在线客服

海洋测绘论文实用13篇

引论:我们为您整理了13篇海洋测绘论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

海洋测绘论文

篇1

我国具有岛屿多、海域广、海岸线长等特点。因此,做好海洋测绘工作,对于维护国家安全和开发海洋资源来说,意义重大,除此之外,海洋测绘工作还与海洋地质勘探、海洋工程、海上交通、管道敷设、开发海洋资源和海底电缆等相关工作息息相关。作者通过查找相关的资料和结合自身的工作经验,得知导航卫星在海洋测绘中发挥的作用不容忽视。

2 海洋测绘在GPS信号接收机

通过人造地球卫星来对点位进行测量,这种技术就是我们耳熟能详的卫星定位技术。在这种技术刚出来的时候,人造地球卫星只是一种空间上的观测目标,在地面测站实施摄影观测,就是我们平时常说的卫星三角测量技术。这种技术在一定程度上可以解决陆地海岛联测定位的问题,但是所消耗的人力、物力和时间比较大,而且定位的精度不高,难以对点位的地心坐标进行测量。所以,卫星多普勒定位很快就取代了卫星三角测量技术,取得了较大的进步,也导致卫星定位技术从初级阶段上升到高级阶段,实现了从空间观测目标到动态已知点卫星的转变。但是,有一点必须要明确的是,对子午卫星信号实施多普勒定位的时候,需要间隔的时间比较长,还要花上1-2天的时间来观测。在连续定位问题上没有得到解决,同时也没有实现厘米级的定位精度,所以,子午卫星导航系统的应用也受到了较大的约束。随着技术的发展,人类也追求全球性、全天时、全天候和更加高精度的导航和定位技术,GPS卫星全球定位系统也随之诞生。这也使导航与定位技术的发展进入到一个全新的阶段,其前景也相当可观。

在20世纪的90年代初期,当时的在轨GPS卫星数量不多,仅仅为15、16颗,但是,那时候GPS卫星导航定位技术就已经深受海洋测绘人员的偏好。中国南海GPS岛礁联测分队由国家海洋局、测绘局和地震局于1990成功建立起来,同年,乘坐“向阳红五号”前往中国南海,并开展GPS岛礁联测的工作;测量的范围涉及广州、曾母暗沙、三亚和黄岩岛,其面积多达200万平方千米。海域面积相当大,时间也长达52天,第一次通过3台WM-102GPS双频接收机工作,GPS的定位联测工作点设立在南海8个点位、陆地4个大地和南海上的5个岛礁,而此次站间距离最大也实现了808687.519m,在南海建立起一个精度较高的陆海大地测量控制网。

国家海洋局科技司于1991年4月提出,全面推进GPS卫星定位技术,将统一的陆海大地测量控制网建立在所有领海基点、岛屿测量大地测量控制点和基本验潮站中,总共包含有345个GPS测量定位点。这样做的主要目的就是为了能够将陆海大地测量控制网建立在我国专属经济区和大陆架中,并提高其测量的精度,从而为这些地区提供相关的基准数据。

中国测绘学会海洋专业委员会和大地测量专业委员会在1994年10月13~16日展开了相关的研讨会,对20世纪90年代初期的GPS技术研发成果进行了深入的交流。作者查阅了相关的资料,发现研讨会中的部分在期刊《海洋测绘》上,其期刊数为1994年第4期,包含了14名作者所发表的9篇关于GPS技术应用的论文。这些学者进一步推动了海洋测绘GPS技术的应用,随着其逐步完善和发展,在海面变化、海港工程、海洋渔业、海上地位等领域上都得到了广泛的应用。

3 导航卫星技术与海洋测绘技术分析

GPS/GLONASS技术在近几年来,发展比较稳定,北斗星导航定位系统计划于2020年实现全球性的覆盖;欧盟的伽利略全球卫星导航系统于2014年8月成功发射了卫星;印度也在积极进行IRNSS印度区域卫星系统的工作。将会有越来越多的导航卫星运行在天空中,方便海洋测绘人员工作的开展,也提高了海域定位的精度,海洋测绘的研究价值相当有意义。

3.1 导航卫星在海洋强国建设中的意义重大

我国具有的岛屿较大,而且岛屿面积大,岛屿岸线也比较长,除此之外,还拥有很多岛群,这些岛群也会发展成为我国核心的海岛综合经济带。再对《联合国海洋法公约》的规定进行分析,划分在中国管辖的海域面积为400万平方公里左右。海洋强国战略任务在《中国海洋21世纪议程》中首次被提出,主要解决海洋产业发展、海洋经济区域建设和海洋科技等问题之外,还需要处理国家海洋权益和利益的维护、海上力量建设的强化等。从中我们可以看出,要想真正落实海洋强国任务,海洋测绘工作是必不可少的,因为这是一项基础性和前期性的工作,而点位测定工作,则能够提供基准数据给海洋测绘,是一项超前性工作。飞行在天空中的导航卫星,能够将精度高、速度快的定位测量运用在广阔的海域上,并且实现动静结合。举个例子说,通过导航定位信号的载波相对测量数据解算,就能够实现厘米级的动态定位测量精度。所以,导航卫星对于实施海洋强国建设及其战略的意义来说,是不容忽视的。

3.2 海域测量领域在GNSS三频接收机影响下的前景相当明朗

GPS、GLONASS、Compass和伽利略全球卫星导航系统,都能够将3个导航定位信号向民间用户提供,有一点必须要注意的是,CLONASS的不断发展,可以提供8个CDMA信号,同时实现了GPS/Compass/Galileo良好的兼容性。开展定位测量工作时利用三个导航定位信号,主要有下面的几大意义:

第一,可以计算出排除电离层效应干预站星的距离,从而进一步促进用户点位精度和置信度的提升;第二,运用在军事领域上,可以为用户解算出实时点位坐标,这个坐标的精度和置信度更高,那么高速飞行兵器就有了更加良好的数据基础。第三,能够计算出更长的宽巷载波相位测量波长,这样能够增加航解算算法的速度,也有利于高动态用户可以获得精度更加高的实时点位坐标。

总而言之,利用三个卫星导航定位信号,在提高动态用户实时点位精度方面表现得相当出色,也将定位测量与广阔海域的导航卫星紧密结合在一起。

3.3 GNSS导航卫星能够为航7维状态参数和3维姿态参数提供更加准确的精度

相对于水面测量船测量来说,机载激光测深所耗用的费用仅仅为其1/6。可见,机载激光测深系统的成本低而且效率高,能够精密又快速地对海底地形进行测绘,是一项先进的设备,在今后的发展也会得到重视,成为我国现代化海事测绘保障体系建设的一项重点工程。

在采用机载激光测探的时候,一个必须具备的系统就是机载GNSS信号接收机,主要测定飞机在航3维姿态参数,将基准数据提供给控制机载激光作业的平台,确保其稳定性,从而更加稳定地接收激光回波;还能够将时间同步源提供给机载激光测探等子系统,确保不同子系统之间的协同性;对飞机在航7维状态参数进行测定,可以更好地引导飞机在昼夜作业。飞行在天空中的导航卫星和三个民用导航定位信号,确保了机载激光测深系统的精确性,促进了机载激光测深事业的发展。

4 结束语

对于海洋测绘作为一项超前期基础性建设工作,其作用能够确保我国海洋国土的完整性,有利于海洋资源的开发和利用,导航卫星能够解决很多海洋工程项目问题,并为其提供快而准的定位数据,随着我国导航卫星与海洋测绘技术的不断发展,在导航卫星在轨飞行影响下,海洋测绘事业将会发展得更加兴旺。

篇2

1 概述

当前,电脑在大学生中普及率非常高,但学生对电脑的利用情况并不乐观。互联统计大学平均每天利用电脑的时间分配显示:男生中打游戏比例最高、其次是聊天,利用电脑进行知识学习的约有25%,女生聊天的时间最多,其次是听音乐、看电视电影等,利用电脑进行知识学习的时间约有35%。大学生的首要任务是学习,大学生对电脑的利用时间应该超过50%在学习方面,才是较好的情况。从统计情况来看,当前大学生电脑的利用情况不容乐观。

从另外一个角度来讲,这种情况说明当前大学生对电脑的使用有一定的基础,大学生也比较喜欢电脑、比较认可电脑。如果指导大学生利用电脑进行专业学习应该是存在可行性的,如果指导内容事关就业,那么大学生的兴趣可以进一步提高。

海洋测绘专业学生毕业就业的招聘信息内容与计算机相关的较多,说明海洋测绘专业毕业生应该多利用电脑学习点知识,在学习过程中充分利用电脑,面向就业的学习更多知识。

大学课堂教学改革在不断摸索中,其中面向就业的教学探索也比较多。结合海洋测绘专业课堂教学实践,探索面向就业的教学内容穿插,推动教学,提高学习的兴趣,促进就业。教学的最终目的是让学生掌握更多的知识。

2 教学中举措

课堂中讲到了很多知识,用到的软件都是学生曾经学过的,也都是学生计算机上能够实现的。但是在《工程测量》中知识将会新用,即新的应用,又可达到“温故而知新”,学而时习之,不亦说乎”的目标。工程测量不只需要放样,同时还需要数据助理,求解放样数据,这也是最关键的部分。基于这些原因采取了以下举措。

Excel 是微软办公套装软件广泛地应用于管理、统计财经、金融、行业数据处理图标制作等众多领域。在工程测量的数据处理中,excel软件是经常被用到制作图表的,非常实用方便。学生将来工作中也会用到,或者将来读研撰写科研论文时,也可以利用Excel进行画图。

Matlab和Mathematica、Maple并称为三大数学软件。Matlab可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

在《工程测量》中,经常会遇到拟合各种曲线、曲面的问题。例如,天文台并址过程中,需要拟合圆心坐标;在隧道建设中,需要通过拟合圆柱面,来控制盾构机的施工导向。这些都可以采用Matlab进行模拟计算。

在解决拟合圆并求解圆心的问题时,首先讲解模型,然后根据模型,一行一行的代码书写,限于文章篇幅,代码省去。中间穿插Matlab的基础知识,比如矩阵的各种技巧,讲解循环控制语句等。最终达到学生掌握Matlab,可以应用到以后的毕业设计中,工作中,读研中。

例如讲到工程测量第5章断面图绘制、第7章变形观测数据整理、成果表达时都要面对一系列的数据,通过使用Excel可以绘制断面图,直观表达地形的起伏状况。另外,可以将变形观测数据整理成报表,很容易找到建筑物变形量累积的关键时间节点;如果使用Excel表格的绘图功能,则可以很容易生成变形图表,直观表达建筑变形随时间的变化情况。下一组渔船的轨迹坐标,通过Excel绘制轨迹图,如图1所示,方便快捷,容易掌握。

其他应用还有利用Excel、Matlab绘制断面图;利用C#语言进行坐标转换,实现高斯投影的正反算。

3 课程设计

教学中认真做好教学设计也很重要。首先会在第一次授课中,讲一些课程的相关的考勤、考核方式、答疑等,同时为了后面做准备,请同学在课下安装matlab、visual studio开发工具等软件,方面以后的课程讲授使用。

做好案例的准备工作,讲解案例的应用意义,应用的地方。以文字图片、录像等方式来解释;然后准备相关数据,通过模拟数据,或者通过其它途径获得数据,模拟数据学生可以参与测量采集。最后是讲解过程,讲解原理、讲解模型、讲解代码的书写,最后是执行。布置作业,达到强化训练的目的。

4 实施效果

课程教学中,这些方法都得到了学生的认可。丰富了教学手段,丰富了课堂内容,学生的积极性被调动起来,课堂的教学质量提高很多。目前已经实施两届学生,效果较明显,每一届都有多个学生对编程产生浓厚的兴趣。一个同学在实习阶段运用编程解决了工作中的一些问题,从而得到了公司认可,最后成功入职,还有一个同学目前正在一家IT公司从事专业领域的研发任务,并表现出很大的热情。他们都是课堂中,产生的浓厚兴趣。编程和自己专业背景相结合,可以对就业产生积极的影响。大家在找工作的时候,简历中编程的能力也可以成为亮点。

5 总结

通过这些教学手段,很多同学都掌握一些实用工具;并通过这些工具学习,增加学习兴趣,同时也达到温故而知新的效果。同时掌握编程,有利于就业。今后的将围绕着教学内容不断丰富知识点,实用工具则紧紧围绕Matlab和C#编程语言,为学生打造生动课堂内容,面向就业的课堂内容。需要注意的是课程的核心内容是不能改变,教学结束时,达到教学大纲的要求。

参考文献:

[1] 陆国栋.于大学教学中若干要素的思考[J].中国大学教学,2009(11):11-13.

篇3

1 概述

同陆地一样,海洋与江河湖泊开发的前期基础性工作也是测绘。不同的是,海洋测绘是测量水下地形图或水深图。兴建港口、水上运输、海上采油、海底探矿、海洋捕捞,发展水产、海域划界,海战保障、监测海底运动,研究地球动力等任务都需要各种内容的水下地形测量。 水下地形测量主要包括定位和测深两大部分。定位的作用是不言而喻的,目前的水上定位手段有光学仪器定位、无线电定位、水声定位、卫星定位和组合定位。[1]平面位置的控制基础主要是陆上已有的国家等级控制点,卫星定位如采用差分方式,其岸台亦多采用已知控制点,以求坐标系统的统一。水上定位同时, 测量水的深度是确定水下地形的重要内容。测深与定位是必须瞬时同步进行的工作,都是描述水底地形的要素。但规范规定的测深中误差要求却不是一个定值,而是随着使用方法不同、所测深度不同以及是否感潮水域而有不同的精度要求。

2 水下地形测量技术

2.1 水下地形测量的发展历史

水下地形测量的发展是与测深手段的不断完善紧密相连的。在回声测深仪问世之前,主要的测深工具是测深铅锤和测深杆。这种测深方法不仅精度很低,费时费力,而且对于测量现场的要求很高,例如为了保证精度测量的水深不能过深,测量只能在测船停泊的时候进行定点测量,风浪对测量精度的影响非常大。20世纪60年代, 出现了侧扫声纳, 可探测船一侧( 或两侧) 一定面积海域内的水下障碍物和水底地貌,可以取得类似于航摄效果的水底表面声学图像。20世纪70年代, 又出现了多波束测深系统, 它能一次给出与航线垂直的平面内几十个甚至百余个海底被测点的水深值, 形成一定宽度的全覆盖的水深条带, 可以比较可靠地反映出水下地形的细微起伏, 比单一测线的水深测量确定水下地形更真实。目前,多波速测深系统正向小型化发展,适用浅水海域和简易船只的新产品已经有售。20世纪80年代以后, 又推出了高效率的机载激光测深系统, 激光光束的高分辨率能获得海底传真图像, 从而可以详细调查海底地貌和底质。美国国防制图局于1990年研制的ABS机载水深测量系统, 除包括一台激光测深仪外, 还有一台多光谱扫描仪和一台电磁剖面仪, 能够在各种环境条件下, 在飞机上利用激光、光谱和电磁测量几种方法互补快速测制沿海的水下地形图。这些手段一般可测深30~50m,精度在±0.3m左右。目前, 还可以利用卫星上安装合成孔径雷达(SAR)等设备对海面遥感摄影, 通过对照片处理确定水深。需要强调的是,以上水深测量得到的瞬时值存在着仪器、潮汐等因素的影响。因此,需在数据后处理中加入相关改正,并归算至统一的高程基准面。为了与陆上地形图实现拼接,水下地形图宜采用与陆地统一的高程基准。而为航海服务的海图通常采用理论深度基准面, 它和平均海面相差一个常数。国外少数国家,在水下工程施工前, 还利用潜水器携带水下立体摄影机获取水下地形的立体相片,或者利用高分辨率声学系统采取全息摄影技术测量水下地形。在特殊地区还可利用水下经纬仪、水下激光测距仪、水下气压水准仪和水下液体比重水准仪、水下电视摄影系统测量水下地形。

2.2 水下地形测量方法

2.2.1 测深仪的选择

当前常见测深主要靠回声测深仪进行。利用水声换能器垂直向下发射声波并接收水底回波, 根据回波时间和声速来确定被测点的水深, 通过水深的变化就可以了解水下地形的情况。[2]为提高发射功率,改善方向性,回声测深仪的换能器从单个发展到多个;为扩大探测面积,从单波束发展为多波束,他能一次给出与航线相垂直的平面内几十个海底被测点水深值,或者测出航线一定宽度的全覆盖的水深条带。并应用了计算机和数字显示技术,提高了精确度,扩大了使用范围。

测深仪的测深精度与测深仪的固有误差、水温、水深、河床类型等因素有关,而与比例尺无关。实际测深精度为:

δ2深度比例误差=h深度 * 1/100

δ实际定位=[(δ2测深仪固有误差+δ2深度比例尺误差+δ2湿度+δ2盐度+…)/n]1/2

从公式可以看到,测深精度的主要误差源在于深度比例误差,因而在选择设备时,应尽量选择大量程、高灵敏度的测深仪。测深仪机型可分为单频测深仪和双频测深仪。单频测深仪可满足一般的深度测量需求,但对于兼有淤积、土方计算类型的测量就变得困难,因后者水深测量需要测定两个深度,一个为表层深度,另一个为积岩深度,故只有用具有两个不同探测频率的双频测深仪才可实现。[3]

2.2.2 常规水下地形测量

常规水下地形测量的工作包括测深、定位和水位观测三部分内容。首先在河道两岸建立一定密度的控制点,布设一定数量的水位站,要考虑到水位站的控制范围与测深精度、瞬时水位差、水位改正模型之间的关系,水位站的密度必须满足控制范围内内插后的水位精度。具体作业时运用GPS和导航软件对测深船进行定位,并指导测深船在指定测量断面上航行,导航软件或测深系统每隔一个时间段自动记录观测数据。测量数据处理主要包括坐标转换、声速改正、水位改正、时间同步改正、地形图生成等。

2.2.3 无验潮模式下GPS-RTK水深测量

常规的水下地形测量是用GPS测定水底点的平面位置,利用测深仪测定水深,通过对潮位、测船吃水等参数的改正,得到定位点高程。但是由于水面比降、潮汐等影响,使验潮站之间与待测位置之间的距离受到一定的限制,必须设置验潮站测量水位,推算潮汐传播规律。由于快速逼近整周模糊度技术的出现和不断改进,整周未知数可以迅速确定,从而保证了GPS实时载波相位差分(RTK)可以在动态环境下,实时地以厘米级的精度给出用户站的三维坐标。采用RTK技术可实时精确求得测定两点之间的相对高差,通过该高差可反算出流动站GPS相位中心的高程,该高程同基准站具有相同的高程基准面。但RTK得到的是WGS84坐标系中的高程,属于大地高程系统。如果能将该大地高转换成正常高或正高,就可以直接确定水下地形点的高程而无需进行验潮,因此称之为免验潮的水下地形测量。该测量方法摈弃了传统水下地形测量对潮位观测的严格需求,直接获得水底点高程,操作和实施方便、快捷。但上述方法同传统的测量方法一样,存在着船体姿态对测量成果精度的影响。在水面条件平稳情况下,姿态对测量精度影响较小;反之,影响较大时,必须进行测量和补偿。[4]

3 结语

随着计算机技术、空间技术和通讯技术的飞速发展,水下地形测量装备正在朝着系统功能更加集成化,系统外观更加小型化和轻便型方向发展。随着测量理论研究和测量手段的变化,测量精度将明显提高。具有面状测量功能的多波速测量系统将被广泛应用,各种水声校准设备的使用也将提高声纳设备的测量精度。数据采集和处理软件将得到进一步的发展,功能将满足不同用户的特殊要求。整个系统的简化和发展,使水下地形测量有着更加光明的未来。[5]

参考文献:

[1] 梁开龙. 水下地形测量[J]. 测绘通报, 2001,(06):16.

[2]于岱峰,李良良,李登富. 新旧水下地形测量方法浅析[J]. 山东建材, 2008,(02):63~65.

[3] 周军根. 水下地形测量技术方案的探讨[J]. 四川测绘, 2003,(03):137~140.

篇4

Abstract:On the basis of analyzing the characteristics of ENC, this paper discusses the contents and methods of ENC editing. The idea of developed and innovated ENC is brought forward, accounting to fulfill the requirement of customer.

Key words: paper chart; ENC; information factor; believable level

我国是举世瞩目的海洋大国,为了保障经济迅猛发展,在我国很多港口建造了超大型船舶码头,以满足超大型船舶航运需求。作为保障船舶航行安全的海道测量单位,如何利用好现代的测绘设备、测绘技术,生产出既满足航运需要又满足航运管理和港口建设需要的测绘产品,是海道测量界长期研究、探讨的课题。数字海图是由各国官方航道测量部门按照国际航道测量组织(IHO)制定的S57标准制作的矢量式数字海图,也是唯一可以合法的用于数字海图显示和信息系统的数字海图[1]。随着科学技术的迅猛发展,数字海图因其具有传统纸海图无法比拟的优点被广泛应用于船舶航行导航、船舶引航、海事管理、船舶交通管理和水上工程建设等诸多领域,成为海上安全与高效率海上营运的基本要素。数字海图是纸质海图的现代表现形式,而海图是地形图的一种,海图与地形图最大的区别是前者的海底要素不具有可见性,后者具有可见性,那么怎样把不可见的海底地形要素全部展现在使用者面前,是仪器制造商、测绘工作者努力实现的目标。

现代纸质海图编辑主要包含的内容为:(1)图幅设计:主要包括图幅名称或图幅编号、、坐标系统、投影系统选择等;(2)资料搜集:资料搜集分为两部分,一是新测资料搜集;二是旧有成果搜集,根据现实地形要素确定是否使用;(3)地形要素编辑:对沿海地形要素和图幅内主要地形要素的编辑;(4)助航要素编辑:对灯浮、灯桩、灯塔等助航要素的编辑;(5)水深编辑:对水深资料进行适当取舍;(6)特殊碍航物要素编辑:对沉船、礁石、工程和航运遗留或散落的沉积物、战争抛设的炸弹等;(7)潮汐:对潮汐要素的计算和编辑,包括验潮站、潮汐表、潮汐性质等;(8)海底底质;(9)范围线编辑:包括对航道线、锚地范围线、禁航区、养殖区、施工区等的编辑;(10)磁差计算编辑;(11)图幅整饰。

1.2数字海图产生

随着计算机和网络技术的发展,测绘设备不断更新,推动了海道测绘产品创新步伐。IHO早在1977年就认识到需要制定数字海图标准, 并开始标准的制定工作[2]。1983年IHO成立了数字数据交换委员会,专门负责标准的制定工作。在1985年5月IMO海上安全委员会第51次会提出数字海图安置讨论的议案,1996年11月IHO了划时代意义的《数字化海道测量数据传输标准》(S-57 3.0版),1996年12月,IHO又了《ECDIS海图内容与显示规范》(S-52 4.0版)。IHO4.0版S-52与3.0版S-57标准的颁布,海图概念、目的映射、可视化、技术工序等出现了巨大的变化[3]。从此后ENC和ECDIS的研发进入了高速发展的阶段。国内科研院所、海道测量单位对自己的测绘产品进行数字海图制作创新,创新的基本目的是:保证不同用户的使用者,快捷、便利的查询到自己需要的相关信息,保障船舶航行运营、港口规划运营、港口建设运营、航运管理的安全和高效低耗。要实现上述目的,在1999年数字海图孕育而生,目前诸多单位编绘的数字海图,数据量较纸质海图有些扩展,但是仍可认为是纸质海图的简单数字化。

1.3数字海图特点

符合国际标准的数字海图通常被称为电子航海图[4],即ENC(Electronic Navigational Chart,ENC),也就是通常说的数字海图。 计算机技术、网络技术的发展,为数字海图制作和读取提供了广阔的空间。与纸海图相比,纸海图产品是以海图符号支撑,海图上的信息需要借助于《海图图式》来反映传达给使用者,数字海图产品则是以数据和数据库支撑,海图上的信息以属性编码的形式反映,使用者需要借助于《海图数据字典》来获取信息[5]。因此数字海图应具有如下特点:(1)数字海图涵盖信息量大。(2)图幅范围从过去纸质海图的固定性转变为灵活性。(3)部分区域的比例尺具有可变性(既可以缩小又可以放大)。(4)由过去纸质海图涵盖内容的单一性改变为数字海图复合型。(5)用户具有宽阔的可选性。(6)水深由不变到可变。(7)使用简单快捷。

1.4.1执行规范和标准

如前所述,数字海图具有的7大特点,那么在进行数字海图(数字海图)编辑时,在遵照《海道测量规范》、《航海图编绘规范》、《海图图示》、《数字化海道测量数据传输标准》(S-57 3.0版)、《ECDIS海图内容与显示规范》(S-52 5.0版)标准的前提下,制作单位必需以满足广大用户的需求,制作数字海图为己任,否则制作的数字海图(数字海图)就成了纸质海图的简单的电子化。制作数字海图应遵循的原则是:制作的数字海图必须符合国际标准、国家标准,在符合标准的前提下根据广大用户的需求进行测绘产品表现形式的创新。

数字海图涵盖大量海道测量测绘信息,进一步提高了编辑海图的可信度,具体编辑内容及表现方法为:(1)测绘仪器:包括定位仪器、沿岸地形测量仪器、单波束、多波束、浅地层剖面仪、磁力仪、侧扫声纳、流速仪、海底地质取样器、验潮仪等的分辨率和精度指标;(2)测量方法:包括测量范围、测量方式(检查测量、扫海测量)、发现的碍航物确认核实手段等;(3)潮汐性质:验潮站位置、潮汐性质、实施验潮数据提取方法、流速、流向;(4)助航物:航标、高大建筑物、高山、指向标站、AIS等;(5)重要的地形要素:包括码头、防波堤、港航管理部门、货场、铁路线路、高速公路、公路;(6)碍航物:包括礁石、沉船、钻井平台、石油管线、海底电缆、跨海大桥、跨通道的高压线等;(7)海区有关界线:包括港池、航道、锚地、通道、港界线、养殖范围线、抛泥区范围线;(8)船舶导航:根据船舶吃水自动生成设计航线,实时显示偏航方向、偏移距离、船速及到目的地的时间;(9)规划施工:包括范围划定、范围面积计算、平均水深计算、疏浚土方量计算、选定等深线的自动生成;(10)海底底质;(11)管理范围划定;(12)投影及坐标系统转换;(13)测绘时间;(14)高程基准;(15)测绘单位;(16)置信水平;

随着我国港口吞吐能力的不断增强和航运安全意识的不断提高,重要的航行区域一般都进行覆盖测量,为了准确地反映海底地貌,纸质海图在编绘中尽量放大比例尺,但是准确的表示局部就不可能表示全部,怎样才能做到又具体又全部呢?数字海图可以做到既详细的表示局部区域的海底地貌,又能够宏观的表示图幅内海底地貌变化趋势。根据实际水深测量、地形岸线测量、潮汐观测、底质探测、扫海测量、特殊碍航物测量、助航标志测量、浅地层剖面测量、重力测量、磁力测量、测区流速和流向测量的成果进行数字海图编绘,每幅数字海图分别采用中文和英文进行编绘。编绘根据不同用户的需要在保障基础数字海图,符合规范要求的基础上,分层进行拓展、对航行区域的不同测量方法产生的测量成果进行拓扑,根据用途对相关要素进行取舍,做到由过去纸质海图编绘单一性转化为复合性的数字海图。

数字海图实际上对于表示的最大区域内的每个分区域是数字海图系统,因此要求数字海图系统的制定标准、传输标准、显示标准符合国际标准和国家标准。为船舶航运、港航管理、规划施工、海洋渔业作业、海洋坏境保护等行业硬件和软件配置(导航软件、疏浚软件、航运监控软件;计算机、GPS、测深仪、电罗经、计程仪、倾废记录仪、雷达和船舶自动识别系统AIS(VESSEL TRAFFIC SERVICES))提供广阔的使用空间。用户可以根据需要进行选择,数字海图系统可实现分项选择和集成选择,根据信息显示窗口的大小选择自己需要要素,而那些相对次要的要素,随着比例尺变化自动增减[6]。实现无级比例尺数字海图,同时对潮汐、重要航行区域的发展变化、助航标志、测深精度置信水平、海底现势置信水平、测绘手段等重要要素进行语言陈述,数字海图编辑实现图示和语言陈述相结合,保障数字海图让用户使用放心、简单快捷。以下为各种查询结果的示意图:

2结语

计算机技术、网络信息技术、测绘技术、测绘设备的发展,有效的提高了海道测绘产品的表现形式,为航运经济发展提供有力支持。目前数字海图有多种表现形式,由于数字海图(数字海图)处于制作初期和制作高峰,对国际标准、国家标准领会浅显,制作方式仍停留在纸制海图制作的基础上,造成数字海图(数字海图)与用户需求存在较大差异。本文对数字海图编辑方法进行了探讨,以大比例尺海道测绘数据为基础,利用技术手段用户可以自动生成选项中的任意比例尺的数字海图(数字海图),引导数字海图(数字海图)编辑向满足用户现代需求方向转化。

参考文献:

[1] IHO S―57”Transfer standard for digital hydrographic data”. Edition 3.0.IHB Monaco, 1996.

[2] 王牧.数字海图系统中最优航线设计的研究.大连海事大学,硕士论文,2000.

[3] 翟京生.现代海图学的变革.海洋测绘,2008,28(5):73-76.

[4] 彭认灿,郭立新,陈子澎.数字海图更新方法综述.航海技术,2005,(2):35-37.

篇5

一、关于GPS定位系统

1、空间卫星群

24颗卫星群(2.02万km)组成的就是GPS空间卫星群,其分布在六个特定轨道上,各面间的交角是60°,而地球赤道和轨道的倾斜角是55°,卫星轨道运行的周期是11h58min,也只有这样才能确保在任何地点、时间、地平线能够最少收取到4颗卫星发出的信号。

2、地面控制系统

其主要是由3个注入站、1个主控站、5个监测站所组成的,其中注入站作用就是把主控站计算出的信息全部注进到卫星里;主控站作用就是通过GPS观测出的数据,对卫星钟改正参数以及将卫星星历计算出来,然后再将计算结果利用注入站传送到卫星当中;监控站作用是接收卫星所发出的信号,对卫星工作情况进行监测。

3、用户部分

GPS用户部分是由气象仪、计算机、数据处理软件以及接收器所组成的,用户部分的作用就是收取卫星所发出的信号,然后通过这些接收到的信号来定位导航。随着科技的不断发展,也产生出了很多重量轻、易携带、体积小的GPS。

二、GPS误差的来源

1、卫星星历误差

卫星星历主要是根据监测站所跟踪的GPS卫星来设定的,因为卫星会在空中受到不同程度的摄动力以及监测站所测定出的误差,那么这也就使卫星轨道会产生误差,而卫星星历是由监测站推算处理的,那么其提供出的卫星位置与卫星实际位置也就会产生一定偏差。GPS测量误差的重要来源就是星历误差,那么要是定位精度的要求在1ppm以下时,那么轨道误差就可以忽略不计。而一些精度要求比较高的,就可以利用同步观测值的求差来消弱轨道误差的影响,特别是在基线比较短的时候,这种影响会更不明显。

2、天线中心位置所导致的偏差

GPS所测量的观测值都是通过卫星再去接受机天线的相位中心距离,那么天线对中也就是将天线几何中心来作为标准的,所以天线几何中心与相位中心就一定要一致,但是实际上相位中心的位置会随着信号输入方向、强度的变化不断发生变化的,那么这个时候相位中心理论位置就和与瞬时位置产生差异,最终这个差异也就形成定位误差。

3、对流层的信号传播延迟

出现对流层延迟的原因,主要是电磁波信号在通过对流层的时候,其传播速度和真空中光的传播速度不同所引起的。其中又分为干大气分量和湿大气分量,在低仰角的时候其能够达到20米。其中干大气分量大概占有80%至90%,这点能够利用模型将其大部分进行改正。大气分量所占用的数值虽然不大,但是它随着纬度和高度出现的变化,而随之变化。也就是说纬度和高度越高,其变化值也随之相应的变高,并且除此之外还随着时间变化的非常快。在实践中对于空气中的水汽与干气非常的难以预测,因此在实践当中进行大气测试,通常都是干气和湿气两者融合在一起的数值,所以对于准确性就显得难以做出有效的判断。然而在电流层延迟和电离层延迟之间没有多大的变化,所出现的主要影响是天顶方向。由于他们之间具有相关性,在短基线测量中,对此能够很好的进行消除,在长基线测量中采取双频接收机也能很好的减少其影响。

4、电离层的信号传播延迟

信号在传播的过程中引起延迟的原因是电离层,其主要是和沿用卫星与用户使用的接收机视线方向所呈现出来的电子密度有关,接收视线方向如果处于垂直视线,那么所体现出来的延迟值在夜间平均可以达到三米,在白天的时候延迟值可以达到十五米,然而在低仰视角度情况中,所出现的延迟值分别是九米和四十五米,并且在反常时期所出现的延迟值还会进一步增加。

5、观测误差

根据经验,一般认为观测的分辨误差约为信号波长的1%。故知道载波相位的分辨误差比码相位不小,由于此项误差属于偶然误差,可适当地增加观测量,将会明显地减弱其影响。接收机天线相对于观测站中心的安置误差,主要是天线的置不与对中误差以及量取天线高的误差,在精密定位工作中,必须认真,仔细操作,以尽量减小这种误差的影响。

二、GPS测量精度控制

1、控制卫星星历误差

GPS卫星轨道可以通过GPS跟踪网来确定,而跟踪站地心的坐标误差会对卫星造成10倍之多的影响,所以跟踪站地心的坐标精度就要优于0.1m,而卫星轨道精度则是要优于2m。在使用约束基准法来约束基站松弛轨道加权的时候,我们可以得出优过5m的坐标值,那么这也就基本能满足目前我国对区域性定轨的需求。如果使用我国现在所拥有的跟踪基站,那么通过记录所观测到的卫星数值,我们就可以将直接产生的轨道根数误差改成正值,这样也就可以直接对用户播发出精密星历,从而代替有误差的技术。

2、控制天线位置偏差

天线几何中心和相位中心需要重合,所以在进行设计时需要尽量减少天线中心位置偏差。可采用的方法是:设计天线时让其天线盘上指定的指针均指向北方,通过这种方法,在进行相对位置定位时,可采用求差的方法来削弱几何中心和相位中心不重合的偏差。并且在野外测量时,要严格要求天线对中,整平,并且将天线盘上的方向指北。

接收机天线附近的斜面、垂直面、水平面都可以反射GPS信号,像是天线周围的沙滩、水塘、山坡、山谷、道路、树木、水沟、建筑这些都能进行反射,因此我们在GPS定位的时候,一定要尽量的避开这些实物。通常控制接收机时钟精度都是使用下面这些方法:在单点定位的时候,把时钟差当成未知数然后在方程式里求解;在载波相对定位的时候,可以求出观测值差,然后再去除掉时钟差;在定位高精度的时候,可以外接频标,从而提供出高精度时间标准。

3、信号传播精度控制

电离层延迟导致的信号误差可通过一下几个措施进行防治:

(1)球差时利用同步测量。

(2)膜拟电离层模型,实验改进方案。

(3)便换接收机,采用双频接受。

为了减少对流层的折射对信号传输的影响,可采用的控制措施有:

(1)利用同步观测求差值,使结果更加精确。

(2)同减少电离层影响的措施一样,将对流程建模,进行模型改正。首先测量对流层各项参数,在实验室根据数据参数进行实际建模,通过接近实际的模型来研究如何减少对流层对信号的影响。

4、卫星轨道误差控制

在GPS定位测量中,处理卫星轨道误差有以下几种方法:(1)忽略轨道误差。这种方法以从导航电文中所获得的卫星轨道信息为准,不再考虑卫星轨道实际存在的误差,所以广泛的用于精度较低的实时单点定位工作中;(2)同步观测值求差。这一方法是利用在两个或多个观测站一同,对同一卫星的同步观测值求差。以减弱卫星轨道误差的影响。

5、观测误差精度控制

首先对于地面工作站工作人员的专业素质进行培训,使每个数据观测人员均能准确对检测数据进行收集与整理,具备发现问题,分析问题,解决问题的能力。其次对于观测精度的控制可采用太阳光压改正模型,这些模型包括:标准光压模型、ROCK4光压摄动模型以及多项式光压模型,这几种光压模型精度相当,均可以满足lm定规要求。

结束语

综上所述,在实践中利用GPS进行作业测量,我们需要对其所体现出来的所有误差进行全面有效的分析,综合考虑各方面因素对GPS所造成的负面影响,采取有效的措施尽量的给予避免问题发生,减少项目作业中的误差出现,只有这样才能够更好的使用GPS进行测量,保证其测量数据的精确性。

参考文献

篇6

文献标识码:A文章编号:1671-3168(2012)06-0006-04

收稿日期:2012-11-01

作者简介:唐世斌(1963-),男,重庆梁平人,副教授,硕士生导师。研究方向为风景园林建筑工程与规划设计、3S技术在风景园林学中的应用等。Email:

国家技术监督局于1992年12月批准了《中华人民共和国国家标准 国家基本比例尺地形图分幅和编号》(GB/T 13989-92)[1],次年7月1日施行。在实际使用中,将1993年以前按地形图分幅编号标准产生的地形图图幅号称为旧图幅号,1993年以后按新的国家基本比例尺地形图分幅和编号标准(即GB/T 13989-92)产生的地形图图幅号称为新图幅号。

现阶段,我国正在使用中的国家基本比例尺地形图,其图幅编号有新、旧之分,这给人们尤其是市县级以下基层生产单位专业技术人员带来了较大的障碍或困难,造成了使用中的不便。《中华人民共和国国家标准 国家基本比例尺地形图分幅和编号》(GB/T 13989-92)只是规范了新的图幅分幅与编号规则,并未给出我国国家基本比例尺地形图新、旧图幅号彼此间的换算关系;为解决新、旧图幅号之间的换算关系,我国的一些科技工作者从不同角度对此进行了探索研究。笔者通过多渠道检索,查到17篇相关期刊论文[2-18]。最早的关于地形图新旧图幅编号的换算研究文献发表于1997年,其中半数研究文献发表于近5年的相关科技期刊上,这些研究文献基本上是基于国家基本比例尺地形图的经纬度条件下,地形图分幅与图幅编号的新旧图幅号之间的换算,且多侧重于编程自动换算,以方便于科研或生产项目中批量操作管理,但满足不了基层生产单位专业技术人员在实际工作中遇到的少量或个别的只用手工即可进行的新旧图幅号便捷换算方法。

2009~2010年,笔者有幸参与广西新一轮森林资源规划设计调查(即二类资源调查)的部分县区的外、内业工作,尤其是内业制图工作,在工作中常遇到1∶1万地形图新、旧图幅号需要彼此间换算的问题,经过查阅相关规范、文献资料,反复探索研究,找到了适用于工作中遇到的少量或个别的可手工进行的新旧图幅号便捷换算方法,经验证,结果正确,便捷有效,现将研究成果系统整理出来,供业界同仁共享,方便工作。

1国家1∶1万地形图新、旧图幅号的构成及其含义

11地形图旧图幅号

1∶1万地形图的旧图幅编号是以1∶10万地形图为基础进行的,而1∶10万地形图的旧图幅编号又基于1∶100万地形图,其具体的分幅和编号相关知识请查阅相关规范、文献资料。

1∶1万地形图的旧图幅号由4组代码组成,各组代码间用“-”连接:

其中:第1组“×”——1∶100万地形图的图幅列号(纬度方向),为1位“字符码”,由于我国地处地球的东半球赤道以北,图幅范围在纬度0°~56°内,因此,行号为A、B、C、D、E、F、G、H、I、J、K、L、M、N 14个英文字符之一。

林 业 调 查 规 划第37卷第6期唐世斌:1∶1万地形图新、旧图幅号的手工换算方法

第2组“××”——1∶100万地形图的图幅行号(经度方向),为1~2位“数字码”,由于我国地处地球的东半球赤道以北,图幅范围在经度72°~138°内,因此,列号为2位“数字码”,为43、44、45、46、47、48、49、50、51、52、53、54等11组数字之一。

第3组“×××”——1∶1万地形图所在的1∶10万地形图,其在1∶100万地形图中的位置代码,即图位号,为1~3位“数字码”;每幅1∶100万地形图划分为12行(经度方向)12列(纬度方向)共144幅1∶10万地形图,其位置代码(图位号)为1、2、3、……、142、143、144等144组数字之一,在本文中的新、旧图幅号的换算公式里用“m”表示。

第4组“(××)”——“( )” 中的“××”,为1∶1万地形图在1∶10万地形图中的位置代码,即图位号,为1~2位“数字码”;每幅1∶10万地形图划分为8行(经度方向)8列(纬度方向)共64幅1∶1万地形图,其位置代码(图位号)为1、2、3、……、62、63、64等64组数字之一,在本文中的新、旧图幅号的换算公式里用“n”表示。

第1组代码(1∶100万地形图的图幅列号(经度方向))和第2组代码(1∶100万地形图的图幅行号(纬度方向))共同构成1∶100万地形图的图幅号,如广西南宁市所在的1∶100万地形图的图幅号为F-49。

1∶1万地形图是在1∶10万地形图图幅号的尾部加上其在1∶10万地形图中的位置代码,即图位号,如F-49-37-(30)。而1∶10万地形图是在1∶100万地形图图幅号的尾部加上其在1∶100万地形图中的位置代码,即图位号,如F-49-37。

12地形图新图幅号

1∶1万地形图的新图幅编号是直接以1∶100万地形图为基础进行的。

1∶1万地形图的新图幅号由5组共10位代码组成,各组代码间直接相连:

× ×× × ××× ×××

第1组 第2组 第3组 第4组 第5组

其中:第1组“×”——1∶100万地形图的图幅行号(纬度方向),为1位“字符码”,与旧图幅号的第1组代码含义相同,我国的为A、B、C、D、E、F、G、H、I、J、K、L、M、N 14个英文字符之一。

第2组“××”——1∶100万地形图的图幅列号(经度方向),为2位“数字码”,与旧图幅号的第2组代码含义相同,我国的为43、44、45、46、47、48、49、50、51、52、53、54数字之一。

第3组“×”——地形图的比例尺代码,为1位“字符码”,1∶1万地形图的比例尺代码为“G”;其他基本比例尺地形图的比例尺代码见《中华人民共和国国家标准 国家基本比例尺地形图分幅和编号》[1]。

第4组“×××”——1∶1万地形图的图幅行号(纬度方向),即在1∶100万地形图中的图幅行号(纬度方向),为3位“数字码”;每幅1∶100万地形图的行向(纬度方向)划分为96行1∶1万地形图,其图幅行号为001、002、003、……、094、095、096等96组数字之一,在本文中的新、旧图幅号的换算公式里用“x”表示。

第5组“×××”——1∶1万地形图的图幅列号(经度方向),即在1∶100万地形图中的图幅列号(经度方向),为3位“数字码”;每幅1∶100万地形图的列向(经度方向)划分为96列1∶1万地形图,其图幅列号为001、002、003、……、094、095、096等96组数字之一,在本文中的新、旧图幅号的换算公式里用“y”表示。

从1∶1万地形图的新、旧图幅号的构成关系来看,同一幅1∶1万地形图其新、旧图幅号的第1组代码和第2组代码是相同的,只不过是旧图幅号的纬度方向为列,经度方向为行,新图幅号的纬度方向为行,经度方向为列,二者有所不同而已。

其他的国家基本比例尺地形图的新图幅号构成与1∶1万地形图的构成相同。

2地形图从旧图幅号换算成新图幅号

从上述分析知,同一幅1∶1万地形图其新、旧图幅号的第1组代码和第2组代码是相同的,因此在进行新旧图幅号的换算时,只需要考虑旧图幅号中的第3、第4两组代码与新图幅号的第4、第5两组代码之间的关系即可,而新图幅号中的第3组代码为地形图比例尺代码,对于1∶1万地形图来说,为“G”,始终不变。

同4结语

本文只述及在实际工作中经常使用的1∶1万地形图其新、旧图幅号的手工换算方法,此法是基于同幅1∶1万地形图的旧图幅号或新图幅号来解决其新、旧图幅号的换算问题,直接用旧图幅号换算其相应的新图幅号,或直接用新图幅号换算其旧图幅号,而不须该地形图图幅的经纬度或公里网坐标。

文中1∶1万地形图新、旧图幅号彼此间相互换算的关系也可用于编程,实现计算机或计算器进行自动换算;依照本文解决1∶1万地形图新、旧图幅号相互换算的思路,也可解决我国的其他基本比例尺地形图直接利用其图幅号进行新、旧图幅号间的相互换算。

参考文献:

[1]国家技术监督局中华人民共和国国家标准(GB/T 13989-92)国家基本比例尺地形图分幅和编号[S]1992

[2]郑雪萍1∶25万 1∶5万 1∶10万地形图新旧图幅编号的换算与应用[J]测绘通报,1997(6):35-38

[3]刘宏林地形图新旧图幅编号变换公式的探讨[J]测绘学院学报,1998,15(2):125-128,130

[4]刘宏林国家基本比例尺地形图新旧图幅编号变换公式及其应用[J]测绘通报,1998(8):36-37

[5]高允福,樊廷杰地形图新旧图号的互换公式及换算软件[J]三晋测绘,2000(1):15-21

[6]余 旭地形图新旧图幅号自动转换的实现[J]焦作工学院学报:自然科学版,2004,23(3):190-192

[7]王腾军,杨建华,翟 荷国家基本比例尺地形图新旧图幅编号自动互换的实现[J]测绘技术装备,2004,6(3):23-24

[8]田振坤,刘素红,傅莺莺,等地形图新旧图幅编号自动检索算法及其可视化实现[J]测绘通报,2005(2):61-63

[9]陈正年,詹朝晖,孙亦东,等1∶10000地形图新旧图号转换及公式推导[J]江西测绘,2006,66(4):31-32

[10]王德丰,陈丽辉,王年丰CASIO fx-4800计算器在1∶1万地形图新旧图幅编号转换中的应用[J]地矿测绘,2007,23(4):24-26

[11]岑 钢,肖 玲国家标准分幅1∶1万地形图图幅编号的算法[J]贵州林业科技,2008,36(2):35-38

[12]艾光辉,贺冬梅,张永仁用VB实现国家基本比例尺地形图新旧图幅号的转换[J]江西测绘,2009,78(2):43-45

[13]孙万民,毕永良,鲁 强,等新旧地形图编号及范围解算方法[J]海洋测绘,2009,29(5):30-32,36

[14]于树晖利用Excel实现新旧图幅号转换[J]甘肃科技,2011,27(4):40-42

[15]林 辉,唐可平,王苗根,等地形图分幅及图幅号转换[J]华东森林经理,2011,25(1):59-62

篇7

目前,物联网在很多领域的研究和应用,如智能交通、机场监控、太湖水质监测、森林火灾监测等,而在石油钻井中事故经常发生,因此,在石油行业物联网系统中,实时精确的钻井环境监测、人员安全的位置精确定位,提高钻井效率水平,改善工作环境,具有重要意义。

1 物联网技术概述

随着我国自动化技术的快速发展,物联网已大范围的被引入到企业的生产当中,物联网从字面上来说就是实现物与物之间链接的网络,其包含了两方面的含义:首先,物联网必须基于网络技术基础和实现,利用现代网络通信技术实现生产管理和部署。其次,在互联网的扩展和发展内容为主要内容,及时交换和传输的信息实现网络的操作。事实上,在物联网的发展,有许多新技术,如FRID射频技术、全球定位系统(GPS)、微型传感器、zigbee低功耗无线传输等最先进的信息和通讯手段,通过集成的技术实现智能项目的定位、跟踪和管理。

过去的传统思维是独立的物理基础设施和IT基础设施,通过三层和物联网系统架构将连接物理系统与信息网络系统,物理基础设施和IT基础设施集成在一起,因此,人类可以更精细和智能来控制物质世界的操作。世界上任何对象,在任何地点和任何环境中,只要使其感知和识别的嵌入式设备,可以通过射频识别、红外传感器、激光扫描仪,GPS和无线网络技术和设备,网络连接,然后通过智能分析和信息处理技术来实现一个全面和彻底感知物质世界及其变化,以及智能反馈和决定。

2 主要物联网技术原理

(1)FRID射频技术。钻井企业应用FRID射频技术就是把一个RFID电子阅读器安装在车位上,这样员工在完成任务后就可以刷下工票卡,从而能够及时的将员工的生产信息进行采集,可以有效的对现场进行管理,进行合理的安排和进行改善,FRID射频技术的应用可以对人员和现场进行合理的管理,把工作进度反馈给管理人员。(2)全球定位系统(GPS)技术。全球定位系统(GPS)是一个卫星定位和导航技术和现代通讯技术,结合GPS定位在空间技术引起了革命性的变化,在越来越多的领域来取代传统的光学和电子定位设备。使用GPS同时测试3 d坐标位置的方法从陆地和海洋测绘技术扩展到整个地球空间和外太空,从静态到动态、从单点定位扩展到本地和广域覆盖,从事后处理扩展到定位,实时和导航。(3)微型传感器技术。微型传感器技术是利用能量或感觉指定转换元件进行测量时,按照一定的规则敏感元件,人类不能直接获得或识别信息到技术识别信息的数据。传感器技术测量不仅感觉信息,并且还觉得所检测的信息,根据变换成的电或其它形式的信息输出,以满足信息的传输,处理,控制所需的,等等,这也是实现物联网感知技术的首要环节。(4)zigbee低功耗无线传输技术。ZigBee是一种专用的低数据率通信技术,相比WIFI,光纤数据传输技术具有成本低,功耗低,实用性强等特点,在工业生产过程控制,以及煤炭,楼宇自控,等我们做应用结果,油井通过现场安装的压力变送器、载荷变送器、转速变送器实现对现场压力、载荷、转速生产参数的采集,站库是通过现场安装的压力变送器、温度变送器、流量计、液位计等设备采集泵的压力、加热炉的温度、注水的流量、储液罐的液位等生产数据。

3 物联网技术在石油钻井工程中的应用前景

此次推出的概念“物联网”,打破了传统的思维,过去一直认为钻井安全生产依赖于某一个单独的物理基础设施和信息;而在“物联网”时代,有害气体检测、施工参数检测、钻井液检测及钻机、柴油机等设备检测的传感器日益成熟,无线传输技术、全球定位技术、FRID射频技术逐渐集成融合为施工现场的基础设施,通过一定的技术手段可以实现复杂作业环境下的人员、机器、设备、工具、物料及基础设施等更有效的协调管理和控制,为建设新的石油钻井生态环境提出了新的思路和方法。

(1)应用传感器技术实现主要钻井装备状态监控。如对柴油机、顶驱监控,达到减少油耗、及时发现设备故障的目的。(2)应用传感器技术实现钻井生产作业流程监控。作业过程中的钻压、扭矩、转盘转速、大钩负荷等参数采集传输,通过三维仿真远程展示、工况分析以及参数优化,实现计算、网络通信、精确控制、远程协作和自治五大功能。(3)应用RFID技术实现现场施工人员身份识别与自动考勤监。比如在施工现场入口处安装RFID采集器,对施工人员进场与离场自动监测和考勤。(4)应用RFID技术实现作业现场钻杆钻具管理。

4 结语

物联网是一种跨学科的新兴产业,已经不断地融入到我们的生活当中,它给我们的生活生产都带来了巨大的方便。但物联网技术是一项新兴技术,其应用还不是很成熟,但随着时间的推移,科学技术,物联网技术在互联网的作用的发展将越来越完善。尤其在我国石油需求量比较大的国家,加强物联网技术的应用,为石油开采做出贡献。

参考文献

[1] 彭朋,韩伟力,赵一鸣,周建锁,董浩然.基于RFID的物联网安全需求研究[J].计算机安全,2011(1).

篇8

1 深基坑支护的概况

1.1 深基坑支护

对于深、浅基坑,目前工程界并没有统一的标准。1967年Terzaghi与Peck建议将6米以上深度的基坑定为深基坑,但实际施工中这种说法并没有得到广泛地认可。现阶段,我国深基坑施工中普遍将超过6米或7米的开挖深度看作是深基坑。基坑支护是指为确保地下室施工及附近环境的安全,选用支挡、加固等方式对基坑侧壁与附近环境加以保护。支护结构主要对侧向压力进行承受,主要包含水土压力、地面荷载、邻近建筑物基底压力及相邻场地施工荷载等引起的附加压力,其中水土压力为支护结构承受的主要压力。传统支护设计理论主要将基坑附近土体作为荷载,作为支护结构的“对立面”,随后按照围护墙位移的状况,进行支护设计。

1.2 土钉墙支护

作为一种新型支护方式,主动支护就是将基坑附近土体自支撑能力进行充分发挥及提升。目前主动支护主要分为水泥土墙支护、土钉墙支护、喷锚支护、冻结支护、拱形支护等方式,本文主要对基坑主动支护中的土钉墙支护进行分析与探究。

土钉墙是在新奥法的基础上基于物理加固土体的机制,在上个世纪70年代从德国、法国及美国发展出来的支护方式。上个世纪80年代早期在矿山边坡支护中我国采用了这种方式,随后土钉墙支护法在基坑支护得到了大量应用。土钉墙的组成成分为被加固土、放置于原位土体内的细长金属杆件与在坡面附着着的混凝土面板,最终实现重力式支护结构。将一定长度及密度的土钉设置在土体内,通过土钉和土一起完成作业,进而将原位土的强度、刚度进行有效提升。这种支护技术主要应用于12米以下的基坑开挖深度,如地下水位在坑底以上时,必须根据实际施工要求,进行有效排水与截水施工。

2 建筑工程深基坑支护技术的应用

2.1 工程概况

本工程由15层住宅楼含局部3层商铺(裙楼)组成,裙楼外侧边线范围内设1层连通式地下室。基坑长55.19m,宽36.10m,开挖深度约为4.9m。

2.2 土钉墙基坑支护施工

结合本工程的实际施工情况,选用土钉墙基坑支护的方式进行有效施工,应遵循一定顺序进行,如基坑西侧支护―南侧―东侧。其施工流程如下图1所示。

2.3 基本工艺

(1)钻设钉孔。选用土钉成孔的方式进行基坑支护作业,其成孔工具为洛阳钻机,将其孔径设置为80毫米,深度应确保其超过土钉长度100毫米,成孔倾角为15度。每钻进1米,并进行倾角地测量,避免偏向等情况的出现。

(2)土钉安装。与本工程基坑土钉墙支护设计需求相结合,进行土钉的制作,确保其长度在设计长度以上。每隔1.5米进行一组土钉的设置,选用搭焊连接的方式进行土钉连接,焊缝高度控制在6毫米,把土钉在成孔作业后设置在孔内。

(3)注浆。选用孔底注浆法进行土钉墙基坑支护注浆作业,其作业流程为在孔底插入注浆管,确保管口与孔底之间距离200毫米,注浆管应同时进行注浆与拔出作业,确保注浆管底能够在浆面以下,确保注浆过程中可以顺利从孔口流出,并将止浆阀设置在孔口,选用压力注浆的方式进行施工,确保水泥浆强度为M20,注浆压力控制在1到2Mpa之间。

(4)挂钢筋网并与土钉尾部焊牢。选用钢筋网进行土钉墙面施工,将其间距定为200毫米,在坡面上通过人工的方式进行绑扎钢筋的作业;搭接坡面钢筋的长度需在300毫米左右,随后顺着土钉长度方向在土钉端部两侧进行短段钢筋的焊接作业,同时在面层内将相近土钉端部通长加强筋进行连接及焊牢。

(5)安装泄水管。土钉墙基坑支护的泄水管制作应选用PVC管作为主要材料,泄水管长度必须在450毫米以上,并在管附近进行钻孔作业,孔数应控制在5到8个,随后在管外侧进行尼龙网布的包裹作业。泄水孔纵横距离定为2米,布置形状为梅花型并确保安装的牢固性。

(6)复喷表层混凝土至设计厚度。选用喷射混凝土方式进行土钉墙施工,其设计强度必须在C20左右,其厚度应控制在80毫米。第一,选用干拌方式,混合料搅拌时必须遵循相应的配合比进行施工,混凝土喷射施工过程中根据实际情况,可以将水泥重量为5%喷射砼速凝剂掺加到里面。在开挖土方、修坡施工后,及时完成土钉锚固作业,结束焊接钢筋网施工后,必须及时进行喷射混凝土作业。选用分层喷射的方式,由下到上的方式进行喷射混凝土作业。第一层喷射厚度应控制在4厘米到5厘米之间,确保其不出现掉浆现象后,进行第二层混凝土再喷射作业,直至其厚度符合设计规定。

3 建筑工程深基坑支护监测

基坑支护体系随着开挖深度的不断增加会出现侧向变位的情况,这种情况在施工中无法避免,基于此,基坑支护监测的关键就在于侧向变位的发展及控制。通常情况下,体系的破坏都具有相应的预兆性,在基坑支护监测中,施工单位必须做好现场指导工作,利用检测等方式及时分析、了解支护体系的受力情况。在监测中不仅要做好整个基坑支护检测工作,还要充分考虑其附近环境。这种监测方式可以掌握好基坑附近支护的稳定情况,在目前深基坑支护工程理论与相关技术支持下,施工实际情况往往存在或多或少的问题,根据本工程现场施工的具体情况,其地质环境较为复杂,可选用变形监测的方式进行基坑支护作业,这样可以保证施工的安全性。

选用的监测点布置范围为本工程基坑支护的边坡开挖影响范围,遵循其基坑深度2倍以上的深度进行分析,并对监测对象的特定范围进行充分考虑。本工程沉降位移监测点应在基坑边坡附近每个20米到25米的范围进行设置,这样可以为施工的顺利进行提供强有力的保障。并能对施工后路面损坏形成的原因进行分析。在施工前,施工单位必须认真调查路面的实际情况,主要选用拍照等形式对其现状进行分析,随后对形成相应文字进行归档。完成以上监测作业后,对于较大危害部位,可以选用石膏膜设点的方式进行施工,尽可能降低对工程施工的影响,并定期进行跟踪查看。分期分阶段将监测情况记录汇报有关各方。此类监测点的设置将在详细调查现状的基础综合确定,同时对在施工间出现的开裂,特别重视监测,将实际情况向相关单位及时上报。

4 结语

综上所述,在建筑工程深基坑支护施工中,土钉墙支护技术施工中具有较高的技术含量及较快的施工速度,这种施工技术在建筑工程基坑支护施工中得到了广泛地应用,可以对公路施工、交通基坑支护中的问题进行有效解决。在基坑支护技术应用中,必须详细检查施工现场的实际情况,提高技术水平,规范施工流程,做好监测工作,确保基坑支护技术符合施工要求,避免造成严重的经济损失。

参考文献

[1]胡浩,王路,胡小猛.高层建筑深基坑支护土钉墙技术应用研究[J].科技信息,2011年13期.

[2]闫君,王继勤,崔剑.土钉墙支护技术在青岛中惠商住楼深基坑中的应用[A].探矿工程(岩土钻掘工程)技术与可持续发展研讨会论文集[C],2003年.

[3]兰云才,虞利军,欧阳涛坚.软土地区深基坑支护工程实例[A].第十三届全国探矿工程(岩土钻掘工程)学术研讨会论文专辑[C],2005年.

[4]周玉印,从容.深基坑地下水控制技术创新与应用[A].新世纪 新机遇 新挑战――知识创新和高新技术产业发展(下册)[C],2001年.

篇9

作者简介:张飞,副教授,研究方向为资源遥感与3S技术应用的教学。

随着全球化进程的发展,世界上各个国家交流的趋势日益增强,社会对人才所具备的素质的需求也越来越高,对国际化人才的需求增多,高等教育的国际化趋势得到了强化。这种趋势要求在培养专业人才的学科建设中进行专业化和国际化的改革,实施国际化的教学方式,通过实施专业课程的双语教学,实现培养既掌握扎实的理论基础和专业知识、又通晓国际语言、熟悉国际惯例与规则的专业化、国际化人才的目标。[1]双语教学是指为了实现学生能够运用母语和外语理解、掌握专业知识,并且能够熟练应用并实现专业技能目的,通过采用两种语言――母语及第二外语,同步对同一知识进行描述的教学方式。[2]经过多年的双语教学证明,在我国高校推行专业课程双语教学是可行的,教学效果也是显著的。鉴于双语教学是我国高校培养高素质、国际化人才的有效手段之一,[3]因此教育部在《关于加强高等学校本科教学工作提高教学质量的若干意见》中强调指出:“按照教育面向现代化、面向世界、面向未来的要求,为适应经济全球化和科技革命的挑战,各个高校要积极推进双语教学,本科教育要创造条件使用英语等外语进行公共课和专业课教学。”[4]因此,本文将选择《遥感地学分析》课程作为案例,并配合我校精品课程建设项目,探讨开展《遥感地学分析》课程双语教学建设必要性和内容。

一、遥感地学分析课程双语教学的必要性

进行《遥感地学分析》课程的双语教学是3S(GIS,GPS,RS)学科发展趋势的必然需求。该课程是地理信息系统和遥感科学与技术专业的必修课程,随着遥感技术的发展,遥感地学分析已成为地理信息系统学科的重要部分。地理信息系统学科目前呈现出应用化、国际化的发展趋势,这种趋势一方面体现在对专业人才的需求不仅局限在3S领域,其它涉及空间信息的领域,如环保、林业等部门,对于具有空间信息处理的人才需求很大;另一方面体现在随着大量外国公司进入中国(如:ESRI公司)和中国公司跨出国门(如:Supermap公司),针对空间信息处理领域既具有专业技能又有较强专业外语能力的人才需求强烈,因此推行遥感地学分析课程的势在必行;另外,进行《遥感地学分析》课程的双语教学也是3S课程教学改革的要求。课程教学改革的目标是培养专业素质硬、应用能力高和动手能力强的高素质人才,满足社会对3S专业人才的需要。由于现在高校中普遍存在的英语学习与专业理论学习脱节的情况,使得很多学生虽然通过了CET4、CET6考试,但是在专业上使用外语的能力差,不能很好理解专业文献,不能熟练运用ENVI,ArcGIS,Erdas等专业软件,更不能进行专业方面的国际交流沟通,这种状况对3S课程的教学改革目标的实现是一种危害。为了减轻这种危害,目前很多高校都开展了遥感地学分析的双语教学,这种教学方式使学生将专业知识的提高与外语的应用融合起来,以培养具有较高综合素质的人才,适应社会的需求。

二、遥感地学分析双语教学课程建设内容

1.双语教学的教材与教案建设

双语教学必须根据课程性质灵活选择使用原版外文教材或自编教材。在使用原版外文教材时,要遵守适用、适合的原则,积极进行原版教材本土化探索,自编双语辅助教材。满足教学大纲要求的优秀双语教材是双语教学成功的前提。笔者根据学校遥感地学分析课程教学大纲的要求,在参考国外多种原版遥感教材,如《Satellite Remote Sensing》、《Advances in Land Remote Sensing》、《Remote Sensing:Models and Methods for Image Processing》的基础上,并结合其它中英文教材编写《遥感地学分析》双语教学讲义。

2.双语教学的师资队伍建设

一支结构合理、外语教学水平较高、教学效果好的双语教学团队是双语教学成功的关键。虽然聘请国外专家参与双语教学工作可以在一定程度上推动双语教学,但是立足于本校,建立一支本土化的教师队伍才是双语教学成功的关键。双语教师应具备较强的英语听、说、读、写、译能力,能够流利地运用英语进行专业课程的授课。因此,为了更好地完成双语教学任务,教师应经常阅读英文版遥感书籍杂志,特别注意阅读遥感专业英语期刊论文,如:《Remote Sensing of Environment》、《ISPRS Journal of Photogrammetry and Remote Sensing》、《International Journal of Remote Sensing》、《IEEE Transactions on Geoscience and Remote Sensing》等遥感类权威杂志,同时也要经常浏览影响力强的遥感类国际网站,如:美国摄影测量与遥感协会网站和加拿大遥感协会网站等,这样可以及时把握遥感发展动态,拓宽视野,为讲课提供生动的案例。

3.双语教学的内容建设

在教学内容的选材方面,需要反映国际上本领域最新的科研成果,紧紧围绕素质教育和创新教育来组织,力求体现遥感地学分析的理念,注重基础知识、基本方法与基本技能的训练。《遥感地学分析》着重讲述遥感物理基础(Physical basis of remote sensing);遥感平台及特点(Remote sensing platforms and their characteristics);遥感传感器及其成像特征(Sensors and imagery characteristics);遥感数据源(Remote sensing data sources);可见光~反射红外遥感(Visible-reflection infrared remote sensing);热红外遥感(Thermal infrared remote sensing);微波遥感(Microwave remote sensing);遥感图像目视判读(Visual Interpretation of remotely sensed imagery);遥感图像计算机分类(Classification of imagery by computer);定量遥感(Quantitative remote sensing);土地遥感(Land remote sensing);植物遥感(Vegetation remote sensing)以及水体遥感(Water remote sensing)。通过对遥感地学分析课程双语教学内容的建设,使学生利用中英文对照教材进行预习,教学效果将得到大幅度的提高。

4.双语教学过程中教学方法和手段建设

在教学方法上,应循序渐进、因材施教,根据学生对知识的理解与掌握程度逐步推进。在教学中,采用“预习――授课――复习”三段式教学法,努力营造双语教学氛围,为学生创造一个良好的双语教学环境。在课堂教学中,全方位地训练学生外语思维和应用的能力,除了教学内容中的难点与重点增加中文解释外,教师与学生互动、作业等都用英语进行,培养学生用英语思考问题、解决问题的能力,锻炼实际英语应用能力。课外,鼓励学生积极研读外文文献,培养利用外文获取知识的能力,并建立双语教学网站,把它作为一个平台,将相关的中英文教案、习题、实验指南、最新动态等放在网页中,实现资料共享。

5.本科生英语学习能力的培养

学生是双语教学的主体,是教学活动的最终归宿。我国传统的英语教学方法重视语法、句法学习,忽视听说训练,忽视英语交流能力的培养。针对这种情况,首先,给学生布置提前阅读教材与讲义的任务,使他们预先熟悉课程内容,以便上课时能够跟得上。另外,布置一些听说作业并定期检查,努力培养学生使用语言进行实际交流的能力。

实施双语教学是实现高等教育国际化,培养面向现代化、面向未来的复合型人才的有效途径。当然,建立一整套规范完善的双语教学模式,从原版教材的引进、双语教师的培养,到教学方法的更新完善,还有待于教育工作者大胆探索、不断实践。

参考文献:

[1]叶勤等.关于摄影测量与遥感双语教学的实践与思考[J].测绘通报,2006,(2).

篇10

中图分类号:C39 文献标识码:A文章编号:1 引 言地理信息系统的一个重要部分就是数据。在GIS工程里,空间数据的获取占有很重要的地位。实际上,整个地理信息系统都是围绕空间数据的采集、加工、存储、分析和表现来展开的。为了充分利用已有的数据,降低成本,实现信息资源的共享,在GIS工程实施过程中,经常需要利用不同来源的各种空间数据。由于GIS软件的多样性,每种软件都有自己特定的数据模型,造成数据存储格式和结构的不同。从数据结构上来说,矢量和栅格是地理信息系统中两种主要的空间数据结构。在数据的使用过程中,由于数据来源、结构和格式的不同,需要采用一定的技术方法,才能将他们合并在一起使用,这就产生了数据的融合问题。数字制图是GIS的重要组成部分,也是GIS的主要表现和输出形式。本文讲的空间数据的融合涉及GIS和数字制图,但侧重于在数字制图中,将同一地区相同坐标系统,相同比例尺的多种不同来源或不同格式的空间数据根据需要合并成一种新的空间数据。从需求分析上讲,需要进行数据融合的情况一般为对数据信息进行更改、更新、增加或者为了某种特定的需要。随着因特网的发展和GIS应用的日益广泛,多源数据的融合已成为迫切需要解决的问题。2 栅格、矢量数据结构的概念基于栅格模型的数据结构简称为栅格数据结构,是指将空间分割成有规则的网格,在各个网格上给出相应的属性值来表示地理实体的一种数据组织形式;而矢量数据结构是基于矢量模型,利用欧几里得(EUCLID)几何学中的点、线、面及其组合体来表示地理实体的空间分布。对于空间数据而言,栅格数据包括各种遥感数据、航测数据、航空雷达数据、各种摄影的图像数据,以及通过网格化的地图图像数据如地质图、地形图和其他专业图像数据。从类型上看,又分为:二值图、灰度图、256色索引和分类图(单字节图)、64K的高彩图(索引图、分类图和整数专业数据)(双字节图)、RGB真彩色图(3字节图)、RGBP透明真彩色叠加图等等。常用的数据格式的有TIFF、JPEG、BMP、PCX、GIF等。而矢量数据就更多,几乎所有的GIS软件都有自己特定格式的矢量数据。目前最常用的矢量数据格式有Arc/info的Coverage、e00, 方正智绘的mrg,Mapinfo的mif,AutoDesk的dxf、dwg,Intergraph的dgn等等。在GIS和数字制图中,同种数据结构本身以及两种数据结构之间的融合构成了空间数据融合问题的主要内容。 3 栅格数据之间的融合在数字制图中和GIS工程中,经常用到不同来源、不同精度、不同内容的栅格图像数据进行复合而生成新的栅格图像。目前使用的各种多源图像处理与分析系统为栅格型地理信息系统的实现开辟一条新的途径,可实现栅格数据的各种融合。而在数字制图中,多源栅格图像数据之间的融合已经非常普遍。3.1 融合方法在数字制图中,图像融合涉及色彩、光学等领域,在专业的图像处理软件(如ERDAS、PCI、PHOTOMAPPER)或一般的图像处理软件(如PHOTOSHOP)都可进行,主要是通过图像处理的方式透明地叠加显示各个图层的栅格图。一般要经过图像配准、图像调整、图像复合等环节。具体过程如下:⑴图像配准。各种图像由于各种不同原因会产生几何失真,为了使两幅或多幅图像所对应的地物吻合,分辨率一致,在融合之前,需要对图像数据进行几何精度纠正和配准,这是图像数据融合的前提。⑵图像调整。为了增强融合后的图像效果和某种特定内容的需要,进行一些必要的处理,如为改善图像清晰度而做的对比度、亮度的改变,为了突出图像中的边缘或某些特定部分而做的边缘增强(锐化)或反差增强,改变图像某部分的颜色而进行的色彩变化等。⑶图像复合。对于两幅或多幅普通栅格图像数据的叠加,需要对上层图像做透明处理,才能显示各个图层的图像,透明度就具体情况而定。在遥感图像的处理中,由于其图像的特殊性,他们之间的复合方式相对复杂而且多样化,其中效果最明显、应用最多的是进行彩色合成。3.2应用分析在实际应用中,栅格图像数据之间的融合目前最常用的有以下几个方面:⑴遥感图像之间的融合。主要包括不同传感器遥感数据的融合和不同时相遥感数据的融合。来自不同传感器的信息源有不同的特点,如用TM与SPOT遥感数据进行融合既可提高新图像的分辨率又可保持丰富的光谱信息;而不同时相遥感数据的融合对于动态监测有很重要的实用意义,如洪水监测、气象监测等。⑵遥感图像与地图图像的融合。这是当前应用较多的一种方法,一是遥感图像与栅格化的DEM融合生成立体的三维景观图像,显现逼真的现实效果;二是借助遥感图像的信息周期动态性和丰富性,经过与各种地图图像融合,可以从遥感图像的快速变化中发现变化的区域,进行数据的更新和各种动态分析。⑶地图图像之间的融合。为了更加了解该范围的地形地貌情况,或者更全面地比较分析该地区各种资源的相互关系,对该地区不同内容的多种地图图像数据进行融合。如地形图和各种专业图像如地质图、土地利用图、地籍图、林业资源状况图等的融合,土地利用图和地籍图的融合等等。4 矢量数据之间的融合矢量数据是GIS和数字制图中最重要的数据源。目前很多GIS软件都有自己的数据格式,每种软件都有自己特定的数据模型,而正是这些软件的多样性,导致矢量数据存储格式和结构的不同。要进行各系统的数据共享,必须对多源数据进行融合。矢量数据之间的融合是应用最广泛的空间数据融合形式,也是空间数据融合研究的重点。目前对矢量数据的融合方法有多种,其中最主要的、应用最广泛的方法是先进行数据格式的转换即空间数据模型的融合,然后是几何位置纠正,最后是重新对地图数据各要素进行的重新分类组合、统一定义。4.1数据模型的融合由于各种数据格式各有自己的数据模型,格式转换就是把其他格式的数据经过专门的数据转换程序进行转换,变成本系统的数据格式,这是当前GIS软件系统共享数据的主要办法。如Arc/Info和MapInfo之间的融合,需要经过格式转换,统一到其中的一种空间数据模型。该方法一般要通过交换格式进行。许多GIS软件为了实现与其他软件交换数据,制订了明码的交换格式,如Arc/Info的E00格式、ArcView的Shape格式、MapInfo的Mif格式等。通过交换格式可以实现不同软件之间的数据转换。在这种模式下,其他数据格式经专门的数据转换程序进行格式转换后,复制到当前系统中的数据中。目前得到公认的几种重要的比较常用的空间数据格式有:ESRI公司的Arc/Info Coverage、ArcShape Files、E00格式;AutoDesk的DXF格式和DWG格式;MapInfo的MIF格式;Intergraph的dgn格式等等。4.2几何位置纠正对于相同坐标系统和比例尺的数据而言,由于技术、人为或者经频繁的数据转换甚至是由于不同软件的因素,数据的精度会有差别。在融合过程中,需要进行几何位置的统一。如对精度要求不高,为了提高工作效率,在允许范围内,应该以当前系统的数据精度为准,对另一种或几种数据的几何位置进行纠正。如为了获得较高的精度,应以精度高的数据为准,对精度低的数据进行纠正。4.3地图数据要素重新统一定义融合后的空间矢量数据,应重新对要素分层、编码、符号系统、要素取舍等问题进行综合整理,统一定义。⑴统一分类分层、编码。对于空间数据,一般都按地图要素进行分层,如水系、交通、地形地貌、注记等,而每层又可根据需要分为点、线、面三类,并采用编码的方式来表述其属性。对融合到当前系统的数据,应根据地图要素或具体需要,以当前数据为标准或重新制定统一的要素层和要素编码。⑵统一符号系统。这是目前矢量数据转换的一个难点,由于各GIS软件对符号的定义不同,在符号的生成机制上可能差别很大,经转换后的数据在符号的统一上有一定难度,而且在符号的准确性上可能与原数据有差距。⑶数据的综合取舍。同一区域不同格式的空间矢量数据,要涉及到相同要素的重复表示问题,应综合取舍。一般有以下原则:详细的取代简略的,精度高的取代精度低的,新的取代旧的等等,但有时为了突出某种专题要素,或为了适应某种需要,应视具体情况综合取舍。数据转换模式的弊病是显而易见的,由于缺乏对空间对象统一的描述方法,转换后很难完全准确地表达原数据的信息,经常性地造成一些信息丢失,如Arc/Info数据的拓扑关系,经过格式转换后可能已经不复存在了。5 矢量数据和栅格数据的融合空间数据的栅格结构和矢量结构是模拟地理信息的截然不同的两种方法。过去人们普遍认为这两种结构互不相容。原因是栅格数据结构需要大量的计算机内存来存储和处理,才能达到或接近与矢量数据结构相同的空间分辨率,而矢量结构在某些特定形式的处理中,很多技术问题又很难解决。栅格数据结构对于空间分析很容易,但输出的地图精确度稍差;相反矢量数据结构数据量小,且能够输出精美的地图,但空间分析相当困难等等。目前两种格式数据的融合已变得可能而且在广泛应用。在GIS工程中,很多的GIS系统已经集成化,能够对矢量和栅格结构的空间数据进行统一管理。而在数字制图中,两种数据结构的融合也在广泛应用。5.1栅格图象与线划矢量图融合这是两种结构数据简单的叠加,是GIS里数据融合的最低层次。如遥感栅格影像与线划矢量图叠加,遥感栅格影像或航空数字正射影像作为复合图的底层。线划矢量图可全部叠加,也可根据需要部分叠加,如水系边线、交通主干线、行政界线、注记要素等等。这种融合涉及到两个问题,一是如何在内存中同时显示栅格影像和矢量数据,并且要能够同比例尺缩放和漫游;二是几何定位纠正,使栅格影像上和线划矢量图中的同名点线相互套合。如果线划矢量图的数据是从该栅格影像上采集得到,相互之间的套合不成问题;如果线划矢量图数据由其他来源数字化得到,栅格影像和矢量线划就难以完全重合。这种地图具有一定的数学基础,有丰富的光谱信息和几何信息,又有行政界线和其他属性信息,可视化效果很好。如目前的核心要素DLG与DOM套合的复合图已逐渐成为一种主流的数字地图。5.2遥感图像与DEM的融合这是目前生产数字正射影像地图DOM常用的一种方法。在JX4A、VIRTUOZO等数字摄影测量系统中,利用已有的或经影像定向建模获取的DEM,对遥感图像进行几何纠正和配准。因为DEM代表精确的地形信息,用它来对遥感、航空影像进行各种精度纠正,可以消除遥感图像因地形起伏造成图像的像元位移,提高遥感图像的定位精度;DEM还可以参与遥感图像的分类,在分类过程中,要收集与分析地面参考信息和有关数据,为了提高分类精度,同样需要用DEM对数字图像进行辐射校正和几何纠正。6 数据融合问题的展望在数字制图中,栅格图像之间的融合已经在各种部门广泛应用,特别是在遥感图像的处理上,其技术手段也比较成熟;栅格图像与矢量图形的融合在目前也相对比较简单,而且在各种GIS软件中都比较容易解决。他们的发展方向主要应从应用的角度去丰富它们的融合方式,拓展它们的应用领域。而结构复杂、对软硬件都有很高要求的各种格式的矢量数据之间的融合是目前GIS的难点,也是主要的研究方向。最好的办法当然是能设计一种能融合多种数据结构的空间数据模型及其数据格式的 “万能”软件,这样才能真正实现不同格式的矢量数据的统一。目前的研究也正朝着这个方向努力,主要有以下两种趋势:6.1数据互操作模式数据互操作模式是OpenGIS consortium (OGC) 制定的规范。OGC为数据互操作制定了统一的规范,从而使得一个系统同时支持不同的空间数据格式成为可能。根据OGC颁布的规范,可以把提供数据源的软件称为数据服务器(Data Servers),把使用数据的软件称为数据客户(Data Clients),数据客户使用某种数据的过程就是发出数据请求,由数据服务器提供服务的过程,其最终目的是使数据客户能读取任意数据服务器提供的空间数据。OGC规范逐渐成为一种国际标准,将被越来越多的GIS软件以及研究者所接受和采纳。其主要特点是独立于具体平台,数据格式不需要公开,代表着数据共享技术的发展方向。数据互操作规范为多源数据集成带来了新的模式,但这一模式在应用中存在一定局限性:首先,为真正实现各种格式数据之间的互操作,需要每个每种格式的宿主软件都按照着统一的规范实现数据访问接口,在一定时期内还不现实;其次,一个软件访问其他软件的数据格式时是通过数据服务器实现的,这个数据服务器实际上就是被访问数据格式的宿主软件,也就是说,用户必须同时拥有这两个GIS软件,并且同时运行,才能完成数据互操作过程。6.2直接数据访问模式直接数据访问指在一个GIS软件中实现对其他软件数据格式的直接访问,用户可以使用单个GIS软件存取多种数据格式。直接数据访问不仅避免了频繁的数据转换,而且在一个GIS软件中访问某种软件的数据格式不要求用户拥有该数据格式的宿主软件,更不需要该软件运行。直接数据访问提供了一种更为经济实用的多源数据集成模式。目前使用直接数据访问模式实现多源数据集成的GIS软件主要有两个,即: Intergraph 推出的GeoMedia系列软件和中国科学院地理信息产业发展中心研制的超图SuperMap。GeoMedia、SuperMap实现了对大多数GIS/CAD软件数据格式的直接访问,包括:MGE、Arc/Info 、MicroStation DGN等。7 结语GIS是上世纪60年代才发展起来的一门新技术,由于发展水平较低,很多技术都不太成熟,如建设成本过高、实用性不强、理论研究滞后等。特别是建设成本高居不下,严重影响GIS的发展前景。由于GIS处理的数据对象是空间对象,有很强的时空特性,周期短、变化快,具有动态性;而获取数据的手段也复杂多样,这就形成多种格式的原始数据,再加上GIS应用系统很长一段时间处于以具体项目为中心孤立发展状态中,很多GIS软件都有自己的数据格式,造成GIS在基础图形数据的共享与标准化方面严重滞后,这是制约GIS发展的一个主要瓶颈。以目前的发展水平,各种空间数据的融合是GIS降低建设成本最重要的一种办法,但其中很多的技术问题还需要解决,还需要进一步深入研究。

参 考 文 献

1黄杏元,马劲松,汤勤.地理信息系统概论.高等教育出版社,2001.12

2邬伦,张晶,赵伟.地理信息系统.电子工业出版社,2002.5

3陆守一,唐小明,王国胜.地理信息系统实用教程(第2版).中国林业出版社,2000.1

4郭黎,崔铁军,吴正升.多源数字地图融合技术问题的研究.海洋测绘,2002.2