网络系统论文实用13篇

引论:我们为您整理了13篇网络系统论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

网络系统论文

篇1

一、什么是ARP欺骗

从影响网络连接通畅的方式来看,ARP欺骗分为二种:一种是对路由器ARP表的欺骗;另一种是对内网PC的网关欺骗:

第一种ARP欺骗的原理是——截获网关数据。它通知路由器一系列错误的内网MAC地址,并按照一定的频率不断进行,使真实的地址信息无法通过更新保存在路由器中,结果路由器的所有数据只能发送给错误的MAC地址,造成正常PC无法收到信息。

第二种ARP欺骗的原理是——伪造网关。它的原理是建立假网关,让被它欺骗的PC向假网关发数据,而不是通过正常的路由器途径上网。在PC看来,就是上不了网了,“网络掉线了”。

二、ARP欺骗的危害

ARP欺骗可以造成内部网络的混乱,让某些被欺骗的计算机无法正常访问内外网,让网关无法和客户端正常通信。实际上他的危害还不仅仅如此,一般来说IP地址的冲突我们可以通过多种方法和手段来避免,而ARP协议工作在更低层,隐蔽性更高。系统并不会判断ARP缓存的正确与否,无法像IP地址冲突那样给出提示。而且很多黑客工具例如网络剪刀手等,可以随时发送ARP欺骗数据包和ARP恢复数据包,这样就可以实现在一台普通计算机上通过发送ARP数据包的方法来控制网络中任何一台计算机的上网与否,甚至还可以直接对网关进行攻击,让所有连接网络的计算机都无法正常上网。这点在以前是不可能的,因为普通计算机没有管理权限来控制网关,而现在却成为可能,所以说ARP欺骗的危害是巨大的,而且非常难对付,非法用户和恶意用户可以随时发送ARP欺骗和恢复数据包,这样就增加了网络管理员查找真凶的难度。三、解决ARP攻击的方法

绝大多数路由器厂商建议用户在内网主机和路由器之间建立双向的ARP绑定来解决这个问题,这也是目前看来最行之有效的解决方案

但是在酒店却很难使用这个方案,随着住店客人的不断更换,酒店客房里的主机是不断变化的,这就意味着遭遇ARP欺骗时,不可能在路由器上通过绑定内网主机ARP信息的传统方法解决此问题。同时,也很难让住店的客人操作对路由器的ARP绑定。

针对使用HiPER路由器的酒店用户特提出以下解决方案:

1.解决路由器被ARP欺骗的问题

绝大多数酒店采用DHCP技术给上网用户动态分配IP地址,HiPER新一代ReOS版本VSTAR根据这个特点,对路由器DHCP动态分配IP地址的用户自动进行ARP绑定,待该IP地址租约到期未续租时将其自动解除绑定的功能。这样当路由器收到内网虚假的ARP信息的时候就会主动拒绝。

2.解决内网主机被ARP欺骗的问题

方法1:通过路由器按照一定频率发送申明自己的广播包,告知内网每台主机正确的网关ARP信息。

方法2:一旦ARP欺骗发包的频率高于网关的发送频率,方法1的防御方法就会失效。这时候我们就可以配合内网安全交换机端口隔离功能来解决这个问题,在内网的交换安全交换机上配置每个端口为独立的VLAN(可以采用802.1QVLAN或者PortVLAN技术)。这样,内网即使有主机发起ARP欺骗,也不会影响到内网的其他主机的正常上网。

3.过渡方法

篇2

1.3ZigBee路由及终端节点设计远程图像监控终端系统实现采集视频图像数据、压缩编码视频图像数据、传送压缩视频图像数据至控制中心等功能。整个硬件系统可分为嵌入式主控模块、ZIGBEE模块、显示模块、图像采集模块、供电模块及FLASH模块六大部分。本系统的硬件结构框图如图3所示。嵌入式主控模块采用S3C2440处理器,主频可达400MHz,主要是面向终端设备及高性价比、低功耗的应用,负责对ZigBee模块数据的处理和控制。在主控模块上运行嵌入式Linux系统,而嵌入式Linux操作系统的主要作用是管理程序模块进程并调度进程等。ZigBee模块主要用于接收图像信息,并以特定的格式发送给ZigBee协调器模块。图像采集模块完成视频的采集和压缩功能,由USB摄像头和视频采集压缩卡两部分构成。视频采集压缩卡采取模拟图像输入,JPEG压缩图像格式输出。图像的采集和压缩都由硬件实现,这样监控终端自身就可以不需要配大容量的缓存,从而降低了成本,减少了ARM处理器的工作负担。视频采集压缩卡还支持图像侦测功能,在图像侦测状态下,压缩卡连续捕捉图像。图像侦测灵敏度以及异物面积大小均可由ARM处理终端设定。有快速的图像捕捉速度和较强的数字图像处理能力。配以改进的图像侦测算法,取得了较好的图像侦测效果。显示模块采用3.5寸TFT带触摸屏的LCD,作为整个系统的控制面板。FLASH模块将存储一些尚未传输的图像信息。供电模块主要为系统正常工作提供电源。整个北斗视频图像采集终端依照客户端/服务端模式设计,实时将集的图像信息传送到监控中心。系统工作时,先由主控模块启动视频图像采集和压缩过程,启动USB摄像头对现场图像进行实时采集,将采集的图像数据经由视频采集压缩卡处理后存储为JPEG格式,根据使用环境的不同,由主控模块或用户指令控制图像的压缩率,北斗发起与远方监控中心的视频图像数据的传送连接,监控中心以服务器模式运行,经监控中心确认后,北斗模块将视频图像压缩数据包将开始无线传输到监控中心,监控中心根据监控需要完成视频图像压缩数据包的接收和图像显示等操作。

2系统软件设计

软件的设计分为两部分,包括ZigBee引导程序软件设计和终端处理程序软件设计。ZigBee引导程序软件设计实质是整个终端程序的一个子模块,完成对ZigBee的初始参数设置。包括关闭看门狗计时器,初始化串口配置,关闭中断,初始化系统时钟;打开网络状态指示LED灯,并使系统运行于管理模式下;配置与串口相连的引脚为输出状态,同时,初始化I/O口。对于ZigBee控制采用AT通用命令完成,如果使用AT+CPOWD=1能够关闭ZigBee模块。这个命令可以使模式从网络中退出并允许进入安全状态,在断电之前保存数据。ZigBee初始化流程如图4所示。终端处理程序主要解决控制图像采集压缩卡采集JPEG图像,通过LCD触摸屏发出的控制命令。采用AT命令控制ZigBee模块接入北斗无线网络,并将图像上传至北斗网络。本部分采取C++和C编写,采用动态图像的传输方式,也就是说,一旦连接成功后,LCD控制端发送命令给终端采集JPEG图像或设置终端的状态、图像的压缩比例、图像幅度大小等动作。终端处理程序流程图如图5所示在图中的图像处理中,从采集到识别采用Y、U和V三个分量算法进行,其中获取到处理采用原语进行,主要算法如下:UTL_stsStart(stsDispTime);//开启显示时间计时inBuf[0]=pMsgBuf->bufY;//获取Y分量nBuf[1]=pMsgBuf->bufU;//获取U分量inBuf[2]=pMsgBuf->bufV;//获取V分量outBuf[0]=disFrameBuf->frame.iFrm.y1;//存储处理后火焰图像Y分量outBuf[1]=disFrameBuf->frame.iFrm.cb1;//存储处理后火焰图像U分量outBuf[2]=disFrameBuf->frame.iFrm.cr1;//存储处理后火焰图像V分量yuv420to422(inBuf,outBuf,720,480);//将YUV4:2:0的格式转换YUV4:2:2UTL_stsStop(stsDispTime);//显示时间计时结束通过上述设计方案,结合图像识别压缩算法,与硬件系统调试,实现了卫星多点远程监控图像的传输和显示。

3实验结果

系统运行时的实验数据如下。图6是当嵌入式远程监控终端工作时,linux系统的启动信息。当系统工作后,图7是系统服务器终端显示的图像监控终端采集的实时图像,图像的分辨率为320*200的彩色图像。

篇3

2.1试验装置连接

笔者以大众帕萨特车型作为试验车辆,使用示波仪VAS6356与诊断仪VAS6150对该车的动力CAN进行波形测试,并模拟多种故障波形。示波仪通道DSO1的红色测量端子(正极)接CAN高线测量点A,通道DSO2的红色测量端子接CAN低线测量点B,且二者的黑色测量端子同时接地,连接线路示意图如图2所示。系统在同一界面下显示CAN高线和CAN低线的同步波形,能直观分析故障。

2.2试验结果与分析

2.2.1CAN线断路波形机理分析

如图2所示,本研究将断路故障设置在ABS控制单元的高线与检测点A之间,并在A点进行测量,得到的波形如图3所示。ABS控制单元在发送信息时波形如图3中的分界线前面部分,此时检测点A电压为低线电压经过发动机控制单元、安全气囊控制单元及自动变速器控制单元终端电阻分压后的电压,高线波形与低线波形变化趋势相同,但振幅有所下降,由于CAN线以差动放大器来评估CAN线的输入信号,另外3个控制单元无法识别ABS控制单元发送的信息。而在ABS控制单元接收其他控制单元的信息时检测点A能测量到如图3中的分界线后面部分波形,而且其余控制单元的信号能够正确传递,波形显示正常,但是由于线路断开ABS该控制单元接收不到信息,断路故障对驱动CAN影响较大,在此种情况下动力CAN不能正常工作,表现为某个控制单元不在网络上的故障代码。在相同故障情况下,若将测量点选取在图2中的a点,得到的波形如图4所示,波形呈镜像传递,显示正常。虽然ABS控制单元的高线发生断路,但是发动机控制单元、变速器控制单元、安全气囊控制单元及仪表控制单元(内含网关与防盗控制单元)之间能够正常通信。由此可以看出,断路故障波形信号还取决于检测点,如果将检测点选取在离断路较远的位置测量,CAN线上虽然没有已断开控制单元的发送数据信号,但是示波仪仍会捕捉到正常波形信号,这些信息则是其余控制单元相互通信的信号,此种情况在示波仪解析率较低时将无法识别出各信息的比特从而造成误判。所以笔者在利用示波仪测量前用诊断仪诊断出哪些控制单元不通讯,不通讯的控制单元之间有何联系,再选取合适的测量点。根据上述诊断思路,在大众帕萨特车型无法起动故障排除中,本研究通过故障诊断仪VAS6150读到发动机控制单元存在两个故障码含义分别为动力系统数据总线无法通讯和发动机控制单元闭锁,再从网关中读到故障码含义为动力系统数据总线有故障或有缺陷。其他控制单元无故障记忆,根据故障码分析,该故障属于CAN总线系统通信线路故障,由于启动时,发动机控制单元要与防盗控制单元、变速器控制单元相互通信,又因为该车型的防盗控制单元集成在仪表控制单元内,本研究将检测位置重点选取在仪表控制单元的CAN线处,得到波形如图3中分界线之前波形,表明此处高线断路。通过仔细检查连接线束,发现从仪表控制单元出来的插接器中CAN高线端子触点回退。笔者用线束修理工具修理好该插接器,清除所有控制单元的存储的故障代码,故障码不再出现,故障排除,发动机也能够正常起动。舒适系统控制单元当某节点的CAN高线断路时,波形图如图5所示。仅断路节点的CAN高线无传输数据波形,高线为0V隐性电压,CAN低线传输数据波形正常,控制单元仅通过低线对地的电压值确定传输数据,其余节点CAN线传输正常标准的对称互补数据波形,系统进入单线传输模式。舒适系统CAN数据总线引入独立驱动器(输出放大器)彼此没有通过电阻器相互连接,从而消除了两种CAN信号的相互依赖,因此舒适系统CAN高线和CAN低线不再相互影响,独立运作。在试验中发现,如果存在断路故障,则一个数据导线断路时,系统不会与所有控制单元一起切换到单线运行模式,只有直接连接在已断路数据导线上的控制单元才无法再将信息传输到CAN线上。收发器识别到一根数据传输导线缺失,因此在相应的测量值块中显示“单线运行模式”。对于其余的控制单元来说,在断路情况下可以不受干扰地传输数据。其余控制元件则表明有一个与总线相关的故障记录,该记录不断在“单线”与“双线”之间切换。在波形检测时测量位置尽可能选在存在该故障记录的控制单元CAN线之间。

2.2.2CAN单线短路波形机理分析

当动力波形分析CAN高线对正极短路时,则在高线上任意一个检测点测量到的波形均为电源电压(约12V),在测量点B测得低线电压为高线12V电压经过动力系统所有控制单元终端电阻并联后总电阻分压后所得的电压,所以波形为低于12V的一条直线。同理,CAN高线任意处对地短路,则高线电压为0V直线;动力CAN低线电压是高线0V电压经过动力系统所有控制单元终端电阻并联后总电阻分压后的电压,所以波形为高于0V的一条直线。在此种情况下动力CAN系统无法确认信息,因此均无法正常工作。当舒适CAN高线对地短路时,高线电压置于0V,低线电压正常,舒适CAN高线对正极短路,高线电压为12V或蓄电池电压,CAN低线的电压正常,该类故障舒适CAN均为单线运行,所有连接在此的控制单元都与这个故障相关。如果调用相关控制单元内的故障码存储器,则可以读取到故障记录“舒适系统数据总线处于单线运行模式”和“短路”。无论故障部位在何处,在网络内所有位置都可以发现这种故障形式。

2.2.3CAN高低线短路和高低线交叉波形机理分析

动力CAN波形分析高线与CAN低线短路时,测量点A与B的电压均被置于隐性电压值(约为2.5V),在实际检测中,可以通过拔取驱动CAN总线上的控制单元判断是由于控制单元引起的短路还是由于CAN高线或CAN低线线路连接引起的短路。当存在故障线被取下后,波形恢复正常,说明是被拔下的导线存在短路故障。舒适CAN高、低线之间短路,两线电压波形均为高线电压波形,低线电压自动切断,此时控制单元仅通过高线线路对地的电压值确定传输数据。此时研究者用万用表测量电压应接近高线电压等。这时舒适系统CAN上的所有控制单元都发生这种情况,所以该故障以记录“无法到达控制单元×××”的形式存储在诊断网关故障码存储器内。动力CAN高低线交叉时低线传递高线波形,高线传递低线波形,检测到的波形颜色调换。这时重点需检查插接端子和CAN线是否对换。舒适CAN高低线交叉后,两线互换传递波形。未经过培训的人员或修理工维修导线束或加装系统时,容易产生该故障,应多和客户沟通。

2.2.4CAN线带电阻波形机理分析

动力CAN线路带电阻时,波形振幅减小,而且电阻越大,振幅越小。控制单元内差动放大器无法评估CAN线的输入信号,所以系统无法正常工作。这时需注意检查连接CAN线的插接器是否松动。与2.2.1节所述相似,若测量点选取较远,示波仪解析率低的情况下动力CAN线带阻故障波形将不易察觉。舒适CAN高线带阻,高线波形振幅减小,而且电阻越大,振幅越小,高线带阻系统也会自动切换为单线运行模式,工作人员在检查时要注意各连接端子是否松动,针脚是否有氧化造成接触电阻。

篇4

22种网络系统对比

2种网络系统采用的总线形式见表2。ARCNET和TCN总线在技术特性上的对比见表3。表4为各图中缩略语的中英文对照。2种列车总线通信控制网络分别在不同地区得到不断发展,欧洲采用TCN,而日本采用ARCNET。现阶段2种列车总线控制技术都较为成熟,但两者间存在较大差异。TCN网络是专门为列车设计的,而ARCNET是为办公自动化而设计的网络,因其优越的过程处理能力而被移植到列车控制网络当中。TCN只能组成总线型网络,而ARCNET可以组成总线型或环型网络,但在列车控制网络中一般都采用总线型网络。TCN网络中,WTB总线只能作为列车级总线,MVB总线作为车辆级总线(可承担部分列车级总线功能)。

ARCNET网络中,ARCNET作为列车级总线,其车辆总线由RS485总线或其他总线组网。在数据通信差错控制方面,两者一般均采用循环冗余校验码(CRC)。在介质访问控制方式方面,TCN网络采用载波监听多路访问/冲突检测(CSMA/CD)。ARC-NET采用令牌传递总线(Token-PassingBus)方式。这2种介质访问控制方式中,ARCNET的令牌传递总线方式最为稳定,因为它采用的令牌方式是一种按照一定顺序的在各站点传递令牌的方法,谁得到令牌,谁才有发起通信的权利,从而避免几个结点同时发起通信而产生的冲突,特别适合在数据流量巨大的情况下应用。编码方式上,TCN采用曼彻斯特编码,而ARCNET一般采用NRZI(NoReturnZero-Inverse)编码(非归零反相编码)。

篇5

二、CAN总线在汽车网络系统应用中的前景展望

汽车网络应用前景的大致趋势是网络化。主节点众多、架构属于开放式、以及能够检测错误和具有自我恢复能力等优点,使CAN总线成为汽车网络应用的焦点。CAN总线是一个由物理层、数据链路层以及应用层组成的三层网络。在二十世纪九十年代初,CAN总线的物理层和数据链路层的规范才开始逐步标准化。在现阶段的CAN应用层上,根据应用场合的不同,出现了一些如针对载重汽车应用而提出的J1939等著名协议。在国外,CAN总线技术在汽车上的应用得到了快速普及,支持CAN总线标准的公司也在逐渐增多,使其成为一个汽车网络发展的必然趋势。目前我国也正研究和制订在通讯协议编码方面的CAN网络应用层标准,这对我国的CAN网络技术的应用起到了一定的促进作用。

篇6

1网络管理制度不完善

网络管理制度不完善是妨碍企业网络安全诸多因素中破坏力最强的。“没有规矩,不成方圆。”制度就是规矩。当前,一些企业的网络管理制度不完善,尚未形成规范的管理体系,存在着网络安全意识淡漠、管理流程混乱、管理责任不清等诸多严重问题,使企业相关人员不能采取有效措施防范网络威胁,也给一些攻击者接触并获取企业信息提供很大的便利。

2网络建设规划不合理

网络建设规划不合理是企业网络安全中存在的普遍问题。企业在成立初期对网络建设并不是十分重视,但随着企业的发展与扩大,对网络应用的日益频繁与依赖,企业未能对网络建设进行合理规划的弊端也就会日益凸显,如,企业所接入的网络宽带的承载能力不足,企业内部网络计算机的联接方式不够科学,等等。

3网络设施设备的落后

网络设施设备与时展相比始终是落后。这是因为计算机和网络技术是发展更新最为迅速的科学技术,即便企业在网络设施设备方面投入了大笔资金,在一定时间之后,企业的网络设施设备仍是落后或相对落后的,尤其是一些企业对于设施设备的更新和维护不够重视,这一问题会更加突出。

4网络操作系统自身存在漏洞

操作系统是将用户界面、计算机软件和硬件三者进行有机结合的应用体系。网络环境中的操作系统不可避免地会存在安全漏洞。其中包括计算机工作人员为了操作方便而主动留出的“后门”以及一些因技术问题而存在的安全隐患,一旦这些为网络黑客所了解,就会给其进行网络攻击提供便利。

网络安全防护体系的构建策略

如前所述,企业网络安全问题所面临的形势十分严峻,构建企业网络安全防护体系已经刻不容缓。要结合企业计算机网络的具体情况,构建具有监测、预警、防御和维护功能的安全防护体系,切实保障企业的信息安全。

1完善企业计算机网络制度

制度的建立和完善是企业网络安全体系的重要前提。要结合企业网络使用要求制定合理的管理流程和使用制度,强化企业人员的网络安全意识,明确网络安全管护责任,及时更新并维护网络设施设备,提高网络设施的应用水平。如果有必要,企业应聘请专门的信息技术人才,并为其提供学习和培训的机会,同时,还要为企业员工提供网络安全的讲座和培训,引导企业人员在使用网络时主动维护网络安全,避免网络安全问题的出现。

2配置有效的防火墙

防火墙是用于保障网络信息安全的设备或软件,防火墙技术是网络安全防御体系的重要构成。防火墙技术主要通过既定的网络安全规则,监视计算机网络的运行状态,对网络间传输的数据包进行安全检查并实施强制性控制,屏蔽一些含有危险信息的网站或个人登录或访问企业计算机,从而防止计算机网络信息泄露,保护计算机网络安全。

3采用有效的病毒检测技术

篇7

(一)基于xAPI的网络学习记录模型

基于xAPI的网络学习记录模型如图1所示。学习者进入互联网,通过用户认证后登入网页、LMS或应用程序等,其网络学习资源一般包含网络课程、文章、网页、严肃游戏等。学习者浏览网络学习资源获得学习经验;学习经验经由xAPI协议及规范传入LRS。其传入过程具体为:活动(ActivityProvider)对学习者所产生的学习活动进行定义,并将活动以不同模块分组;活动生成语句(Statement),语句通过活动生成语句API存储于LRS。xAPI包含4个接口,分别为语句接口(StatementAPI)、状态接口(StateAPI)、活动描述接口(ActivityProfileAPI)以及描述接口(AgentProfileAPI)。语句接口负责语句在LRS中的存储以及取出;状态接口为缓存区来存储正在使用的活动;活动描述接口可以引用存于LRS中活动的完整描述;描述接口向LRS内添加与相关的数据。

(二)基于xAPI的LMS网络学习记录模型组成要素

基于xAPI的LMS网络学习记录模型主要组成要素分别为:A.学习记录系统;B.活动;C.语句;D.认证。LRS内部数据以个人学习记录或成绩单的形式存储,不同的学习活动产生的记录均可传送到LRS中存储。LRS可通过报表工具与其他LRS或LMS进行通信。内部存储为执行者(Actor)、动词(Verb)与对象(Object)的集合,活动用来将文件发送给DocumentAPI。多个活动组成群组,每一组定义不同的活动。这可用来对LMS声明哪些程序可被允许通过,并将活动转化为语句。该阶段表明必须使用OAuth协议程序登录进程来登记信息,并应提供方法将信息传入LMS而无需管理员进入登录界面。语句的最简单语义形式为执行者(Actor)+动词(Verb)+对象(Object)。

(三)xAPI的语句语义结构

语句是xAPI的内容表现形式,所有学习事件都以语句的形式存储于LRS中。语句的属性由ID、执行者、动词、对象、结果、语境、时间戳、存储时间、授权、版本以及附件组成。其中,“执行者”“动词”“对象”为固定属性,它们构成了语句中简单的组成结构“谁做了什么”,其他为可选属性。语句语义结构描述如图2所示。语句结构格式中的动词描述了执行者对对象所产生的行为,是“谁做了什么”中的“做”。xAPI规范规定了24种常用动词类别,具体类别及语义描述如表1所示。对象是指“谁做了什么”中的“什么”,是执行者所做的内容。对象的内容可以是活动、、群组、子语句或语句引用等。xAPI规范中规定了13个常用活动对象,具体活动对象类别及描述如表2所示。

(四)学习记录信息交互过程

学习者通过登录网页、LMS、应用程序以及其他学习终端获取学习经验,学习记录信息与LRS进行交互以完成存储或提取信息功能。具体过程为:学习者进入网页、LMS学习课程或者应用程序进行学习获取学习经验,系统将该条学习经验转化为活动,由活动生成语句。语句通过xAPI中的StatementAPI与LRS交互来存储或提取信息。LRS与LMS间的学习记录信息的交互过程与LRS间不同。在LMS中,LRS只存储和获取学习记录,而内容打包、和输出都在LMS中完成。LRS中所记录的信息数据可在独立的LRS间通过报表工具传送,也可通过LMS内部报表工具传送给LMS中的LRS。

三、基于xAPI学习记录的LMS网络系统架构

LMS与xAPI相融合能够记录正式学习内部以及外部(非正式学习)的学习行为,因此,将LRS融入到LMS当中能够帮助LMS实施更加完善的功能。单独使用LMS平台无法追踪学习者在LMS外部学习时所留下的学习记录,将该平台加入xAPI机制进行架构重构,能够支持xAPI中的动词和活动语义关系,便于进一步进行基于xAPI的数据记录分析和数据挖掘,为学习者提供个性化的学习体验。基于xAPI学习记录的LMS网络系统架构主要有两种类型:第一种为LMS集成模型,即以原有LMS平台为基础对其进行架构重构,分别包括资源集成模式以及平台集成模式的重构。第二种为插件模式,即对基于网页或应用程序的搭载源进行架构重构,以辅助LMS平台进行外部学习记录的采集。因此,基于xAPI学习记录的LMS网络系统架构包含三种架构重构模式:资源层、平台层和环境层。

(一)资源层:LMS资源集成重构模式

通过将SCORM和AICC注册信息转化为xAPI中的语句,可将SCORM、TICC标准的学习资源转化为xAPI环境下支持的课件格式,即将SCORM标准课程中的数据自动生成语句并作为xAPI中的数据存入LRS中。通过该资源集成模式用户可输出SCORM和AICC包,保留SCORM内容,并将生成的语句存储到不同的LRS中。用户还可从LMS的课程中获取语句,通过报表工具记录到LMS或者其他LRS中。

(二)平台层:LMS平台集成重构模式

LRS作为学习记录存储系统,只存储和查找学习单与学习记录,而内容打包、和输出仍在原有LMS平台内部完成。对原有LMS平台进行架构重构即在平台内部建立LRS学习记录存储系统以及xAPI相应机制。

(三)环境层:LMS插件重构模式

基于网页或应用程序的搭载源通常搭载非标准课程学习资源,由于网页以及应用程序自身技术、标准等多方面的限制,为适应xAPI多为在原有网页或应用程序上添加小插件或小应用程序,以实现在学习资源内容以及呈现形式不改变的基础上将学习经验完整传输到独立LRS或LMS内部LRS中的功能。

四、应用案例

(1)案例一:LMS平台集成重构案例应用在TinCan()网络平台应用中,能够通过构建xAPI应用系统环境,通过使用LMS、网页及应用程序跟踪记录学习者学习经验。构建的应用系统环境将传统的LMS系统进行xAPI架构重构,并嵌入LRS,将学习者学习经验所产生的语句传输给LRS,系统经过对学习者学习时产生的语句的展现以及对学习者的学习记录数据进行分析后回传分析报告。在LMS平台集成重构案例应用过程中,主要包括三个步骤:第一步,学习者在自行学习后系统自动生成语句并传输至LRS内部,同时为该学习者设置的各类徽章,以此激励学习者使用该系统进行学习;第二步,重构后的LMS中的LRS可与多个学习软件进行融合,将学习者学习数据以活动流形式传入学习者LRS中,并将数据直观得呈现给学习者;第三步,系统通过学习分析可视化建模,可以呈现学习者经常使用的软件以及其对学习者对动词使用量、使用形态等进行的数据分析。(2)案例二:LMS资源集成重构案例应用基于SCORM标准的资源可以进行手工集成重构,在xAPI资源标准包添加包含Ioslaunch.html、Meta.xml、Presentation.html、Presentation.swf以及Tincan.xml描述文件。其中Tincan.xml为整个包的根目录,重构语义的描述内容描述了该结构中活动的群组化。活动对每一个活动进行定义,包含活动的ID、类型、名称以及描述。活动生成的语句传入StatementAPI中,从而以语句的形式将活动存储在LRS中,实现学习记录的跟踪与管理。

篇8

为了活跃计算机课堂学习气氛,在教学方法上,注重采取网络互动等多种教学方法,让学生在生动活泼的学习环境中愉快学习。本校教学系统中安装有相关的在线互动软件,可以组建小范围的局域网,让学生以小组为单位进行互动比赛、相互讨论,也可以进行师生交流,形成活跃的课堂氛围。如为了培养学习兴趣,在课堂上进行小组范围的打字比赛,看看谁能最终胜出。再如,可以进行PPT教学内容与制作的展示,让学生做裁判员,结果并不重要,重要的是学生都参与其中。

三、利用考试测试方法设计促进学生学习

考试是教学环节中重要的一环,不仅是因为要给学生一个可信的成绩,而且是对学生学习成果的肯定,更能激发学生的学习热情。在考试测试的方法上,利用网络进行精心设计,也能起到促进学生学习的作用。在设计上,采用校园网提交作业方式,让学生完成平时作业,记为平时成绩。在教室内,通过考试系统随机抽题,让学生现场答题,保证学生考试的公平性,因为这样做,尽管相邻两位同学坐得很近,彼此都能看到对方的答题,但是由于是随机抽题,考试内容是不一样的,避免相互抄袭的情况发生,让学生考出真实的成绩。

篇9

系统应实现以下功能。1)基础信息管理。①人员安全基础信息管理。有专家对事故发生原因进行统计分析,结果表明人为因素导致的事故占80%以上,而性别、年龄、是否饮酒、睡眠情况、反应敏捷性、性情等有差异的人员发生安全事故的概率亦有不同,即使是同一个人,其各种状态也经常变化[20]。因此,系统应能动态管理施工人员的上述信息。②机械设备安全基础信息管理。任何一种机械由于自身的性能、结构等特性,都有一定的使用技术要求,机械设备在使用过程中,其性能状态是动态变化的。因此,系统应动态把握机械设备的性能状态。③环境安全基础信息管理。工作环境不仅影响着施工人员的工作质量,还会影响施工人员在工作中的精神状态。特殊的自然环境如雨雪天气、大风天气、高低温环境、密闭空间等对施工人员的安全行为和心理会造成很大的危害和影响[20]。以特殊天气条件为例:雪天时路面、工程结构物、机械设备上湿滑,设备移动过程中制动困难易发生冲撞与倾覆事故,工人在工程结构物和机械设备上作业易发生高处坠落事故;雨天易发生城市内涝,若排水不畅,车站基坑易积水发生坍塌事故;若高耸机械设备防雷措施不当,则雷雨天还可能发生雷击事故;雾霾天气能见度变小,也易引发安全事故;6级强风以上则易引起高耸设备、围挡被风吹倒并进一步造成路面社会交通事故。因此,系统应能实现对环境信息的动态管理。④工程结构物信息管理。工程结构物的三维地理信息、工程进度信息等与安全风险分析有极为密切的关系,因此,系统应能动态管理工程结构物的基本信息和进度信息。⑤临时设施信息管理。主要包括施工围挡、竖井、斜井、施工材料堆放场、临时办公与生活用房等。正是由于临时设施的临时性,往往易被忽略而引发安全事故,因此应纳入系统进行动态管理。⑥周边既有建(构)筑物、市政管线、路面等既有设备设施信息管理。2)监控信息管理。系统应能为施工开展提供及时的反馈信息,为车站基坑周围环境进行及时、有效的保护提供依据,并将监测结果用于反馈优化设计,为改进设计提供依据;通过对监测数据与理论值的比较分析,可以检验设计理论的正确性;在施工全过程中,通过对既有地面和地下建(构)筑物各项指标的监测,将结构变形严格控制在标准限值内,保证既有建(构)筑物的安全等[2-5]。3)不安全状态与不安全行为分析评判。人员、机械设备的不安全状态和人员的不安全行为是导致施工事故的关键[20],因此,系统应能辅助安全管理人员对人员的不安全状态和行为进行分析评判,并将施工人员(尤其是安全人员)安排到最合适的工作岗位上。系统还应能辅助安全管理人员分析机械设备,尤其是高耸机械、大型施工装备的不安全状态,以便对机械设备故障进行有效预防,并对可能的安全事故进行防控。4)冲突风险分析。人员与机械混合作业、多机混合作业时,人员与机械设备之间、机械设备与机械设备之间、机械设备与工程结构物之间、机械设备与地面社会交通之间可能发生冲突事故,系统应能进行三维冲突分析,以便辅助安全管理人员分析高风险点、高风险区域以及高危作业的基本情况。5)风险预测与事故预警。6)安全隐患辨识与管理。7)应急处理方案管理与智能选择。8)事故逃生与救援指挥。

2系统开发思路

从前述的系统功能需求来看,施工人员、机械设备、工程结构物、既有建(构)筑物、既有市政管线、地面社会交通之间的空间冲突分析,人员逃生路线分析,事故救援方案分析,救援物资调配方案研究等功能的实现,都离不开三维空间位置信息的采集、存储、管理、描述以及对空间数据信息的操作、分析、模拟和可视化显示。因此,系统应运用三维地理信息系统(3DGIS)来实现,例如采用ArcGIS3D。因需要进行远程监控与管理,还应采用网络系统[11]。可视化开发环境主要考虑系统的反应速度、健壮性以及快速开发,例如采用C#,VB.NET等作为集成开发环境。考虑到空间数据和属性数据之间的无缝连接,系统宜利用Oracle等大型空间数据库管理系统来管理空间数据和属性数据。从控制系统开发成本来考虑,在满足系统性能基本要求的前提下,也可以采用MicrosoftSQLServer等数据库管理系统对属性数据进行管理,空间数据、施工图和竣工图等则以文件形式进行管理。

3系统总体结构设计

系统通过对属性数据库和空间数据库的数据访问,实现数据录入和管理,并可对其进行分析统计和查询,实现不安全状态与行为评判、冲突风险分析、特殊天气风险分析、预测预警、应急处理方案智能选择、事故逃生救援指挥等功能。除此以外,为了维护系统安全和方便用户使用,还应设计系统维护功能。系统总体结构如图1所示。1)基础信息管理。①人员安全基础信息管理:应包括所属单位、所属标段、人员类型(项目经理、安全总监、安全员、技术人员、施工队长、施工小组长、普通工人、特种作业人员等)、出生年月、性别、职务(或工种)、学历、工作经验、身体状态、心理状态、安全培训考核情况、作业地点(针对作业人员)等信息。②机械设备安全基础信息管理:应包括机械设备与装备的类别(盾构机、土石方机械、混凝土机械、起重及运输机械、钢筋加工及焊接机械、装饰装修机械、脚手架等)、名称、型号、所属单位、性能状态、责任人、检修情况、验收记录、安全交底情况等信息。③环境安全基础信息管理:应区分自然环境和社会环境,自然环境应包括特殊天气类型、风力等级、风向、能见度、气温、密闭空间含氧量、地下空间潮湿程度等信息,社会环境应包括项目部安全文化建设情况、安全制度制定情况、安全奖惩制度实施情况、安全交底通畅情况、施工人员之间是否和谐等信息。④工程结构物信息管理:应包括结构物各部位的三维地理信息、工程进度信息、结构强度增长信息等。⑤临时设施信息管理:应包括临时设施类型、地理位置、平面布置、高度等动态信息。⑥既有设备设施信息管理:应区分建筑物、构筑物、路面、市政管线。建(构)筑物应包括基础类型、基础埋深、结构形式、建筑物高度、建筑物与地铁水平距离、监测断面距开挖面水平距离、已用年限、裂缝和倾斜度等信息;路面应包括路面类型、路面宽度、交通荷载情况、路面距离基坑边缘的距离;市政管线则应包括管线材质、接头类型、管线压力、管线埋深、管线外径、管线与基坑边缘水平距离、监测断面与开挖面水平距离以及管线张开角、埋设年代、铺设方法、截面形状等信息。2)监控信息管理。利用高清音视频采集、传输和处理技术,直观且全方位地了解施工现场情况,辅助决策和指挥。利用位移传感器、温度传感器、湿度传感器、氧含量传感器等测得邻近建(构)筑物变形、车站基坑变形、区间隧道变形、工作环境温度、工作环境湿度、地下空间氧含量等信息,通过光纤等传输介质实时传输给系统。3)不安全状态与不安全行为分析评判。利用专家模糊评价法对人员和机械设备不安全状态进行分析,根据变形监测信息对基坑坍塌、邻近建(构)筑物开裂倾覆等进行风险分析,采用模糊评价法、计算分析法等评价风险严重程度等级和概率等级。4)冲突风险分析。利用3DGIS的空间分析功能,分析某一正进行人工作业的工人是否位于机械设备(例如挖掘机)的回转半径、倾覆半径之内,对2个及以上的大型施工装备(机械)进行回转半径重叠分析和倾覆半径冲突分析,对大型施工装备(机械)和工程结构物(或临时设施)之间的冲撞可能性进行分析,对高耸机械设备倾倒半径与地面社会交通之间进行重叠分析,对事故的多米诺骨牌效应(即某一事故可能引发一连串事故)风险进行分析,采用模糊评价法、计算分析法等评价风险严重程度等级和概率等级。以塔式起重机和履带式起重机之间的冲撞为例进行分析,当塔式起重机和履带式起重机同时作业时,塔式起重机起重臂旋转空域与履带式起重机吊臂的变幅和转动空域有重叠,如图2所示。若将GPS接收机OEM板分别安装于履带吊和塔式起重机的回转中心(便于安装且不易损坏的位置),则可即时获得履带吊和塔式起重机的回转中心的的坐标,当两者的距离小到一定值时,履带式起重机和塔式起重机空间区域可能有重叠,即两者存在冲撞的风险。由于信号传输需要时间导致OEM版接收数据会有滞后性,所以当两者趋于接近时,就应该触发警报,提醒司机注意,若司机未采取相应措施,系统可控制起重机停车。5)特殊天气风险分析。利用从气象部门获取的天气预报信息,分析特殊天气可能导致的风险,并分析特殊天气最不利组合(例如:强风+暴雨+雷电、强风+暴雪、强风+雾霾)可能导致的风险,采用模糊评价法、计算分析法等评价风险严重程度等级和概率等级。6)风险预测、事故预警。系统根据各种数据(基础信息、监测信息、天气信息、风险严重程度等级和概率等级、冲突分析结果)生成报表、变形曲线图、变形速率图等,并对风险进行综合分析预测,计算各项风险的风险值,与系统预设的分级预警值进行比较,一旦达到预设的某一级别预警值,系统立即发出相应级别警告,可供选择的警告方式有:①电脑音响警报(针对系统管理员);②手机警报(该方式需要与移动通讯服务商签订协议,系统可实现群呼叫。手机内设置多种风险语音报警铃声,不同类型风险按照通讯录群组来划分,不同通讯录群组设置不同的风险报警铃声,一旦系统监测或分析出来某种事故征兆或安全隐患,立即自动拨打相应施工人员手机。这种方式用于地下空间时,可能因为信号不畅而需要在地下空间设置手机信号站);③对讲机报警(系统设计网络模拟对讲机功能,一旦系统监测或分析出来某种事故征兆或安全隐患,立即通过预设语音自动进行对讲机呼叫,也可以由系统管理员手持实体对讲机进行呼叫);④通过埋设在隧道和基坑内的警报器发出报警。7)安全隐患辨识与管理。应包括隐患编号、隐患名称、状态描述、现场照片、危害等级、位置、辨识人、责任人、责任单位、是否解决、解决措施、解决效果等信息。8)应急处理方案选择。系统应能根据险情位置、类型等从应急预案库中自动调出可供选用的应急预案,安全管理人员可根据现场实际情况选择合适的应急预案,并由现场具体实施。9)事故逃生与救援指挥。系统能够指导施工人员在事故前进行紧急避险,指导施工人员在事故发生后进行安全逃生,并能够立即调出救援预案,利用GIS的网络分析功能为施工救援提供物资调配、救援人员调遣等参考信息[19]。10)系统维护。包括系统软硬件安全维护、用户权限等数据维护、系统使用帮助。

4与现有系统的对比

基于3DGIS的地铁施工安全风险远程网络系统与现有可视化监控系统(包括视频监控系统、考勤定位系统、LED显示系统、无卡报警系统、管理系统等)相比,功能进一步拓展,更加智能化、集成化、可视化,具体的功能比较见表1。安全资金投入方面,前者主要增加的投入是3DGIS系统平台软件的购买和开发费用,以ArcGIS3D为例,购买费用约3.1万元。前者比后者还需要增加系统开发费用约30万元,但软件系统可复制在多个施工项目部使用,因此系统开发费用是可以接受的。位移、温度、湿度、氧含量监控可采用光纤传感器,也可采用无线传输,所需增加的只有温度、湿度、氧含量传感器的购置费用,对资金投入影响不大。适用性方面,前者主要是硬件系统,未实现智能集成,在信息共享方面也有所欠缺,仍需要人员在监控室全方位安全监视、高强度地分析,人为因素偏大,更不利于安全风险的综合分析与评判预警;后者则可软硬件良好配合,软件系统充分集成各硬件监测信息,并将监测信息与基础信息进行综合管理与分析,可大大减轻监视人员的工作强度,提高风险监控的工作效率,真正实现“人机环基础信息管理—动态监控信息管理—冲突分析—隐患辨识与管理—风险预测预警—事故救援指挥”的全流程、全方位的安全精细化管理。

篇10

2.1系统的整体结构设计

目前,系统的体系结构主要有C/S模式和B/S模式,为了获得较高的系统性能,以及比较灵活的系统设置,本文采用B/S三层架构模式,构建了基于远程教育的校园多媒体综合教学网络系统,其具体分为:用户层(客户端)、应用程序层(服务器端)、数据服务层(服务器端)。选用这种模式,充分的利用了WWW技术和Internet的其它服务,能更好的支撑多媒体教学网络服务,用户无需安装复杂的应用程序,借助于普通的浏览器就可以实现所有应用程序的处理,便于部署和维护,有利于系统的扩展,并且具有开发简单、共享性强的特点,相对于传统的C/S而言是一个重大的改进。

2.2系统的功能模块设计

基于远程教育的校园多媒体综合教学网络系统模块,可划分为三大功能模块:教师功能模块、学生功能模块以及管理者模块,在这些主模块之下又可以详细划分为不同的子模块,这些模块相互联接共同构成了多媒体教学网络系统的总体功能架构。由此,本文所设计的系统功能结构如图1所示。(1)管理者功能模块:该模块是系统的最基本功能,管理者拥有最大的权限,可以实现管理系统用户、设定用户权限的功能;并根据该系统的运行状态对系统进行管理和维护,及时的更新、调整系统功能模块;同时该模块还可以公告信息。(2)教师功能模块:多媒体综合教学网络系统设计的根本目的就是在于实现现代信息化的教学模式,该模块中教师可整合教学资源,并借助于多媒体通信技术,将教学课件包括音频、视频等多种形式的教学课件传递给学生,实现在线课堂教学;布置作业,对学生进行在线测试,及时掌握学生的学习情况;同时,可实现与学生的在线互动、交流。(3)学生功能模块:该功能模块中学生可通过教学网络系统进行课前预习、实现在线课堂学习,并根据具体的学习进度进行在线课程练习(作业、测试)、完成课程任务、提交作业、在线考试、查看考试成绩等。

3基于远程教育的校园多媒体综合教学网络系统数据库的设计

本文根据系统功能设计的要求以及功能模块的划分,采用MySQL2008数据库系统,对基于远程教育的校园多媒体综合教学网络系统数据库的设计,使之能够有效的存储数据,满足用户的各种应用需求,该系统的数据库设计主要包括以下数据项和数据结构:(1)用户信息表:主要包括用户类型、用户ID、用户名、密码、权限。(2)教学信息表:主要包括教学科目、教学内容、教学进展情况、教学效果。(3)教学资源信息表:主要包括教学课件的名称、课件类型、课件内容以及各类教学资源所属科目。(4)试题信息表:主要试题的ID、科目、试卷名称、试题类型、试题内容、试题答案、难以程度、考试成绩以及其它附加的内容。

篇11

3、是合理使用先进的现代化办公设备的需要。随着科技的发展,各级组织部门都购进了相当的计算机和其他先进的办公自动化设备,计算机应用和信息化工作也取得了一些进展,但也存在着许多问题。例如,软件开发不及时,应用水平较低,现有的设备没有得到充分利用,信息资源没有得到充分共享等,这就迫切需要建立一套现代化的信息管理网络系统,充分利用现有资源,提高应用水平和工作效率,从而不断促进组织工作的科学化和现代化。

二、干部档案管理多媒体信息网络系统的作用

1、为领导和相关部门提供全方位的干部信息。干部信息数据库及多媒体信息网络系统建立以后,我们不但可以快速准确地获取干部的自然情况、简历、素质、特长以及德能勤绩等方面的综合信息,还可以随时查询干部诸如日常工作、学习、生活等方面的声音和影像资料,了解干部全方位的综合信息。利用这套系统,还可以对这些信息资料进行综合分析,在较短时间内为领导和部门提供全方位的干部信息,可以从根本上改变过去那种从纸面上静态了解干部的传统方式。

2、使信息充分得到共享,提高劳动效率与工作质量。干部档案管理多媒体信息网络系统提供了干部管理过程中所需要的全方位的干部信息。通过网络可以使信息共享,避免各部门重复录入相同的信息,减少重复劳动。而且在干部管理工作中,随时可能产生一些新的信息,各部门可以通过网络随时更新本部门业务范围内的信息,向需要信息的领导和部门提供最新的第一手资料,大大提高信息的时效性。信息共享之后,各部门可以从各个侧面,全方位了解一个干部,走出在本部门业务范围内,从一个侧面了解干部的局限性,在信息共享的基础上提高对干部认识的深度和广度。使用这套系统,还可以从根本上改善以前手工管理干部的情况,周期性较长的工作利用这套系统,短时间内就可以高质量地完成,干部任免审批表、干部简历等常用材料可以自动生成,并可以实现部门之间信函、文件的电子传递,减少手工劳动,提高工作效率与工作质量。

3、可以使干部任免更加科学化,提高知人识人的深度和广度。以往讨论任免干部,基本上是采取文字材料加口头汇报的传统方式,使用这套系统可以采集干部工作、学习、深入生产一线的声像,结合干部考核中形成的文字材料,通过网络和各种多媒体设备把动态影像、声音和相应的文字融为一体,并通过投影显示出来。它不仅可以提供被任免干部的自然情况和现实表现方面的信息,而且可以看到被任免干部的形象、气质和口头表达能力等,使领导对任免人选有一个比较全面、直观和生动的了解,可以更好地评价和使用干部,提高知人识人的深度和广度,从而拓宽视野,适应社会主义市场经济条件下用人的需要,选拔出各种类型的领导干部和管理人才,让选拔上来的干部真正能够“为官一任,造福一方”。

三、建立和使用干部档案管理多媒体信息网络系统应注意的几个问题

1、要采用规范的应用软件。为了达到信息共享,建立统一的信息系统和使用标准规范的软件是必须的。为此,中央组织部制定和颁发了全国组织干部人事管理信息系统《信息结构体系》,它是为实现干部信息的标准化及大范围内的信息共享,按照人员管理及机构管理中科学的信息流程制定的,不仅具有较高的标准化、规范化程度,而且具有总揽全局的权威性。因此,必须选用中央组织部推行的、建立在《信息结构体系》基础上的系统软件,否则会造成数据结构混乱,使上下级数据无法沟通与共享。不但是信息体系与软件,系统所涉及到的其他应用项目也应当建立在相关的标准之上。如文本、照片、声像等的采集与报送都应该制定和遵循相关的标准,减少转换与重新制作的难度,这也是信息共享及上下沟通的必要条件。

2、要用先进的电子信息技术来构建整个信息系统。建立多媒体信息网络系统要涉及到很多先进的技术,主要包括数据库技术、多媒体技术、网络技术等。

应用干部档案管理多媒体信息网络系统,首先要建立起干部信息数据库,包括文字信息数据库和多媒体信息数据库,这是整个信息系统的源泉。数据库的内容要丰富,要涵盖干部各方面的综合信息,以提供更大范围内的应用。多媒体数据库是难点,图像和视频数据有着容量大、不易管理、调用速度慢等特性,如果简单的以文件方式存放,满足不了数据量日益增多时的调用、管理、更新、存储等方面的需要。从长远看,必须采用先进的分布式多媒体数据库,以保证多媒体数据的应用。

要使干部多媒体信息系统达到最佳的应用效果,使用先进的多媒体技术以及高性能的设备是必要的。从数据源的采集到后期制作都应该保证较高的质量,照片要采用高清晰度的扫描仪录入计算机,音频和视频可以采用先进的数字杜比和DVD技术,在为领导提供更逼真的声音和更清晰的影像的同时,也能保证在较长时间内的适应性。

网络是实现信息共享的前提条件和物质基础。只有建立一个优质、高效的网络系统,才能实现系统建设的高投入与高产出,为各级领导和组织工作提供优质、高效和全方位的信息服务。现阶段比较先进的组网技术有ATM和千兆位以太网,在小型局域网中,十兆以太网以较低的价格提供了较高的带宽,具有较好的性能价格比,是一个比较合适的选择。网络建设中还要考虑利用Internet,上同中央组织部和省委组织部相连,下同各县、区委组织部相连,形成一个组织系统广域网,实现组织工作信息大面积共享。

3、应该有计划、分步骤、分阶段建设多媒体信息系统。第一,先建成系统的基本框架,包括各种资料数据的采集与录入、应用软件的选用与开发、高速网络系统的建立等。三个环节可以同时进行,其中信息资源的采集是重点,也是基础,干部信息的采集与报送工作应当规范化、制度化,把其当成干部管理工作中的一项经常性的工作来抓。第二,进一步完善、改进和提高整个系统,并将成熟的经验推广、普及,不断提高整体应用水平。第三,进一步加大投入,使整个系统臻于完善,最终满足组织工作的全面需要。

篇12

在目前的终端系统市场上,虽然存在不同层次终端设备,但占据最大比例的无疑是具备较强综合功能的终端设备。和传统终端设备相较,多功能的终端设备功能更加丰富,可实现视频下载、观看网络视频,甚至可实现部分微型计算机的处理功能,或作为电子钱包等业务的处理设备。当然,此类终端设备会受到一些制约,如会受到终端CPU处理功能影响;部分复杂数据的处理也可能出现问题,可能会出现摄像头的像素不足现象;且网络电视或流媒体对网络传输能力要求较高。在网络条件下,传统的移动通信业务必然不能满足客户增长迅猛的需求,对不同客户体验需求,应逐渐往多样化方向去发展。随着人们对通信网络终端系统处理能力要求不断提高,使得网络终端系统硬件资源也需不断改善。基于以上认识,通信终端系统已不再只是传统意义中的通话设备了,在具备基本语音功能外,还需具备一定的数据处理和媒体功能。目前市场上大多终端设备均能满足数据处理要求,且多采用独立操作终端实现数据的高效处理,如通过brew、java等应用程序,使之与外界设备有效连接,为不同程序的使用提升下载和运行的环境。市场一些具有双处理功能的终端,标准化程度不高,不能实现设备自身与外部设备有效的连接,更不能实现组件功能相互交换,是智能终端设备雏形形式。随着智能终端系统设备的进一步发展,在可预见的一段时期内,具备独立操作系统及开放性接口的终端设备仍将占据着较大比例,伴随着各操作系统及运行平台的发展、完善,通信网络终端系统必然向着功能化,以及更具开放性方向发展。

3重视通信网络终端系统开放性也不能忽视其安全问题

通信网络系统的安全是其发展的重要基础之一,终端设备、网络设备、短信业务、电信业务等是通信网络系统安全的主要几个方面,加强通信网络终端系统的安全性,对于保护使用者利益或提供有力支撑。为实现通信网络的安全性,就必须采取安全技术进行系统防御。其安全技术主要有:防火墙技术。防火墙是网络安全的重要技术之一,而入侵检测技术是防火墙的一个补充,它对网络系统内外部的攻击进行实时保护,在网络受到威胁之前进行拦截,二样提高了安全性。还有网络加密技术。由于采用网络加密技术,公网数据传输的安全性和远程用户访问内网的安全性都得以解决;身份认证技术。通过身份认证技术可以保障信息的机密性、完整性、不可否认性及可控性等功能特性;虚拟专用网(VPN)技术。虚拟专用网可以帮助远程用户、公司分支机构、商业伙伴及供应商同公司的内部网建立可信的安全连接;漏洞扫描技术。因为光依靠网络管理员寻找安全漏洞是不够的,所以要借助网络安全扫面工具来优化系统配置,找出漏洞。

篇13

作者:王释 王宝生 单位:国防科学技术大学计算机学院

较好的全局搜索能力,易于并行化处理,使得陷入局部极小值的概率减小,这种搜索方法是对群体中几个解进行同时处理,不像解析法、穷举法、随机搜索方法等搜索方法是一种点到点的搜索方法,这种单点搜索策略在多峰情况下易陷入局部极小值;第三,遗传操作仅需要通过适应度函数对个体进行评价处理,通常情况下不需要其它的附加信息,适应度函数的好处是它不受连续可微的约束定义域可以在任意范围内取值,但是在进行比较的情况要求其输出为正值;第四,算法操作具有随机性和明确搜索方向,根据概率的变化来引导搜索方向,不需要确定性的规则;第五,遗传算法具有良好的扩展性,且计算简单功能强,易于同其他算法结合,且采用自然选择和生物中进化传思想加上它固有并行性,能够在短时间内处理好较复杂的问题。遗传算法的缺点也包括:第一,编码方法的不规范和不确定性;第二,对于影响遗传操作效率的交叉概率、变异概率等因素,需要依据经验选取合适的值;第三,局部搜索能力差,进入遗传操作后期群体多样性减少,群体中的个体具有相似性,遗传算法较容易出现早熟;第四,遗传算法的并行计算能力没有得到充分利用。混合算法通过上文中对GA和SA两种算法的分析,结合两种算法组成一种混合算法,弥补独立的算法在实际应用中的缺点,并利用两种算法各自的优势,进而提高算法的性能达到最优的效果,提高了处理非线性高度复杂问题的准确性并缩短了处理时间。SAGA混合优化策略的构造需要考虑以下几个方面:第一、优化机制的融合;第二、优化结构的互补;第三、优化操作的结合;第四、优化行为的互补;第五、削弱参数选择的依赖[4]。SAGA算法具体步骤如下:步骤一,初始化,设定初始个体、初始温度、迭代次数、收敛精度。步骤二,根据初始个体,随机产生初始种群。步骤三,对种群进行遗传操作,首先计算个体适应度值,然后进行选择、交叉和变异操作,产生出新的个体。如果满足收敛准则输出最优个体,结束算法,反之,执行步骤四。步骤四,对遗传操作产生的最优个体,进行模拟退火操作。满足收敛准则输出最优个体,结束算法,反之,执行步骤五,步骤五,将模拟退火算法产生的新个体与最优个体进行比较。当最新个体的能量函数值小于最优个体的能量函数值时,执行步骤二,反之,执行步骤四。SAGA-BP神经网络误差反向传播的思想最早由Bryson等人于1969年提出,是一种由非线性变换神经单元构成的神经网络。

如果输出数据与期望输出的误差不在允许的范围之内,则将误差数据按前向传播路径反向输入到各隐含层,通过调整各神经元的网络权值和阈值,使得输出层各神经元的输出数据与期望输出数据相接近。[5]BP神经网络是具有泛化能力的一种网络,可以对复杂的非线性问题进行求解,通过不断的训练学习,找出数据信息中隐藏的一般规则,实现了输入的数据信息和输出的数据信息的非线性的映射。标准的BP神经网络在学习训练过程中还存在缺点:第一,学习率如果过小,将导致算法低效,从而学习训练时间过长;第二,学习训练中如果对权值的修改不适当,会使激活函数处于饱和状态,不能对权值进行修正,将让学习训练过程停滞不运行;第三,BP神经网络是通过学习训练的迭代,将网络权值收敛到最优,使得这个网络权值并不一定是全局最优解,可能只是一个局部极小值,让网络陷入一个局部极小值问题中;第四,BP神经网络不但是一种前馈型神经网络,也是一种典型静态神经网络,缺少记忆功能,学习训练中将忘记以前数据信息中的数据信息,而使得网络的全局性很差。我们以上证指数为例,使用标准的BP神经网络预测分析通过预测分析,我们发现标准的BP神经网络不能满足我们的要求,而采用上文提出的SAGA组合策略对标准的BP神经网络进行优化,弥补了BP神经网络的不足,缩短了对复杂问题求解的时间,并提高了解的精确度,文章中将这种神经网络简称为SAGA-BP神经网络。SAGA-BP神经网络的拓扑结构采用三层式(m-r-n)结构,Kosmogorov定理证明了三层前馈型人工神经网络可以逼近任意的连续函数,传统的BP神经网络采用的是梯度下降法对网络权值、阈值进行学习训练,而在这该网络中使用的SAGA对网络的权值、阈值进行学习训练。SAGA-BP神经网络的操作步骤为:步骤一,初始化操作,确定神经网络的拓扑结构,随机产生一组网络权值和阈值。步骤二,读入数据,对数据归一化处理。步骤三,将网络权值和阈值作为初始个体传入混合算法,并执行SAGA混合算法操作。步骤四,将SAGA算法的运算结果,最优权值和阈值传入BP神经网络。步骤五,计算神经网络的误差。步骤六,判断是否满足精度的要求,如果不能满足精度的要求,调整网络的权值与阈值,转入步骤五,反之,继续执行。步骤七,保存网络的权值和阈值,同时存储网络的拓扑结构。步骤八,根据保存的权值、阈值和网络结构,系统会进行智能预测分析,得出合理的分析结果。使用SAGA-BP神经网络对上证指数进行预测分析,不仅在运算速度方面有了很大的提高,预测精度也有了很好的改善(图略)

系统中需要以海量数据为基础,进行计算分析的过程中将占用大量的系统资源,造成计算机的运算负荷比较重。考虑到现在的客服端PC机各项性能有了很大提高,大多数普通PC机已经超越了过去的服务器,这样对于采用浏览器/服务器(Brows-er/Server)不适用,而使用客户端/服务器(Client/Server)结构可以提高响应速度系统,还充分利用了客户端与服务器端计算机的硬件优势,大大降低系统通讯开销。体系结构设计系统由模型、视图、控制器三个不同的层次组成,选用MVC(model,viewandcontroller)模式作为总体框架设计的基础。视图层由用户界面组成,用户可以将指令传送给系统,系统的把处理结果反馈给用户,而控制层会根据业务逻辑调用视图和模型进行处理,SAGA-BP神经网络是系统中的核心模型,会根据一系列的算法对复杂问题进行求解。系统功能设计系统中的用户权限有两种,分别为授权用户和未授权用户。以不同身份的用户登入系统后使用的功能权限不同,授权用户拥有未授权用户的所有功能。(1)未授权用户登录系统a.计算功能。使用SAGA-BP神经网络对历史数据进行处理,计算功能未启用的情况下,下一日功能是不能使用的。如果本地无历史数据系统将会提示用户下载历史数据,仅提供近3个月的历史数据下载且仅包含每日的开盘价、收盘价、最高价、最低价、成交量和成交金额。b.参数设置模块。用于SAGA-BP神经网络模型的参数调整,未授权的用户仅拥有训练数据功能的使用权,且数据下载的时间段为近3个月。c.下一日功能。使用计算好的SAGA-BP神经网络对次日的开盘价、收盘价、最高价、最低价、成交量、成交金额进行预测分析,得出次日相关的参考数据。d.帮助功能。对参数设置中的各项功能进行解释。e.退出功能。关闭系统,结束有关进程,并释放占有资源。(2)授权用户登录系统a.计算功能。包括了未授权用户的所有权限,当本地计算机无历史数据状态下,系统会提示用户下载相关数据,提供从1992年1月1日至今所有历史数据下载。b.参数设置模块,包含隐含层的神经元个数调整功能、交叉概率调整功能和变异概率调整功能,训练数据可以下载从1992年1月1日以来的所有历史数据,对于输入数据功能模块不仅仅提供每日的开盘价、收盘价、最高价、最低价、成交量和成交金额,还可以新增输入数据,数据种类包含各类宏观经济数据、全球指数、股指期货数据、国内各种期货数据、港股数据和技术指标数据等。MATLAB和VisualC++的接口设计MATLAB不但提供了神经网络的工具箱,还提供了与VisualC++等外部程序编程的接口,充分发挥了它的优势。在MATLAB中与VisualC++进行通信的方法有多种,在我们的系统中,主要是通过调用MATLAB中的API函数来完成它们之间的通信。VisualC++与MATLAB进行信息处理时,首先通过函数Engine*engOpen(constchar*startcmd)或En-gine*engOpenSingleUse(constchar*startcmd,void*dcom,int*retstatus)启动MATLAB的函数引擎,这样两个开发工具之间才可以进行通信。从MATLAB中获取矩阵的信息,使用mxArray*engGetVariable(Engine*ep,constchar*name),可以根据需要从VisualC++的程序中发送矩阵的信息,使用函数intengPutVariable(Engine*ep,constchar*name,constmxArray*mp),在具体使用时我们只需要通过调用这些函数就可以将数据信息互相传递,还有其他的API函数可以通过查看MATLAB的帮助信息[6]。证券智能分析系统充分利用了BP神经网络、模拟退火算法和遗传算法对非线性的高度复杂问题的处理能力,对数据进行分析预测,协助投资者进行合理的投资,规避风险。用户可以通过参数功能对神经网络结构进行调整,这样针对的不同问题而设置不同结构神经网络,提高了分析结果的准确度,但是参数的调整需要一定的经验,如果经验不丰富的用户给出的不合理的参数,将会导致系统对问题的预测分析结果出现较大的偏差,这个问题也是现在人工神经网络在应用过程中遇到的一个障碍,我们还需要通过不断的研究探索来解决该问题。