引论:我们为您整理了13篇地质灾害监测论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
篇1
2滑坡治理的主要工程措施
2.1抗滑桩工程在办公建筑、副井井筒南侧布置一排抗滑桩(共25根)。采用钢筋混凝土矩形桩,桩顶标高846.0m,断面尺寸为3m×2m,桩中心距4.5m,桩长25m,桩身混凝土为C30。抗滑桩桩顶一般低于现地面1.5~3.0m左右。受荷段10~13m,锚固段约12~15m,符合《滑坡防治工程设计与施工技术规范》(DZ/T0219-2006)要求。
2.2锚索根据初步设计及离柳焦煤集团决定,考虑到地质不确定性因素的特点,为增强抗滑桩的稳定性,在抗滑桩中间增加锚索,共设计锚索24根。
3滑坡变形监测本滑坡
目前处于蠕动变形阶段,需在抗滑桩施工过程中监测滑坡位移情况,查清滑坡的稳定性,确保施工过程中滑坡的安全,以检验抗滑治理效果,监测抗滑桩质量及使用期间的安全性。变形监测主要通过2种方式进行,一是对副井井筒错缝间距进行监测,二是在滑坡体上选择具有代表意义的监测点进行监测,在滑坡体外地质稳定地段选择一个基准点、一个后视点,在滑坡体上选择9个变形监测点采用高精度全站仪进行观测。根据副井井筒位移记录,实施抗滑桩工程前2013年4月22日井筒初始位移为0.63m,到2013年7月10日,井筒位移为0.64m,增加10mm。从2013年7月10日到2013年9月5日,井筒无变形。从2013年4月22日准备实施抗滑桩工程至2013年9月5日抗滑桩主体工程基本结束,运用高精度全站仪对滑坡体上监测点进行了持续观测,观测频率每周一次。在抗滑桩施工前监测点初始位移量最大,分别为1054mm、963mm,监测点初始位移量为810mm,数值也很大。在实施抗滑桩工程后,监测点滑动速率显著下降,特别是监测点,抗滑桩施工前后位移变化量分别为7mm、10mm,在个监测点中位移变化量最小,而且比其余监测点位移变化量小很多,说明抗滑桩工程的实施有效地降低了滑坡的蠕动速度,保证了抗滑桩南侧滑坡体的稳定以及其南侧滑坡体上办公楼和工业建筑的安全。另外也说明,抗滑桩北侧滑坡体还有剩余的下滑力。监测点由于紧邻东侧抗滑桩,滑动速率相对较小,位移变化量为29mm;监测点处于滑坡主滑方向上,其初始位移量最小,在滑坡东部实施抗滑桩工程后,由于受力骤然增大,滑动速率显著增加,位移变化量为53mm;监测点位于滑坡西部边缘一带,与东部抗滑桩工程处于一条直线上,抗滑桩施工前后,其位移变化量为58mm,位移变化量最大;监测点处于滑坡前缘,位移变化量介于30~50mm之间。
篇2
主办单位:中国地质灾害研究会
出版周期:季刊
出版地址:北京市
语
种:中文
开
本:大16开
国际刊号:1003-8035
国内刊号:11-2852/P
邮发代号:82-362
发行范围:国内外统一发行
创刊时间:1990
期刊收录:
中国科学引文数据库(CSCD―2008)
核心期刊:
期刊荣誉:
Caj-cd规范获奖期刊
篇3
Key words: remote sensing; geological; mapping
中图分类号:P25文献标识码: 文章编号:
一、遥感技术的发展
1.“遥感”,顾名思义,就是遥远地感知。人类通过大量的实践,发现地球上每一个物体都在不停地吸收、发射信息和能量,其中有一种人类已经认识到的形式――电磁波,并且发现不同物体的电磁波特性是不同的。遥感就是根据这个原理来探测地表物体对电磁波的反射和其发射的电磁波,从而提取这些物体的信息,完成远距离识别物体。遥感的实现还需要遥感平台,像卫星、飞机、气球等,它们的作用就是稳定地运载传感器。当在地面试验时,还会用到像三角架这样简单的遥感平台。针对不同的应用和波段范围,人们已经研究出很多种传感器,探测和接收物体在可见光、红外线和微波范围内的电磁辐射。传感器会把这些电磁辐射按照一定的规律转换为原始图像。原始图像被地面站接收后,要经过一系列复杂的处理,才能提供给不同的用户使用。
2.遥感包括卫星遥感和航空遥感,航空遥感作为地形图测量的重要手段已在实践中得到了广泛的应用,卫星遥感用于测图也正在研究之中并取得一些意义重大的成果,基于遥感资料建立数字地面模型进而应用于测绘工作已获得了较多的应用。自20世纪初菜特兄弟发明人类历史上第一架飞机起,航空遥感就开始了它在军事上的应用。
二、遥感技术在地质测绘中的应用
遥感对地观测技术是当代高新技术的重要组成部分,是20世纪末几年开始执行的“对地观测系统(EOS)”计划的主体。它具有时效性好、宏观性强、信息量丰富等特点。利用全球卫星定位系统(GPS)可以准确地监测地质灾害体的形变与蠕动情况,从卫星遥感图像上可实时或准实时地反映灾时的具体情况,监测重点灾害点的发展演化趋势,增强地质灾害发生的预见性。因此,为了能及时地调查地质灾害状况,为抢灾与救灾工作提供准确资料,根据国民经济建设与可持续发展的需要,在地质灾害调查中采用遥感技术这一先进手段,是尤为必要的,这也是现代高新技术应用发展的必然趋势。
1.遥感技术在地址测绘中得到了广泛应用,这将有利于发展科学、促进地质矿产事业的持续发展。遥感信息反映的地质事实,不能因为学科偏见,传统观念和规程而被改变。当然,早期的遥感资料由于受分辨率的限制,近年来,由于采用了新的技术思路,在大比例尺地址测绘和地质制图中,遥感与地质的符合程度和可兼容程度有了很大的改进,但在如何充分发挥遥感地质的认识上仍有待统一,否则遥感地质将无法健康发展下去。
2.在岩浆岩、变质岩,特别是火山岩地区,地质图上对地质结构的描述要比实际粗略得多,很多复式侵入杂岩体、隐伏侵入体、火山机构、脉岩、变质岩的类型和相带在遥感图像上有充分的反映,但常规地质图则记述得很简单。在松散堆积物广泛覆盖的地区,地质图上的要素内容也过于简略,近年来,各类钻井、物探资料进一步证明了遥感地质资料的可靠程度,如果能用遥感资料将各种各样的隐伏地质信息、隐蔽地质界限,补充到这类地区的地质图上去,则将大大改善其地质研究程度,所以地址测绘开展了大比例尺地质填图,在这些工作中如能充分正确地应用遥感技术,也必将大幅度提高大比例尺地质图件的精度和专业水平,加快详细地址测绘、专业勘测的进度。
三、遥感技术带来的新信息
纵观遥感提供的构造新信息可概括为:
1.表浅硬固地壳中的大断裂和韧性剪切带;
2.地块和岩块;
3.密布的直线形断裂和大节理;
4.碎裂块体与漂移岩块;
5.塑性-硬固地壳中垂直贯通的强爆环形断裂;
6.地壳中的膨隆及塌陷地段等。通过遥感分析发现的不同世代、不同级别的环形断裂,包括隐伏侵入体和岩浆强爆中心等地质条件,我们坚信,这一新的地质构造理论终将会萌生、生长,给地质测绘带来革命性发展。
地质灾害作为一种特殊的不良地质现象,也是地质测绘工作的重中之重。无论是滑坡、崩塌、泥石流等灾害个体,还是由它们组合形成的灾害群体,在遥感图像上呈现的形态、色调、影纹结构等均与周围背景存在一定的区别。因此,对崩、滑、泥等地质灾害的规模、形态特征及孕育特征,均能从遥感影像上直接判读圈定。由此,通过地质灾害遥感解译,可以对目标区域内已经发生的地质灾害点和地质灾害隐患点进行系统全面的调查,查明其分布、规模、形成原因、发育特点、发展趋势以及危害性和影响因素。在此基础上进行地质灾害区划,划分地质灾害易发区域,评价易发程度,为防治地质灾害隐患,建立地质灾害监测网络提供基础资料,此外,遥感在大型工程规划选址,工程地质稳定性评价,铁路、高速公路、引水工程、水利电力建设等方面进行了广泛应用,初步显示出遥感的技术优势,取得了显著的社会效益和经济效益。
四、遥感调查中尚存在的主要问题
遥感技术尚未得到广泛的应用。在地质测绘队伍中,目前人们对遥感技术比较陌生,使得遥感技术在地质灾害调查中难以发挥应有的作用;地质灾害遥感调查工作需要多时相的实时或准实时的遥感信息源,而这种信息源价格昂贵。受资金限制,地质灾害的遥感调查工作难以得到普及,目前只能局限于重点地区与重点工程的地质灾害调查;目前常用的遥感信息源空间分辨率较小,难以满足地质灾害点的详细调查工作,这使得遥感技术仅在宏观调查中应用广泛,而在微观上应用较少。遥感技术在工程地质勘测、环境地质和地质灾害研究方面获得广泛的应用和良好的效果,但急待以新的思路进行深入研究,提高应用水平。
五、结束语
遥感技术是一门新兴的高新技术手段,利用遥感技术开展地质灾害调查不仅是必要的,而且是可行的。遥感技术可以贯穿于地质灾害调查、监测、预警、评估的全过程。随着遥感技术理论的逐步完善和遥感图像空间分辨率、时间分辨率与波谱分辨率的不断提高,遥感技术必将成为地质灾害及其孕灾环境宏观调查以及灾体动态监测和灾情损失评估中不可缺少的手段之一,给地质测绘工作提供更先进的技术支持和更全面的数据库资料,为“数字中国”提供更翔实的数据和信息,以全面提升行业领域中的综合竞争力。
参考文献:
[1] ;发扬成绩 搞好改革 开创地质测绘工作的新局面[J];中国地质;1984年10期
篇4
1盐津县地质灾害现状及成因
1.1盐津县地质灾害现状
盐津县位于云南省东北部,境内地势起伏较大最高海拔2 263m,最低海拔 330m,山势以中高 山为主 ,呈南高北低状 ,地形险峻,山势陡峭 ,沟壑纵横地形地貌、地质条件复杂多样 ,特殊的地理环境形成了“一山有 四季 ,十里不 同天”的地理气候 ,夏季炎热 ,冬季湿润偏暖。由于人多地少,森林覆盖率低,山高坡陡,水土流失严重,地质环境十分复杂。随着工农业生产 、城镇建设、 交通 建设和其它经济建设的加速发展,以及人口的不断增长,人类工程活动 日益频繁 .对生态环境与地质环境的破坏 日趋严重,特别是横江和白水江两岸斜坡岩土体处于超荷载或重荷载状态 ,不合理的开挖以及沿江地带洪水的淹没与冲刷作用,导致了多处斜坡变形、建筑物开裂等,地质灾害尤为突出。
盐津县境内共有地质灾害点有 90个(条),主要分布在盐井、普洱 、豆沙 、庙坝等乡镇。地质灾害类型主要为滑坡 、崩塌、泥石流、危岩 、地面裂缝 、潜在不稳定斜坡等,多种地质灾害并存。近几年来,在盐津县十个乡镇 ,共发现地质灾害隐患点 298个 ,其中滑坡 114个 ,不稳定斜坡 123个 ,危岩崩塌 43个 ,泥石流沟 15条 ,地面塌陷 2个,地裂缝 1条。其中,具有一定规模 、稳定性差 、危险性高 、危害程度大的重要地质灾害点有 90个 (条 ),含滑坡 30个 ,不稳定斜坡33个 ,危岩崩塌 19个 ,泥石流沟 8条 ,较为严重的有县城滑坡群、庙坝乡滑坡群、柿子乡滑坡群、中和镇滑坡群 、普洱镇滑坡群等。
地质灾害的频繁发生 ,地质环境的 日益恶化 ,严重影响了全县经济社会持续健康发展,危及人民生命财产的安全。1987年 12月 12日,由于连降暴雨,普洱欧家扁村发生山体滑坡 ,造成 6人死亡;1988年 8月7日,盐井镇由于连降暴雨产生山体滑坡造成经济损失 250万元 ;2001年 9月 13日,中和乡中堡村茶园一、三社 由于连降暴雨产生山体滑坡,并引发泥石流,造成 6.3ha耕地及 35间房屋被毁 ;2002年 8月 12日,由于连降暴雨,庙坝乡民政村皮匠沟产生山体滑坡 ,造成 7户 13间房屋被毁 ,22人死亡,7人失踪,4人受伤,摧毁桥梁 1座,损坏省道(柿子至牛街)1 000余 m,直接经济损失达200余万元2002年 8月 8日.原艾 田乡仁和村高洞子社由于连降暴雨,加之人类工程活动加剧,产生山体滑坡,造成 4间房屋被毁 、5人死亡。由于地质灾害 ,造成直接经济损失达 3 849.34万元,受威胁资产 43 116.40万 元。
1.2盐津县地质灾害成因
盐津县地质灾害类型多 、分布广 、危害大的原因主要与大气降水强度、河水淹没和侵蚀作用、地形地貌、岩土类型 、地质结构 、地震及人类不合理工程活动等相关。
①县境内滑坡地层为中生代“红层”,岩性以泥岩 、页岩和砂岩为主 ,岩层节理裂隙发育 ,岩体破碎遇水易软化 ,中一强烈风化 ,地层倾 向大致与坡 向相反,形成逆 向结构斜坡 ,主滑方 向与岩层倾 向相反属基岩切层滑坡。
②县境内山谷和斜坡地形绝大多数位于软岩斜坡地带 ,斜坡原始坡度较 陡(近 45),斜坡临空条件好 .为滑坡的发生提供了有利的地形条件。而软质岩体抗风化能力弱.表层岩体风化强烈,在其表部形成较厚 的松散土体,其透水性大于底部泥页岩 ,在接触部位易形成软弱带 ,而导致滑坡 。
③暴雨或长时间连续高强度降雨后 ,造成岩土体饱水 ,物质容重增大、抗剪强度降低,在重力作用下发生地质蠕变而导致滑坡。
④河水对边岸淹没或冲刷,造成斜坡受浮托力和动 、静水压力的严重影响 ,斜坡易失稳下滑。
⑤人类不合理工程活动使环境条件更加恶化森林的乱砍滥伐 ,矿山的乱开滥采和基础设施建设没有充分进行地质灾害危险性评估等 ,致使地质灾害频有发生 。如庙坝乡境 内 5家石灰厂在生产过程中管理松懈,监督不到位 ,把石灰渣长期堆放 、存储在 白水江 、乌撒溪和干沟等河岸最高水位线以下斜坡地段 ,在 2006年 8月 28日和 9月 7日晚,由于天降大雨 ,石灰 厂跨塌。河水暴涨 ,大量石灰渣冲人河中,导致大量鱼被毒死,造成白水江水污染事故。
⑥盐津县是地震多发地区.2006年发生有两次5.1级 、一次 4.7级地震 以及频繁连续不断的小震今年,全县又发生了三次较大的地震和无数次余震加剧了岩土体的破坏 .形成一系列地质构造(如大大4~/.b的裂缝 ),成为诱发各类地质灾害的重要因素。
2 盐津县地质灾害防治工作中存在的问题
长期以来 ,盐津县地质灾害的频繁发生,给全县国民经济和社会发展造成了严重 的影响.尽管政府部 门已引起高度重视,有的放矢地编制了防治规划开展地质灾害防治知识 教育 ,制定防灾预案 ,有效地降低了地质灾害的发生,收到了一定的效果。但由于地质灾害的复杂多样,当地经济技术条件落后 ,加之对地质灾害认识不足 .地质灾害仍成为威胁人民群众生命安全 ,制约当地经济发展的重要因素,地质灾害防治形势仍不乐观 ,防治工作尚存在一些问题。
①对地质灾害重视不够。区内地质灾害点多面广 .各职能部门、部分乡镇和基层组织对地质灾害的危害性 、重要性和紧迫性认识不足,重视程度不够措施不到位。
②地方财力匮乏,严重缺乏治理经费。由于地方财力匮乏 .治理经费不足,专项治理地质灾害的配套资金难以落实到位等。
③地质灾害防治相关专业技术人员严重缺乏由于每年的突发性地质灾害多,加之地质灾害隐患点量多面广,有经验的专业技术人员严重缺乏,致使地质灾害点的调查不到位 ,对很多隐患点无法深入调查和进行预防,致使地质灾害仍然频繁发生。
④地质灾害防御宣传不到位。人民群众对地质灾害防治意识淡薄 ,人为因素引发的地质灾害时有发生 ,如森林的乱砍滥伐,矿山的乱开滥采和基础设施建设没有充分进行地质灾害危险性评估 ,不按操作程序施工等不规范、不安全生产引起的地质灾害和工程事故频繁发生 ,致使 自然 生态环境遭受污染破坏的事件屡有发生。
3盐津县地质灾害防治对策与措施
针对全县地质灾害存在 的问题和所面临的严峻形势 ,盐津地质灾害的防治应本着“以防为主、防治结合 、全面规划、综合治理”的方针.以期最大限度地避免和减少地质灾害的危害。
3.1加强组织领导,明确防治工作指导思想全县地质灾害隐患点量多面广 ,成灾 因素复杂突发性强,形势十分严峻。建立政府分管领导负责国土资源部门承办、有关部门配合、广大群众参与的地质灾害防治机制,把自然 因素引发的地质灾害防治工作纳入国民经济和社会发展计划,纳入日常安全管理。把防治工作落实到具体单位,落实到乡镇长、村组干部和灾害隐患点村民。切实做到职能部 门主动抓,干部群众联合抓,群防群治,形成齐抓共管的格局,确保领导认识到位 ,责任明确到位,措施落实到位 ,资金投入到位。
为确保地质灾害防治工作全面到位,进一步健全和完善地质灾害群测群防体系,制定地质灾害防御预案,建立健全隐患点的防灾责任制 ,健全完善灾情速报制度、险情巡查制度和通讯保障体系建设,建立全县地质灾害预警预报系统,做好雨情水情、地质灾害预测预报。
利用 现代 科技手段技术指导地质灾害防治 ,建立全县地质灾害信息系统,引入现代技术和手段,建立全县地质灾害信息库,对重点地段的危险性作出判断 ,采取 科学 的应急防范措施 ,作为监控现有地质灾害点的依据.有条件的地区,对重大滑坡、崩塌隐患点设立适当的自动或几何变形监测点,做到一旦发生地质灾害.能在第一时间采取应急措施。
建立医疗救护组、秩序维护组、搬迁安置组和抢险救灾调度组 ,分别承担灾害发生后 的伤病员施救维护灾民的正常生活秩序.避免造成进一步的损失确保灾害发生后抢险救灾工作的有序进行。
3.2加强地质灾害防治宣传,构建人与 自然 的和谐 发展 全县地质灾害绝大部分与人类工程活动息息相关,”天灾 ”难测 ,”人祸”可防,坚持”以防为主 ,标本兼治”的方针。围绕以人为本,避让与治理相结合的原则,普及预防地质灾害基本知识 .帮助广大 农村 地区尤其是受地质灾害威胁的人民群众了解地质灾害的危害,掌握地质灾害监测 、撤离避灾的基本常识提高农村基层防御地质灾害的意识和群测群防水平 .减少地质灾害特别是人为活动引发地质灾害的发生,使灾害多发 区群众掌握灾害突发前的主要征兆和发生时的紧急处置办法及全民防灾减灾意识和自我保护能力。加强山区和居民点建设管理,帮助山区农村进行房屋选址、建设 ,避免把房屋修建在山洪及地质灾害易发区,切实减轻灾害损失。
3.3规范工程开发建设行为,使其纳入法制化轨道对人为因素引发的地质灾害,应遵循 ”谁破坏谁治理”的原则 对在工程建设中不按规划设计方案操作 。不作灾害危险性评估,不作地质勘察的施工队伍或个人 .违章作业,冒险蛮干引发地质灾害的,要依照有关 法律 法规从严从重处理。对破坏环境或擅自在松散岩土体或建筑物体上增加荷重的行为,要予以制止和处罚。今后城市规划和建设 中,要将地质灾害防治于其中.特别是要重点整治大关河和白水江岸边的滥挖乱建和危岩附近的开山取石现象。
对矿山存在的地质灾害、安全生产隐患 、生态环境等 问题 ,县国土资源局、煤炭 工业 局、建设环保局等部 门要相互配合,组织专业人员进行调查、检查督促并监督采矿权人认真制定防灾减灾方案和整治措施 。加强对矿山地质灾害防治的监督管理工作,切实做好矿山 自然生态环境恢复工作。
3.4建立群防群治 网络 ,制定地质灾害防治预案群防群治要重点发挥乡(镇)国土资源所工作人员的纽带作用,做好上传下达信息反馈工作,按地质灾害易发区防灾预案做好地质灾害群测群防工作对预报的地质灾害易发区内的地质灾害隐患点、高陡斜坡、陡崖、古泥石流沟(堆积区)做好巡查、监测遇临灾险情时采取紧急避让措施 ,避免人员伤亡暴雨期 间要结合当地的天气预报 ,并按群防群治网络的责任区落实到乡镇 、单位和监测人。直接涉及到人民生命财产安全的要直接将地质灾害防灾避险明白卡送达到受威胁人员手中,将防灾措施落实清楚凡有地质灾害隐患的乡镇.应立足于本辖区地质灾害的实际.有的放矢地制定 出防灾减灾预案.明确辖区内地质灾害易发区和多灾区,进行分类管理监测信息工作要做到灾害易发区 日测 日报 ,定人定岗监测.随时洞察灾害变化发展态势 ,保持上下左右的信息联系,为灾害防治工作提供宝贵的第一手资料.便于灾害调查组及时对辖区内险情明显的区域或已发生灾害的范围、成 因、危害程度及发展态势展开全面的调查 ,以有利于产生突发性地质灾害时人员、物资的转移、避让及撤离疏散到安全地带。
4结语
地质灾害防治是一项长期艰苦的任务 ,在防治灾害的过程中,要不断完善运作机制, 总结 经验教训.提高地质灾害防治工作水平,降低因地质灾害传播作用而造成的人员伤亡和财产损失.减少地质灾害给人民的生命财产造成损失,改善生存环境,促进生存环境与 经济 建设协调发展达到地质环境与经济发展的高度协调统一。
篇5
1 项目背景
“三峡库区降水资料传输监控与信息平台”是“三峡库区降水资料分析处理系统”的重要组成部分,为“三峡库区降水资料分析处理系统”提供数据传输、传输状况监控和降水实时资料和预报产品的信息功能。
2 技术路线
“三峡库区降水资料传输监控与信息平台”包括数据传输与监控模块和降水信息模块两个部分。数据传输与监控模块采用C/S模式,使用C#语言开发;降水信息模块采用B/S模式,使用语言开发。系统采用模块化设计与实现,其中降水资料信息模块由于需要部署于《三峡库区三期地质灾害防治监测预警工程崩塌滑坡专业监测系统和预警指挥系统》总框架中,按照系统开发要求,遵照使用规范,采用三峡地质灾害防治指挥中心提供的框架进行集成。其余模块采用自主开发的框架集成。
3 系统结构设计
三峡库区数据传输与监控模块和降水资料WEB信息模块分别实现数据的传输与显示。其中传输与监控模块部署于湖北省气象局,包括四个子模块:数据传输子模块、传输日志入库子模块、传输状况监控子模块与传输状况统计子模块。负责传输所有实时资料与产品数据至三峡库区地质灾害防治工作指挥部,对数据传输情况进行监控查询显示,以及对数据传输情况进行统计。三峡库区地质灾害防治工作指挥部通过网络专线访问部署于湖北省气象局的数据监控网站,实现对数据传输的监控。
三峡库区降水信息模块包括产品图片生成子模块、库区降水信息入库子模块和气象信息WEB子模块。其中产品图片生成子模块部署于湖北省气象局,其生成的图片文件由数据传输子模块传送至三峡库区地质灾害防治工作指挥部,气象信息入库子模块和气象信息WEB子模块。部署于三峡库区地质灾害防治工作指挥部,用于数据的查询与显示。
产品图片生成子模块包括短时临近预报产品图片生成功能和精细化预报产品图片生成功能;气象信息入库子模块包括自动站小时观测数据入库功能、未来3-12小时降水预报产品入库功能和降水释用预报产品入库功能;气象信息WEB子模块包括以下功能:卫星资料数据查询显示、自动站实时数据查询显示、自动站数据统计、降水释用预报查询显示、中尺度数值模式降水预报查询显示、过去1小时降水估算查询显示、未来2小时降水预测查询显示、未来3-12小时预测查询显示。
4 数据流程
三峡库区降水资料传输与监控模块数据流程如下:三峡库区地质灾害防治工作指挥部需要的预报产品生成后,传输到数据传输服务器,由数据传输子模块传送到三峡库区地质灾害防治工作指挥部,并记录相关传输日志。传输日志入库子模块实时读取传输日志,解析并入库。传输状况监控子模块与传输状况统计子模块布局于同一web页面内,其中传输状况监控子模块负责实时数据传输状况,传输状况统计子模块负责对传输状况进行统计并生成excel文件,用于定期的汇报。
三峡库区降水信息模块数据流程如下:产品图片生成子模块生成部分短时临近预报产品(过去1小时降水估算产品、未来2小时降水预测产品)与部分精细化预报产品(中尺度数值模式降水预报产品)这三种产品的图片,提供给气象信息WEB子模块使用。自动站实时观测数据与部分产品数据(未来3-12小时降水预报产品、降水释用预报产品)由气象信息入库子模块将数据解析并入库。最终由WEB子模块所有信息。
5 小结
作者简介
篇6
“5·12”汶川地震后,受灾地区生态环境安全问题日益突出.近年来,对泥石流等自然地质灾害的研究主要采用影响因子分析和评估方法.例如,利用GIS提取数据,进行关联因子研究、构建三维模型分析地质灾害安全性、分析数据与湿度模型相结合探索诱灾主因[110].我国在该领域的研究还处于初步阶段,主要集中在对地质灾害易发生程度的评价或预测模型的数字模拟实现方面[1112].文献[13]利用数字高程模型(digital elevation model, DEM)模拟泥石流形成的地形特征,重点选择汇水量因子和坡度因子进行关联性分析.文献[1415]利用汇水量模型计算、坡度统计以及含沙量计算等方法,实现了对泥石流的仿真模拟.但上述成果还不能满足土地利用安全性分析和建设规划指导的需求.
汶川地震后,都江堰虹口乡山体塌方严重,泥石流活跃,沿河景区旅游基础设施受损严重,重建开发迫在眉睫,场址的安全性分析研究尤为重要.本文选取虹口乡庙坝村重建场址和毗邻深溪沟泥石流发育区域作为研究范围,研究灾后重建场址的土地利用安全性.西南交通大学学报第48卷第2期付飞等:灾后景区建设场址安全性分析
虹口乡由于地形起伏较大,山地坡面物质下迁剧烈,再加上区域降雨量过大,造成震后该区域泥石流灾害十分活跃.笔者通过采集地形数据及野外调查补充,并借鉴国内对泥石流模拟分析的成果,深入探索汇水量因子和坡度因子与自然地质灾害的关联性,进而寻求在受泥石流威胁区域内有效实现景区开发建设场址土地安全利用的规划方法,并为灾区建设的生态安全性评价和可持续发展研究提供科学依据.1数据来源(1) 数据类型.研究数据包括栅格图像数据和矢量CAD图像数据.栅格图像数据包括2007年震前都江堰虹口乡卫星航测图和地震、泥石流二次灾害后的航空影像图[16](图1).
文献[14]借鉴空间分布式水文模型原理[15],跟踪从流域出口顺流向到每个上游单元的汇流路径,用汇流路径除以流速计算整个汇流路径的汇流时间之和,得到各个网格单元到达流域出口的总汇流时间.对各个汇流时间段内到达出口的所有单元的体积流和产沙量分别求和,得到出口的清水流量和泥沙流量,进而得到含沙量.汇流累积量分布因子是对泥石流危险评价的一个重要指标.
笔者借鉴GIS水文模型对泥石流的模拟途径,产生派生汇流累积量分布及出水口图,并与泥石流灾害图叠置进行分析(见图7).
图7中a~g表示模型模拟汇流出水口.由于出水口以下为坡度较小的城镇建设用地区域,故汇流呈直线穿越城镇场址注入河流.图7中a~g为2010年泥石流灾害图显示的滑坡、泥石流冲击沟等地质灾害重点区域.显而易见,绝大多数地质灾害点均位于汇流出水口区域或流径上.汇流在出水口及注入河流路径过程中,流量极大,流速极快,表层土壤极易流失,因此,汇流作用是地质结构破坏、含沙汇流(泥石流)行径形成的一个重要内因.
4灾后景区重建场址的土地安全利用规划策略(1) 灾后陡坡敏感带的安全监测和生态修复
① 灾后陡坡敏感带的安全监测
利用GIS水文模型模拟研判,对建设场址周边山区区域进行生态安全性分析,加强对陡坡敏感带安全监控系统建设,同时,在河岸生态景观廊道带注重防灾减灾功能的规划,减小城市对生态敏感区的干扰,加强生态敏感区的安全管理.
② 水土流失区的生态修复治理措施
水土流失主要通过降水、侵蚀、冲蚀地表而造成生态退化.通过控制土壤侵蚀,保持生态系统地表基底稳定.地表基底是生态系统发育与存在的载体,基底不稳定,生态系统就不可能持续演替和发展.
根据地质条件进行修复区分类,重点控制山坡坡度大、自然生态环境质量差、高强度水土流失发生区.由于震后坡度类型更为复杂多样,可通过背沟、地埂、边涵和挡土墙等工程,基本遏制山坡地造成的水土流失.
恢复植被和土壤,确保一定的植被覆盖率和土壤肥力.自然生态系统的恢复在很大程度上是以植被恢复为基础,用人工手段使植被在短时期内得到恢复.植被自然恢复的过程通常伴随着适应性物种进入,肥力积累缓慢,土壤结构改善缓慢.确定不同等级的生态敏感区,严格控制或禁止人工干扰(如开垦农田、伐树等)和开发建设干扰(如山体爆破对敏感区的影响等).针对不同的地理条件,分别采取封山造林、人工促进天然林更新、人工植苗造林等措施,逐步恢复山区生态环境.
(2) 灾后建设场址土地安全利用规划策略
生态安全指自然生态系统是否影响人居环境安全,以及自然生态系统遭人工环境干扰后,自身结构是否稳定安全.通过对灾后建设场址区域的坡度和汇流累积量因子进行分析,认为建设场址的生态环境存在较大生态安全威胁,人工环境持续对自然环境的干扰,使生态危机更趋严重,无法保持建设场址区域环境的稳定安全.因此,对建设场址的土地规划(图8)应从以下方面实施有效调控策略以改善生态环境.
① 生态维育与控制策略
加强泥石流孕育区中区域1~4的监控及水土流失治理.在坡度陡变带及邻近过渡区禁止开垦农田,加强林草固土建设.对城镇用地范围内地质灾害点a~g处的治理,采取增设30~50 m的固土林草带措施,既可防止地质结构进一步恶化,也可阻隔人工环境的干扰.
在出水口a~g处以及沿汇流注河路径增设固土植被带,根据地形构建固土植被网络带,将城市建设用地、农田等镶嵌其中,形成土地利用的景观生态安全格局.这一措施也将有效分割和削弱了人工环境的干扰影响.
② 生态保护与协调策略
城镇用地范围内保留了较多的原自然植被带,加强对这些植被群落的有效保护,对维护建设场址的物种稳定及稳定与改善栖息地生态环境起到积极的作用.
由于汇流出水口a~d较密集,水流作用和人工环境干扰已引起多处地质滑坡,地质灾害点周边用地生态适宜性极差,其发展环境是不可持续的.故调整该区域的农田用地,使固土植被区与原自然植被区连接,形成拥有较大生态环境面积的生态涵养区,并以此逐步改善A~D处的自然生态环境,确保重建场址的生态安全和可持续发展.
图8建设场址土地安全性分析及调控策略图
Fig.8Land safety analysis and control strategy map of the construction site
5结束语采用组件式GIS技术,构建了数字高程模型及水文分析模型,以都江堰虹口乡庙坝村灾后重建场址及毗邻深溪沟沿山区域的泥石流等自然地质灾害多发区为模拟区域,对地形坡度、汇流因子的关联性进行了评价.结果表明高坡度带和汇流流径区域的生态环境较为脆弱,易发生地质灾害,这与该地区实际发生泥石流等地质灾害的情况基本吻合.
对河岸地质灾害孕育区的维育控制措施、建设场址的生态保护、安全调控措施的制定、山地河流景观的开发控制、旅游安全及防灾减灾管理等方面具有重要的参考价值.由于影响泥石流水文特征的因素复杂,受区域气候和植被覆盖等因素的影响较大.
本文提出的数字高程模型分析方法在适用范围和功能上还有待进一步提高.将空间数据处理功能强大的GIS技术应用于地区泥石流等地质灾害的计算机仿真研究和场址安全性分析,改进传统的二维平面规划设计方法,应用于基于三维地形、水文空间分析的土地安全利用规划策略的研究.
参考文献:
[1]PEROTTOBALDIVIEZO H L, THUROW T L. GISbased spatial analysis and modeling for landslide hazard assessment in steeplands, southern Honduras[J]. Agriculture Ecosystems and Environment, 2004, 103: 165176.
[2]TASSETTI N, BEMARDINI A. Use of remote sensing data and GIS technology for assessment of landslide hazards in Susa Valley[J]. EARSeLe Proceedings, 2008, 7(1): 5967.
[3]DHAKAL A S, AMADA T. Landslide hazard mapping and its evaluation using GIS: an investigation of sampling schemes for a gridcell based quantitative method[J]. Photogrammetric Engineering and Remote Sensing, 2000, 66(8): 981989.
[4]IBRAHIM W, RAINIS R. Modeling landslide using GIS and RS: a case study of upper stream of Langat River basin[J]. Malaysian Journal of Environmental Management, 2004(5): 113122.
[5]GORSEVSKI P V, FOLTZ R B. Statistical modeling of landslide hazard using GIS[C]∥Proceedings of the Seventh Federal Interagency Sedimentation Conference. Reno: [s. n.], 2001: 103109.
[6]LEIR M C, ENGLISH R R. Statistics and GIS: tools for landslide prediction in the reduction in the lower Fraser Valley[C]∥Southwestern British Columbia, 47th Canadian Geotechnical Conference. Nova Scotia: [s. n.], 1994: 588597.
[7]RAMAKRISHNAN S S, KUMAR V S. Landslide disaster management and planning: a GIS based approach[J]. Indian Cartographer, 2002(5): 192195.
[8]GRITZNER M L,MARCUS W A. Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette river, Idaho[J]. Geomorphology, 2001, 37: 149165.
[9]杨健,李海波,余波. GIS在地质灾害预测中的应用[J]. 中国水运,2010,10(1): 7475.
YANG Jian, LI Haibo, YU Bo. GIS application in geological disasters prediction[J]. China Water Transport, 2010, 10(1): 7475.
[10]杨泰平,唐川,齐信. 基于GIS技术的汶川8.0级地震诱发地质灾害危险性评价[J]. 灾害学,2009,24(4): 6872.
YANG Taiping, TANG Chuan, QI Xin. Evaluation on geological disasters triggered by the 5·12 Wenchuan earthquake based on GIS technology[J]. Journal of Catastrophology, 2009, 24(4): 6872.
[11]刘连中,罗培. 基于GIS的重庆市地质灾害风险评估系统[J]. 重庆师范大学学报:自然科学版,2005,22(3): 105108.
LIU Lianzhong, LUO Pei. GISbased construction of geological hazards assessment system for Chongqing[J]. Journal of Chongqing Normal University: Natural Science Edition, 2005, 22 (3): 105108.
[12]高治群,薛传东,尹飞,等. 基于GIS的信息量法及其地质灾害易发性评价应用[J]. 地质与勘探,2010,46(6): 11121118.
GAO Zhiqun, XUE Chuandong, YIN Fei, et al. GISbased information acquisition analysis and its application to assessment of areas prone to geological hazards: a case study of Jinning county, central Yunnan province[J]. Geology and Exploration, 2010, 46(6): 11121118.
[13]罗晓娟,杨时英,胡炳坤,等. 基于数字高程模型的泥石流沟谷地形特征研究[J]. 西部探矿工程,2009(增刊): 222224.
LUO Xiaojuan, YANG Shiying, HU Bingkun, et al. Study of debris flow gully characteristics based on digital altitude model[J]. West China Prospecting Engineering, 2009(Sup.): 222224.
[14]杨宇,管群,胡凯衡,等. 基于GIS的泥石流流域分布式水文计算系统[J]. 计算机工程,2010,36(5): 260262.
YANG Yu, GUAN Qun, HU Kaiheng, et al. GISbased distributed hydrological computational system of debrisflow watershed[J]. Computer Engineering, 2010, 36(5): 260262.
[15]谢华,都金康,胡裕军,等. 基于汇流时间方法的空间分布式水文模型研究[J]. 武汉理工大学学报,2005,27(12): 7578.
XIE Hua, DU Jinkang, HU Yujun, et al. Study on spatially distributed hydrological model based on routing time method[J]. Journal of Wuhan University of Technology, 2005, 27(12): 7578.
[16]国家测绘地理信息局. 四川特大山洪泥石流灾后高清地图[EB/OL]. [20100825] http:///article/chyw/201008/20100800071748.shtml.
[17]汤国安,杨昕. 地理信息系统空间分析[M]. 北京:科学出版社,2006: 429445.
[18]姚媛,常江,冯钰,等. 城市规划中地质灾害影响的研究[C]∥第八届全国建筑与规划研究生年会论文集.南京:南京大学出版社,2010: 315318.
篇7
一、引言
该变电站位于广西贺州市八步区信都镇,站址位于信都镇南东向约6.0km的程屋村东侧的缓坡上,目前有水泥路面机耕路到达站址边,交通便利,地理位置优越。开展本次地质灾害危险性评估的目的是:通过对拟建项目用地范围地质环境条件和现有地质灾害分析,作出工程建设和运行过程中可能引发、加剧及建设工程本身可能遭受地质灾害的危险性评价,提出地质灾害防治措施建议,达到有效保护建设项目的安全运行,从源头上减轻人为活动引发地质灾害,避免人员伤亡和财产损失;对工程建设用地适宜性进行评价。
评估区地质环境条件复杂程度为中等,建设项目属较重要建设项目,确定本项目评估级别为二级评估。
二、地质环境条件
建设项目用地区位于广西东部,地处北回归线以北,属亚热带季风气候,雨量充沛,气候温和。年平均气压1001.2hpa,年平均气温为19.8℃,年平均最高气温为24.8℃,年平均最低气温为16.4℃,年极端最高气温39.5℃(1989年8月16日),年极端最低气温-4.0℃(1963年1月15日)。
地表水系属贺江流域,贺江水位丰水期水位高程为47m~53m,枯水期水位为43m~44m。五六月流量最大,其中6月平均流量479.1m3/s,1月份流量最小,平均流量66.6m3/s,年平均流量为204.4m3/s,年径流量64.28亿m3,年径流模数为14.7L/s·km2,多年平均水位变幅7.5m。场地位于贺江东侧约2.0km处,场地最终平均平整高程约为63.0m,贺江100年一遇洪水位为55.18m,对场地无影响。
评估区整于贺江冲积平原上,地形与地貌类型简单,场地微地貌为缓丘,缓丘呈浑圆状,地面高程约53m~66m,坡度3°~10°,最大高差约6.5m,场地地势中间相对较高,且平缓开阔,四周低。场地内有旱地,主要种植有桉树、花生等,站址区及其附近未见基岩出露。经现场调查,站址区未发现崩塌、滑坡、岩溶塌陷等不良地质作用
根据区域地质资料及现场地质调查,场地内上覆土层主要为第四系贺江三级、四级阶地冲洪积土层(Qa+pl),下伏基岩主要为泥盆系中统东岗岭阶(D2d)灰岩、含燧石灰岩、白云质灰岩、白云岩等。
评估区所在区域构造上位于南华准地台上,桂湘赣褶皱带南缘与华夏褶皱带之过渡地带,按构造运动和沉积建造可划分为早古生代地槽发展阶段,加里东后地台阶段。区域经历了六次主要的区域性构造运动,其中加里东、印支、燕山、喜马拉雅四次为强烈的造山运动,“贺江”、“东吴”二次为幅度较大的震荡运动。
三、地质灾害危险性现状评估
现场调查及资料分析结果表明,评估区地形平缓,地形高差小,未见有崩塌、滑坡,岩溶塌陷等不良地质作用发育。
此外,根据现场地质测绘、调查,当地堤坝、等级公路路基均未见开裂现象,水田、旱地、水塘边均有明显陡坎,场地未见有膨胀岩土地基胀缩现象,附近房屋墙体、基础未见开裂现象。综合上述,评估区在目前自然环境条件下,地质灾害现状弱发育,地质灾害危害程度和危险性小。
四、地质灾害危险性预测评估
根据野外地质灾害调查,结合分析评估区的地质环境条件,并考虑到建设项目自身的特点,对预测评估的地质灾害灾种作如下考虑:1)工程建设可能引发或加剧边坡崩塌、滑坡,基坑崩塌、滑坡等地质灾害等;2)工程建成运营后,建设工程本身可能遭受边坡崩塌、滑坡,地基不均匀沉降,膨胀岩土地基胀缩及岩溶地面塌陷等地质灾害等。选取边坡崩塌、滑坡,基坑崩塌、滑坡,地基不均匀沉降,膨胀岩土地基胀缩及岩溶地面塌陷作为本项目地质灾害预测评估的主要类型。
建设项目的开挖基坑主要位于评估区的各种拟建建(构)筑物地段。根据设计方案,评估区内的建(构)筑物荷载均较小,大部可采用天然地基,少量填土较厚的低洼地段采用桩基础。基坑一般小于5m,组成基坑壁的岩土体主要为硬塑土层,土层混圆砾及砂质较多,粘性较差,基坑在重力、浅层滞水、降水作用的影响下,可能会引起基坑发生崩塌破坏。但是基坑范围和深度均较小。因此,预测工程建设引发基坑崩塌、滑坡地质灾害的可能性小,危害对象为施工期间基坑内施工人员及设施,危害程度小,危险性小。
预测工程建设引发或建设工程本身遭受边坡崩塌、滑坡地质灾害可能性小~中等,危害程度小~中等,危险性小~中等;工程建设引发基坑崩塌、滑坡地质灾害可能性小,危害程度小,危险性小;建设工程本身遭受地基不均匀沉降地质灾害可能性小~中等,危害程度小~中等,危险性小~中等;建设工程本身遭受膨胀岩土地基胀缩地质灾害可能性小,危害程度小,危险性小;建设工程本身遭受岩溶地面塌陷地质灾害可能性小,危害程度小,危险性小。
综合评估将建设场地划分为地质灾害危险性中等区(Ⅱ区)和小区(Ⅲ区),建设用地适宜性评估为基本适宜(Ⅱ区)和适宜(Ⅲ区)。
对工程建设可能引发和建设工程本身遭受的地质灾害,只要采取一定的防治、避让措施,即可避免地质灾害的危害,建设项目可行。
五、地质灾害防治措施建议
地质灾害的防治是一项系统工程,地质灾害防治的根本目标是取得最佳的减灾效果。地质灾害的防治必须坚持以人为本、预防为主、避让与治理相结合的原则。因势利导,因害设防,各种防治技术相结合,达到减灾的目的。
根据地质灾害现状评估、预测评估和综合评估结果,拟建建设项目场地内质灾害现状为弱发育,预测地质灾害发生的可能性小~中等,其引发和遭受的地质灾害的危险程度和危险性小~中等。根据工程建设特点及可能出现的不同地质灾害,按照相应规范提出对应措施。
工程建设中应尽量减少人类工程活动对地质环境的不利影响,尽可能避免引发地质灾害,对预测可能发生地质灾害的地段应采用合理的预防、处理和避让措施,防止地质灾害发生。工程建设过程中和建设后,应对地质灾害进行监测,一旦发现险情,及时采取相应的措施,尽可能避免或减轻地质灾害造成的损失。
参考文献
篇8
引言:矿产资源的开发和利用直接关系着我国工业经济的发展,直接影响着我国国民的生活。因此,我国必须要高度重视矿产资源的开发和利用。矿山开采的强度及规模也越大,对矿山地质环境的影响越来越严重,对生态环境和自然资源造成严重危害和破坏。从而在开矿的过程中引发矿山地质灾害。不同的地质灾害,开采矿山企业必须进行全面的分析,采取有效的措施对各种地质灾害进行预防,降低地质灾害发生的频率,减少生产过程中对地质环境的破坏,确保生产过程的安全。在出现地质灾害以后,矿山企业必须要立即启动应急预案,进行有效处理,降低地质灾害带来的损失。
一、环境地质与地质环境。
1.1矿山地质环境它主要研究在矿山开采过程中,自然地质作用、人为地质作用与地质环境之间的相互影响与作用。其邻近地区的岩石、表层、大气圈、水圈、生物圈组分等组成的环境系统。矿产资源开发为主导,岩石圈为依托,断改变着地球表面岩石圈自然环境平衡的地质环境。,及由此产生的环境污染与破坏问题。环境地质是介于环境学与地质学之间的学科,其研究对象就是地质环境,主要指是人类活动对地质环境的影响。
1.2 矿山环境主要研究对象是地质环境,矿业周边的地质环境。。良好的地质环境有利于矿业的正常生产,脆弱的或恶化的地质环境必将影响和制约矿山正常生产。矿山环境地质研究的两方面:(1)研究环境质量和容量,预测对矿山开采的负面影响,选择矿山建设布局、避开易引发地质灾害选区。(2)研究矿产资源开发前后对地质环境的影响,开展矿山地质环境质量或环境地质问题评价,预测开采危害程度,控制、预防矿山环境地质问题发生与发展,。
1.3 矿山地质灾害是由于人为的采矿引发的灾害,对生态环境和自然资源造成严重危害破坏。矿山开采对地表造成严重的破坏,加速水土流失、地面塌陷、滑坡诱发、地震、岩爆、冒顶片帮突水、瓦斯爆炸泥石流等灾害。矿山抽排水造成地下水位下降、地下水资源枯竭,地下开采诱发、引起地表环境污染。露天开采占用土地且非常普遍容易产生滑坡、塌方等地质灾害现象,因此,研究矿山地质灾害的发生及发展规律,提出防治灾害的措施,对保护矿山地质环境显得尤为必要。
二、评估
矿山地质环境现状评估指,对矿业活动影响和破坏及对现状进行分析判断其性质、变化及危害情况,
2.1生态的破坏。矿山环境地质在矿产资源开发中,引发的环境地质问题,这与开矿时间以及开矿强度等有密切的关系。环境地质分为三类环境污染、生态破坏和地质灾害。环境污染问题主要有矿山水资源污染、地下水污染、土壤污染,大气污染,废弃物污染,等污染物。生态破坏主要有地形地貌改变,种植物破坏,土壤流失,地下水位下降等,很多人文景观破坏土地沙化等因素造成生态破坏。
2.2地质灾害。地质灾害主要有崩塌,地面塌陷,沉降、裂缝,水土流失,泥石流等。主要原因是矿山过度的开采造成负荷超重,造成地质环境的应力失去平衡,从而引发各种地质灾害。地质灾害带来的危害强度远比生态破坏恶劣,因此,我国矿山企业必须要高度重视对地质灾害的预测和防治,保证矿山企业生产的安全性。其中崩塌带来的影响极大,常会致使地表建筑物,公路,铁路等设施被破坏或被掩埋,严重情况下还会造成人员伤亡。
2.3滑坡是矿山地区较高斜坡上的土壤,碎石等物质承受不住雨水的冲刷岩块等物质快速从山坡上流至山坡下,并在低洼处堆积起来的现象。泥石流和滑坡所带来的影响极大,如果发现不及时,必定会给矿山企业以及矿山生产人员带来严重的损失,严重的灾难。比如房屋坍塌、掩埋工人住房,冲毁公路等。滑坡,泥石流发生的时间段不同,其影响程度也不同。
2.4综合地质环境问题的影响程度和危险性等级。地面突然陷落,出现陷坑或是大型洞口。原因可能是地下水位下降导致地表岩石以及地表土体向下陷落,也可能是因为在开采矿产资源的过程中未做好支撑措施,导致地面坍塌。严重的地面陷落,不仅会破坏地表的各种基础设施,同时还会威胁到周边地质环境的稳定性。
三、展望与防治研究
3.1研究保护矿山地质环境就必须研究掌握其发展变化规律,才能够做出科学的预测,才能够为矿山的正常生产,减少矿山环境地质问题及经济损失。建立研究机构,重点是环境地质图系的内容,图层结构、图式图例及嵌表形式等,以及计算机自动成图等矿山环境地质编图理论与方法研究。构建了矿山环境治理绩效评价指标体系,但由于因矿产资源类型的不同,地质环境不同,矿山环境问题在保护程度,地方经济发展水平以及治理方面有一定的差别,在指标的设计上,为了尽可能做到全面兼顾,还要应对实际应用。在矿山环境治理绩效的研究的理论、指标、方法上还有待深入,这未来进一步的深入研究以及各方人十的大力支持,汇集合力,才能把论文中未涉及的相关研究和分析进一步完善。
3.2地质环境信息系统的建设。建立查询方面、可视化等功能完善矿山地质环境信息系统平台是实现信息资源共享,矿业活功是人类的经济活动,矿山环境质量好坏受国家法律、产业政策影响较大,因而在加大矿山地质环境保护的理论技术研究同时,加强法律、法规政策研究,依法行政保证矿山地质环境步人法制化轨道。
3.3加大对环境保护的宣传。矿产资源可持续发展的目标是实现国家社会、经济和生态环境的可持续发展,保障我国矿产长期稳定供给是国民经济和社会发展的需求。应尽可能做到合理、科学地开采、加工和利用矿产资源,在对矿山环境治理方面也要高度重视,以提高矿产行业的经济效益和生态效益。保护生态环境,实施可持续发展战略,需耍共同参与。环境保护宣传教育对于环保工作起着先导、基础、推进和监督作用,多建设一些污染防治和生态保护等环境公共设施项目,宣传党和国家有关环境保护的方针、政策、法律、法规的重要使命。开展环境保护宣传,让更多的群众投入生态保护与建设中来,成为环保知识的宣传者、实践者、环境质量的监督者、绿色文化的传播者、生态文明的建设者,使生态环境保护得以优化,环境保护工作重视程度越高、治理的越早、污染就会越小、效果就会越明显我们应抓住国家扩大内需的有利时机。
3.2建立矿山环境地质灾害动态监侧和通过建立覆盖矿山地质环境调查、评价、监测、保护管理信息系统。加大国家在矿业行业结构调整中干预的力度,促进新型矿业经济的崛起和发展,使其可以在矿区环境监测和安全生产方面有较充足的资金投人。鼓励多元资本投资矿山生态环境治理和矿地整治,建立治理资金投人和利益补偿机制,推动矿山生态环境治理和矿地整治工作的开展。矿产资源开发既不能让代内人承受采矿者破坏地质环境带来的环境问题,也不能让后代人承受当代人环境破坏的恶果,矿产资源开发与地质环境保护是矿业可持续发展的另一关键问题。因此,在矿山地质环境调查基础上,通过定量评价,编制矿山地质环境防治区划,对于实施矿业可持续发展具有重要作用。
结束语:
篇9
2 测绘工作中遥感技术应用现状分析
2.1 测绘遥感应用不够广泛
在我国,在所有的测绘工程项目中,遥感技术是完成任务目标的必备手段,可见,具有十分广阔的发展前景,技术的水平与领域也随之不断延伸。然而,由于人们习惯和观念,对遥感技术存在一定陌生感,导致其推广受限。
2.2 遥感工作资金造价高
在实际工作当中,有些测绘项目因为遥感技术价格高等问题望而怯步,随着近几年来计算机技术以及遥感技术的快速发展,促成遥感技术由最开始的理论层面正式步入实质阶段,其具体的环境资源、灾害监测、地质勘探以及地理测绘方面的检测功能逐渐明显。但是,仍然遥感技术造价高、花费大等特点仍然制约了其发展。此外,在我国,遥感技术主要应用在一些重点研发的科研项目上,譬如说资源勘探、环境污染以及地址灾害等方面,而用于煤矿开采或工程地址检测方面的则少之又少。
2.3 遥感信息源空间分辨率较低,应用水平较低
遥感技术在环境污染检测以及地质灾害勘测方面的优势将会促进我国环境保护失业用户地质灾害研究事业的长远发展,所以,从某种方面来看,提高遥感技术信息员的空间分比率,在测量水平、覆盖范围、以及信息数据准确性方面有着不容忽视的作用。
3 完善遥感技术在测绘工作中应用的策略及其具体做法
随着时展,遥感技术也被广泛应用于各个测绘工程项目中,遥感信息技术的漏洞与不足也愈加明显,而完善遥感技术手段、加强其宣传力度以及提高技术水平可以说是普及遥感技术的主要方式。
3.1 遥感技术在测绘工作中的应用
现阶段,遥感技术在我国测绘工程项目中应用较为广泛,因为遥感技术相比传统的测绘工具,其优势更为明显,避免了很多容易出现的测绘漏洞。
(1)跟传统的测绘技术相比,遥感技术发生人为干预的情况较少,可以客观、全面的将监测区域的情况反映出来。而若是采用传统的方式进行测量,极容易出现误差偏大或误差累积等现象。而不得不说,遥感技术的测量数据比较真实、准确。譬如说:在矿区资源的定位和监测上,可以通过遥感技术来确定煤矿资源的具置,避免以为内不科学开采威胁生命或资源浪费等问题。
(2)与传统的测绘方式不同,遥感技术能够动态实时、全方位、全天候的进行工作,这可以说是遥感技术最为显著的特点,它以全球定位系统作为后盾与支撑,在完成空间定位与导航工作之后,能够实时监测区域的实际情况。
(3)遥感技术发展至如今,应用范围已经极为广阔,它可以迅速了解所在区域的地质特点、资源所在地以及地理情况,从而获取全面、精确的数据。
3.2 加强对遥感技术深度研究,拓展应用领域
可以说,在地质调查这项工作中,应用遥感技术不仅是社会经济发展的急迫需要与客观要求,从事物本身出发来看,也是十分必要的。就我国目前的发展态势来讲,遥感技术的发展前景极为广阔,应进一步以研究遥感技术为出发,提高其精度、准确度以及宣传力度。首先,加大资金的投入力度可以说也为遥感技术的深入研究工作做出了贡献。我国必须以进一步开发遥感技术为核心,以强国为目标从而不懈努力。除此之外,我国还需提高思想认识与观念意识,增加遥感技术的覆盖范围,加大资金扶持力度,解决当前各大测绘工程项目应用遥感技术而遭遇的一些难以解决的问题,拓展其技术领域。其次,相关部门也应重视起来,加强对遥感技术的推动、深入研发与鼓励,可制定一系列优惠政策来促进遥感技术的应用及普及。
3.3 大力推广遥感技术,加大遥感技术普及力度
只有在大力推广工作中,才能充分的显示遥感技术对测绘工作的适应力与优势。现阶段,不少应用遥感技术的测绘工程项目已经发现遥感技术高超的环境适应力以及技术优势,譬如谁:能够勘测不同地形,实现对地质灾害、气象灾害以及火灾等的全程监测,获取真实的数据,为建立灾害防御制度以及我国灾害研究做出了巨大的贡献,适合监测不同地形,可实现对地质灾害、气象灾害以及火灾的全程监测,从而获取有效的数据信息,为建立灾害防御制度以及我国灾害研究做出了巨大贡献,所以,增加遥感技术的覆盖面积以及普及程度势在必行。
(1)利用遥感技术来降低项目工程的测绘造价,实现遥感技术在各行各业的实用度。只有降低资金成本,让更多和项目去接受,而不是目前集中在几个重点项目上。
(2)提高遥感技术的空间分辨率也将有利于遥感技术的普及。早期遥感技术受分辨率限制,较多应用于宏观的检测,而当前由于新工作思路的拓展,遥感技术与地质的符合程度越来越高,受距离的限制也越来越小。但是相关人员在改善工作思路,加大遥感技术地质检测水平上还需进一步努力。
4 结语
总之,在当今的测绘工作中,应用遥感技术已经成为社会发展的必然趋势。随着计算机的普及与科技的进步,遥感技术的覆盖范围将会大大增加,实现遥感工程司、灾害、气象、地质遗迹环境资源监测等项目,拓展遥感技术的应用范围,让其充分发挥自身优势,在灾害预防、社会发展以及国民经济上做出贡献。
篇10
滑坡预报的核心是预报方法与失稳判据[1],国内外在滑坡灾害预测及边坡稳定性分析方面已取得显著的进展。这些研究成果一般采用传统的力学、统计学方法,但是滑坡的孕育发展是一个复杂的过程,其中,堆积层滑坡是指发生在第四系及近代松散堆积层的一类滑坡,该类边坡是一个具有众多因素、结构复杂、功能综合的巨大系统组成的[2]。非线性科学如突变理论、混沌理论和分形理论等正是以处理复杂系统见长,于是人们将处理复杂系统的非线性科学引入滑坡灾害地质过程的演化系统,相继建立了一些描述斜坡演化的非线性动力学方程。
2 分形参数Hurst指数及其在堆积层滑坡预测预报中的作用与意义
(2)如果0.5
(3)如果0
2.3分形参数Hurst指数在堆积层滑坡预测预报中的意义
作为滑坡体变形演化过程的历史记录,滑坡体的实测位移值存在统计上的自相似性[9],具有分形结构特征,且随着变形的发展,分形特性越来越明显。根据R/S分析理论,通过计算,当H>0.5 时,代表事物发展过程具有持久性,事物所处状态将不发生变化且具有相对稳定性,表明边坡稳定性和位移值具有持久增大的趋势,其稳定状态将不发生变化,H指数相对值越大,边坡稳定性越具有持久性,其稳定性相对也就越高。当0
3 R/S分析法在堆积层滑坡中的预测预报作用
3.1 新滩滑坡位移监测
3.2 滑坡时间—位移数据处理与分析
将时间序列划分为若干区间,每个区间都是独立的。为了确保每一区间计算结果不受其他区间数据影响,每一个数据必属于、且只属于一个区间,然后对每一个区间分别计算Hurst指数。贺可强,孙林娜,王思敬[7]用这种分区方法,取得良好效果。
1、等间距分段处理结果及分析
深入分析1978年1月至1984年12月14个区间两个监测点的Hurst指数变化,我们可以看到随着时间变化,位移Hurst指数存在先增大后下降的趋势,大约在1982年7月至12月达到峰值(0.93左右),此后有曲折下降的趋势。
2、 不等间距分段处理结果及分析
新滩滑坡的变形时期按照位移速度的大小分为初始蠕变期,匀速变形期,加速变形期,剧变破坏期(如图1)。计算各个阶段的位移Hurst指数值以及变化如图3所示。
3.3 八字门滑坡的位移Hurst指数及其预测预报
由图4可知,两个监测点的位移Hurst指数均稳定在0.84以上,最大值为0.91左右,还未达到峰值(0.93),且各段差距不大,总体上处在Hurst指数曲折上升阶段。从新滩滑坡得出来的规律可推知八字门滑坡的稳定性具有持久性,近期不会出现滑动,滑坡目前处于初始蠕滑阶段。
4 结论
本论文应用R/S分析法对新滩滑坡的位移数据进行分析计算,得出如下结论:
(1)边坡位移Hurst指数随着边坡稳定性的发展演化,呈现出先曲折增大后曲折减小的趋势,峰指大约为0.93左右,当边坡稳定性降低时出现降维现象,降幅为0.2左右。
(2)计算出临界降维值DH,取DH为边坡整体失稳判据,监测点降维后的Hurst指数均小于DH,由此可作为一个边坡整体失稳的预测预报判据。
(3)不同稳定阶段的Hurst指数值不同,随着边坡稳定性的发展,位移Hurst指数呈现先增大后减小的总体规律,峰值为1.0,在剧变破坏期位移Hurst指数存在降维突变,降幅为0.2左右。
(4)利用新滩滑坡的位移Hurst指数规律对八字门滑坡进行了预测预报,得出八字门滑坡的稳定性具有持久性,近期不会出现滑动,滑坡目前处于初始蠕滑阶段。
参考文献
[1] 王尚庆等著,长江三峡滑坡监测预报[M],地质出版社,2008
[2] 张进,房定旺等,非线性科学在滑坡预测预报中的应用[J],金属矿山,2006,5:46-48.
[3] B.B. Mandelbrot, Fractals:The Fractal Geometry of Nature [M]. San Francisco. CA: Freeman, 1982.
[4] H.E.Hurst Long-Term Storage in Reservoirs: An Experimental Study [J], Trans,Am,Soc, Civ, Eng,1951:116.
[5] 孙霞,吴自勤,黄畇,分形理论及其应用[M], 合肥:中国科学技术大学出版社,2003.
[6] 牛奉高,刘维奇,分数布朗运动与Hurst指数的关系研究[J],山西大学学报[J],20101(3):280-284.
[7]贺可强,孙林娜,王思敬,滑坡位移分形参数Hurst指数及其在堆积层滑坡预报中的应用[J],岩石力学与工学报,2009年第6期:1107—1115.
[8]湖北省岩崩滑坡研究所,三峡库区秭归兴山两县地质灾害预警工程专业监测简报[J],2003~2005年。
基金项目:国家自然科学基金项目(No.40672182;40872184);中国水利水电科学研究院开放基金项目 (IWHRKF201019);高等学校博士学科点专项科研基金(20113721110002) 三峡库区地质灾害教育部重点实验室开放基金项目“三峡库区堆积层滑坡位移矢量角失稳判据研究”(项目编号:2008KDZ04);山东省自然基金项目“深基坑边坡位移矢量角对变形控制设计及位移失稳预测的意义研究”(项目编号:BS2009HZ018)。山东省自然科学基金项目“降雨作用下堆积层滑坡变形破坏机理与失稳判据研究”(项目编号:ZR2011DL002)。
篇11
抗滑桩是解决高速公路施工滑坡问题的主要方式,通过多年来的实际使用发现,抗滑桩施工不仅扰动性比较好,实际治理效果也较好,可靠性强,所以被广泛的应用到各种高速公路施工中。但是因为我国幅员辽阔,道路情况、路基情况以及工程所在地区都有一定的差异性,所以抗滑桩施工经验虽然可以通用,但是在细节处理上依然会存在各种问题,影响工程质量。抗滑桩作为一种治理滑坡的主要措施,现如今受到越来越多的重视。其内涵是穿过滑坡体深入于滑床的桩柱,是利用抗滑桩插入滑动面以下的稳定地层对桩的抗力(锚固力)平衡滑动体的推力,以增加边坡的稳定性。
1 高速公路抗滑桩的施工准备
1.1 施工放样
在施工之前,工作人员必须要了解图纸,对公路产生滑坡位置的周围情况进行了解,对滑动层面进行实地的研究。按照图纸当中落孔桩所在位置测定横断面,保证断面位置恶化孔桩的位置相互吻合。可以将抗滑桩的顶底高程投射在断面的显示图上,之后对顶桩上部分土体的稳定性进行测试,验算稳定性结果,从结果来判断是否需要进行清表,保证减载深度以及减载的数量,并且需要保证桩孔在开挖过程中,台上部失稳对孔的安全性。如果在检查的过程中发现附近边坡以及表层容易出现塌陷,则可以根据工程情况,适当对其进行清除。
1.2 设置位移观测点
在施工前必须要对位移观测点布设问题进行分析,方便测定滑坡位移方向以及滑坡可能产生的位移速度。整个施工过程中都需要对滑坡可能产生的位置进行监测,对资料进行全方位分析,绘制出相应的观测点和高程升降方面的矢量图,保证工程施工全过程都在监测范围内,保证施工人员的人身安全,提升工程质量。从我省某高速公路的施工情况来看,该高速公路和铁路处于并行状态,滑坡段的公路甚至和铁路的间隔仅有60m,公路从滑体前缘通过,而铁路则下穿滑坡台阶。这段高速公路产生滑坡不仅影响了公路的实际使用,同时也对铁路的安全运营产生了巨大的影响,所以相关人员在事故出现第一时间赶赴现场,通过十字交叉网法、放射网法和其他方法对该路段进行处理,效果良好。
2 高速公路中的抗滑桩施工技术
2.1 排水孔施工
如果要对有孔滑坡地带实施施工,第一项需要处理的就是排水孔,在施工中关于排水孔位置、标高以及仰角间距等的分析可以依照出水情况分析,综合多方面因素对这三方面的设计情况进行休整。抗滑桩验收之前,不可以实施规模性开挖滑坡体前缘,否则容易导致出现滑坡体失稳问题。如果需要对滑坡的前缘位置进行设计,则必须
先将路堤提升到满足工程基本要求的高度再进行开挖。
2.2 设计与施工差异性
在所有桩开挖之前,首先需要将地质桩孔柱状图及时填录完毕,并对地层岩性以及滑动面位置仔细进行记录,另外还要详细地对擦痕、岩性变化界面以及软弱层等情况进行描述,如果情况比较特殊,可以通过图片资料的方式对其进行记录。整个开挖过程都必须时刻核对滑面的进展情况。如果施工情况与设计人员的设计意图相差甚远,必须技术报告,保证嵌岩深度和抗滑桩自身长度可以满足工程的最低要求标准。
2.3 施工关键点
施工过程中,必须要保证护壁自身厚度、硅的强度以及钢筋的实际使用量满足设计最低标准。在涌水量比较大的时候,可以将排水与堵截相结合,如果需要对导管排水增加的话,在实施空间填塞淘挖中可以应用锚杆或者钢筋网等物品,最后再采用混凝土实施振捣密实,在能够满足其强度要求之后,才能够把导管内部的水全部都集中堵死,以免护臂背面土地因为出现地下水流出而发生井壁塌跨等情况,甚至还会导致出现滑坡问题。在施工过程中一定要确保护臂和护身混凝土强度,可以对其设计要求满足,浇筑桩身之前可以使用水泥砂浆来铺垫,铺垫的厚度需要从工程的实际情况来判断。护壁的各节纵向钢筋必须要通过焊接的方式来施工,保证搭接长度满足工程的发展需求,禁止在施工过程中出现绑扎或者挂接问题,并且施工中不可以在土石分界处以及滑动位置设置搭接位置。在桩身钢筋处理过程中,最大化的将钢筋预制成笼形状,在钢筋笼制造过程中通过埋设超声检测管的方式提升工程质量,避免因为施工不规范而产生滑坡。确保钢筋的连接质量能够和我国相关规定要求相符,尽量选择光对焊方式实施桩身的钢筋焊接,提升焊接质量。
3 结语
对特定滑坡灾害来说,能否合理的选用治理技术是提升滑坡治理效果的主要条件,结合工程实际情况,拟定科学化的施工措施,解决滑坡问题。上文从目前高速公路抗滑桩施工技术的视角出发,旨在提升高速公路工程施工质量,控制因为滑坡问题给工程带来的负面影响,促进我国经济发展,减少工程事故。
参考文献
[1] 李朋丽,林凯明,李家春,等.永蓝高速公路K18+000~K18+350滑坡成因分析与防治措施研究
[J].中国地质灾害与防治学报,2014,1(2).
[2] 赵卫楚,何丕元,徐变.抗滑桩治理赣定高速公路龙南互通古滑坡[J].公路交通科技,2014,12(24).
[3] 张鹏,刘浩宇,应秀梅,徐椿景,傅向荣.抗滑桩对边坡稳定性影响的数值分析[A].北京力学会第17届学术年会论文集[C].2011.
[4] 高涌涛,范涛.钢管混凝土抗滑桩承载力分析[A].第三届全国岩土与工程学术大会论文集[C].2009.
[5] 童广勤,苏爱军,冯明权.基于土拱效应的桩板式挡土墙的挡土板结构设计[A].湖北省三峡库区地质灾害防治工程论文集[C].2005.
[6] 徐良德.抗滑桩桩前滑体出现塑性变形时抗力分布的初步探讨[A].中国土木工程学会第四届土力学及基础工程学术会议论文选集[C].1983.
篇12
随着玉树地震、雅安地震的频繁发生,我国高原地区的地质状况已经引起了广泛重视。目前越来越多的研究表明,我国高原各部分的隆起是不同步的,因此对高原的研究必须分块进行【1】。而生态环境地质是环境地质学与生态科学交叉所产生的新的学科生长点,是环境地质学概念的延伸和研究领域的延拓,是人类认识自然能力发展的必然【2】。本文为此具体了基于生态环境地质的高原地区地质状况研究的难点及其地质灾害的预防,现报告如下。
一、高原地区地质状况分析-川西高原
川西高原是青藏高原东部主体的一部分。南接云贵高原,西面与藏北高原相接,东邻西秦岭和四川盆地,北面与拉脊山、布尔汗布达山、祁连山地以及柴达木盆地相邻。川西高原地势自西向东缓慢倾斜,高原面保存较完整【3】。地质一个最主要的特点是高山大河并列,高原上分布着数列北西-南东或北-南走向的山脉,长江主要支流金沙江、雅砻江、岷江呈南北向分布于高原之上,形成了该区高山深谷地貌。在研究难点中,本文认为川西高原河流阶地成因研究比较困难,主要包括以下几个方面。
(一)侵蚀基准面下降
侵蚀基准面的下降可以由气候变化导致的海平面下降引起,也可以由局部的构造抬升或下降引起。侵蚀基准面下降后,河流向外延伸,原来河口附近出现裂点,加速河流下切,以后裂点位置不断上溯,裂点以下出现阶地。河流的下切也可以从上游开始,这主要是通过沉积物通量-径流量的相对变化引起【4】。
(二)气候变化
气候变化影响到河流中水量和含沙量。气候变干,河流水量减少,地面植被稀疏,坡面侵蚀加强,河水含沙量相对增多,表现为河床堆积填高。反之,气候湿润期,水量增多,植被茂盛,河流含沙量相对减少,导致向下侵蚀。由于长期的气候干湿变化引起堆积、侵蚀交替作用,即形成气候阶地。在某些阶地沉积物里面,有一些复杂的沉积结构,有学者认为它们并非代表了小尺度构造运动的变化,更可能是河流系统对小尺度。此类小尺度或高频气候变化在格陵兰冰芯和北大西洋深海岩芯中都有明确的反映,但河流系统对这些较小幅度气候变化响应的精确时间是充满变数的。
(三)构造运动
构造运动形成的阶地比较普遍,在大面积均匀上升地区,侵蚀基准面下降,河流首先在下游段快速深切,以后河流裂点溯源而上,整个流域都将形成阶地。构造运动常呈间歇性,活动期与相对稳定期交替出现。总的来说,河流阶地的成因是很复杂的,必须具体问题具体分析,才能区分出各种叠加因素,确定阶地的主要形成原因。
我们通过分析,川西高原河流阶地在类型上多为基座阶地,相邻阶地之间的基座高差很大,阶地基座高差气候变化在此高差上很难实现,气候变化形成的阶地,其拔河高度和形成时代的关系曲线基本上直线型的,偶尔发生的构造变形不会影响到阶地的形成。因此认为气候变化不是川西高原河流阶地形成的主要原因。川西高原主要河流阶地位相表现为由上游向下游辐聚的特征,这不符合基准面下降形成的向上游辐聚的位相变化特征。因此,认为基准面下降不是川西高原河流阶地形成的主要原因。综合以上,川西高原主要河流阶地主要是由区域构造抬升产生的,气候变化起辅助作用。
二、高原地区地质状况研究的关键技术分析
(一)模型构建技术
生态环境地质质量评价中评价的方法学是十分关键的,就是研究如何用高原地区各种环境要素的各种质量参数和定量化指标反映县域内的环境要素和总体生态环境地质质量的客观属性,并将这些量化的指标用数学手段构建响应的模型,从而定量评价生态环境地质质量的优劣,以便后续工作划分质量等级。针对分析评价过程中多因素的不相容性,运用主成分分析法、误差向后传播法、层次分析法对高原地区生态环境地质质量进行评价,并比较各模型的优缺点,综合各模型的评价结果完成高原地区生态环境地质质量评价的等级划分。
(二)GIS技术
GIS技术可以模拟和预测环境影响,可以对环境因素的确立、环境质量的描述和预测进行科学分析。GIS技术支持下的环境空间属性数据库具备空间数据的采集、编辑、管理、查询、分析,图形处理和制图以及分析结果的各种输出与转化功能。评价过程中所需的空间指标要从GIS空间数据图层信息中获得,空间数据图层上评价指标的量变或质变都将影响最终评价结果。鉴于评价单元赋值的实际操作需要,从相同意义的要素条件中通过GIS技术的不同手段有针对性地提取不同表征形式的指标是研究的关键技术之一。
(三)评价单元划分
评价单元的选取和划分是为评价目标和评价方法服务的,而不仅仅是各项评价因子的信息载体,合理的选取评价单元,便于评价工作的进行和准确性的提高,这是论文的关键技术之一。鉴于高原地区生态环境地质质量评价中两个评价目标各自不同的评价对象自身的特点,需拟定针对各自特点的评价单元,以便更好地完成目标评价。
(四)评价因子选择
生态环境地质学主要是研究具有客观实体性质的生态地质环境与生态环境地质问题的学科,重点是生态环境地质问题。生态环境地质问题具有人为性、生态性、地质环境变异性,其产生是多因子共同作用的结果,具有网络链式问题群特点。高原地区生态环境地质的相关研究也要从影响生态因子各种地质要素出发,方能得出客观、真实的科学结论。
在综合运用中,指标数据的获取是生态环境地质质量评价的基础性环节,可以根据评价目标、评价单元及指标类型的不同而采取不同的提取方法。评价指标的提取都是以GIS技术为依托,参照选取指标的原则,从各个环境要素数据中提取参与生态环境地质质量评价的指标因子。在对自然生态环境地质质量评价中,以乡镇为单位进行指标赋值。
三、基于生态环境地质的高原地区地质灾害的预防
高原地区位于我国一个地质灾害多发的地区,对人民的生命财产也构成了很大的威胁,包括地震、泥石流、崩塌、滑坡等。应及时建立相应的规章制度和资金渠道,用于保障地质灾害治理工程的后期运行维护,使其能长期发挥应有的防灾作用。
(一)加强认识
高原地区是地质灾害多发地带,地震将许多山脉“抖松”,极易发生地质灾害。许多民房、集镇、城市依山而建,在审批、建设时没有进行地质灾害评估,那些地方发生地质灾害的频率高【5】。为此高原地区要按照《地质灾害防治条例》的要求,应进一步明确地方各级人民政府地质灾害防治工作的责任。国土资源部门应加强地质灾害防治工作的组织、协调、监督和指导工作。
(二)加大投入
对已发生的地质灾害处理按照治理、避让搬迁成本等因素,适宜治理的进行治理,适宜搬迁的实施异地避让搬迁。整合移民扶贫资金、地质灾害异地避让搬迁补助资金、扶贫开发资金,加大资金投入;必须树立人命关天的思想,加大对地质灾害治理的各级财政预算资金投入力度【6】。
(三)机制创新
机制创新是要求地质灾害易发区地方政府建立健全与本地区地质灾害防治需要相适应的专业监测、应急管理和技术保障队伍,加大资源整合和经费保障力度;把地质灾害 防治与扶贫开发、生态移民、新农村建设、小城镇建设、土地整治等有机结合;统筹各方资源抓好地质灾害防治、矿山地质环境治理恢复、水土保持、山洪灾害防治、河流治理和病险水库除险加固、尾矿库隐患治理、易灾地区生态环境治理等各项工作,切实提高地质灾害综合治理水平。建立地质灾害隐患定期普查制度,特别是对容易发生地质灾害的 区域经常性进行拉网式排查,做到制度化、常态化,以全面掌握地质灾害隐患情况,确保不留死角,做到心中有数。对发现的地质灾害隐患点要逐一登记造册,落实防范措施,纳入群测群防工作体系【7】。
参考文献:
[1]常宏,张培震,安芷生,等.昆仑山北坡鸭子泉河阶地发育及其构造-气候意义[J].科学通报,2005,50(9):912-917.
[2]陈诗越,方小敏,王苏民.川西高原甘孜黄土与印度季风演化关系[J].海洋地质与第四纪地质,2012,22(3):44-46.
[3]苟宗海.四川龙门山中段前陆盆地沉积相与层序地层划分[J].沉积与特提斯地质,2010,20(4):79-88.
[4]王哲,易发成.我国地质灾害区划及其研究现状[J].中国矿业,2006,15(10):47-50.
篇13
随着我国高速公路建设迅速发展,其施工技术也不断提高,但是在我国目前的技术经济条件下施工,不良地质条件是施工中最大的制约因素[1]。因此,加强对隧道涌水突泥的研究,对保障施工安全、加快施工进度、节约施工成本,均有十分重要的意义。
1.涌水突泥灾害的发生简况
(应介绍本隧道原设计地质情况及简单概述施工情况,如哪个端口进洞,采用什么施工方法,初支结构参数等)厦成高速公路东孚隧道,下穿厦深铁路东孚编组站,路线总长40.235km,路基宽度33.5m,施工方式利用“中继法顶进工艺”,从出口进洞,即由大里程向小里程施工,初支支护参数为S3。隧址区岩层主要为石灰岩,占隧道围岩的70%左右,岩溶发育,尤其是地表浅部溶蚀洼地、落水洞、漏斗成片出现,再加上隧址区处于向斜地质构造,容易导致地下水汇集,且汇集的地下水形成岩溶水增大了隧道施工的难度。
2013年10月8日上午9:00**隧道左洞掌子面里程施工至ZK22+707。在中导开挖过程中,ZK22+723线路左侧上台阶拱脚处发生涌水,引起线路左侧ZK22+723-ZK22+728段拱脚至拱顶范围初支变形。现场监控量测显示2小时内拱顶变形为5mm,上、中导接头处变形为7mm,且涌水量持续较大。本隧道因掌子面涌水引起初支结构变形。(注:本隧道是否从出口进洞,即由大里程向小里程施工,否则掌子面和中导里程有问题)
2013年11月12日,A2合同段天成山隧道左线掌子面施工至ZK22+663,掌子面均为砂土状全―强风化花岗岩,左侧出现涌水。下午17:15开始,掌子面涌水量明显增大,18:46初支喷砼开始出现裂缝,拱顶掉块严重,拱架出现变形,现场及时加强锁脚支护。19:26开始,拱架变形加大,为确保安全,下达指令要求人员及机械设备撤离,而后初支完全剥落并垮塌,出现涌水突泥现象,涌水量约达40m3/h。20:00通过现场观察判定,ZK22+663―ZK22+668段钢拱架已完全压垮,突泥量约50m3/h。
2 抢险处治方案
2.1制定方案
由于事故发生后,现场堆积了大量的坍塌渣体,无法开展处治的良好施工工作。因此,根据现场踏勘的实际情况,针对该隧道的地质特征及前期的涌水特征作出了全面分析,并结合以往大规模涌水突泥事故后围岩能暂时自稳的工程经验,制定了相应的处理方案。具体原则为:1、加强大管棚结合小导管的超前及径向支护措施;2、调整围岩级别、加强初支支护参数(S3变为S5b);3、初支背后及涌泥处加注双液浆,加强堵水效果;4、洞内增加临时支护棚架,缩短二衬至掌子面步距。施工过程中严格遵守“管超前、短进尺、强支护、勤量测”,必要时掌子面喷砼封闭,防止突水涌泥扩大,增强整体稳定性。
2.2监测
对初支拱架变形部位进行不间断变形监控量测,监控量测数据每2小时一次,如发生突变应立即上报。加强监控量测,及时反馈量测数据信息,实时密切监视突泥区状况,并做好相关警戒通报。
2.3加固
第一,加强超前支护:在隧道进口段设置管棚超前支护,分别在ZK22+732、ZK22+728、ZK22+723往小里程范围对左右两侧各打入3排管棚进行加固,管棚采用长度12m的φ89×5mm钢管,外插角约30°,单侧每排6根,及时进行注浆加固(管棚设置位置需进一步明确)。第二,回填注浆,稳固围岩:对ZK22+732~715段初支结构及背后围岩径向采用φ50×4mm长度5m的钢花管,按环向50cm、纵向100cm的间距梅花形布置进行注浆加固。对拱腰45°以上采用超前加固,45°以下为锁脚加固。所有钢花管均进行注浆,采用水玻璃双液注浆法,适当提高注浆压力,注浆应缓慢进行,注浆压力不宜超过1.0MPa(可考虑采用水玻璃注浆措施)。第三,加强锁脚及初支参数:为避免突泥区附近拱架继续变形,确保已施做初支结构的稳定,对ZK22+700~ZK22+670段加强锁脚,每榀拱架两侧拱脚斜向下补打两根4m长φ76×5mm钢管加强锁脚,其余部位增设4m长φ25药卷锚杆加强锁脚,每组4根,环向间距150cm,纵向间距100cm。在ZK22+700~ZK22+675采用12米长φ76×5mm钢管拱部增设伞状棚架支护,纵向间距4m,环向间距1m。
2.4封堵
首先,先对少量出水的钢管压注水泥-水玻璃双液浆堵水,出水量大的钢管先作为泄水通道,待二衬施工前再注浆封堵。其次,采用强支护穿越突泥区,在ZK22+673与ZK22+671处上半断面各设置一排20米长φ108×6mm钢花管进行管棚支护,环向间距40cm,压注水泥-水玻璃双液浆堵水。
2.5排水
对ZK22+723-ZK22+735段阶按全幅宽度反压回填至上台阶底面。回填前必须对炮眼内安装的全部引线和炸药拆除干净。待突泥区稳定后,采用透水性材料(片块石)对上台阶突泥区进行反压回填,防止突泥区再次扩大。
3 对治理方法的体会
第一,严格执行安全施工原则,加强对施工的监控。在掌子面和初期支护刚建成的区域,必须重点做好施工前期的地质勘察和水文地质分析以及超前探水等工作。施工中期要加强水量、水压、降雨量的监测工作,规范地质预报和水量、水压、降雨量的监测工作,严格执行安全施工制度以保障施工人员人身安全。完善健全安全监控和预警体系善,保证掌子面有视频监控以及报警系统,确保急逃生等系统的工作正常[2]。应配齐专职安全人员,加强安全教育培训,进行防灾逃生演练。
第二,采用大管棚超前支护,坚持支护紧跟原则。涌水突泥灾害具有突发性的特点,但在出现大规模的涌泥之后,一般会有一段暂时的稳定期,因此,应抓住时机,在涌水段开挖后,下台阶、仰拱及二衬施工应及时、抓紧跟进,必须抓住时机及时处治施工,以形成完整的大管棚超前支护结构[3]。
第三,准备充足的物质,做好灾害预防工作。在地质灾害发生后,应不惜一切代价确保既定处治方案中所需的机械、材料的正常供应及应有储备,以保障满足全天候应急抢险供给。为治理涌水突泥地质灾害做好充分的准备工作,为其创造良好的施工条件,以保证正常施工进度。
第四,以堵为主,堵排结合。为避免高速公路隧道围岩壁继续变形破坏,导致塌穴增大,必须对坍塌周边的围岩进行加固处理。为避免因多种情况再次发生坍方,必须封堵涌出口。为降低水压,减轻支护结构所承受的水压力,必须制定有效的排水措施[4]。对于充填物坍落的地段,应采取清淤释能降压的方案,使用大型挖掘机将堆积物运出。高度重视隧道释能降压技术在高速公路隧道施工中的运用。
第五,优化施工方案,提高安全管理水平。在启动抢险机制的同时,针对不同级别的涌水突泥地质灾害,必须依据现场施工不同的特点和环境,制定相应的科学、合理、安全、快速的治理方案。工程项目部应加强并落实领导带班,安排专人观测现场动态,拟定完善的应急处治预案,加强项目管理人员应对突发事件的培训,提高应对突发事件的安全管理水平。确保遇险时能立即按预案撤人并能及时、有效地组织应急抢险。
4.结语
涌水突泥是高速公路隧道施工过程中影响巨大的工程地质灾害,导致涌水突泥地质灾害的原因诸多,如果施工中处治措施不当,不但危及隧道施工安全,加剧隧道施工难度,影响隧道施工进度,还可能会在隧道建成后严重地影响地表环境,造成不必要的经济损失。因此,必须加强监测与预防,设置合理的施工条件,对涌水突泥地质灾害综合治理,但具体的治理方案要在具体的工作当中依据施工现场制定。
参考文献:
[1]康勇,杨春和,张朋,浅埋岩溶隧道灾变机制及其防治[J],岩石力学与工程学报,2010,29(1):149-154