大数据论文实用13篇

引论:我们为您整理了13篇大数据论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

大数据论文

篇1

循证医学,简之就是“遵循证据的医学”,又被称为实证医学。循证医学重视医生的临床经验,即传统意义上的经验医学,同时又强调诊断、治疗等决策应在临床证据最为符合病症的基础上作出[1]。在循证医学的创立、发展与传播方面,英国的科克伦(ArchiebaldL.Cochrane)、美国的费恩斯坦(AlvanR.Feinstein)以及萨克特(DavidL.Sackett)做出了重大贡献,成为循证医学的奠基人。科克伦强调大规模随机临床试验的重要性。他认为只有在大规模临床试验中使用随机分组策略,才能避免因样本分组而产生的选择性偏差,保持对照组和试验组样本的背景因素平衡,从而才能做出最终正确的比较与评价。他建议及时将切实医学证据传播给使用者,接受专家评估并对可信度进行适当分级,以使医学证据能被及时整理、归纳与更新。费恩斯坦奠定了现代流行病学的数理统计与逻辑基础。从1970年到1981年,他在美国《临床药理学与治疗学》杂志(ClinicalPharmacologyandTherapeutics)上,以“临床生物统计学”(ClinicalBiostatistics)为题连续发表了57篇论文,将数理统计学和逻辑学导入到临床流行病学,科学系统地建立了临床流行病学的有关理论体系。萨科特则为循证医学的传播与发展做出了巨大贡献。他发起并主编了与循证医学有关的两本著名杂志:《美国内科医师学会杂志俱乐部》和《循证医学》。

1997年,他还主编出版了《循证医学》一书,该书被译为多种文字并在世界上广为传播。正是在《美国内科医师学会杂志俱乐部》上,加拿大盖亚特(rdonH.Guyatt)于1991年首次提出了循证医学一词[3]。从循证医学与数理统计和逻辑学的渊源,便可以看出循证医学注重证据的内涵。它是一门非常强调证据制作的学科,同时又非常重视医学证据的传播和评估,这正是它区别于以往医学的特点。通过评估产生可信证据,通过传播发挥证据价值。医生在诊断与治疗过程中,不仅基于经验直观判断,而且结合证据科学决策,更加客观地进行诊断与治疗。短短十多年的时间,在世界各国医学研究与临床实践中,循证医学得到了广泛深入的应用。科克伦最初创建的世界循证医学协作网已经包括约50个专业协作小组,所收集的医疗证据几乎覆盖所有临床医学领域。1996年,我国华西医科大学建立了中国循证医学中心,并于1999年正式加入世界循证医学协作网;2001年,中国循证医学中心创办了《循证医学》杂志,发表在各类杂志的循证研究论文达45842篇。但是,循证医学也有其面临的问题,如对证据进行科学评价等问题。临床证据目前还没有完整、科学的定义,证据评价标准及推荐级别尚未完全统一,不同国家不同疾病的证据质量分级不尽相同。而且,随着人类对疾病认识的加深以及诊疗手段的革新,评价标准还会随这些因素的变化而变化。

循证医学的基础是数理统计学,要求RCT的实验样本及环境一致,以便排除个体差异及环境干扰,但这在现有条件下近乎不可能实现。号称大规模随机对照实验的样本偏少,对照组和试验组难有条件一致的个体,环境随时间空间变化造成实验对照控制困难。目前,大规模的医学样本采集困难,几百个样本已经算是比较大的样本了;而根据统计理论如要达到90%的敏感度,至少需要约1300个的数据样本。为了克服RCT样本不足的问题,Meta分析方法得到了广泛应用:通过综合已有研究多个样本集的结果,可以推得大规模样本集的综合结果。Meta分析取得了很多有价值的研究成果,但是,Meta分析的基础也是数理统计学,其运用的前提是样本及实验环境一致,正是在这一点上它备受质疑。首先,不同样本集的权重控制难于完全公正,因为其实验环境难于恰当评价和把控,实验结果难免有过度包装和偏颇之嫌。Meta分析存在的另一个问题是:它所依赖的数据往往不是最新的即时案例,制作的证据可能因环境与气候的变化而失去应用价值。总之,循证医学所面临的问题包括:证据的稀缺性、偏倚性、可靠性、及时性、公正性,以及环境的一致性等方面的问题。由于证据的一致性和及时性存在问题,基于历史数据进行Meta分析备受质疑。2014年,《英国医学杂志》在名为《循证医学濒临破产》的文章中指出[5]:循证医学的证据属于间接证据,基础建立在已经发表的研究文献上,利益冲突容易影响证据的公正性,证据环境与临床决策环境存在距离;循证医学助长了过度诊断、过度治疗,并可能存在沦落为利益集团代言人的危险。

2大数据对循证医学的影响

大数据(Bigdata)又称巨量或海量数据,是指数据规模巨大以至在合理时间内,无法通过当前主流软件工具,获取、处理、分析以便决策的结构复杂的数据[6]。大数据如下具有4V特点:Volume(巨量)、Velocity(瞬速)、Variety(多样)、Value(价值)。巨量是指已经不能再用GB(即1024MB)和TB(即1024GB)为单位,来衡量大数据的存储容量或规模,而要以PB(即1024TB)、EB(即1024PB)乃至ZB(即1024EB)为单位来计量数据容量。在巨量的医疗大数据中,各种条件的样本都会存在,因此,证据的稀缺已经不是问题。瞬速是指兼具方向的快速变化,即数据随时间和空间快速变化。大数据中的样本通常是全空间的、多维度的、全时间的及瞬时变化的。由于大数据地域环境广,数据样本量巨大、正反样本齐全,证据的“制作”已不再必要,而是随时随地客观地存在。瞬速性通过可佩戴健康监测设备体现,这为及时获取病患信息提供了极大便利。多样是指数据的种类繁多、结构复杂、因果并存、甚至同一数据表现出不同形式。数据的多样性对数据的理解和分析是一个巨大挑战,但同时也为样本分析结果的验证带来便利。因此,在医疗大数据环境下,不仅随时可以采集样本进行分析处理,还能对分析得到的结果马上进行验证,从而能够保证医学证据的可靠与可信。

价值是指相比小规模、历史数据而言,大数据具有更高的研究和使用价值。由于任意时刻任意地点都有大量样本,样本的稀缺性和及时性已经不是问题,这为医学研究扫清了采样障碍;同时由于样本丰富冗余多样,也为研究结果的验证提供了便利;大数据除具有巨量历史数据外,还有不同地域环境的巨量即时数据,这使循证决策更具应用价值和时效性。大数据将首先改变医学数据的采集方式。大数据的形成往往依靠自动采集技术,随着可佩戴监测设备如iWatch等的出现,医学数据的采集及积累速度将出现爆炸性的增长。以往的数据同大数据相比,如同沧海之一粟。且以往的数据往往靠手工采集完成,普遍存在稀缺、偏倚、可靠、及时、公正等问题,这样采集的证据必然会影响医学研究的结论。基于手工证据进行决策,其结论未必准确及时公正可靠。医疗大数据不间断地在不同地点同时采集,不仅包含历史数据以及即时数据,甚至还可能包含未来需求信息,例如,ogle就是通过人们对感冒药品的搜索来预测流感的。大数据的出现将改变医学数据的管理方式。在网络数字化高度发达的今天,尽管已经出现了电子病历,但纸张病历在数据管理中仍然重要。然而,纸张病历有其固有缺陷,如容易破损或丢失、整理归档的周期过长、借阅的时间成本极高、研究采样的工作量巨大等等。伴随大数据出现的数据融合技术能将不同医院的电子病历整合在一起,并同可佩戴健康监测设备的数据及时集成,大大减少了电子病历的整理、借阅和数据采集时间,这不仅对病人的疾病诊断和预警监控更加有利,同时也对医生的临床及医学研究更有帮助。通过语音和可视眼镜等现代化的数据浏览设备,医生在查房间隙就能获知下一病人既往病情,从而能大大减少医生的劳动强度,使医生有更多时间治疗病人,有更多的时间进行医学研究。

大数据的出现将改变医学数据的分析方式。以往在收集样本数据以后,通常使用SAS或SPSS等软件,对采集的数据进行统计分析,发现相关病因或建立决策模型。这些软件受计算能力及内存容量的限制,只能处理样本量不大的数据,并且处理的数据维数有限,例如,SPSS不能超过40维,而医疗大数据的维数成千上万。通过手工或统计软件的计算方法,将无法满足医疗大数据的分析需要。

当维数超过30个致病因素时,可能要考虑230种因素组合,普通统计软件已无法计算和处理,必须依靠内存及速度“无限”的云计算。必须研究与开发基于大数据和云计算的分析与挖掘技术如深度学习技术,使其能够自动完成高维病因数据的分析与主要病因的提取。总之,医疗大数据的采集、整合、分析、处理、研究完全靠人工完成已极其困难,没有利用云计算的统计分析软件也难于完成医疗大数据的分析和处理。在大数据时代,必须借助深度学习等技术完成医疗大数据的分析和挖掘。虽然医疗大数据能够弥补数据样本的不足和不公,但只有借助更为先进的分析工具和软件,才能为循证医学带来进一步的变革和发展。

3大数据对循证医学的变革

证据制作是循证医学的核心,证据能为医生的诊治提供参照,因此,循证医学得到了快速发展。但是,矛盾、偏颇、过时的证据也使循证医学备受质疑。首先是证据及其结论存在大量的矛盾,使人们对循证医治的结果产生怀疑;其次是证据偏颇使其成为利益代言人的工具;其三是证据时过境迁使医治达不到预期效果。而医疗大数据的出现恰好能够弥补以往证据采集与制作的不足。首先,医疗大数据使证据的稀缺问题得到解决;其次,随大数据广泛汇集的医生及病人评价,可有效避免证据成为利益代言人的工具;其三,可穿戴等自动采集设备可保证证据的时效性。这将有助于循证医学同中医的结合。中医的治疗过程通常比西医长,其证据采集及疗效评估存在很大问题,而随着可穿戴健康监测设备等技术的发展,长期持续采集治疗证据及疗效将不再困难,从而有助于循证医学在中医等领域发展壮大。此外,随大数据兴起的先进数据分析与挖掘技术,将对循证医学起到巨大的推进作用。临床决策分析评价是确定循证治疗方案的关键步骤,现有的决策分析评价模型包括决策树、Markov过程等一系列模型,这些模型在面临高维大数据时力不从心,难于继续提供较高的决策精度,使医生对医治方案是否有效失去信心。随着大数据深度学习技术的出现,病因的分析和提取已完全自动化,且大大降低了建立决策分析模型的工作量,提高了治疗方案的决策精度。对于任何疾病诊治方案,考虑的疾病致病因素越多,即证据或特征维数越多,得到的参考信息就越多,诊治的准确性就会相应提高。但是,医生在遇到大量高维的证据数据时,往往面临从中选择少数有效证据的难题。例如,假定要考虑30个致病因素或检验指标,建立决策模型就要考虑230种因素组合,从中筛选一个最优因素组合作为模型输入的工作量是巨大的。因此,要得到由若干最优证据构建的最佳决策分析模型,医生们所投入的研究精力可想而知。

筛选最优因素组合是医生们最费精力的工作,目前这项工作可以被深度学习自动完成了。深度学习最早由Hinton等人在2006年提出,它是一种无监督的特征学习和提取技术,它通过低层特征的组合构建更加抽象的高层特征。2012年,Lecun等人利用卷积神经网络真正实现了高效的多层深度学习。传统的神经网络学习只有单向认知过程,通常只包含一个隐含层,因层数较少而被称为浅层学习。深度学习则包含认知和生成两个过程,并且每个过程都包含多个隐含层,其模型的总体框架如图1的虚框部分所示。如图1所示,深度学习的“输入层”可以理解为各种致病因素以及各种检查化验结果,例如遗传环境因素以及肝功全套指标等;自底向上的箭头表示认知过程,自顶向下的箭头表示生成过程,即深度学习由两个互逆的过程构成;认知权重向量WnT和生成权重向量Wn表示深度模型的知识。原始“输入层”经“隐含层H0”认知得到输出,输出又经“隐含层h0”生成得到新“输入层”,如果原始“输入层”和生成的“输入层”完全一致,则说明认知产生的输出是完全正确的。根据信息论的有关理论,学是会产生损失,新旧输入不可能完全一致。因此,只要两者近乎一致就可以了。认知和生成权重同隐含层的每个输出相关联,wake-sleep深度学习算法用于双向调节权重:(1)利用下层输入和认知权重向量WiT产生输出表示,然后使用梯度下降法调节生成权重向量Wi;(2)利用输出表示和生成权重向量Wi产生输入表示,然后使用梯度下降法调节认知权重向量WiT。通过逐层学习最终得到顶层的认知和生成权重向量WnT、Wn。在深度学习完成后,如果要建立决策分析模型,只需将顶层输出即自动提取的特征,作为分类模型如支持向量机的输入,并用类别标记如肝硬化分级训练支持向量机,就可以得到用于决策分析的精确分类模型,分类模型如图1的虚框外部所示。2014年,香港中文大学汤晓鸥教授领导计算机视觉研究组(mmlab.ie.cuhk.edu.hk),开发了一个名为DeepID的深度学习模型,在LFW数据库上识别5749个人脸的准确率已达99.15%,其精细和准确程度已经超过了人眼和大脑。医疗大数据及深度学习必将为循证医学带来一场新的革命。不仅数据缺失、偏颇以及过时等问题会被迎刃而解,而且证据收集、制作以及诊治方案的决策都将会自动化,这将扩大循证医学在所有领域包括中医等领域的应用范围,大大降低医生在证据制作、治疗方案决策与疗效评估等方面所付出的精力,推动循证医学向更深更广更加现代化的方向发展。

4总结

医疗大数据带来的变革将是全方位的,它不仅为医学研究和证据制作带来便利,同时也将促进中医等替代和补充医学的发展。作为大数据采集的一项关键技术——便携式/可佩戴健康数据自动采集技术,将大大提高医疗数据采集以及证据制作的效率,解决中医等疗效数据需要长期采集观测的难题,弥补循证医学存在的证据偏颇、不公、过时等缺陷,促进循证医学更加客观、公正、可靠地在临床治疗中应用。在循证医学的证据评估以及利用方面,伴随大数据出现的云计算能够提高证据分析与处理的效率,大大节省医生临床应用和医学研究所需要花费的时间;面向大数据的深度学习能够从浩瀚的高维医疗数据中,自动完成疾病致病因素及环境因素等的筛选与提取工作,并能建立精度远远超过人脑的决策分析模型,从而大大提升医生建立和应用循证治疗方案的信心,有助于循证医学被各科医生更加广泛地接受和应用。尽管深度模型包含更多的隐含层,其学习时间要远远长于浅层学习,但两种模型的决策时间相差不大,因此,这并不妨害深度模型的有效应用。特别值得一提的是,深度学习将证据提取与决策分析两个过程合二为一,大大降低了医生在临床及医学研究中应用循证医学的劳动强度。基于大数据、云计算和深度学习的循证医学,由于能够降低劳动强度、提升工作效率、提高决策精度,因而将具有更加广阔的应用前景和发展方向。

篇2

利用各种数据信息的交叉检索,有助于楼盘项目寻找目标客户,并精准化信息。传统精准传播方式包括短信和DM直邮,但在大数据时代下,利用微信和网站等各种自媒体渠道工具,可以发送更多直观互动的信息。尤其在企业已实现酒店、百货、地产、消费品零售等跨行业规模化运作的时候,数据的综合利用显得尤为重要。通过将企业各业务模块的数据进行搜集和综合处理,可以确保客户资源的共享,更有利于企业品牌的传递,使客户在未到访楼盘项目售楼处之前,就已经对企业的实力建立信心。

(二)大数据有助于客户筛选

跟进传统的楼盘项目客户登记方式为纸质的上门客户登记本,大部分项目均未实现上门客户信息的电子化。借助明源软件、金鹏软件等销售软件及身份证识别器工具,可以推动客户信息电子化的录入,并提升客户信息的准确度。对客户的来源、性别、职业、置业需求等各类基础数据的汇总和交叉分析,能提升客户的精准跟踪,并结合客户的销售抗性进行有针对性的沟通,促进项目销售。

(三)利用数据化工具维护

成交业主满意度大部分楼盘项目在客户成交后,缺乏有效维护。在房地产行业圈层口碑效应不可忽视的背景下,客户成交往往意味着新的生意的起点。利用数据化的工具对成交客户进行跟踪维护,有利于持续跟进客户对楼盘项目的各种反馈,促进老带新的口碑传播、推荐以及重复购买,亦可持续提升客户的满意度。

(四)利用大数据进行业主需求

维护随着建筑科技与智能化的不断发展,居住环境也在不断升级。以往的开发商客户关系维护,仅到业主入伙截止。事实上,业主入伙居住后,对业主居住需求的跟踪和维护也是非常重要的。物业公司可以配合开发商,通过组织各类业主活动,获知客户的需求,例如:搬迁至另一个城市工作——产生异地置业的需求;对目前的居住环境产生升级换代的需求——产生新的高档次项目的购买需求等;这些种种需求,都是客户购买同一品牌楼盘项目的机会,通过对客户关系的维系,产生客户品牌忠诚,对于规模化开发的大企业尤为重要。

篇3

1.1、会计信息披露具有偏向性,导致信息不对称

传统的会计信息系统会诱使企业选择特定的会计方法而造成企业管理人员利用自身是信息提供者这一优势,不断地美化会计报表,这对于外部使用者而言是非常不公平的.

1.2、内部自我约束能力弱,导致数据不真实

在传统会计信息系统下,一些企业为了眼前经济指标的提升或者任务的完成,常常通过人为调整会计报表来应付各机构的检查,自我约束能力弱,数据失真.还有很多企业对现有的政策法规钻空子、打球的现象屡禁不止.聘请的第三方审计机构也本着“企业利益最大化”的审计目标,对企业不真实的数据进行舞弊,以点盖面.

1.3、核算量大,导致信息披露不完全

传统的会计信息系统下,会计的信息系统发展越来越不能适应高速发展的经济业务,很容易造成信息披露不完全.信息经济时代下,应该更多的提供企业未来价值的知识资源,而不是沉浸在企业过去的财务数据中.

1.4、企业信息数据单一,导致信息缺少指导性

传统的会计信息系统主要是对企业财务信息的反映,往往忽视了非财务信息.企业自身变化的社会经济形势要求我们不能只依靠过去的财务数据对未来发展做出预测.对企业未来的发展预测用某些非财务信息可能会更加合理.如企业的环境成本、社会责任等信息都需要非财务信息的提供.

1.5、信息传递滞后,导致会计信息缺乏时效性

传统的会计信息系统采用先发生交易事项后进行记录的程序,无法满足当代企业对信息时效性的要求.企业以及社会各机构、投资者越来越需要了解随时发生的财务信息,对其进行更好的决策,这就要求企业不定期的提供会计信息,对于会计期间的定义也不再以年为单位了.因此,现有的会计信息滞后的时效性严重影响使用者的需求和投资者的决策.综上可知,传统的会计信息系统逐渐出现了不适应当今经济发展的事态,高效、全面的信息化系统变得越来越重要.在大数据时代下会计信息的不断创新,快速发展势在必行.

2大数据对企业会计信息化的促进作用

大数据时代下,对会计信息化的促进作用主要表现在:信息结构更加客观,既强调了会计信息的精准性,又不失相关性;财务会计信息管理的程序化;会计人员工作转向宏观信息管理;多元化的计量单位.在大数据时代下非结构化数据成为主导,在会计信息中可以更好的融合结构化和非结构化数据,更好的提高数据的相关性,并且不会人为的进行舞弊.程序化的会计信息管理也将出现,财务部门逐渐将不再作为一个部门,而是作为一个类似于“企业”的独立个体,数据的获取可以不通过部门的上报来实现,而是通过财务部门设定的独立软件获取,这也提升了财务本身的独立性,同时也可以为其他部门提供共享服务;财务部门不需要对数据进行处理,而是转变成为数据的使用和管理者.在大数据时代下,多元化的计量单位将会出现,会计计量单位会出现相关的时间、数量单位等.

3大数据时代下会计信息化面临的挑战

大数据时代下,企业会计信息化系统是通过互联网来实现与客户、供应商、银行、税务等机构互通的,其提高企业财务管理效率的作用是显而易见的.但目前因为大数据的发展尚未成熟,这就为会计信息化的快速发展带来了较大的挑战.

3.1数据的来源以及处理方式

大数据时代下最令人关注的问题就是数据从何而来,以及数据的处理方式.①美国数据科学家维克托•迈尔•舍恩伯格在《大数据时代》一书中提出,“以前一旦完成了收集数据的目的之后,数据就会被认为已经没有用处了.比如,在飞机降落之后,票价数据就没有用了;一个网络检索命令完成之后,这项指令也已进入过去时.但如今,数据已经成为一种商业资本,可以创造新的经济利益.”大数据时代下,数据的来源无孔不入,互联网平台上的任何一种资源都可以成为其来源方式.网络平台对用户使用的信息一览无余,一个简单的第三方软件就可以知道我们需要什么,需要何种服务,经济状况如何,经常偏爱哪种东西等等.企业在云端储存的数据对于云端后台的信息维护人员来说,获取变的轻而易举.防止恶意程序以及提高用户的安全系统,保护数据的隐私是很难解决的问题.在通过各种方式获取了用户的数据信息之后,要用这些数据干什么以及如何使用就成了关键性问题.大数据时代下的信息处理是通过特定的程序来完成的,这样的结论更加客观,同时结论的得出也具有局限性.大数据理论过于依赖数据的汇集,那么一旦数据本身有问题,就很可能出现满盘皆输的局面,因为数据的问题,做出的错误预测和决策,导致一个数据有问题,由此相关的数据而产生的信息本身都是问题所在.这对于数据来源的要求是非常高的,一旦有提供者造假,大数据带来的危害是不可忽视的.

3.2传统用户对云计算、云会计的排斥

对于不知道云计算如何使用、互联网软件能带来什么效益的用户来说,这项工作还是很难完成的,大数据的推广受到了很大的阻碍.对于云会计更广泛的应用,改变传统的用户观念以及现有的会计信息系统,使网络平台更容易被用户所接受是一个非常艰难的过程.

3.3超满负荷的网络传输问题

大数据时代下,会计信息化系统必须依赖于网络,这就要求企业应具备一个良好的网络传输环境.就目前而言,网络的堵塞和数据的延时都是大量的数据存储和数据交换造成的,超满负荷的数据传输成为会计信息化中的一个瓶颈,网络技术的发展目前还不能完全满足包括网络自我恢复、故障检测、问题警告等功能的实现.

二大数据时代下会计信息化所面临问题的解决建议

大数据对会计信息化的影响是一个渐进的过程,在这个过程中,财务工作者应该积极把握大数据时代给我们带来的机遇和挑战.针对大数据时代下会计信息化面临的问题提出如下建议:

1建立并掌控企业的核心数据

提供可靠的云会计服务平台.大数据会计的服务数据是基于云储存平台上的,虽然数据安全机制都很高,但对于企业的会计与经济信息的完全控制并不能保证.因此,企业在选择使用云会计模块时应当根据自己的实际情况判断其可行性,对于重要程度高的信息应合理判断是否应该交由数据服务商管理.对于企业会计信息化的实施安全性而言,数据服务提供商的选择是至关重要的,要在对提供商的综合评价之后再进行决定.为保证云会计服务的安全稳定,企业可根据自身业务需求灵活地进行模块组装以及完善的技术支持,企业的云会计应该适合自己的特色.除此之外,为了防止会计信息的滥用,对于每一个可接触信息的人都要进行身份验证,并且对安全级别进行评估.

2进行高效的企业机构设置变更

由于传统会计的深入人心,企业云会计的推广还是非常困难的.解决这一问题可以考虑当云会计引入之后,对机构设置进行变更,让每一个财务人员都能感受到这一改变带来的高效性.企业应结合自身的实际情况,设置最适合企业云会计应用的高效组织机构.

篇4

1.2速度快(Velocity)。大数据往往表现为高速实时数据流,时效性非常高。因此对处理工具的要求很苛刻,软件工程、人工智能、机器学习等都应引入。这是区别于传统数据最显著的特征。

1.3多样化(Variety)。数据种类繁多,形式多样。包括各种信息及其网页、图片、音频、视频、图像与位置等存在方式。

1.4价值高(Value)。大数据数量越庞大,价值越高,真实性、可靠性越强。但同时无效信息也越多,需要通过强大的机器算法对数据迅速地“去粗取精”,否则也只能望洋兴叹。

2大数据对科技咨询业发展的影响

2.1拓展业务空间大数据信息对应的是高速实时数据流。这些数据流往往能产生难以想象的作用,其能量也将被层层放大,还有可能在另一个看起来毫不相关的领域得到应用。大数据环境下的科技咨询就将具有全球性、战略性意义,业务范围和服务空间都将得到迅速拓展。科技咨询各相关要素,如科技资源、科技人才、创新需求、创新环境、创新成果等的疆界,将受到大数据浪潮的冲击。同时,落后地区和难以涉猎领域的业务也将在其带动下快速提升。

2.2规范咨询决策大数据将改变科技咨询决策方式,使其进入“数据驱动型”决策模式。因为面对大数据的潜在价值,决策者不仅要使用新的技术,还要改变目前的决策过程,政府也将更有效率、更加开放、更加负责。因为引导政府决策的是基于实证的事实,而不是意识形态,也不是利益集团在政府决策过程中施加的影响。

3大数据环境下科技咨询业发展道路

从上面的分析不难看出,大数据将给科技咨询业带来无限的生机和活力。科技咨询业应抢抓机遇,跨越发展,走规模化、信息化、科学化、现代化的可持续发展道路。

3.1挖掘大数据,促进规模化发展我国科技咨询业规模较小,究其原因,一是咨询市场还没有完全放开,市场主导地位没有显现,资本缺乏信心。二是科技咨询价值没有得到广泛认同,潜在需求得不到释放。三是现有机构没有形成专业分工和自主品牌,无法带来规模效应。然而,在大数据时代,最重要的生产资料———数据将自由地流动起来,推动知识经济和网络经济的发展,传统经济体制机制对科技咨询业的束缚将大大减轻,“得数据者得天下”将成为共识,市场将发挥主导作用,吸引大量资本进入,促使机构快速升级。同时,随着竞争的加剧,咨询质量、咨询价值必将得到提高和认同,潜在的需求必将迸发。

3.2利用大数据,加快信息化进程目前我国科技咨询信息化建设大致经历了计算机初步应用、管理信息系统应用和互联网技术应用三个阶段。随着时代的发展,大数据将掀起新一轮信息化革命。科技咨询业必须充分利用大数据技术,在政府引导下,进一步完善信息化工程,建立基于大数据的科技咨询信息平台,实现在虚拟空间中不同信息资源的快速整合与对接,提高咨询要素使用效率和运行主体工作效率。

3.3凭借大数据,提高科学化水平大数据的客观实在性和真实可靠性并存。对大数据进行深度挖掘,可以提高科技咨询科学化水平。首先,基于大数据,科技咨询信息的真实性有了更大的保障。其次,依据大数据特征,可帮助制定更为科学的咨询战略、方案和计划,同时降低过时咨询、无效咨询的风险。再次,基于大数据,科技咨询具有更强的针对性。咨询师可以深度分析、挖掘最高管理者的知识结构、创业经历、行为习惯等信息,准确把握其管理理念。最后,通过对大数据的分析、挖掘与利用,可最大程度地减少因数据不全而带来的负面作用。

3.4依托大数据,实现现代化转型随着时代的发展,传统的咨询工具、内容、形式、速度、效率等越来越不能满足现代社会发展的需求。依托大数据,可以实现科技咨询向现代化转型。首先,大数据环境促使科技咨询必须运用现代化咨询工具。如,大数据的超大量级迫切要求科技咨询设备现代化、信息数字化。其次,大数据促使科技咨询内容、形式现代化。现代社会工作、生活节奏很快,简洁实用、形式新颖是对科技咨询工作的新要求。形式多样的大数据正好为科技咨询提供了便利。再次,快速、高效是现代化的重要特征,而高速实时的大数据则要求科技咨询处理工具快速演进、高效运行。最后,大数据的基本特征决定了科技咨询必须进行全方位的改革创新,紧跟现代化发展步伐。大、多、真、快、稍纵即逝的大数据要求科技咨询必须借助移动互联、云计算、软件工程、人工智能、机器学习等手段,优化资源配置,建立高智能科技咨询协作平台,向科技咨询现代化迈进。

篇5

2.大数据时代第三方物流企业CRM面临的挑战

在了解了大数据的特征之后,我们便对大数据有了一个清晰的认识。那么在这个以数据为中心的大时代背景下,对第三方物流企业,对现在逐步将客户升级为企业核心竞争力、强调以客户为中心的第三方物流企业CRM带来了什么样的机遇与挑战,值得我们深思。CRM既是一种管理理念,也是一种应用软件,更是一种管理模式。客户一直都是企业非常重视的资源,而且对客户的重视早已从交易进行中扩展为注重潜在客户(即交易尚未发生时)、重视售后管理(即交易发生后),即在整个过程中都强调客户的地位和重要性。当今充满信息的时代,人们更加重视客户的管理,由此可以看出,客户的概念已经发生很大的变化。客户概念的泛化,无疑使客户需求变得具有多样性、多重性和差异性。在这个数据高速增长、信息高度发达的年代,无疑数据是驱动物流企业发展的动力。那么面对海量数据,低密度的价值数据,物流企业的数据“短板”,与客户信息、客户需求之间的矛盾与差距,使得物流企业在大数据时代进行客户关系管理时面临严峻的挑战,主要体现在以下几个方面:(1)数据不足与客户流失控制与预测不足之间的矛盾。客户流失一直以来就是企业面临的重大考验,而如何能够有效的控制与预测客户的流失也一直是长期讨论的热点。针对客户流失的控制与预测,传统的方法是建立在收集客户信息、资料的基础上,对客户的满意度进行分析。而往往这些数据是非常具有局限性的,仅仅是来自第三方物流企业自身积累的客户服务信息,而且在分析时并没有突出分析客户的忠诚度。而现如今客户的需求多种多样,且时时变化,客户的很多信息大多体现在社交网站或商务网站,而且信息的价值密度又比较低,造成物流企业不能很好的去收集、分析客户的信息,去有针对性的满足客户需要,去提高客户的忠诚度。因此,只能用相对少且相对固定的数据制定客户流失控制策略,或进行客户需求预测及市场预测,这些做法往往效果不理想。(2)数据更新不足与客户聚类以及个性化服务不足的矛盾。对客户数据进行聚类分析,是第三方物流企业进行客户关系管理很重要的一个应用方面。第三方物流企业的市场管理、销售服务等都与客户关系管理密切相关,都是强调以客户为中心。而根据数据对不同的客户群体进行聚类分析能够做到有针对性的进行管理,在降低客户关系管理成本的同时,也能够有效的制定实施营销策略。而对于物流行业这样一个数据驱动型的物流企业,数据的更新可以说是至关重要,要求及时将新的信息反馈给管理部门。而普遍的结构化数据,或已有的数据库数据信息相对陈旧,脱离客户不断变化的需求,这必然导致据此制定的各项CRM策略缺少有效性,甚至是营销策略的失误。(3)数据类型单一与关联性分析不足的矛盾。大量单一的客户结构化数据对已有客户的需求分析具有一定作用,然后对潜在客户或提高客户忠诚度上的作用不是很大。当前信息时代,除了传统的结构化数据,可以通过各项技术获得更多的半结构化的如网页、文本等数据,及一些非机构化数据,这些数据往往和客户的已有信息相关联,这些数据的收集与分析,能够为发展潜在客户提供基础。当前第三方物流企业大部分依旧依赖于结构化数据,数据类型比较单一,不能及时了解客户的进一步需求或与当前需求相关的产品或服务,造成对潜在市场的忽略。(4)客户需求变化与CRM模式滞后之间的矛盾。许多第三方物流企业对CRM的认识还停留在传统的与客户互动及管理方式上,虽然认识到了客户的重要性,但是在具体客户关系实施管理上,还存在很多问题,与信息时代的要求严重脱节。同时,在海量数据到来之时,又显得力不从心,无法挖掘出有效的价值信息。这种“迟钝”导致客户需求得不到最大满足,对第三方物流企业而言,面对残酷的市场竞争,时刻把握客户的需求,更好地为客户服务显得尤为重要。反之,则会导致被潜在客户所忽视,被老客户所抛弃,被客户抛弃意味着企业被市场淘汰。

二、大数据在第三方物流企业CRM中的应用

1.大数据下第三方物流企业CRM框架设计

在将大数据技术应用在第三方物流企业CRM的过程中,在整个CRM框架设计中都要明确体现出整个CRM的工作都是围绕客户进行的。各种商业目标定义的来源是客户,数据挖掘与分析的数据来源也是客户,最后具体的商业应用也是作用于客户。同时,数据的正确获取,数据的有效预处理,数据的合理存储,采用优秀的数据处理技术进行数据处理,以及优秀数据挖掘方法和技术的选择与应用,这些工作都离不开信息技术。包括大规模并行处理数据库、数据挖掘、互联网技术、分布式文件系统和可扩展的存储系统等。该模型以客户信息为主线,将第三方物流企业的客户关系管理分为三个层次:客户信息收集层、客户信息分析层、信息输出———客户服务与支持层,在整个过程中都离不开网络技术、数据挖掘等技术层面的支持。具体说,在将大数据应用于第三方物流企业CRM中时,第一步需要通过大数据获取技术得到足够多的各种类型的数据,主要包括从客户和市场等企业的外部环境,以及公司销售记录等内部渠道,收集各种客户信息和市场信息,形成大数据集;第二步需要应用包括数据仓库、数据挖掘和商业智能等技术手段对获取的大数据集进行计算、汇总,通过“聚类分析”、“关联分析”、“数据融合”,实现对客户的个性化分析、竞争情报分析、市场需要变动和产品扩展分析及共性分析,得到应用型数据,这样做的目的主要解决传统CRM中个性化服务不足、市场拓展、市场趋势预测不足的问题;第三步针对第二步的客户分析,围绕这个“中心”,把这些信息输出给客户或企业内部用来制定各种决策及提供服务支持,形成可行性报告,应用于服务管理、市场管理、销售管理及物流企业管理。通过整个CRM系统,不仅成功的对客户信息进行收集、分析、输出,同时将客户各种背景数据和动态数据收集整合在一起,同时将运营数据和外来市场数据经过整合、变换载进数据仓库。不仅重视怎样从技术上实现对大数据应用的过程,并且着重强调的是解决传统CRM的弊端,将大数据时代物流企业CRM所面临的问题在整个流程中进行解决。

篇6

要解决云会计中的数据标准困境,必须厘清数据标准的制定原则和制定思路,才能推动云会计的健康发展。

(一)数据标准的制定原则

云会计的最大特点是数据海量、数据互通、数据复杂等不同于以往会计信息系统中的结构化数据格式,是一种大数据的表现形式。标准化的云会计数据不但有助于解决“信息孤岛”问题,更可以大大降低数据的使用成本、软件的兼容成本等。在制定标准化数据过程中,要树立高效性、可用性、经济性三者互相协调的观念,既要反对简单沿用他国标准的做法,也要摒弃完全定制化的观念,要坚持可持续、可协同的标准化思路。高效性是指云会计的数据标准要使得产出投入比最大化,如系统方面的投入与系统运算能力是否协调,存储空间的效率是否高效,数据中心的能源消耗是否最小化,设备的维护成本是否最低等;云会计的高效性直接影响到云会计服务商与企业用户的可持续发展,否则许多投入成本可能会演化为沉没成本。可用性是指云会计的数据标准不仅使云会计服务商能够满足用户当前的需求,而且能够不断升级,满足用户的未来需求。可用性越好,那么在发生业务变动时,系统的迁移性越好,即使在发生系统故障时,恢复时间也能最短化。经济性要考虑全周期的成本,如标准建设的成本、标准应用的成本等,另外一个值得注意的是用户的学习成本,虽然它不一定直接与用户的经济成本挂钩,但会影响到用户使用系统的积极性,一个难以掌握、难以使用的标准终究会遭到用户的抛弃,没有长久的生命力。

(二)数据标准的制定思路

鉴于以上所阐述的数据标准的制定原则,建议按照“官方引导,协同制定,继承扩展”的思路来制定数据标准。云会计的数据标准不仅是个别企业的标准,而且关系到所有企业能否相互交换、相互沟通的基础性工作。单纯由官方(协会或政府)统一进行设计,再把标准无偿地开放给社会使用,其优点是工作效率高、设计成本低,但标准并非直接来源于会计工作的实际情况,标准的客观性略差,可行性较低。单纯由民间设计,企业按照实际会计工作需要自主制定,再以某种收费或免费的方式向其他企业开放,其优点是标准相对客观,可行性较高,但整体的社会成本较高,推进速度慢、公信力差。这两种方式均难以克服固有的缺点,因此最好的方式是将官方的公信力和民间的积极性相结合,协调各方资源,协同制定数据标准,以公共产品的形式免费供给各企业使用。为了推动我国会计信息化的蓬勃发展,我国早在2004年就制定并了《信息技术会计核算软件数据接口》(GB/T19581-2004)国家标准。于2010年6月又了更新版的《财经信息技术会计核算软件数据接口》(GB/T24589-2010)系列国家标准。随着国际上以XBRL(可扩展商业报告语言,eXtensibleBusinessReportingLanguage)为基础的会计数据标准的诞生,我国于2010年10月了《可扩展商业报告语言(XBRL)技术规范》(GB/T25500.1-2010)系列国家标准和《企业会计准则通用分类标准》。由此可见,我国在会计数据标准的制定和应用方面始终走在国际的前沿,尤其是GB/T24589-2010系列标准,不仅包括了会计科目、会计账簿、记账凭证、会计报表,还涵盖了应收应付、固定资产等内容,填补了国内标准化方面的空白,即使在国际上也处于领先的地位。因此此类标准既具有社会意义,也具有经济意义;既推动国内会计事业的发展,也能助力国际会计事业的发展。因此,建议对该标准的实际应用情况进行跟踪研究,确切了解标准的应用效果和应用质量等,收集企业的反馈意见,发展并完善,结合云会计的特点,制定新版的标准,在国内推广的同时,也将其贡献给世界标准化组织,为其他国家或世界性组织提供参考。

(三)制定数据标准的具体建议

大数据环境下,为了使云会计真正高效、廉价地为企业服务,使云会计的有关应用早日落到实处,本文尝试提出制定数据标准的若干建议。基础性标准。基础性标准是原则性的、指导性的,为整体的标准体系提供总则规范、专用术语及参考架构等,目的是为建立庞大的标准体系打下基础,起到统一、规范的作用,并为将来的标准建设提出原则性指导意见。数据的处理标准。数据的处理包含了数据整理、数据分析和数据访问三个部分,相应地就要制定数据整理标准、数据分析标准、数据访问标准。数据整理标准是指在数据采集汇聚后,初步的处理方式和方法,细分后又包含数据表示、数据注册和数据清理三类标准。数据分析标准主要针对大数据环境下数据分析的性能、功能等提出具体指标,并进行规范。数据访问标准则要求制定标准化的接口及共享方式,最大化地扩大数据的应用范围。数据的质量标准。数据的质量标准针对数据质量提出具体的管理要求和指标要求,确保数据的质量,使其在产生、存储、交换和使用等各个环节中保持一致,并对数据全生命周期进行规范化管理,一般应该包括元数据质量标准、质量评价标准和数据溯源标准三类。应用及服务标准。应用及服务标准主要是针对大数据提供的应用和服务,在技术、功能、开发、维护和管理等方面进行规范,主要包括开放数据集和数据服务平台两类标准。其中开放数据集标准是为了向第三方开放数据而制定的规范标准,数据服务平台标准是对大数据服务平台所提出的功能性、维护性和管理性标准。

三、安全困境的解决方法

云会计的应用使得用户与会计信息的物理存储位置产生空间上的分离,在通过互联网传输、储存和使用数据、信息的过程中,安全问题成为企业关注的一个重点,云会计服务商必须构建完善的安全管理机制,并随着技术的发展不断改善,才能保证企业获得安全的云会计服务。云会计的安全问题首先体现在会计信息的传输阶段。在企业内部传输时,在适当的物理措施和制度保证基础上,通过简单的加密就可以保证信息的安全。但会计信息一旦要传输至云中时,那么会计信息的安全性就受制于云会计服务商。由于云会计的信息传输载体是互联网,传输过程中信息可能被非法截留,甚至被篡改。第二个问题体现在会计信息的存储方面。云会计的应用可以使企业便捷地获得并处理会计信息,但云会计采用了虚拟化的分布式方法,用户并不清楚会计信息的存储位置,不法分子可能会对云端的会计信息发起攻击,盗取或篡改其中的信息。第三个问题体现在会计信息的使用阶段。作为商业机密,会计信息的使用对象一般是与财务密切相关的工作人员或企业管理人员,在日常工作中,保密不周、人机分离、密码过于简单、角色划分错乱、权限错配等都会使会计信息泄露出去。建议从以下包含技术手段及管理手段的七个方面展开工作,解决云会计的安全问题。

(一)研发云会计的大数据水印技术

以往为了加强对多媒体数据的版权保护,数字水印曾经是一种主要的加密手段,在不影响使用的前提下,将标识信息以隐蔽的方式插入到多媒体数据载体的内部。但云会计中的大数据具有无序性、动态性等特点,在其中插入水印要非常谨慎,其前提是会计大数据中存在冗余信息。可以将少量水印信息嵌入到会计大数据的冗余信息位置上,既可以识别出大数据的所有者及使用对象,也有利于追踪分布式环境下的泄密者。

(二)研发会计大数据的溯源技术

由于云会计数据的来源繁杂多样,有必要记录这些数据的来源以及传播和计算过程,可以采用数据库领域的数据溯源技术,通过标记法对数据进行标记,记录数据在云端的查询与传播历史。数据溯源技术应用于云会计中还需要解决以下两个问题:(1)数据溯源是否危及隐私保护。数据溯源要分析会计大数据的来源,而数据来源本身就是非常敏感的隐私数据,这样的溯源可能无法获得用户的谅解。(2)数据溯源的自身安全保护,当前大多数大数据溯源技术并未充分考虑安全问题,如标记本身是否正确、标记与数据之间是否绑定等,而大数据的高速性、大规模、多样性等特点使之更难解决。

(三)加强用户身份及会计云身份的认证

在云会计的应用中,除了对用户身份的认证外,还必须设置对会计云的身份认证,只有这种双向认证得到有效落实,云中的数据才能被安全地合法访问。首先,会计云是一个海量的分布式系统,拥有庞大的用户群体,具有动态性和跨区域的特点,很难对违法数据进行跟踪和管制。如果云会计服务商不能对用户进行严格的认证,就会给恶意攻击者留下可乘之机。因此无论用户在何处登录,云会计服务商和应用程序都要验证用户的合法身份。其次,为达到欺诈目的而在互联网上驻留的“黑会计云”也将不断涌现,用户可能遭到恶意软件的攻击,也可能会被网络钓鱼。因此用户在使用会计云之前,必须对会计云的身份进行验证。为了达到用户与会计云的双向认证,必须建立跨云认证模型,实现用户与会计云之间安全且高效的互相认证,确保双方的数据安全。

(四)制定用户可验证的数据存储方案

用户把自身的数据存储在云中,就必须依赖云会计服务商确保数据的安全性,但在外包服务的商业模式下,云会计服务商的可信度难以评估,很难让用户相信自己的数据被云会计服务商正确地存储、处理,为此云会计服务商必须制定用户可验证的数据存储方案。云会计服务商可以建立一种动态化更新及开放式验证的数据完整性核查方案,确保数据的完整性及可恢复性,使用户随时可以知晓存储在云中的数据的正确性,即使在数据遭到一定程度的损坏时,也能从会计云中取回全部数据。在此基础上,拟订数据泄露的问责方案,使用户在怀疑数据遭到泄露时,可以核查甚至追究云会计服务商的相应责任。

(五)设置动态数据的安全保护机制

在功能日益复杂的情况下,云会计的应用程序也不断大型化,云会计服务商的安全保护经验和技术水平也参差不齐,为用户提供的应用程序肯定会存在各种安全漏洞。在云会计为多个用户提供服务的环境下,一个相同的服务进程要处理多个用户的数据,如果应用程序存在安全漏洞,那么个别的恶意用户就有机会盗用其他用户的权限,窃取数据和商业机密,所以应该设置防止非法用户恶意操作的动态化数据安全保护机制。可以对数据流进行分散控制,一方面对数据进行细粒度标记;另一方面基于数据流策略对数据的流向进行约束,从而实现在相同的服务进程中对不同的用户数据进行隔离,达到保护数据的目的。

(六)建设可信的会计云计算平台

在云会计环境下,用户将数据及计算全部托管到云端,不仅无法对自身的数据进行控制,更无法对云会计服务商的计算过程进行监督,为了达到用户对云会计信任的目的,云会计服务商必须通过一整套安全技术手段,建设用户可以远程监督的云会计计算平台,从而提高用户的信任度。可以通过建设虚拟的可信云会计计算平台,为数据存储及会计核算中的所有数据提供可信的运行环境。

(七)建设管理、心理、法律三个安全软屏障

除了上述各种技术手段保障云会计的安全外,还应该从管理、心理、法律三个方面建设安全软屏障,从而达到“软硬结合”的境界,全方位保障云会计的健康运行。

1.管理软屏障。

作为高端的会计信息化系统,云会计的安全保障离不开“三分技术,七分管理”,对物理设备和从业人员进行严格管理。对物理设备既要做好隔离工作,也要在移动和更换过程中严格控制。对从业人员建立严格的身份控制和权限划分,不同级别的从业人员只能访问权限内的数据。经常更换用户名和密码,对数据访问行为进行严格记录。云会计服务商不能获取用户的会计数据,只能操作工作权限内的数据。

2.心理软屏障。

利用各种宣传手段对用户和管理人员进行软约束,使其了解云会计的安全特点和自身应该严守的工作规范,避免由于误操作和恶意操作给云会计带来各种威胁。

篇7

互联网打造了全新的社会形态和生活方式,人们的工作、生活已离不开网络,通过网络消费者可实现交友,衣、食、住、行各种所需。谢文认为,未来通过网络有望实现三方面创新,个人数据集成、公共服务数据集成及物质生产集成。如收集消费者在网络上的言谈举止和生活中所有活动产生的数据,建立“数据人”模型,为线下的制造业提供人的需求数据;集成线上的公共服务数据为国家、政府和组织提供服务支持;集成物质生产数据实现制造业的数据化生存。对工业设计而言,网络连接消费者、社会和物质产品组成的三维空间,融合各种大数据,可支持制造业的转型与社会进步。这正是新形势下工业设计的发展方向,即通过设计具体的服务产品,为消费者创造感性价值,实现消费者情感上对个性、品位和身份的追求。这些服务化产品在提供高品质服务的同时,以技术推动组织和社会创新,实现人、组织、社会和环境的可持续发展。此时的工业设计从“提供功能,方便使用”的问题解决方案,转向“讲述故事,创造意义”的“造意”阶段,“造意”正成为当下产品设计新的关注点。借助网络获取用户数据,让产品满足基本功能的同时,更多地向消费者讲述故事,引起消费者的回忆和联想,成为当下产品设计成功的关键。

篇8

要提高优质教育资源共享的效率,促进我国高中教育的不断发展,就必须重视优质教育资源共享的运行系统建设,要使共享的优质教育资源能够满足我国高中教育教学的需要,从而使优质教育资源的利用效率得到提高。

1.优质教育资源共享的建设系统

优质教育资源共享运行系统的第一个环节就是建设系统,进行优质教育资源的汇集和开发工作。建设系统要将教育资源分为非数字化教育资源和数字化教育资源两种,对于数字化教育资源主要是直接汇集和开发,对于非数字化教育资源还要进行数字化加工和制作,使其符合媒体文件的载体和格式。建设系统还要将已有的教育资源进行汇集和整合,使其汇聚起来,能够进行推广、评估和归类。

2.优质教育资源的传送系统

传送系统主要负责传输和配送优质的教育资料。例如,可以向特定的目标区域进行优质教育资源的配送,包括少数民族地区、贫困地区等等。也可以通过对口帮扶的形式,使优质教育资源的供需双方结成对子。在大数据时代,要充分利用先进的社会计算、4G技术、三网融合、宽带网络等技术,提升优质教育资源的投入产出比。

3.优质教育资源的使用系统

使用系统要具备相应的硬件设备条件,使资源需方能够顺利获取教育资源。使用系统还应该具备指导、培训、高级检索等功能模块,使资源需方能够按照自己的具体需求获取和检索优质教育资源。需方也可以对优质教育资源进行再加工,例如,高中学校可以对先进的教育教学理念进行二次加工,使之能够与自身的教材版本、学情相符合。

篇9

会计信息化是我国“十二五”期间会计改革与发展的重要内容之一,也是很多企业提高会计系统效率的有效途径.会计信息化是信息社会的产物,是将计算机、网络通讯等先进的信息技术引入会计学科,促进企业会计系统网络化发展的过程.大数据的兴起、云计算的增速和以云计算为基础的云会计的应用为会计信息化的发展提供了技术支持和平台.企业会计信息化的深度发展对于大数据的需要与日俱增.

2.1企业会计信息化的现状

1、会计信息披露具有偏向性,导致信息不对称.传统的会计信息系统会诱使企业选择特定的会计方法而造成企业管理人员利用自身是信息提供者这一优势,不断地美化会计报表,这对于外部使用者而言是非常不公平的.2、内部自我约束能力弱,导致数据不真实.在传统会计信息系统下,一些企业为了眼前经济指标的提升或者任务的完成,常常通过人为调整会计报表来应付各机构的检查,自我约束能力弱,数据失真.还有很多企业对现有的政策法规钻空子、打球的现象屡禁不止.聘请的第三方审计机构也本着“企业利益最大化”的审计目标,对企业不真实的数据进行舞弊,以点盖面.3、核算量大,导致信息披露不完全.传统的会计信息系统下,会计的信息系统发展越来越不能适应高速发展的经济业务,很容易造成信息披露不完全.信息经济时代下,应该更多的提供企业未来价值的知识资源,而不是沉浸在企业过去的财务数据中.4、企业信息数据单一,导致信息缺少指导性.传统的会计信息系统主要是对企业财务信息的反映,往往忽视了非财务信息.企业自身变化的社会经济形势要求我们不能只依靠过去的财务数据对未来发展做出预测.对企业未来的发展预测用某些非财务信息可能会更加合理.如企业的环境成本、社会责任等信息都需要非财务信息的提供.5、信息传递滞后,导致会计信息缺乏时效性.传统的会计信息系统采用先发生交易事项后进行记录的程序,无法满足当代企业对信息时效性的要求.企业以及社会各机构、投资者越来越需要了解随时发生的财务信息,对其进行更好的决策,这就要求企业不定期的提供会计信息,对于会计期间的定义也不再以年为单位了.因此,现有的会计信息滞后的时效性严重影响使用者的需求和投资者的决策.综上可知,传统的会计信息系统逐渐出现了不适应当今经济发展的事态,高效、全面的信息化系统变得越来越重要.在大数据时代下会计信息的不断创新,快速发展势在必行.

2.2大数据对企业会计信息化的促进作用

大数据时代下,对会计信息化的促进作用主要表现在:信息结构更加客观,既强调了会计信息的精准性,又不失相关性;财务会计信息管理的程序化;会计人员工作转向宏观信息管理;多元化的计量单位.在大数据时代下非结构化数据成为主导,在会计信息中可以更好的融合结构化和非结构化数据,更好的提高数据的相关性,并且不会人为的进行舞弊.程序化的会计信息管理也将出现,财务部门逐渐将不再作为一个部门,而是作为一个类似于“企业”的独立个体,数据的获取可以不通过部门的上报来实现,而是通过财务部门设定的独立软件获取,这也提升了财务本身的独立性,同时也可以为其他部门提供共享服务;财务部门不需要对数据进行处理,而是转变成为数据的使用和管理者.在大数据时代下,多元化的计量单位将会出现,会计计量单位会出现相关的时间、数量单位等.

2.3大数据时代下会计信息化面临的挑战

篇10

在大数据环境中图书馆提升服务质量,做到创新服务到位并非一件容易的事情。如何借助正在到来的数据技术去从事真正的知识服务是图书情报行业人士正在思考和实践应用的问题。王世伟认为:大数据为图书馆数据库的重组再造以及相应的数据应用和读者咨询提出了新的挑战和新的发展机遇,成为图书馆库库相联的重点。复杂数据的产生与保存、分析等将对图书馆的服务、图书馆馆员以及大学生信息素养教育等等也面临着新的挑战和影响,如何利用大数据技术去挖掘、识别、组织和分析在服务过程中所遇到的用户行为中的结构化数据、半结构化数据与非结构化数据等信息,这对拓宽图书馆服务、创新图书馆服务都是必不可少的重要内容。由于大数据时代的到来对图书馆创新服务提出了更高的要求,随之而来用户要求也在提高,这必将对信息传播者的素质要求也越来越高。因此,在大数据环境中对民族地区高校大学生信息素养教育也提出了更高的要求。但从实际情况看,大数据概念及基础理论知识信息在民族地区高校还是显得较为陌生,因此,充分发挥图书馆的教育职能,重视提高大学生读者的信息素养,加强对当今信息的获取、信息的安全、信息的利用认识和教育迫在眉睫。

三、大数据环境中民族地区高校信息素养教育的几点思考

(一)加强对民族地区高校大学生对大数据环境诸多信息知识的认识在大数据环境中,“图书馆的传统业务将向数据分析、数据挖掘方向转移,对大量数据的分析与处理将成为图书馆的主要业务”[8]120-122,同时,“大数据给图书馆知识咨询服务带来机遇,知识咨询服务是大数据时代图书馆知识服务的主要方式与手段,是一种有别于传统咨询服务的创新型服务”。图书馆知识咨询服务也应当包括信息素养教育的内容。大数据时代图书馆对庞大的各类数据的挖掘与提高数据分析能力是图书馆发展战略的关键,大数据的管理与应用涵盖了图书馆创新服务模式、读者借阅习惯、信息捕捉能力、数据挖掘与分析以及加强读者信息素养提高有效利用信息等,因此,图书馆通过信息知识教育、文献检索课教学讲座、提供多媒体课件等多种方法对大学生进行大数据概念等基础理论的认识,如认识大数据概念及4V特征、结构化数据、半结构化数据与非结构化数据;哪些是结构化数据?哪些是半结构化数据和非结构化数据?大数据是如何进行高速获取和应用等等信息知识,这些较为陌生的信息知识是图书馆馆员以及大学生都需要学习和了解的。

(二)加强高校大学生的信息安全教育美国高等教育信息素养能力五大标准其中一条就有:“具有信息素养能力的学生懂得有关信息技术的使用所产生的经济、法律和社会问题,并能在获取和使用信息中遵守公德和法律”。它要求图书馆在网络信息资源的开发与利用的服务过程中,怎样建立一个符合信息时代的信息伦理机制,使传播者和用户懂得如何自由获取信息的权利,尊重信息知识产权、保护信息隐私、防止信息垃圾及信息污染,不传播不良信息等,这表明对传播者也必须有一个统一的行为规范[11]。大数据环境中面临着读者隐私安全和隐私保护的问题较为突出,如何维护用户的个人隐私权是面临的一个新的要求。图书馆在利用大数据分析用户过程中,将会遇到用户隐私保护或泄露等问题,因此,在对读者个人数据的采集、管理、挖掘、分析提供个性化服务的同时,也要注重用户个人隐私的维护。要加强高校大学生信息安全教育,引导大学生在获取和利用信息中遵纪守法。

篇11

1.2“大数据”技术

“大数据”的价值不只在于其数据量之大,更大的意义在于通过数据采集、处理、分析、挖掘等技术对“大数据”的属性,包括数量、速度、多样性等等进行分析,能获取很多智能的、深入的、有价值的信息。而这些信息提取过程可大致分为以下三个阶段。

1.2.1数据输入

将分布的、异构数据源中的关系数据、平面数据等数据进行采集抽取,然后对其进行清洗、转换、集成等,最后将数据加载到数据仓中,进而为数据联机分析、挖掘等处理奠定基础。其特点主要表现为并发数高,因为成千上万的用户有可能同时访问、操作数据,比较典型的就是火车票售票网站、淘宝等,在峰值时,它们并发的访问量能达到上百万,在这种情况下,在采集端需要部署大量数据库。

1.2.2数据处理

“大数据”技术核心就是数据挖掘算法,基于不同的数据类型和格式的各种数据挖掘的算法深入数据内部,快速地挖掘出公认的价值,科学地呈现出数据本身具备的特点。并根据用户的统计需求,对存储于其内的海量数据利用分布式数据库或分布式计算集群进行普通的分析和分类汇总等。其特点主要表现为用于挖掘的算法比较复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。

1.2.3数据输出

从“大数据”中挖掘出特点,科学的建立模型,通过导入数据,以得到用户需要的结果。这已在能源、医疗、通信、零售等行业有了广泛应用。

2“大数据”安全隐患

“大数据”时代,数据量是非线性增长的,随着数据价值的不断提高,黑客对于数据的觊觎已经由原来的破坏转变成窃取和利用,病毒或黑客绕过传统的防火墙、杀毒软件、预警系统等防护设备直接进入数据层,一些高级持续性攻击已经难以用传统安全防御措施检测防护。“大数据”的安全风险主要可以分为以下两个方面。

2.1从基础技术角度看

NoSQL(非关系型数据库)是“大数据”依托的基础技术。当前,应用较为广泛的SQL(关系型数据库)技术,经过长期的改进和完善,通过设置严格的访问控制和隐私管理工具,进一步维护数据安全。在NoSQL技术中,没有这样的要求。而且,对于“大数据”来说,无论是来源,还是承载方式都比较丰富,例如物联网、移动互联网、车联网,以及遍布各个角落的传感器等,通常情况下,数据都是处于分散存在的状态,难以对这些数据进行定位,同时难以对所有的机密信息进行保护。

2.2从核心价值角度来看

“大数据”技术关键在于数据分析和利用,但数据分析技术的发展,对用户隐私产生极大的威胁。在“大数据”时代,已经无法保证个人信息不被其他组织挖掘利用。目前,各网站均不同程度地开放其用户所产生的实时数据,一些监测数据的市场分析机构可通过人们在社交网站中写入的信息、智能手机显示的位置信息等多种数据组合,高精度锁定个人,挖掘出个人信息体系,用户隐私安全问题堪忧。

3“大数据”安全防范

由于“大数据”的安全机制是一个非常庞大而复杂的课题,几乎没有机构能一手包揽所有细节,因此业界也缺乏一个统一的思路来指导安全建设。在传统安全防御技术的基础上,通过对“大数据”攻击事件模式、时间空间特征等进行提炼和总结,从网络安全、数据安全、应用安全、终端安全等各个管理角度加强防范,建设适应“大数据”时代的安全防御方案,可以从一定程度上提高“大数据”环境的可靠度。

3.1网络安全

网络是输送“大数据”资源的主要途径,强化网络基础设施安全保障,一是通过访问控制,以用户身份认证为前提,实施各种策略来控制和规范用户在系统中的行为,从而达到维护系统安全和保护网络资源的目的;二是通过链路加密,建立虚拟专用网络,隔离公用网络上的其他数据,防止数据被截取;三是通过隔离技术,对数据中心内、外网络区域之间的数据流量进行分析、检测、管理和控制,从而保护目标数据源免受外部非法用户的侵入访问;四是通过网络审计,监听捕获并分析网络数据包,准确记录网络访问的关键信息;通过统一的策略设置的规则,智能地判断出网络异常行为,并对异常行为进行记录、报警和阻断,保护业务的正常运行。

3.2虚拟化安全

虚拟机技术是大数据概念的一个基础组成部分,它加强了基础设施、软件平台、业务系统的扩展能力,同时也使得传统物理安全边界逐渐缺失。加强虚拟环境中的安全机制与传统物理环境中的安全措施,才能更好地保障在其之上提供的各类应用和服务。一是在虚拟化软件层面建立必要的安全控制措施,限制对虚拟化软件的物理和逻辑访问控制;二是在虚拟化硬件方面建立基于虚拟主机的专业的防火墙系统、杀毒软件、日志系统和恢复系统,同时对于每台虚拟化服务器设置独立的硬盘分区,用以系统和日常数据的备份。

3.3数据安全

基于数据层的保护最直接的安全技术,数据安全防护技术包括:一是数据加密,深入数据层保护数据安全,针对不同的数据采用不同的加密算法,实施不同等级的加密控制策略,有效地杜绝机密信息泄漏和窃取事件;二是数据备份,将系统中的数据进行复制,当数据存储系统由于系统崩溃、黑客人侵以及管理员的误操作等导致数据丢失和损坏时,能够方便且及时地恢复系统中的有效数据,以保证系统正常运行。

3.4应用安全

由于大数据环境的灵活性、开放性以及公众可用性等特性,部署应用程序时应提高安全意识,充分考虑可能引发的安全风险。加强各类程序接口在功能设计、开发、测试、上线等覆盖生命周期过程的安全实践,广泛采用更加全面的安全测试用例。在处理敏感数据的应用程序与服务器之间通信时采用加密技术,以确保其机密性。

3.5终端安全

随着云计算、移动互联网等技术的发展,用户终端种类不断增加,很多应用程序被攻击者利用收集隐私和重要数据。用户终端上应部署安全软件,包括反恶意软件、防病毒、个人防火墙以及IPS类型的软件,并及时完成应用安全更新。同时注重自身账号密码的安全保护,尽量不在陌生的计算机终端上使用公共服务。同时还应采用屏蔽、抗干扰等技术为防止电磁泄漏,可从一定程度上降低数据失窃的风险。

4“大数据”安全展望

“大数据”时代的信息安全已经成为不可阻挡的趋势,如何采用更加主动的安全防御手段,更好地保护“大数据”资源将是一个广泛而持久的研究课题。

4.1重视“大数据”及建设信息安全体系

在对“大数据”发展进行规划的同时,在“大数据”发展过程中,需要明确信息安全的重要性,对“大数据”安全形式加大宣传的力度,对“大数据”的重点保障对象进行明确,对敏感、重要数据加大监管力度,研究开发面向“大数据”的信息安全技术,引进“大数据”安全的人才,建立“大数据”信息安全体系。

4.2对重点领域重要数据加强监管

海量数据的汇集在一定程度上可能会暴露隐私信息,广泛使用“大数据”增加了信息泄露的风险。政府层面,需要对重点领域数据范围进行明确,制定完善的管理制度和操作制度,对重点领域数据库加大日常监管力度。用户层面,加强内部管理,建立和完善使用规程,对“大数据”的使用流程和使用权限等进行规范化处理。

篇12

流量是当今数字世界运转的基础。“客观属性”是对“流量”这一认识客体固有属性的客观描述,不因经营主体和经营方式而异。流量属性包括以下方面:1)流量的规模性,指流量可用同一量纲进行规模比较,比如联通单用户流量规模要高于移动,百度流量规模要高于google中国,基于中国移动网络发生的流量规模要高于基于百度服务发生的流量规模;2)流量的层次性,指流量与用户真实行为(主体)的接近程度。流量蕴含着反映主体行为的信息,但程度有所不同。比如淘宝网所承载的流量直接反应用户的网购行为,而电信网所承载的流量只是经过IP协议封装的比特流,前者显然更接近用户真实行为因而被称为表层流量,后者则被称为底层流量;3)流量的异质性,指流量对用户消费目的(客体)的涵盖范围。流量蕴含着反映客观世界的信息,但范围有所不同。比如文本、话音、图片、音乐、视频等不同类型之间,垂直应用与平台式应用等不同类型之间,社交类、娱乐类与生产类应用等不同业务类型之间,其流量映射客观世界的能力就各有差异和侧重;4)流量的不可分性,虽然底层流量和表层流量在概念上区分了,但在实体上是紧密依赖的,是同一事物在不同经营层面上的不同投影。比如,淘宝的表层流量离不开运营商底层流量的依托,运营商底层流量也离不开淘宝等表层流量的呈现,同时,淘宝可推知用户使用了多少底层流量,运营商也可部分解析出用户的购物行为。

可见,流量是一个充满想象空间的市场,而电信运营商似乎占据有利地位。综合流量的层次性和异质性,流量被赋予了主体行为和客体存在在信息层面上统一投影的属性,是信息社会不断流动的血液,具备极大的社会价值和经济价值。从流量的不可分割性来看,上层服务提供商与基础运营商之间的相互依赖、相互制约将是长期的基本格局。从流量的规模性来看,至少在本地市场,由于基础设施市场集中度高,电信运营商很容易就可获得超过任何单一玩家(如apple和facebook)的规模优势。

但现实情况中,流量规模的暴涨对电信运营商是一把双刃剑,情况不容乐观。流量在呈现客观属性的同时,在特定的经营主体及经营方式下,还会表现出影响甚至决定经营绩效的经营特征。本文认为,固然客观属性有利于电信运营商开展新一轮价值创造,但在当前经营模式下,流量应有的价值并未得到充分挖掘,无法支撑电信运营商的可持续发展。

当前的流量经营模式是,通过提供同质化的、以M为价值衡量单位的流量产品来满足用户的接入需求,然后通过向用户收取按照使用量计算的费用来补偿网络成本、运维成本和营销成本。在这种模式体现出三大属性:一是面向手段性需求。用户向运营商购买流量不是为了流量本身,而是为了流量所承载的个性化互联网应用。流量仅仅是服务于互联网消费的手段,因此,与面向目的性需求的互联网服务提供商争夺用户界面时,电信运营商天然地处于劣势;二是无直接网络效应,电信运营商无法将网络效应内化从而无法实现业务的边际效应递增。流量用户之间并未像话音用户之间和短信用户之间那样构成彼此连接的网络,用户之间的网络是通过业务构成的,而业务网却控制在OTT手中。换言之,网络效应主要存在于OTT业务层,而非管道层。因此,随着使用OTT业务的用户越来越多,以及用户使用OTT的业务次数越来越多,OTT业务的边际效用递增,但电信运营商流量的边际效用基本持平;三是边际成本下降有限,面对指数级增长的流量需求,运营商不断追加投资扩容、升级只能勉强跟上。上期投资刚进入边际成本下降阶段新的投资又追加进来,下降趋势被中止。在投资压力下,设备商又勾画了美妙的技术前景,许诺平均成本将极大地降低,勾引运营商全面投资新技术。这样多次循环和叠加,在相当长一段时间内,运营商都处于初始成本投资阶段,流量边际成本下降的周期被压缩到很短。反观OTT,一旦业务上线,在运营成本增长与业务量增长相比可忽略不计的前提下,业务边际成本很快就会下降到接近于0。某种程度上,信息产品边际成本为0规则的成立,是建立在电信运营商的牺牲之上的。

图OTT业务与电信运营商流量业务的边际效用/成本对比

电信业本是新经济的鼻祖,网络效应理论就是70年代从对话音网络的研究中发展起来的。然而,在当前经营模式下,运营商的流量业务失去了网络效应、边际成本趋于0、边际效用递增等信息产品的新经济特征,用工业经济时代的经营模式去与新经济时代的经营模式争夺价值,注定是落于新型竞争对手的。这是仅在流量规模上做文章,没有深入挖掘流量价值形成的后果,运营商由此陷入流量价值困境。

(三)大数据经营破解价值困境

大数据的定义众说纷纭,从技术特征上它通常具备数据量大(volume)、数据类型多(variety)和数据处理和响应速度快(velocity)的特征,麦肯锡将大数据定义为超过了常规数据库软件所能搜集/存储/管理和分析的规模的数据集。大数据概念具有深刻的IT烙印,正如“流量”概念具有深刻的电信烙印。通信与计算是信息的不同处理环节,在ICT端到端融合的背景下,流量和大数据完全可以统一在“信息”概念下,是信息全生命周期不同阶段的称谓。流量有表层底层之分,数据也有信息、知识、智慧之谓,流量经营和大数据经营均可理解为信息经营。

然而,仅仅揭示大数据本身的属性是远远不够的,如果脱离了正确的经营模式,一切价值都是虚妄。在这方面,电子科技大学周涛教授的观点很有价值。他认为,大数据1.0是利用内部数据解决内部问题,大数据2.0是利用内部数据去解决外部问题,或利用外部数据解决内部问题,大数据3.0意味着大数据进入了一个以共享交易为特征的时代,出现了大数据公共平台运营商(以下简称大数据运营商)。从1.0到3.0,大数据的工具属性逐步减弱,目的属性逐步增强,直至“大数据”像货币一样在全社会范围被收集、交换、处理、传输和应用,使得大数据可以真正成为时代的标签。在这个意义上,大数据之“大”,就是不断增强数据的透明性、不断扩大数据的共享范围、不断提升数据的流动性,在更大范围内解决信息不对称以创造更大的价值。否则,无论数据多丰富,技术多先进,都较过去无本质突破,大数据之“大”盛名难副。这个过程,是大数据经营环境不断完善和经营模式不断演进的过程。

大数据经营模式严格来说是指大数据运营商的经营模式。大数据运营商采取双边平台模式,一方面向消费者提供普遍服务,另一方面向企业客户提供以大数据为中心的服务。可以形象地将这种经营模式比喻为“数据银行”。1)大数据运营商自身掌握独特而雄厚的数据资产,这往往是一个通过提供消费者服务集腋成裘的过程,正如银行通过吸纳个人存款掌握雄厚的现金等资产;2)这些数据的使用权和支配权归大数据运营商但所有权属于消费者,正如银行可以自行决定吸纳的存款如何使用,但储户拥有随时要求提现的权力;3)大数据运营商以免费或部分免费提供服务为代价,换取消费者在使用该服务时产生大数据的支配权,正如银行承诺利息收益换取现金存入或委托理财,并默认获得资金支配权;4)这些大数据被用到千百万家企业的生产服务流程中,为大数据运营商的企业客户创造价值,为大数据运营商赚取收益,正如银行吸纳的存款被贷给各行各业的企业,融入经济生活的角角落落。为了进一步理解该模式,下面描述一些细节:

细节一:场景举例。风险控制是保险公司商业模式的核心环节,如果能够更准确地获知投保客户的风险系数,保险公司就可能设计更有竞争力的保险险种和更丰厚的收益。比如车险,如果能对某潜在客户的出行和驾驶行为数据如车速、车程、违规记录等进行分析,保险公司就能更精确地推知该用户在投保期内出现安全事故的概率,从而制定更为有利的保费和理赔政策,比如避免对高危客户(通过各种指标定义)保费过低或保额过高,而对“安全系数”较高的客户则可以在常规保费基础上打折以提升产品的吸引力。同样,对于疾病险,如果能够对潜在客户每天身体健康指标如血压、心跳、卡路里消耗、睡眠时间等,保险公司就能识别优质客户并针对性地设计相关疾病险种。在这个简单的例子里,大数据产生于用户使用的车联网、移动健康等服务,大数据运营商需要向用户提供这些服务,并承诺他们的个人数据不会被滥用。对于保险公司或其他中小型企业客户,大数据运营商提供的核心产品是数据,但更可提供大数据基础设施租用、承担大数据分析任务甚至基于分析结果的营销执行等附加服务。

细节二:如何规避隐私争议。个人数据的隐私问题是大数据商业价值受到质疑的主因。实际上,这个问题可以从理念上和模式上给予回答。理念上,隐私问题自人类社会形成之初就存在,用户心中总是存在一架权衡隐私顾虑和业务价值的天平。当前的隐私争议不在于隐私被使用了,而在于被滥用了,没为用户带来便利/效率/等正面价值甚至反而带来负面价值。因隐私顾虑而扼杀业务创新只会在竞争中被淘汰,将注意力集中到利用个人数据创造更智能的业务,使用户心中的天平偏向业务价值,这才是解决之道。模式上,大数据运营商扮演的是银行角色,受消费者委托管理数据,基于数据所有者与数据使用者之间的契约关系执行数据开放动作,具体由双边平台的双方自愿谈判商定。比如,保险公司若需要使用个人数据可向个人提供保费折扣,达成协议后大数据运营商则执行这一契约,按照协议开放指定数据,并全程监督数据使用。上述过程并不涉及隐私侵犯。对于那些无需识别个人身份的大数据应用,交易成本可以更低,正如银行没有必要向每个储户说明他/她的存款被用于哪一笔放贷或投资,而只需履行利息承诺即可。

细节三:如何获得网络效应。在上述经营模式下,大数据运营商将获得网络效应,这种效应源于该平台上各行各业的企业。与话音业务类似,企业使用该平台提供的数据的同时,也在为该平台增加更多的数据资产。比如,“用户A在facebook上的Like行为记录”这一数据,若被WSJ网站使用,除了为WSJ产生“内容精准推荐”的价值外,用户A对该内容的浏览行为和评论(如果有)也会被平台记录,从而提升原数据质量(如置信度评价)、丰富了关于用户A的数据,其他企业将可从该平台获取更多价值。这样,企业围绕平台构成了大数据共享网络。大数据平台成为网络效应的受益者。于此同时,企业客户在使用大数据产品时也具有边际效用递增的特征,数据用得越多,数据的价值就越大。可见,大数据经营完全符合新经济规则。数据不因使用而损耗,且随着使用次数增多价值反而变大,边际成本趋于0,边际效用递增,大数据的价值与数据节点及数据使用者节点的平方成正比。

细节四:如何将流量转化为大数据资产。针对流量业务,一方面优化现有面向消费客户的经营模式,另一方面从流量中提取大数据资产,作为构建面向企业客户大数据经营模式的基础,两者交叉补贴,平摊成本。用户在消耗流量的同时,也在为大数据经营添砖加瓦。一个基础设施,两个经营模式,这是成本收益困境的基本解题思路。对流量经营而言,智能管道存在的价值是调控和配置管道资源,但智能调控和配置的前提是对调控对象的深度识别和解析,而这正好就是从流量提取大数据的过程。因此,智能管道将成为电信运营商获取大数据的重要来源。大数据的另外两个重要来源是BSS和各种信息类业务的后台数据。不同域数据之间的混搭会取得1+1》2的效果。

(四)大数据平台运营商的演化

在未来实体世界与数字世界无缝整合的世界,高速流动的信息将充当不可或缺的纽带。谁能掌控两个世界相互耦合的界面,谁就将成为下一轮破坏性创新周期中最大的赢家,而大数据平台就是这样的关键环节。当前虽然总体上处于大数据1.0阶段,但基于数据重要性被不断认知、传统企业拥抱数字化商业模式热情高涨等事实,大数据领域正孕育着一个前景广阔、异彩纷呈的大市场。

未来的大数据运营商绝不仅仅包括现在的电信运营商,互联网巨头如facebook、google和阿里巴巴等也将沿着这一方向演进。阿里巴巴提出的“电商、金融、数据”三步战略就是明证。阿里巴巴和新浪微博、高德地图等之间的资本联姻,也是走在数据布局的路上。平台会扩张,生态会成长,当时代被烙上大数据的印记,围绕大数据公共平台运营商成长起来的大生态注定会成为信息文明的基石。从平台演进的角度,本文认为大数据经营的成熟将经历消费平台、垂直平台和公用平台三个阶段,简要描述如下:

第一阶段,竞争者们借助消费平台海量用户数据的原始积累取得了大数据平台之争的入场券。比如阿里巴巴的淘宝、腾讯的微信、facebook以及电信运营商的流量,都是典型的消费平台。各类消费平台有层次和领域的区别,渗透争夺十分激烈,但就数据储备而言都具备了进阶的资格。同时,OTT玩家普遍发育了后向广告模式,与电信运营商的流量前向收费模式相比,收入规模小但利润率高。

第二阶段,基于用户积累向垂直行业扩张或者某个特定的环节延展。这个阶段,消费平台依然非常重要,但随着数字世界与实体世界的整合,固守数字世界很快遇到增长极限,因而越来越多的资源将投入面向线下传统行业的拓展。垂直行业方面,包括金融业(互联网金融、移动支付等)、健康业(移动健康、移动医疗等)、汽车业(智能汽车、车联网等)。特定环节方面,包括营销(广告),CRM(如微信公众账号、淘宝卖家服务、FacebookConnect等)、产品设计(如天猫和华为定制手机合作等)。毫不意外,扩张的行业B2C特征较明显,延展的环节则以营销环节为出发点,而电信运营商通常以行业扩张为主,OTT以环节延展为主。总体而言,这些面向各垂直行业和特定环节的服务都以相对独立的小平台形式存在,每个垂直平台的经营模式各不相同,大数据资产进一步积累,但以信息为中心的经营模式仍未确立。从进阶第三阶段的角度考虑,衡量第二阶段经营成败的标准有两个:其一是是否与政府和传统企业建立了全面的信任关系;其二是是否掌握了大部分行业都需要的20%的关键信息。

第三阶段,面向全体社会成员的大数据公共平台出现。大数据在企业生产和消费者生活各环节的价值被充分认识,垂直行业内部的信息链在第二阶段被打通之后,进入跨行业信息共享阶段,大数据时代来临。在前文提到车联网信息、个人健康信息和保险公司的共享是这一阶段的典型案例,而车联网、移动健康领域的数据布局和与保险公司信任合作关系的建立,则已在第二阶段完成。值得强调的是,消费者的作用非常重要,因为各行业间打破信息隔阂唯一动力就来自于它们具有共同的用户。这一阶段,数据透明/共享/流动的范围、网络效应的范围、创造价值的范围达到了新的高峰。

上述三个阶段所描述的经营模式是叠加而非替代关系。从大数据的角度看,第一阶段着眼于积累原始资本,第二阶段注重数据的垂直投资布局和精耕细作,第三阶段注重跨行业数据的共享运营。但从经营视角来看,最终大数据运营商将具有三种核心业务、三种盈利来源,比如阿里巴巴的三步走战略,并不是金融代替了电商,数据代替了金融,而是按照这个路径最终形成三足鼎立的多元共生业务组合。

(五)对电信运营商的建议

既不甘于管道的低利润率,又无法适应OTT基于速度和创意的竞争规则,电信运营商一直在寻找位于管道业务和OTT业务之间的黄金地带。本文给出的答案就是大数据经营。大数据经营与传统通信经营在业务属性和经营模式上具有内在延续性。传统通信业务通过将个人连成通信网络解决个人与个人之间的信息不对称,大数据经营通过将企业连成大数据网络解决行业与行业之间的信息不对称,这个方向符合信息社会的演进脉络。通过选择正确的模式,大数据经营完全可以和传统通信业务一样具备网络效应等新经济特征,从而带领运营商走出当前流量经营模式的价值困境。

对电信运营商而言,大数据的战略地位应从内部运营工具提升到“新大陆”,移动互联网业务则从“新大陆”降低到撬动新大陆的“杠杆”。如果目标和OTT一样都是大数据,而获取大数据的手段并非仅自身运营OTT业务一途,电信运营商何必一定要吊死在这棵树上呢?调整心态后再参与OTT竞争,也许更从容不迫。因此,电信运营商无需过于纠结为何不具备互联网基因,而应立即与那些OTT站在同一起跑线上一道发力培养大数据基因,构建大数据经营模式。大数据目前还处于非常早期的阶段,大数据竞争最终将是资源密集型的,电信运营商在这个战场上的位势要比在OTT战场上好得多,至少暂时如此。比如,腾讯有微信和QQ,阿里有淘宝和支付宝,电信运营商有流量。关于下一步的布局,有如下几点建议:

篇13

既然大数据时代已经到来,而且其功能作用对部队档案管理工作有着较为深远的影响,运用得当,大数据将给我军档案管理工作带来前所未有的成功,那么如何将大数据的理念较好地运用到档案管理工作中来呢?

2.1建立档案资源管理中心

大数据技术支持庞大数据的存储和处理,使档案资源的统一管理成为可能。为了维护档案的安全及对档案资源的综合掌控,档案需要备份,目前档案馆采用的是档案的电子备份,档案部门是否可以在全军范围内建立一个区域或者档案备份中心,并且各部队档案部门能够做到资源共享呢?只要通过严密验证和科学规划,这一措施是完全可行的。若全军的档案数据资源能集中起来,那么利用大数据进行档案资源的管理、开发和利用将指日可待。

2.2培养大数据分析的专业人才

外界企业通过寻求和专门的大数据开发公司合作,较好的运用了大数据技术。而档案管理牵扯到部队保密工作,若想引入大数据,又要有效防止信息数据的泄露,就必须加紧健全信息化档案管理人才队伍,花大力气培养大数据分析的部队专业技术人才,方能有效避免拥有大量数据却不懂数据分析的尴尬。

2.3开发大数据分析工具

部队档案管理区别于地方,存在特殊性和敏感性。这就要求我们必须结合部队实际及档案建设的特点,开发出一套符合我们自己的大数据分析工具。

免责声明以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。

你好,需要期刊咨询服务吗?在线咨询
了解我们
获奖信息
挂牌上市
版权说明
杂志之家服务支持
在线客服
工作时间 8:00-24:00
期刊咨询服务
服务流程
网站特色
常见问题
经营许可
出版物经营许可证
企业营业执照
客服服务
期刊咨询
订阅咨询
投诉留言
其它
公文范文
期刊知识
发表咨询 加急见刊 文秘咨询 期刊订阅 返回首页