除草剂质量差,含有一些对作物有害的物质或杂质,也会发生药害。
2.10除草剂降解产生有毒物质
在通气不良的稻田土壤中,过量或多次施用杀草丹会形成脱氯杀草丹,严重抑制水稻生育,造成水稻矮化。
3避免产生药害的有效措施
3.1做好喷药前的准备工作
首先根据作物种类和防除对象,购买对路除草剂,依据标鉴上的说明,弄清药剂名称、剂型、有效成分含量和使用量;其次,搞好药械检修,做好试运转,进行清水模拟试喷,计算好喷幅,行走速度和1喷雾器(1桶)水应喷的面积;再次,准确丈量土地面积,按实测面积计算药量,防止药量过大或不足。
3.2严格掌握用药适期
根据除草剂的性能,播前土壤处理,播后苗前、苗期茎叶处理都必须掌握好用药适期,如播前施药要在播种前7d左右喷洒混土,播后苗前应在播种后3d内喷药,茎叶处理要在苗期进行。
3.3严格掌握用药量
用药量要根据杂草密度、大小以及气候条件等确定用药量,特别是一些高效除草剂,必须严格控制用药量,防止发生药害。
3.4农田化除作业区要远离敏感作物田
要根据除草剂的性能、对某种作物的敏感度确定间隔距离(至少500m以上),避免除草剂飘移到敏感作物上发生药害。3.5选择适宜环境条件用药
要根据土壤温度、湿度、土壤质地、整地状况等正确选择施药,在大风天和炎热中午禁止用药。砂性土壤应适当减少用量或不用。
3.6搞好药剂稀释
使用除草剂最好采用二次稀释法,即先把原药用少量水稀释搅拌均匀,然后再按稀释倍数加足水量,喷药时做到均匀周到。
3.7用药器械要彻底清洗干净
喷过除草剂的喷雾器械要认真彻底清洗干净,改喷杀虫剂或杀菌剂前要用清水试喷,确定无药害时再用。除草剂和杀虫剂不宜混喷。
3.8注意除草剂的合理轮用
因为连年使用同一种长效除草剂有累积作用,容易造成杂草产主抗药性或产生药害,影响下茬作物,要合理轮用不同的除草剂。
3.9要熟悉除草剂的药性
使用灭生性除草剂时,要在喷雾器喷头上加戴防护罩,定向喷雾,避免将药液喷到作物上,发生药害。
3.10搞好药剂试验
在推广使用新的除草剂之前,要搞好田间试验,检验除草剂的除草效果和对农作物的安全性,防止发生药害。
4除草剂药害补救方法
一些农民由于缺乏除草剂使用知识和经验,有的甚至用1个喷雾器喷用多种除草剂,因此导致除草剂药害农作物的严重后果。一旦农作物受害,应及时采取相应补救措施,减轻或避免损失。
4.1迅速用清水反复冲洗
喷除草剂过量或邻近作物的敏感叶片遭受药害时,要立即用干净的喷雾器装入清水,对准受药害植株喷洒3~5次,可清除或减少作物上除草剂的残留量。对于一些遇碱性物质易分解失效的除草剂,可用0.2%的生石灰或0.2%的碳酸钠清水稀释液喷洗作物,效果较好。对药害连片的田块,除进行叶面喷水冲洗外,还应足量灌水,促使根系大量吸水,以降低作物体内药物浓度,缓解药害。对于施药过量的田块,应及早灌排洗田,将大量药物随水排出田外,能有效减轻药害。
4.2喷施植物生长调节剂
用1500倍液云大-120用量为375~450mL/hm2,或用225mL/hm2的1000倍植物动力2003;500倍或绿风95,在上午露水干后或傍晚用喷雾器喷在作物叶片的正反面上,可收到“起死回生”的效果。针对药害性质,应用与其性质相反的药物中和缓解。如小麦、水稻喷施2,4-D丁酯过量时,可喷施20mg/kg的赤霉素稀释液,用量为600~750kg/hm2,喷后7d,茎叶生长即恢复正常,比未喷施赤霉素的增产10%以上。
4.3追施速效肥料
篇2
2012年12月份,我国生产化学农药原药(折百)34.2万吨,同比增长9.97 %。2012年1-12月,全国的产量达35
>> 2014年全国化学农药原药产量情况 统计局:2013年11月我国化学农药产量同比增长2.79% 2012―2015年我国煤矿瓦斯事故统计分析 2008年~2012年我国高校档案学研究生统计分析 2000—2012年:我国教育技术相关著作统计分析 1998年-2008年我国网球硕博论文统计分析 我国媒介融合研究统计分析 我国能源结构的统计分析 近30年我国综合档案馆研究论文统计分析 2002年~2011年我国“弃档”现象研究论文的统计分析 2005年~2015年我国档案安全应急预案研究文献统计分析 《档案管理》2012年载文统计分析 2012年我中心门诊使用抗高血压药物统计分析 1985~2007年我国国际竞争力论文的统计分析 19877―20166年我国档案法规研究期刊论文统计分析 2013年10月中国化学农药产量同比下调6.08% 基于多元统计分析的我国各省级区域经济分析 USPTO中我国专利引用状况的统计分析 FDI与我国经济增长之间关系的统计分析 我国入境旅游人数统计分析与模型预测 常见问题解答 当前所在位置:中国 > 科技 > 2012年我国化学农药原药产量统计分析 2012年我国化学农药原药产量统计分析 杂志之家、写作服务和杂志订阅支持对公帐户付款!安全又可靠! document.write("作者: 本刊编辑部")
申明:本网站内容仅用于学术交流,如有侵犯您的权益,请及时告知我们,本站将立即删除有关内容。 2012年12月份,我国生产化学农药原药(折百)34.2万吨,同比增长9.97 %。2012年1-12月,全国的产量达354.9万吨,同比增长19%。 从各省市的产量来看,2012年1-12月,江苏省化学农药原药(折百)的产量达105.58万吨,占全国总产量的29.75 %。紧随其后的是山东省、浙江省和湖北省,分别占总产量的23.25 %、8.47 %和8.34 %。 杀虫剂原药产量同比下降11.96% 2012年12月份,我国生产杀虫剂原药7.92万吨,同比下降29.36 %。2012年1-12月,全国的产量达81.34万吨,同比下降11.96 %。 从各省市的产量来看,2012年1-12月,湖南省杀虫剂原药的产量达24.93万吨,占全国总产量的30.65 %。紧随其后的是江苏省、山东省和湖北省,分别占总产量的29.53 %、9.22 %和8.94 %。 杀菌剂原药产量同比下降7.08 % 2012年12月份,我国生产杀菌剂原药14383.11 吨,同比增长1.86 %。2012年1-12月,全国的产量达143893 吨,同比下降7.08 %。 从各省市的产量来看,2012年1-12月,江苏省杀菌剂原药的产量达60458.42 吨,占全国总产量的42.02 %。紧随其后的是浙江省、安徽省和宁夏回族自治区,分别占总产量的13.92 %、9.39 %和8.74 %。除草剂原药产量同比增长42.55% 2012年12月份,我国生产除草剂原药16.27万吨,同比增长40.74%。2012年1-12月,全国除草剂原药的产量达164.79万吨,同比增长42.55%。 从各省市的产量来看,2012年1-12月,山东省除草剂原药的产量达67.13万吨,同比增长88.65%,占全国总产量的40.74%。紧随其后的是江苏省、浙江省和湖北省,分别占总产量的20.41%、10.27%和9.18%。(摘编自《中商情报网》)
篇3
农药在防治农业病虫草害、保证农业丰收等方面发挥了重要作用,已经成为重要的农业生产资料,培养具有现代思想的农药科技人才已迫在眉睫。因此,当前大部分农业院校都设置了农药学相关专业,用来培育“三农”急需的农药学科技工作者。青岛农业大学自2005年创办我国第一个农药方向药学专业以来,在深入研究创新“3+1”人才培养模式[1]的基础上,对农药学课程体系进行了大胆的改革创新与实践探索。
一、课程设置与时代要求对接
(一)根据学生发展设置课程体系
农药学专业骨干课程体系由农药化学、农药合成、农药分析、农药生物测定及农药应用等课程构成,是一门理论、实验、实践紧密结合的“三位一体”的应用型学科。对人才培养来说,专业课课程体系设置尤为重要。因此,我们的改革首先从课程体系的设置开始:改变实验实践附属于理论教学的传统方式,将实验课、实践课独立设置,加强培养学生实验技能、科研兴趣、实践能力,做到大学教育与社会需求高度匹配。另外,传统的课程体系设置,往往忽视选修课教学,造成毕业生“千人一面”的格局,非常不利于学生全面发展。鉴于此,我们加大了选修课教改力度:提高选修课程数量和要求,拓展、放大学生自我拓展的空间,为其更好地适应社会创造良好的条件。经过数年的探索与改革,我们对课程体系进行了优化(表1)。
(二)“四加一减”,重在技能培养
1.增加选修课:设置农药方向选修课26门,共848学时,要求最低选修216学时。大量的选修课程设置,为学生提供了充分的自我发展空间,有利于其根据自己的兴趣与强项进行选择,有效应对社会多元化要求。
2.增加实验课:必修课程实验与理论比例为1.3∶1.5,二者接近,总的农药学专业课程体系实验与理论比例为2.16∶5.02,比例合理。实验学时有所增加,学生动手能力得到训练,同时也培养了严谨的科学精神。
3.增加实践课:在校期间农药学专业实践课达到6.5周,折合195学时,超过必修理论课学时数,有效解决了当前大学毕业生实践能力差的问题,增强了学生干事创业的信心。
4.增加毕业实习学时:毕业实习为19.5周,加上第五学期、第六学期开始的科研训练与课程论文2周,合计21.5周,折合645学时。充足的实践时间,保证了学生科学思维得到系统训练,为以后工作学习打下良好基础。
5.减少必修理论课:必修课只开设农药化学、农药合成、农药制剂、农药分析、农药生物测定等农药学体系核心课程,总学时150学时。有利于学生自我设计,更快、更好地适应社会。
(三)平台的建设与使用
严格地说,农药学是一门实验性科学,整个课程体系的各个组成部分必须紧密结合、有效运转,才能培养出社会适应能力强的农药学人才。为此,我们通过优化资源配置,建立了教学实验室、科研平台、研究室、实习基地等四个开放式平台(图1),并将其有机结合、高效利用,取得了令人满意的效果。
二、教材体系的选择与完善
相对于医药学等传统学科来说,农药学是一门新兴学科,相关教材、教学参考书很不完善。例如,目前尚未有农药学方面的国家规划教材,而已有的教材也存在内容滞后等缺陷。为了适应新的时代要求,我们尽一切可能采用农药学权威著作作为教材,同时有针对性地编写完善了农药学课程体系必须的配套教材和教学参考书。目前,化学工业出版社出版或即将出版、由孙家隆编著或主编的农药学教材与教参有:《农药化学合成基础》(第一版)《农药学实验技术与指导》《现代农药合成技术》《农药化学合成基础》(第二版)《农药科学使用》《现代农药应用技术――杀虫剂卷》《现代农药应用技术――杀菌剂卷》《现代农药应用技术――除草剂卷》《现代农药应用技术――植物生长调节剂与杀鼠剂卷》《新编农药品种手册》《农药学实验技术与指导》(第二版)等。其中《农药化学合成基础》《农药学实验技术与指导》等已经被多所农药学相关院校采用为教材,《现代农药合成技术》获2012年中国石油和化学工业出版物奖一等奖。教材、教参的完善,使学生视野开阔,学习时有一种得心应手的感觉。
三、课堂理论教学多元化,加强思维训练
“多元化教学”指的是多媒体教学、网络教学、案例教学、研究式教学等多种教学手段并用,坚持以学生为主体、以教师为主导的互动式教学方法。
以多媒体教学为主导:全部核心课程(农药化学、农药合成、农药制剂、农药分析等)及部分重要选修课的教学,都已采用多媒体教学。我们对多媒体课件的基本要求是:条理清晰、图表丰富、图文并茂、动漫结合,讲授知识必须和生产实践、科学研究、学科前沿及学生未来发展相结合,摈弃“填鸭式”或“满堂灌”的教学方法。
以研究式教学为核心:这是我们近年来尝试的一种教学方法。将课堂教授的内容作为一个课题,以课题研究的方式向学生进行知识传授,培养学生的科学思维方法,为以后从事科研工作打下基础。例如,在讲授《农药化学》课氨基甲酸酯类农药时,我们将天然的毒扁豆碱作为一个课题,进行先导优化、创制经纬研究;同时将先导优化、生物等排、药效基团拼接等农药化学专业科研方法传授给学生,训练其发散性思维。以案例教学为依托:这是近年来我们大力推广的教学手段,即课堂教学以案例的形式进行。通过对案例的剖析与讲解,学生较深入地掌握知识要点,并学会分析问题、解决问题的方法。例如,在《农药合成》课中丙溴磷的合成与生产教学中,我们将“丙溴磷的合成与生产”作为一个案例,通过“抽丝剥茧”式的分析,归纳得出如下合成路线图。[3]
根据合成路线,结合实例解析各种路线的优劣,从而培养学生根据具体情况确定合成与生产方案的能力。
以网络教学为辅助:即充分利用学校网络教学平台及青岛农业大学农药学QQ群,与学生全方位互动。在每学期开始前将该学期课堂教学的课程简介、教学大纲、教学进度、教学难点疑点分析等传至网络教学平台及农药学QQ群,让学生提前对该课程有所了解,做到心中有数地进行预习、学习。在教学过程中,除课堂、课外答疑外,还在网络平台和农药学QQ群上进行答疑教学、作业讲解等,做到关键知识点课外答辩共用化、公开化,使全体学生受益。
四、重视实验教学,养成探索精神
(一)精选实验内容,实用与创新结合。实验教学应具有连贯性与梯度性,所以我们在设计农药方向药学专业培养方案时,学生实验以操作性和验证性实验为主。在此基础上,我们以提高实验技能作为《农药学实验技术与指导》的选题原则:和实际生产相关联的综合性实验占40%,设计性实验占40%,与科研相关的研究创新性实验占20%。力争每个实验都有与之对应的工业产品或科研课题,使学生实验过程中创造力得到有效激发,并享受到学习的乐趣。
(二)独立实验,突出能力培养。学生迟早要走出校门,进入社会,成为独立的社会工作者,自身的动手能力、工作的主动性、分析问题与解决问题能力至关重要。因此,我们要求学生实验必须一人一组独立完成。实验前,在学习与研读教材、查阅文献的基础上,形成各自的经教师点评与改进的实验方案;实验中,规范操作、记录详细,力争做到和科研紧密结合;实验后,认真归纳总结,形成一份包含实验目的、实验原理、实验操作、实验记录、数据处理、结果与讨论、问题与思考等内容的规范性实验报告文本。
(三)单独考核,提高重视程度。实验课程全部与相关理论课教学分离,成为一门独立的课程,独立计算学分,极大地提高了学生对实验课程的重视程度。考核由实验部分和期末考核两部分构成,比重为60%和40%。实验部分主要考察实验准确度和实验报告的规范性,期末考试则主要考核实验技术与实验操作。
五、实践教学,深入社会
实践教学分为两个阶段进行:在第六学期进行的农药学综合生产实习和假期进行的社会实践。其中第一阶段共4周,进行方式与内容如表2所示,主要目的是让学生走出校门,深入企业,亲身参加生产,获取企业新工艺、新技术等知识信息,解决就业与社会需求脱节的问题。
实践教学的第二阶段在第六学期后的暑假进行。暑假前,学生自由组成实习小组,在教师指导下进入社会,完成至少4周“真刀真枪”的岗位“职工式”的实践。时间和内容根据学生自我定位的就业方向确定,成绩由实习基地专家、学校指导教师共同确定。
经过两个阶段的实践活动,学校加强了与企业的沟通,学生对农药工业企业有了整体的认识,对自己的科研训练、毕业论文方向的选择及毕业后的发展方向有了清晰的定位,减少了盲目性;同时,也为产学研协同创新[5]打下基础。
六、提升科研训练与毕业论文的质量
科研训练、毕业论文采用导师负责制:学生、教师双向选择,每位教师指导的学生人数不超过6人。为了保持课题研究的连续性,相同的科研训练、毕业论文为同一位导师。科研训练在第七学期进行,主要内容为导师指导下的立题、文献检索、科研内容的基本素质培养,为第八学期毕业论文的撰写打基础。
毕业论文在第八学期进行,学生按照导师下达的任务书首先进行文献检索、立题研究,完成立题报告。报告经审查合格后,在导师指导下进行一项农药学方面的课题研究。课题分为理论型与应用型,以密切联系农药学科为要旨。为了保证毕业论文质量,我们加强了检查力度:三月中旬进行中期检查,主要查看毕业论文进展状况及存在问题,六月中旬进行全面的“盲评”与20%的重复率检索检查。经数年的坚持,学生的毕业论文质量得到大幅度提高。
七、建设师资队伍,“高、精、尖”全面发展
人才培养,离不开过硬的师资队伍。应学校要求,从2009年开始加大了在校教师培养和学科专家引进力度。目前,专职农药学教师17人,结构如表3所示:无论是职称、学历及年龄结构,还是访学与社会实践经历,都趋于合理状态。
篇4
近年来受恶劣天气的影响,小麦的病虫害加重,预防日趋形势严峻,如何在控制成本的情况下因地制宜实施“一喷三防”,最终实现增粒增重的目的成为国家和农民头疼的问题。本论文旨在大量可靠严谨的实验基础上提出合理的防治时间,给农民指导性建议。以下为论文的实验过程概述和相关结论。
1.“一喷三防”的简要介绍
“一喷三防”,是指小麦生长过程中所采用的杀虫剂、植物生长调节剂、杀菌剂等混配剂喷雾,通过这些生物药剂和化学药剂的应用,降低小麦生长过程中病虫害的威胁,并且给小麦生长补充所需的营养物质,以此提升小麦的年产量m。
实际操作中的注意事项:
1.1药剂选购过程中需查看售卖商的营业执照,拒绝选用售卖商私下改造的生物化学药剂。
1.2配制可湿性粉剂农药时,应先用少量水化开后再倒入相关的施药器械内搅拌均匀,避免因药液不匀给小麦生长造成伤害。
1.3生物化学药剂的用电控制。考虑到小麦处于生长期对于外界的病害抵抗力较差,因此,在生物化学药剂的用量控制上需要根据小麦种植亩数,进行药量配置。
1.4考虑到天气因素对农药使用的影响,在进行田间喷药过程中,应避免雨后露水或是早间露水喷洒农药。
1.5小麦生长季节多数为多数季节,一旦喷洒药剂后6小时内遭受雨水冲洗,需重新补喷药剂。
2.实验目的与方法
2.1实验目的
为了真正满足农民的夙愿和响应国家“一喷三防”的号召,实现一次喷药多重防治的效果,同时减少农药使用次数、提高工作效率,本论文主要对何时喷洒混合农药来高效防病进行研究。
2.2实验方法
2.2.1试验田选择
试验田土质为壤土,中等肥力,周边皆为田地,年平均气温为23~C。小麦品种类型为国麦301,播种于2013年10月19日,收获于2014年6月2日。
2.2.2药剂配制方案
为了实现“三防”,我们采取混合配药方案,通过叶面喷施植物杀菌剂、叶面肥、生长调节剂等稀释溶液。其中w=4.5%高效氯氰菊酯乳油,99%磷酸二氢钾叶面肥,12.5%戊唑醇SC和w>99%的。
2.2.3实验时间选择
本实验尽量覆盖到整个小麦的生长周期,根据经验选择了4个病虫害爆发的高峰期即:①小麦抽穗前;②小麦抽穗约20%;③小麦抽穗约70%;④小麦扬花末期。
2.3实验对比
根据农作物实验条例规定,我们做了5组实验,每组实验都采用2中的方法,等比例等量用背负式手动喷雾器进行喷洒,喷液量40 kg。第一组是仅对小麦抽穗前进行喷洒,第二组仅对小麦抽穗约20%时期喷洒,第三组仅对小麦抽穗约70%进行喷洒,第四组仅对小麦扬花末期喷洒,第五组整个穗期不施药。
2.4实验评价指标
为了全方位展示各个时期喷洒农药对小麦的影响,本论文将从防治效果和增产效果两个方面进行评测。
2.4.1防治效果
一般而言,都是采用人工收割剥穗的方法,对于病害幼虫在其入土前进行取样法调查,分别选取小麦上、中、下部均匀采集10穗,每处理取样共计150穗,分类袋装标记,带回室内统计吸浆虫幼虫数量,与整个穗期不施药比对,计算防治效果。
叶片发病率=发病叶片数/调查叶片总数。发病率越高,防治效果越差;反之亦然。
病穗率=发病穗数/调查总穗数-圳。病穗率越高,防治效果越差;反之亦然。
2.4.2增产效果
对收割的成熟小麦脱粒晒干后实测各点重量。重量越重则“一喷三防”增产效果越好。
3.结果分析
3.1不同施药时问对小麦病虫害的防治效果
根据大量实验得出结论,同一品种小麦的“一喷三防”不同施药时间对小麦的病虫害防治效果各不相同。
小麦条锈病是小麦生长中遇到的一种多循环病害,大量实践也证明对于条锈病,小麦抽穗前喷洒农药相较于小麦抽穗约70%时期喷洒效果好40%左右。
吸浆虫以幼虫潜伏在颖壳内吸食正在灌浆的麦粒汁液,造成秕粒、空壳。小麦吸浆虫以幼虫为害花器、籽实和或麦粒,是一种毁灭性害虫。小麦抽穗期成虫盛发,并产卵于麦穗上,实验表明以小麦抽穗约20%时喷药防治的效果最好,其次是小麦抽穗约70%时施药。
小麦蚜虫俗称油虫、腻虫、蜜虫,是小麦的主要害虫之一,可对小麦进行刺吸危害,影响小麦光合作用及营养吸收、传导。小麦抽穗后集中在穗部危害,形成秕粒,使千粒重降低造成减产。
3.2不同施药时间对小麦产量的影响
篇5
一、农药污染途径
农药的污染途径众多,但农药之所以会造成严重的污染后果的主要原因在于其基本特性,如:农药的理化特性,包括:农药的溶解性、降解性、附着性、渗透性和内吸性等。
1、直接污染
顾名思义,直接污染就是农药的有害部分直接作用于受污染体。农药直接作用于蔬菜瓜果等可食作物的表面,经过长期的生长过程侵入其内部,在进入食物链,就直接危害人体健康。
2、间接污染
所谓间接污染,就是说作物的食用部分并非农药的直接受体,而是农药经由土壤中的水分养料进入作物体内并富集,从而形成农药残留。
3、违规用药
农民为减小作物受病害、虫害等灾害的影响,不仅会违规交叉使用蔬菜上禁用的高毒农药,例如:甲胺磷、对硫磷、甲基对硫磷等。而且还会频繁用药或增高用药量,这些都是造成农药污染的主要途径。
二、农药污染的危害
1、农药污染对人体健康的危害
农药作为农业生产资料对减轻作物病虫害的防治作用是不可忽略的,但是,它也是一把双刃剑,农药在对作物实施保护的同时会才六在作物体内,通过食物链而危害人体健康。科技论文。具体而言,农药可经过消化道、呼吸道及皮肤三条途径进入人体而引起中毒。尤其是有机磷农药,可以通过皮肤进入人体,从而对人体的健康造成危害。某些高效农药,会引起急性中毒,严重者会引发生命危险。
2、农药对生态环境的污染
随着科学技术的发展,农药对生态环境的影响也得到了重视。农药多是以液体喷洒使用的,在喷洒中或使用后,农药中的拥堵成分会随水分一起蒸发到空气中,从而对大气造成影响,如果污染物的含量超过本底值,并达到一定数值就称为污染。如果污染物浓度超过卫生标准或生物标准,就视之为污染或严重污染。而一旦达到污染或严重污染,就势必会对人体健康、其他生物健康及整个生态平衡造成威胁。
3、农药对水环境的污染
水体中农药的来源主要是以下几个方面:向水体直接施用农药;含有农药成分的雨水落入水体;植物或土壤粘附的农药,经水冲刷或溶解进入水体;生产农药的工业废水或含有农药的生活污水等进入水体等。农药的使用时刻都危害着水环境及水生生物的生存,甚至会破坏水生态平衡。科技论文。如密西西比河、莱茵河等一些世界著名河流的河水中都检测到严重的农药超标问题。
4、农药对土壤的污染
土壤中的农药来源有三种情况:第一种是农药直接进入土壤,如除草剂的施用;第二种是防治病虫害喷撒农田的各类农药。第三种是随着大气沉降,灌溉水和植物残体。而农药对土壤的污染主要有两个方面:第一,深入土壤之中的农药会随着养料和水分进入作物体内;另外还会对土壤微生物的生存造成危害
三、农药污染危害与环境保护措施
众所周知,我国是一个农业大国,所以造成了农药使用品种多、用量大的局面。然而,可有人知晓,对作物所使用的农药中70%~80%直接渗透到自然环境中,并对土壤、水甚至是人们一心想要保护的农产品造成污染,从而进入生物链,对所有生物和人类健康都产生严重的、长期的和潜在的危害性。
尽管我国从实施了“预防为主,综合防治”的植保方针以来,在病虫害防治问题上取得了很大的成效,但是,离完全控制化学农药对环境污染的目标还有很远。植保是我们不能放弃的,如何才能使植保的功能兼顾持续增产、人畜安全、环境保护、生态平衡等多方面。采取相对有效的防治措施,充分发挥自然抑制的作用,将有害生物种群控制在经济损害水平下,使经济效益、环境效益都达到相对平衡的程度。
1、建立有害生物防治新思想体系
摈弃传统的以农药抑制作物病虫害的思想观念,由新的、更合理的方法取代。比如生物防治,利用生物防治作用物来调节有害生物的种群密度,以生物多样性来保护生物,使有害生物的在种族密度保持在经济效益所允许的受害范围以内。科技论文。从持续农业观念看,这种方法是十分可行的。不过从技术上看还有待研究与推广。
2、研究开发有害生物监测新技术
要在植物病原体常规监测方法中的孢子捕捉、诱饵植株利用、血清学鉴定基础上开展病原物分子监测技术的研究,采用现代分子生物学技术监测病原物的种、小种的遗传组成的消长变化规律,为病害长期、超长期预测提供基础资料。对害虫的监测也可利用现代遗传标记技术(RFLP’RAPD等)监测害虫种群迁移规律。对于杂草应充分考虑到杂草群落演替规律,分析农作物——杂草、杂草——杂草间的竞争关系,另外还应考虑使用选择性除草剂给杂草群落造成的影响,对杂草的生态控制进行研究。
3、 建立有害生物的超长期预测和宏观控制
为适应农业的可持续性发展,预测、预报应对有害生物的消长变化做出科学的判断,也就是要对有害生物消长动态实施数年乃至十年的超长期预测。要在更人的时空尺度内进行,其理论依据不单单只是与有害生物种群消长密切相关的气候因子,亦包括种植结构、环保要求、植保政策以及国家为实现农业生产持久稳定发展所制定的政策措施。
参考文献:
[1] 冯雨峰,闾振华,化学农药对环境的危害原因及其防治对策[J].环境科学与技术,2007-1
[2]邹喜乐,论农药对环境的危害[J].湖南农机,2007-07
[3] 刘英东,化学农药对环境的危害及其防治对策的探讨[J].中国环境管理干部学院学报,2006-01
[4] 海浪,大协作致力降低农药污染[J].山东农药信息,2010-02
篇6
有机磷农药是一类高效、广谱的化学杀虫剂,因其在农业生产中广泛应用,对地表水和生活饮用水具有极大的危险[1]。而我国水体环境优先控制有机污染物“黑名单”中[2,3]有敌敌畏、乐果、对硫磷、甲基对硫磷、敌百虫。并且地表水环境质量标准GB3838-2002集中式生活饮用水地表水源地特定项目中规定了对硫磷、甲基对硫磷、马拉硫磷、乐果、敌敌畏、敌百虫、内吸磷、百菌清、阿特拉津的标准限值。
固相萃取技术能更有效、更简便、更环保地分离富集有机污染物,其在水中痕量的有机磷农药测定中得到了广泛的应用[4]。目前测定有机磷农药主要采用气相色谱技术进行分析[5-7],为避免干扰和准确定量,采用气相色谱/质谱法检测水中有机磷农药,内标物进行定量分析。本文利用C18 固相萃取柱富集水样中有机磷农药,采用气相色谱/质谱法分析水中敌敌畏、乐果、甲基对硫磷、对硫磷、马拉硫磷、内吸磷、阿特拉津等7种有机磷农药的分析方法。1 实验部分
1.1 仪器和试剂
Agilent6890/5975B气相色谱/质谱仪;HP-5MS色谱柱:30m×0.25mm×0.25μm;ReekoAutoSPE-06 全自动固相萃取仪(睿科仪器有限公司);固相萃取柱:AgilientODS-C18(500mg),Waters Oasis HLB(500mg),Thermo scientific C18(500mg),Agela C18- SPE(500mg) 。
样品瓶:1L棕色具塞磨口玻璃瓶;二氯甲烷、甲醇、丙酮:Fisher公司的农残级溶剂。
有机磷类标准物质:敌敌畏(100mg)、乐果(100mg)、内吸磷(100mg)、阿特拉津(100mg)、马拉硫磷(100mg)、甲基对硫磷(100mg)、对硫磷(100mg) (均来自Chemservice公司)
有机磷类贮备溶液:取有机磷类标准物质化学论文,放人10 mL容量瓶中,加甲醇至刻度,作为有机磷类贮备溶液(约10 mg/mL)。
有机磷类标准中间液(1000mg/L):取有机磷类贮备溶液于10mL容量瓶中,配制成混合标准中间液。内标标准溶液: 菲-D10(浓度为1000mg/L)。
1.2 实验方法
1.2.1 仪器检测条件
GC柱温:100℃(0min),6℃/min升温到120℃ (1min),30℃/min升温到180℃ (4min),6℃/min升温到210℃ ;进样口温度:250℃;分流进样,分流比:1:5,流速:1.5 mL/min;进样量:1.0 mL。电子轰击电离源(EI),离子源温度250 ℃,接口(传输线)温度280 ℃,四极杆质量分析器温度150 ℃,选择离子监测模式(SIM),溶剂延迟4.0 min。
1.2.2 水样制备及固相萃取
条件实验中:取一定体积有机磷标准溶液中间液加入到500mL水样中,配置成所需浓度的水样。
设定自动固相萃取仪的程序,固相萃取C18柱使用前使用甲醇6mL和水10mL活化,活化速度为10mL/min; 进样500mL水样,进样速度为5mL/min;取10mL二氯甲烷洗脱,洗脱速度为3mL/min;洗脱液用高纯氮气吹干,浓缩至1mL,向其中加入10μL内标标准溶液,混匀进气相色谱/质谱仪分析.
1.3 化合物的定性定量方法
以选择离子方式采集数据,以保留时间和目标化合物的主要离子的荷质比以及其2~3个主要碎片离子峰的绝对丰度与分子离子峰的(或定量目标离子峰)绝对丰度的百分比与标准品吻合度(如不超过±15%)来定性,用标准溶液的内标标准曲线定量计算样品种待测化合物的浓度。
表1 气相色谱/质谱仪分析有机磷农药的定性依据
序号
英文名称
中文名称
保留时间(min)
特征离子(m/z)
1
Dichlorvos
敌敌畏
5.006
109、185、79
2
Demeton-S
内吸磷-S
9.686
88、170、115
3
Dimethoate
乐果
9.751
87、125、143
4
Atrazine
阿特拉津
10.042
200、215、173
5
Methyl Parathion_
甲基对硫磷
12.497
109、125、263
6
Malathion
马拉硫磷
13.845
125、173、93
7
Parathion
对硫磷
14.192
291、109、97
8
Phenanthrene-D10
篇7
一.引言
园林绿化苗木病虫害的防治方法--目前在城市园林建设中,存在着重栽植轻管理的现象,尤其是对病虫害的防治重视不够。一般情况下,病害和虫害常导致花草、树木生长不良,降低了花木的质量,使其失去观赏价值及绿化效果,甚至引起整株死亡。有些病虫害能使某些花卉品种逐年退化,直至全部毁种,或使城市绿化树种、风景林和林木大片衰败或死亡,从而造成重大的经济损失。因此,掌握病虫害防治理论与技术措施,是提高园林植物观赏价值和经济价值的重要保证。
二.病虫害发生的条件。
人工建立起来的生态系统十分脆弱,植物与环境、植物与植食者(包括多种生物)、天敌间相互作用、相互制约、相互协调的关系很难建立起来。在这个时期,刚入侵的病虫害由于缺乏生态系统中生物与非生物因素的制约,一旦遇到合适的环境条件,就会迅速生长养殖,造成危害。
目前,园林绿化苗木病虫害防治在很大程度上依赖于化学农药,但是化学防治也存在许多弊端,长期使用单一品种的农药,会使被防对象产生不同程度的抗性,使用不当还能引起人畜中毒,污染环境,杀伤天敌,造成药害。
同时,现代城市基础设施建设结构日渐复杂,环境污染问题也日趋严重,植物生长环境日趋恶化。造成植株生长不健壮、抗病力差,给病虫害的入侵提供了有利条件。
三. 园林绿化苗木害虫的防治技术。
运用现代技术来拟定治理在园林植物中“猖獗”的病虫害对策时,首先应该从全社会的安全出发,充分考虑生态平衡、经济效益和其所带来的效果,不说杜绝,但要将有害的生物控制在生态允许的范围之内。因此,植保工作要从检疫植物出发,做好检疫工作,以植物养护管理作为基础,努力开展各种像物理防治生物防治等方法、尽量避免使用农药这等化学方法。对有害生物不应只注重杀死,更要注重调节,只要采取措施把危害控制在不影响植物观赏和植物成活率的效果就可以了。措施要符合先打发展观所提到的经济有效、可以被社会所认可。
1. 提高植物的抗逆能力。
(1). 栽培管理预防法。这是综合防治中的一项基础措施,病虫害的发生、危害和发展对外界环境条件、寄主情况等具有一定要求,通过改善栽培、养护管理等一系列技术措施,来改变病虫的适生条件,以抑制病虫害的发生。
(2). 选育抗病虫害品种。结合本地病虫害发生的情况,选育抗病、抗虫的园林植物品种如银杏、广玉兰等,并在育苗、出苗时严把病虫携带关,这是防治园林病虫害最经济有效的方法。
(3). 合理的肥水措施。使用无机肥时,氮、磷、钾的比例要合理,适量地增施磷、钾肥能提高植物的抗病性。喷灌和滋水等方式会加重叶部病害的发生,最好采用沟灌、滴灌,以提高园林绿化苗木抗病能力。
2.主要防治方法。
(1). 黑光灯诱杀害虫。利用害虫的趋光、趋波等特性,将光的波段、波的频率设在特定的范围之内,近距离用光,远距离用波诱集害虫。通过杀灭成虫降低田间落卵量,控制害虫发生量,实现安全控害虫。
(2). 应用天敌防治技术。无公害防治不会破坏生态平衡,不污染环境,不伤害天敌,是今后防治虫害研究的主攻方向。在园林植物虫害防治中也应加强这方面的研究,提高防治害虫的水平和效果,如以虫治虫、以菌治虫、以鸟治虫等。
(3). 选择使用生物农药。生物农药在园林绿化苗木病虫害防治过程中能有效地保护天敌,消灭害虫,对环境污染小,对病虫害的控制作用叫化学农药持久。如:利用Bt乳剂防治国槐尺蠖,每年喷两遍药即可控制其危害。花保、虫卵克等都是生物农药的首选。
(4). 筛选无公害药剂. 通过优化重组实现药剂的混配增效作用。化学防治只在应急时进行,尽可能地使用低毒、对环境污染小的药剂,经常变换用药品种和混用配方,尽量减缓防治对象抗药性的产生。施药方式应采取涂茎、根施和注射等方法。同时,根据防治对象的特点、植物和环境等选用不同的药剂、剂型进行防治。并改进化学农药的施用技术,提高农药的利用率,以保护我们赖以生存的环境。
3. 用科学有效的手段进行防治。近些年随着科学技术的不断进步与发展,生物性农药开始出现在人们的视线中,因其具有无毒无污染等优点,所以称为近些年园林养护工作者喜爱并且使用的有力武器。遗传不育技术和人工合成昆虫的内外激素这类技术种类的不断增多为园林养护治理病虫害提供了一项新手段。并且,随着城市绿化面积的扩大,运用生物天敌治理病虫害的方法也日益成熟:以虫治虫。它是利用生物链天敌的原理,它具有不污染环境、安全有不受地形因素等的限制和长期受益等作用,是园林养护工作中综合防治的至关重要的组成部分。在病虫害的防治过程中前景广阔。
4. 加强对园林植物的养护与管理。加大队园林植物的经营,增强其成活率,增强园林植物自身的抗性。
5. 从整天规划出发进行防治。即通常来讲,一种病虫害的发生都有一种固定的侵害对象。所以如果栽植树木时对其品种进行不同栽植,可避免大范围的引发病虫害现象。与此同时,就本地区病虫害发生率高的地段,园林绿化工作者应该选用抗性强树的品种进行栽植和培育。
6. 注重肥料的合理配置 。要结合地区现实情况合理的选择无机肥和有机肥进行施肥。一般来说家畜粪便和人的粪尿这些有机肥可以对土壤的理化性状进行合理改善,使得土壤疏松,图绕的透气性能也比较优良。而具有见效快的如化肥等无机肥长期使用会对土壤的物理性状产生不好的结果,因此要做到有机肥和无机肥的合理搭配使用。做好氮、磷、钾这些大量元素和钙、镁、铁、锰、锌等微量元素的配合使用。在做好大量元素的合理施肥的同时,还要均衡使用微量元素,因为花木在生长中缺少某些微量元素可以让花、叶等器官的畸形、变色,从而降低花木的观赏价值。由于未腐熟的有机肥里面含有大量的病虫卵,因此在施肥之前必须待有机肥充分腐熟,这样避免了地下害虫的危害。
7. 加强对花木的养护管理。在绿色植物栽培下去后,要及时对绿化植物进行抚育管理,做好树枝的及时修剪,通过清除苗圃中的有害植株或者是植株上的有害树枝,已达到减少病虫来源的目的,总的来说管理力度要跟上绿化植物的生长。
四.结束语
长期以来,在园林绿化的过程中,我们过分追求数量增长,而不考虑质量与后期养护等问题,使得一些林木在植入初期并没有得到良好地监测从而使其枯萎死去,抑或传播,所以布满害虫种类的树木逐渐增加,危害也逐步增大。由此可见,我们应在园林绿化中杜绝此类现象的发生,做到综合防治病害虫的产生。
参考文献:
[1] 江国涛 园林绿化苗木害虫的综合防治技术 [期刊论文] 《安徽农学通报》 -2010年24期
[2]郑辉 安阳市苗木花卉介壳虫发生规律和防治技术研究 [学位论文] 2005 - 华中农业大学:农业推广•农村与区域发展
[3]徐荣侠 苏州市花木害虫及专家管理系统研究 [学位论文] 2007 - 苏州大学:农业昆虫与害虫防治
篇8
据环保部门估算,全国每年因重金属污染而减产的粮食高达 1 200 万 t,造成的直接经济损失超过 200 亿元[1-2].土壤中污染物还会通过植物的吸收和食物链的积累等过程进入人体,引起人体急性或慢性中毒,以及产生致畸、致突变和致癌等健康损害。土壤污染已经严重威胁到了人类健康和农业可持续发展,因此,加强土壤的污染防治已成为环保工作的紧迫任务和重要内容。
文献计量学是对各种类型文献的数量、品质、结构和运用上的研究与分析,是研究学科结构、预测学科发展趋势最有效的理论方法之一[3].近年来,土壤修复领域发文量持续增长,但从文献计量角度研究其发展动态的报道较少。本文就此领域的相关文献进行计量分析,以便科研工作者准确掌握该领域的研究现状及前沿动态,了解该领域的整体情况,把握未来的研究方向。
2. 2 土壤修复文献的年度分布
文献的数量在一定程度上反映了该领域的研究水平和发展程度,土壤修复文献的年度分布见图 2.
根据文献计量学理论,对某一学科、某一专题的论文按发表年代进行统计分析可从时间概念上了解该项研究的发展情况[4].国外土壤污染研究是在经历土壤镉污染造成的“骨痛病”等环境事件后,于 20世纪 60-70 年代才步入正轨。与发达国家相比,当时我国的土壤环境问题不突出,相关研究很少。随着经济的发展,我国的土壤环境问题逐渐显现。20 世纪 80 年代,我国开展了全国范围内的土壤背景值调查和环境容量研究等工作。20 世纪 90 年代,土壤环境问题逐渐加剧,1997 年中国环境状况公报指出:“我国耕地污染较重,有 1 000 万 hm2耕地受到不同程度的污染”,引起了国家和学者的重视,并从此成为热点方向。从图 2 可看出: 国内污染土壤修复的研究始于 20 世纪 80 年代,1985-1999 年,年度文献量很少,始终在个位数徘徊。2000 年则是污染土壤修复探讨与研究的转折点,污染土壤修复的研究迅速升温,年发文量直线增长,直到 2011 年,文献量达到了631 篇。随后 2 年的年度文献量基本保持了 600 篇左右的稳定态势。这可能是由于近几年我国土壤及地下水污染加剧,相关报道频频爆出,国家投入大量治理资金进行该领域的研究。
以下内容设计文献范围不再包含专利,而包含会议论文、学位论文、期刊文章,共 3 367 篇。
2. 3 主要作者
土壤修复研究具有一个庞大的作者群体,涉及作者 6 012 名( 包含所有合著者) ,其中发文 20 篇及以上的作者 8 名,10 篇及以上的有 10 名,5 篇及以上的有 29 名,发文仅 1 篇的作者 4 424 名。平均合作度1. 79,即平均每篇文章有约 1. 8 名作者合作完成。
一般来说,某领域的主要研究者就是该领域的核心作者。根据普赖斯理论,核心作者中发文量最多作者所发论文量( Nmax) 与发文量最少作者所发论文量( Nmin) 之间有如下关系[5]:Nmin= 0. 749 × ( Nmax)1 /2( 1)利用式( 1) 计算得出,本领域核心作者最低发文量应为 Nmin= 5. 7 篇,因此可以判定发表 6 篇及以上的作者方可成为本领域的核心作者。从检索结果可知,核心作者共 129 名,占作者总人数的 2. 15%,他们对本领域的发展和进步起重要的作用。但是,核心作者发文占总篇数的 35. 7%,低于理论值 50%,这提示核心作者还需继续提高发文量[6].
2. 4 主要研究机构
研究和分析文献作者所在的机构或单位,可揭示我国土壤修复领域的核心研究机构,而且有助于从侧面了解本领域研究人员的分布情况。
将研究机构中的二级机构归于一级机构,如中国科学院生态环境研究中心归于中国科学院。著录发文机构共 1 067 家。发文 100 篇及以上的机构 3 家,50 篇及以上的机构 10 家,10 篇及以上的机构 94 家,它们是本领域的主要研究机构。在 94 家研究机构中,高等院校 81 家、科研机构 10 家,其发文量分别为2 063 篇和 571 篇。高等院校不仅所占比例大,而且发文量多,在土壤修复方面具有较强的实力。仅1 篇的机构693 家,占机构总数的64. 9%.发文量排在前 10 名的机构见表 2,中国科学院居首位。
2. 6 主要期刊在检索范围内,刊发本领域论文的期刊共 541种。刊发论文量50 篇以上的期刊共3 种,共发文249篇,占期刊发文总数的 13. 4%.限于篇幅,仅列出被引频次、影响因子较高的 10 种主要期刊,如表 3 所示。影响因子常用来评估同一研究领域不同期刊的相对重要程度[6,8] ,但有时未必尽然。在这 10 种期刊中,《农业环境科学学报》( 其前身《农业环境保护》
2. 7 关键词词频分析关键词是揭示论文主要内容的重要方式,是研究主题的高度概括和凝练。利用关键词词频分析可以从成果数量的角度反映出该研究的热点和弱项[10].
近几年,出现了可进行此项分析的文献计量学方法,同时也开始利用高频词汇归纳研究热点[11].在3 367篇文献中,共出现关键词 6 156 个,篇均关键词1. 83 个; 关键词出现 16 519 个次,平均每个关键词出现 2. 68 次。关键词平均频次等于关键词频次除以关键词的个数,此值越高,说明关键词的分布越集中。
出现频次排在前 50 位的关键词见表 4.在污染物种类中,主要有重金属污染、有机物污染、农药污染。含有金属的关键词有“金属矿山”、“重金属积累”、“重金属富集”等,共出现 894 次。在金属污染中,含有镉或 Cd 的关键词有“农田镉污染”、“有机态( Cd) ”等,共出现 314 次; 含有铅或 Pb的关键词共出现 234 次; 含有铬或 Cr 的关键词共出现 146 次; 含有铜或 Cu 的关键词共出现 141 次; 含有锌或 Zn 的关键词共出现 103 次; 含有砷或 As 的关键词共出现 75 次,这说明目前对重金属污染土壤修复的研究较多。含有有机污染、多环芳烃、石油、多氯联苯、有机氯农药、PAHs 等、氯酚、挥发性有机物、VOC的关键词共出现 597 次。含有农药的关键词共出现69 次。( 注: 带引号的名词为精确匹配,不带引号的名词为模糊匹配,下同)在修复方式上,含有植物修复的关键词共出现574 次,含有原位修复的关键词共出现 34 次,含有微生物修复的关键词共出现 71 次,含有电修复或电动修复的关键词共出现 71 次,含有化学修复的关键词共出现 30 次,含有物理修复的关键词共出现 7 次,含有异位修复的关键词共出现 2 次,含有淋溶修复的关键词共出现 1 次。这说明目前我国土壤修复方式以植物修复、微生物修复、电动修复较多,化学修复、物理修复、淋溶修复较少; 在原位修复、异位修复方面,以原位修复研究较多。
土壤修复关键词随年份的分布见表 5.有关土壤修复技术方面的关键词随年份的分布能在一定程度上反应该技术在某一年的热门程度。从表 5 可看出: 关于植物修复的关键词最多,且随年份的增加呈波动中增长的趋势。植物修复是以植物忍耐和超量积累某种或某些化学元素的理论为基础,利用植物及其根际圈微生物体系的吸收、挥发、降解和转化作用来清除环境中污染物质的一项新兴的污染治理技术,具有修复成本低、对土壤无扰动、无二次污染等优点而得到广泛应用 [12],因此相关的研究也较多。
有关微生物修复的关键词从 2004 年起,开始出现,并呈逐年增多的趋势( 近 2 年略有下降) .一般说来,实验室的微生物修复研究,因修复条件较为理想化,干扰因素极少,其修复效果很好。近年来,微生物研究发展较快,给生物修复技术带来了丰富的研究内容和发展前景,相关研究也不断深入,发表的相关的文章也逐年增多。
土壤电动修复是一项新兴绿色原位修复技术,具有经济效益高、后处理方便、二次污染少等一系列优点,正越来越受到科研人员的关注。由表 5 可知: 近年来关键词“电( 动) 修复”不断出现,相关研究不断增多。但是该技术又存在许多不足,如该技术不适用于渗透性较高、传导性较差的土壤; 实验过程中金属电极易腐蚀,修复完成后土壤理化性质发生较大改变等,诸多不足限制了电( 动) 修复土壤的研究与发展,近年来虽然开展了相关研究,但是发表文章仍然不是很多。
关键词“化学修复”从 2000 年到现在不断出现并有逐渐增多的趋势,说明国内学者一直在关注污染土壤的化学修复,但是因为化学修复会破坏土壤性质、容易造成二次污染等缺点,不是研究的热点; 关键词“物理修复”在2003,2011,2012,2013 年分别出现过几次。
关键词“淋溶修复”只在 2009 年出现过 1 次,说明污染土壤物理修复和淋溶修复的相关研究很少,相关学者对此的关注度不高。土壤修复可分为异位修复和原位修复两种形式。原位修复是在不破坏土壤基本结构的情况下进行,由表 5 可看出: 关键词“原位修复”出现的频率比“异位修复”的高得多。原位修复可以对污染物就地处置,使之得以降解和解毒,不需要建设昂贵的地面环境工程基础设施和远程运输,操作维护起来比较简单,还可以对深层次污染的土壤进行修复,具有较好的发展前景,相关研究也会日益增多。
3 结 论
篇9
1 现代农业的负面影响
1.1 地表水及地下水污染
长期以来, 化肥、农药、除草剂等农业化学品的大量施用导致的地表水及地下水的污染一直是农业及环境科学家高度关注的一个问题。化学肥料, 尤其是水溶性极强的氮素化肥, 不仅可以通过地表径流冲刷到江河、湖泊等地表水中, 而且可以通过降雨及灌水等淋溶到泉水及深井水中。农业生产活动被认为是硝酸盐污染水环境的最重要原因。农产品生产过程中氮素化肥的超量施用, 提升了地下水和地表水中硝酸盐的含量, 从而导致了水环境的富营养化。
随着我国农业产业结构调整的不断深入, 在粮田面积减少的同时, 蔬菜、水果等经济作物的面积迅速扩大。农民在经济作物上的投入远大于粮食作物, 由此带来的农业化学污染也更为严重。
1.2 作物的抗逆性下降, 农产品的品质降低
化肥、农药等农业化学品的大量施用, 可以显著提高植物组织中硝酸盐和氨基酸的含量, 并使植物的细胞壁机械强度减弱, 从而诱发植物病虫害的发生。不仅如此, 农业化学品的超量施用还可以导致植物收获物中维生素C、有机酸及可溶性糖等营养成分的降低, 从而导致农产品品质的下降。更为严重的是, 植物吸收了杀虫剂、除草剂等农业化学品后, 会对人类的健康构成威胁。
现代农业对杀虫剂、杀菌剂、除草剂等农业化学品的依赖程度越来越高, 由此带来的直接后果是病、虫、草害的抗药性越来越强。为了尽量减少病、虫、草害带来的损失, 不断增加用药量和不断使用农药新品种成为农民的普遍选择。杀虫剂的大量施用给害虫的天敌带来了毁灭性的打击, 使依靠化学药剂防治植物病虫害的努力陷入了一个“农药施用量不断增加, 害虫的抗药性越来越强”的恶性循环。
1.3 土壤肥力下降及土壤酸化
现代农业的另一特点是土壤的机械化作业强度不断加大, 由此导致的土壤水蚀和风蚀及环境污染已成为一个严重的生态问题。水土流失的直接后果是农田土壤肥力的下降和地表水及地下水的污染, 而导致水土流失的直接原因则是频繁的土壤作业造成的表土疏松及径流加剧等。
化学肥料的大量施用除了容易引起土壤养分失调外,更为重要的是导致土壤酸化、板结、土壤的渗透能力降低等, 致使土壤的生产能力下降。
2 推广保护性耕作栽培技术, 确保农业可持续发展
2.1 积极推广保护性耕作栽培技术
保护性耕作栽培技术的核心是少耕、免耕技术及作物残茬覆盖技术。保护性耕作栽培技术不仅可以降低生产成本, 而且可以提高土壤有机质含量, 增加土壤水稳性团粒结构的数量, 提高土壤的渗水性, 减少雨季的地表径流, 提高土壤抗水蚀及风蚀的能力, 增加土壤的蓄水量, 提高水分利用率, 全方位培肥地力, 从而有效地提高土壤的生产能力。免耕技术是一项高效低耗的先进农业生产技术, 它不仅适合于水浇地, 更适合于旱地。该技术的推广有利于农业的节本增效和可持续发展。保护性耕作栽培技术的大面积推广应用, 不仅有效地解决了长期以来的水土流失问题, 而且使土壤不断培肥, 土地的生产能力不断提高, 为农业的可持续发展打下了良好的基础。 转贴于
2.2 合理施肥
合理施肥至少包含施肥量及施肥时期两方面的内容。按照作物的需肥规律合理进行肥料运筹, 不仅可以提高肥料利用效率, 而且可以减少因施肥不当而造成的环境污染。许多农民群众为方便起见, 将全部或大部分氮肥在播种前或播种时做基肥一次施入, 造成肥料的浪费和地下水的污染。这种传统的施肥方式既不利于提高肥效, 降低生产成本, 也不利于环境保护及农业的可持续发展。
2.3 推广节水灌溉技术
2.3.1 革新地面灌水技术, 改大水漫灌为沟内渗灌传统的大田作物灌溉技术多为大水漫灌。这种灌溉方式不仅浪费水资源, 破坏土壤结构, 而且也是造成农业化学污染的重要原因。而改大水漫灌为小水沟内渗灌不仅可节水30%以上, 而且可以降低田间湿度, 提高作物的抗倒伏及抗病能力, 从而减少杀菌剂及杀虫剂的使用量, 有利于环境保护。此外, 改大水漫灌为小水沟内渗灌, 不仅便于浇水管理, 而且使灌溉水与土壤的接触面积减少了60%, 从而减少了水蚀, 保护了土壤。
2.3.2 推广非充分灌溉技术
植物的根系在受到水分胁迫时会产生化学信号并输送到叶片, 叶片在感知根系受到水分胁迫的信号后会降低气孔开度或关闭气孔, 从而减少水分消耗。根据这一原理建立起来的非充分灌溉技术是农业节水领域的一项新兴技术。
于振文等专家( 2001) 对高产小麦高效灌溉技术及其生理基础进行研究后认为, 在底墒充足的情况下, 小麦生育前、中期适度灌溉, 在保证适宜亩穗数和幼穗正常发育的前提下, 适当抑制营养生长; 后期补充灌溉, 延缓根系及功能叶片的衰老, 保证穗粒数和粒重。这样, 就可以将传统的3~5水减少为1~2 水, 从而使灌水效益显著提高。
篇10
1、大会专题报告:大会邀请了3位国内著名专家做大会报告
农药创制基础研究最新动态及发展趋势
中国工程院钱旭红院士
我国农药登记管理政策修改最新动态及其对农药创制的影响
农业部农药检定所季颖研究员
有机合成方法学研究最新进展及其在农药创制中的应用
中国科学院上海有机化学研究所吕龙研究员
2、新农药创制学术交流:学术交流分大会交流和分组交流两部分,通过交流将评选出优秀论文并予与奖励。
二、 会议主办单位:农药产业技术创新战略联盟
中化化工科学技术研究总院
会议协办单位:山东省农药研究所
利尔化学股份有限公司
会议承办单位:北京广源资信精细化工科技发展中心
三、会议具体安排
1、会议时间:2013年5月25日—28日(25日全天报到)
2、会议地点:山东颐正大厦(山东省济南市历山路108号)
3、收费标准:参会代表注册费为2200元/人,学生代表注册费为1700元/人。5月15日前(以汇款日期为准)注册的代表注册费优惠200元。
会议统一安排食宿,费用自理。会议代表家属餐费为200元/天(不含早餐)。
标准间价格:标准间390元/天(含双人早餐), 单间390元/天(含单人早餐)
四、联系方式
联系人及电话:
张 博010-64263170,13501345177
黄文耀010-64246974,13911519300
传真: 010-64263173 E-mail:
备注:注册费用请电汇至
开户银行:中国民生银行安定门支行
户名:北京广源资信精细化工科技发展中心
帐号:0108014170008743
回执请于5月20日之前邮件()或传真(010-64263173)发回
篇11
一、蔬菜农药残留的概念
农药残留(Pesticideresidues),是在农业生产中施用农药后一部分农药直接或间接残存于谷物、蔬菜、果品、畜产品、水产品中以及土壤和水体中的现象。农药残留问题是随着农药大量生产和广泛使用而产生的。目前使用的农药,有些在较短时间内可以通过生物降解成为无害物质,而一些有机氯类农药却难以降解,是残留性强的农药。蔬菜农药残留超标,会直接危及人体的神经系统和肝、肾等重要器官。同时残留农药在人体内蓄积,超过一定量度后会导致一些慢性疾病。由于农药残留对人类和生物危害很大,各国对农药的施用都进行严格的管理,并对食品中农药残留容许量作了规定。
二、蔬菜农药残留标准
目前,我国与蔬菜有关的强制性国家标准35项,涉及农药残留指标58项,农药52种,名称如下:对硫磷、马拉硫磷、甲胺磷、甲拌磷、久效磷、氧化乐果、克百威、涕灭威、六六
六、敌敌畏、DDT、乐果、杀螟硫磷、倍硫磷、辛硫磷、乙酰甲胺磷、二嗪磷、喹硫磷、敌百虫、亚胺硫磷、毒死蜱、抗蚜威、甲萘威、氯菊酯、溴氰菊酯、氯氰菊酯、氰戊菊酯、氟氰戊菊酯、顺式氰戊菊酯、联苯菊酯、三氟氯氰菊酯、顺式氯氰菊酯、甲氰菊酯、氟胺氰菊酯、三唑酮、多菌灵、百菌清、睡嗓酮、五氯硝基苯、除虫脲、灭幼脲、双甲脒、敌菌灵、异菌脲、代森锰锌、灭多威、克螨特、腐霉利、乙烯菌核利、甲霜灵、伏杀硫磷、2、4D。
三、蔬菜农药残留的危害
目前我国农药年用量为80-100万吨,居世界首位。其中剧毒的有机磷类农药年使用量约占70%,毫克级的有机磷类农药即可致人畜于死地。当农药残留在人体中达到一定的数量,不为人体所分解时,将无法避免地发生各种病变。急性中毒,导致死亡、终身残疾。亚急性中毒:致癌、致畸(畸胎和畸形儿)和致基因突变(损伤生物的遗传物质,导致不可逆诱变的作用),损害人体的重要脏器。慢性中毒,农药残留更为可怕的是使人在不知不觉中慢性中毒。慢性中毒作用包括神经、生理、生化、血液、免疫和病理等方面。危及青少年、儿童成长发育,影响胎儿正常发育。导致神经系统失调,破坏人体器官生理功能,内分泌紊乱,引起妇女经血失调及面部生出各种斑痕。引发中老年人各种疾病。
四、减轻蔬菜农药残留危害的方法
农药残留有两种形式,一是附着在蔬菜、水果的表面;一种是植物在生长过程中,农药直接进入蔬菜、水果的根茎叶中。以下几种方法能有效去除蔬菜农药残留:
1、浸泡水洗法
蔬菜污染的农药品种主要为有机磷类杀虫剂,有机磷杀虫剂难溶于水,此种方法仅能除去部分污染的农药。但水洗是清除蔬菜水果上其它污物和去除残留农药基础方法。一般先用水冲洗掉表面污物,然后用清水浸泡,浸泡不少于10分钟。果蔬清洗剂可增加农药的溶出,所以浸泡时可加入少量果蔬清洗剂。浸泡后要用流水冲洗2-3遍。
2、臭氧降解法
臭氧处理是现在应用较多的一种降解农药的手段。臭氧是一种强氧化剂,在水中有极强的氧化分解能力,臭氧在水中发生还原反应,产生氧化能力极强的单原子氧(O)和羟基(OH?),瞬问可分解水中的有机物质。它可选择性的与化合物中杂原子发生反应,主要使农药分子化学键断裂,生成小分子产物挥发或溶于水中。由于大部分农药本身含有杂原子,所以容易被臭氧降解。它不仅能够破坏马拉硫磷、乐果等有机物分子结构中的烯炔、炔烃等碳链,而且对其基团有着强烈的氧化作用。这种打断连接键和基团氧化的双重作用使得上述物质的分子结构发生彻底改变,从而起到解毒、降解农药残留的作用。
3、碱水浸泡法
有机磷杀虫剂在碱性环境下分解迅速,所以次方法是有效的去除农药污染的措施。可用于各类蔬菜瓜果。方法是先将表面物污冲洗干净,浸泡到碱水中(一般500毫升水中加入碱面5-10克)5-15分钟,然后用清水冲洗3-5遍。
4、有机磷降解酶
有机磷降解酶可与蔬菜、水果等农产品表面残留的农药发生化学反应,能破坏剧毒成分的结构,使剧毒农药瞬间变为无毒、可溶于水的小分子,以达到果蔬的迅速脱毒,这种降解酶做成的洗涤液对环境不会有二次污染。使用发酵液和不同的酶制剂能有效去除农作物表面的农药残留污染,而且酶促反应速度快,专一性高,酶与底物作用不需要摄入机制。
上述几种化学方法都可以有效去除果蔬农药残留,每种方法都有其适用的对象和范围,我们在使用时应根据具体情况来选择,以达到去除的最佳效果。
参考文献:
[1]陈伟,高晓娟.蔬菜农药残留污染及预防控制对策.食品与药品,2005年。
[2]谢惠波,李仕护.蔬菜中农药残留量的测定及去除方法研究.现代预防医学,2005[5]。
篇12
水稻病虫害主要以稻飞虱、稻纵卷叶螟、螟虫、纹枯病、稻瘟病、病毒病等为主。在防治上,要树立“公共植保,绿色植保”的理念,既要有效地控制病虫害的发生危害,保证产量安全,又要有效控制化学农药对生态环境及农产品污染,保证农产品的质量和环境安全[2]。
1防治策略
以作物为中心,以重大病虫害为主攻对象,强化源头控制和暴发流行区的分区治理,因地制宜协调运用农业、物理、生物、化学等综合防治措施。大力推广应用生物、物理防治和科学用药技术,减少化学农药依赖,努力实现节本增效和可持续控制。
2防治适期和指标
(1)稻纵卷叶螟。①卵孵化高峰期防治,隔7d再防治1次(大发生年份);②2龄幼虫高峰期前防治(中等发生年份),每百丛3.3cm以下绿色小苞数30个。分蘖期可适当放宽防治指标,以保护天敌和稻田生态环境。
(2)螟虫。防治二化螟,在分蘖期株枯鞘率3%~5%、孕穗后期至抽穗期卵块数达750块/hm2时用药;防治三化螟,在水稻破口期卵块数达600块/hm2时防治枯心,或三化螟螟卵孵化初期进行防治。
(3)稻飞虱。每百丛平均虫量分蘖期为1 000头,孕穗至抽穗期为1 500头,齐穗至乳熟期为2 000头以上。掌握在低龄若虫高峰期防治。
(4)稻瘟病。重点防治水稻易感病品种、敏感时期及老稻瘟病区。发现发病中心、急性病斑或病叶率达到10%时实施药剂防治,老病区、感病品种种植区在孕穗末期、破口初期及齐穗期要各打1次保护药,进行预防。
(5)纹枯病。分蘖盛期病丛率达5%~10%;孕穗期病丛率常规稻达20%左右,杂交稻为30%以上。
3主要推荐防治技术
3.1农业防治
深耕、灌水灭蛹控螟。春季越冬代螟虫将近化蛹时,利用螟虫化蛹期抗逆性弱的特点,处理带虫稻草,合理安排茬口,及时深耕灌水浸田,浸没稻桩10d左右,可降低虫源基数。螟虫卵孵化始盛期,将田水排至3cm以下,降低蚁螟为害叶鞘的部位。盛孵高峰后和盛孵末期,各灌深水1次,保水3d,可杀死大量幼虫。尽量避免单双季稻混栽,单季稻可适时推迟播种期,双季稻连作田早稻收割后及时翻耕灌水深淹没稻桩。
3.2生物(药剂)防治
(1)苏云金杆菌(Bt)制剂防治螟虫和稻纵卷叶螟。在水稻生长前期,或田间螟虫和稻纵卷叶螟卵孵化盛期采用苏云金杆菌制剂防治,对螟虫和稻纵卷叶螟有较好的防治效果,也可保护稻田天敌,维持稻田生态平衡。苏云金杆菌对蚕高毒,靠近桑园的稻田慎用。
(2)枯草芽孢杆菌制剂防治稻瘟病。在抽穗破口期遇阴雨天气、叶瘟和苗瘟出现急性病斑或发病中心时,采用枯草芽孢杆菌制剂防治,齐穗后再喷1次,对稻瘟病有良好的预防和防治效果,对作物安全。
(3)宁南霉素防治水稻病毒病。水稻病毒病感病初期,采用宁南霉素与杀虫剂配合使用,连续用药3~4次,对病毒病有良好的预防效果。
(4)稻鸭共育技术。鸭子可捕食大部分飞虱及其他害虫,还可起到踩草、耕耘和刺激水稻健壮生长的作用,减轻稻飞虱、螟虫、稻水象甲、叶蝉、纹枯病和水生杂草等病虫草害的危害。
3.3物理防治
(1)利用成虫的趋光性,成虫发生期在稻田设置频振式诱蛾灯捕食与诱杀,可减少稻飞虱、稻纵卷叶螟、螟虫和稻瘿蚊等害虫的种群数量。
(2)应用昆虫化学信息素可诱杀集中连片稻田中的二化螟。
3.4化学药剂防治
(1)氟虫腈、敌氟腈、毒死蜱、三唑磷、阿维菌素+哒嗪硫磷或阿维菌素+毒死蜱,防治二化螟和三化螟,在卵孵化盛期施药。使用时注意,阿维菌素对光稳定性较差,要避免在中午阳光强烈的情况下施药;对鱼高毒,应避免污染水源和池塘等;对蜜蜂有毒,不要在开花期施用;最后1次施药距收获期20d。
(2)丙溴磷、氟铃脲等昆虫生长调节剂防治稻纵卷叶螟(低抗区、非桑蚕区可结合应用杀虫双等沙蚕毒素类剂)。利用5%锐劲特+40%毒死蜱的高效配方,对控制稻纵卷叶螟、稻飞虱和螟虫具有理想效果。
(3)噻嗪酮、异丙威、速灭威、毒死蜱防治稻飞虱;氟虫腈+吡虫啉、或毒死蜱+吡虫啉防治水稻灰飞虱效果良好。
(4)咪鲜胺、三环唑、春雷霉素等药剂防治稻瘟病,感病品种和老发病区,连防2次,隔7d 1次。井冈霉素对水喷雾,或泼浇,或制成毒土撒施在稻基部,或三唑酮农抗120水剂喷雾,防治纹枯病效果良好。纹枯病与稻飞虱同时发生,可选用虱纹灵或阿维菌素加井冈霉素混用。
在使用农药的过程中,要控制氟虫腈的使用次数,禁止使用高毒农药和拟除虫菊酯类农药,保护稻田生态生物多样性。
篇13
柑桔采后损失主要是由病原真菌侵染造成,而柑桔青霉(Penicillium italicum)和柑桔绿霉(Penicillium digitatum)作为柑桔采后最重要的两种病害,严重制约着柑桔采后的贮运以及销售。沙糖桔(Citrus eticulate Blancocv.Shangtang)原产广东省四会市,果实味清甜,含糖量高,色泽鲜艳,皮薄易剥。然而由于其皮薄,含水含糖量高的特点,极易受机械伤和微生物侵染,导致采后品质易劣变和病害发展迅速。贮藏期相对其它柑桔类果实短农业论文,大大限制了沙糖桔的运销[1]。目前,柑桔贮藏期青绿霉病的防治主要依靠化学药剂[2]。噻菌灵作为一种高效、广谱、内吸性杀菌剂常被用于柑桔青绿霉病的防治,但随着药剂长期大量使用,菌株抗药性的问题日益严重,防治效果逐年下降[3]。
目前,许多研究报道植物源物质应用于水果采后病害的防治[4-5],但植物源物质单独应用往往药效不如化学药剂,这就极大限制了这类化合物的商品化以及实际应用前景。茶皂素作为一种良好的植物源农药、天然表面活性剂以及环保型农药增效剂,已有研究表明其本身对多种植物病原菌具有良好的抑制作用,同时对多种农药具有很好的增效作用[6-10],但茶皂素应用于水果采后保鲜领域未见报道。为了减少化学物质的施用量、克服化学药剂的抗药性以及提高茶皂素的防治效果,本文测定了茶皂素和噻菌灵混配对柑桔青霉和绿霉病菌的室内毒力以及增效比率,同时测定了混剂对沙糖桔采后青绿霉菌的防治效果及其对贮藏品质的影响,旨在为开发一类含有茶皂素的新型柑桔采后防腐保鲜剂提供理论依据。
1 材料和方法
1.1 试验材料
1.1.1 药剂
80%茶皂素原粉(Tea saponin)由湖南省辰溪县绿色技术制作所提供;95%噻菌灵原药(Thiabendazole)由黑龙江胜农科技开发有限公司提供。
1.1.2 果实
沙糖桔(Citrus reticulata Blanco cv. Shangtang)果实采于广东省四会市柑桔园,九成熟的新鲜的四会沙糖桔采摘后,当天进行处理,先用手工分选,齐根剪平果蒂,择除病、虫、破、烂、畸的个体,保证果实品种、成熟度和物理状态的一致性。
1.1.3 病原菌
病原菌分离于自然发病的沙糖桔果实农业论文,并经过纯化培养,形态结构分析及显
微观察证实为柑桔青霉(Penicillium italicum)和 柑桔绿霉(P. digitatum ),保存于本课题组。
1.2 试验方法
1.2.1室内生物活性测定方法
采用菌丝生长速率法[11]。通过预备试验筛选出各药剂的5个有效浓度,制成PDA平板,将直径6 mm的供试病菌菌丝块放置于含药培养基平板中央,每皿1块,用不含药的溶剂代替药液作对照,每处理3次重复,25 ℃培养3 d,测量菌落直径,计算抑制率,求出毒力回归方程及有效中浓度(EC50)。
1.2.2混配药剂增效配方的筛选
采用Wadley法进行筛选[12]。先配制单剂浓度梯度,再按相对应的浓度梯度顺序将两单剂按1:9、2:8、3:7、4:6、5:5、6:4、7:3、8:2和9:1的体积比混合,得到增效配比。计算出各单剂和混剂毒力回归方程Y=a X+b和r值,求EC50。根据Wadley公式计算复配剂的增效比率(SR值)。
EC50(理论)=(a+b)/(a/EC50A+b/EC50B)
增效比率(SR)=EC50理论值/EC50实际值
式中A、B分别代表茶皂素与噻菌灵两种药剂组分,a、b是茶皂素与噻菌灵两组分在混剂中含量的比值。
根据增效系数SR作出联合作用综合评价。当SR大于1.5时为增效作用,介于0.5~1.5之间时为相加作用,小于0.5时为拮抗作用。
1.2.3 药剂混配对沙糖桔采后青绿霉病菌的防治效果
将经过挑选的大小均匀、无损伤的沙糖桔分为4组,每组3个重复,每重复30个。然后分别用制备好的200μg?mL-1和400μg?mL-1的茶皂素?噻菌灵混剂、200μg?mL-1的茶皂素和噻菌灵单剂的溶液和清水浸果2~3分钟农业论文,摊开、晾干。置于塑料筐中,用保鲜膜密封,以保持筐内的湿度。将沙糖桔置于25℃培养室内贮藏,贮藏时间为30 d。在贮藏30天时分别统计病、健果,发病率按下列公式计算:
发病率(%)=(病果数/供试总果数) ×100
1.2.4 果实品质测定指标及方法
在沙糖桔处理前和贮藏结束后,每组处理随机挑选15个果实分别进行以下3项指标的测定。测定重复3次,每次重复5个果实。其中,总可溶性固形物,采用手持式折光仪进行测定。抗坏血酸,采用2, 6-二氯酚靛酚法。可滴定酸含量,采用NaOH中和法,总酸含量以柠檬酸含量表示[13]。
1.2.5 数据统计分析方法
采用SAS软件(Version 6.08,SAS Institute Inc., Cary,NC)进行数据统计,试验结果用邓肯氏新复极差多重比较法(Duncan’s Muitiple RangeTest,DMRT)进行差异显著性分析(P<0.05)。
2 结果与分析
2.1茶皂素和噻菌灵混配对柑桔青霉和绿霉病菌的联合毒力
室内毒力试验结果表明,茶皂素和噻菌灵对柑桔青霉病菌菌丝生长抑制中浓度EC50分别为310.74 μg?mL-1和44.60μg?mL-1;而对柑桔绿霉病菌菌丝生长抑制中浓度EC50分别为26.76 μg?mL-1和23.80 μg?mL-1。由此可见,茶皂素与噻菌灵对柑桔绿霉的毒力相当,而噻菌灵对柑桔青霉的室内毒力要高于茶皂素。
复配试验结果表明,当茶皂素与噻菌灵配比为9∶1、8∶2和4∶6时农业论文,对柑桔青霉病菌菌丝有较强的抑制作用,增效比均大于1.5,表现为增效作用。其中配比为8∶2时,增效比值最大为2.77。当茶皂素与噻菌灵配比为8∶2和4∶6时,对柑桔绿霉病菌的抑制作用最强,增效比分别为1.60和1.51,均大于1.5,表现为增效作用(表1、2)。
表1 茶皂素和噻菌灵混配对柑桔青霉病菌的增效作用
Table 1 The synergistic effect of tea saponin and triabendazole against Penicillium italicum
配比
Ratio
回归方程
Regress equation
EC50
(μg? mL-1)
相关系数
Relative coefficient
增效比
Synergistic ratio
10∶0
y =1.3367x+1.6683
310.74
0.9591
—
9∶1
y=1.7843x+1.2685
123.39
0.9832
1.58
8∶2
y=1.8770x+1.7914
51.23
0.9793
2.77
7∶3
y=1.5689x+1.8996
94.67
0.9668
1.18
6∶4
y=1.6332x+1.6667
109.89
0.9765
0.83
5∶5
y=0.6977x+5.8280
65.05
0.9122
1.20
4∶6
y=1.4139x+2.7931
36.39
0.9534
1.86
3∶7
y=0.6618x+3.8569
53.37
0.9773
1.12
2∶8
y=1.2051x+2.8315
63.01
0.9805
0.85
1∶9
y=1.0616x+6.4738
40.90
0.9747
1.19
0∶10
y=1.7177x+2.1669