引论:我们为您整理了13篇优化设计论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
篇1
2.减速器齿轮箱体的优化设计
本论文的优化目的在于在齿轮箱结构满足强度和刚度的基础上,进行减轻重量,并完成合理均匀分布应力的优化工作。我们提出的优化具体设计为:
第一步,针对结构确定设计方案,并通过CAD软件进行建模。
第二步,通过CAD软件和有限元分析软件的连接传递到有限元分析软件中,并获得相关的应力以及位移等参数。
第三步,据实际情况进一步确定优化目的,对设计进行计算结果分析和比较,明确能够修改的结构参数。
第四步,通过修改参数,重新进行分析,并通过这种方法获得结构参数以及相应的响应值。并完成最佳参数的选取,同时得到更加科学合理的结构和尺寸。
我们做出的优化主要是针对箱体的质量的。即在外载荷不变而且不改变结构布局的前提下,对齿轮箱进行优化。将重量当作优化的目标函数,采取结构优化设计技术能够在确保质量的情况下,有效节约成本,提高质量。实现安全性、可靠性、节约型等多个层面的兼顾。因为结构布局和材料是固定不变的,所以箱体结构也是不发生变化的,仅仅是把箱体的具体部位厚度作为设计变量,用箱体工作结构的最大位移作为状态变量,把结构的质量当作目标函数。也可以说是在原设计的基础上,不对其做大的调整和改变,仅仅是对结构最大允许最大范围进行调整,达到箱体最轻的优化设计效果。引入边界条件的方法,考虑边界条件。在边界条件发生改变时,场变量函数并不需要改变,这对于通用程序有大的简化。
3.减速器优化设计的数学模型
3.1目标函数
目标函数为A=min{f(x)} =min{f(x1, x2,…, xn)}其中: A为减速器总的中心距离,也就是各中心距的综合;x为设计变量(包含中心距和螺旋角以及齿数、模数等等); n为变量的数目。
3.2约束条件
约束条件是用来判别目标函数当中变量的取值可行与否的规定,所以减速器优化设计中提出的任何一个方案都必须满足所有的约束条件的变量所构成。在给出优化设计的约束条件的情况下,需要从各个方面进行周密的考虑。比如设计变量本身的取值要求;齿轮和零件的紧密程度等等。一般来说要充分考虑到以下几个约束条件:
一是离散性约束。其中包括齿数,也就是每个齿轮的齿数需要是整数;模数:要求齿轮模数必须符合模数系列(GB1357-78)的要求;中心距:要以10mm为单位。
二是上下界约束。螺旋角:对于直齿轮应当为零,斜齿轮取8°~15°;总变位系数:因为总变位系数能够影响齿轮承载能力,通常取0~0. 8。
三是强度约束。一般是指齿轮的齿面接触强度和轮齿的弯曲强度,依据GB3480-83标准进行。强度是否达标,需要根据实际安全系数进行实践检验。
四是根切约束。为规避根切现象,规定出最小的齿数,其中直齿轮是17,斜齿轮是14到16之间。
篇2
《2009最新版防突细则》第四十九条中预抽石门揭煤钻孔的最小控制范围为两个必要条件,意思不够直接明确;钻场设计繁琐,且大部分钻场设计工作者未能把钻场设计与计算机紧密结合;钻场钻孔求值参数多,求值方法多,但却未选择最优求值参数,导致设计钻孔参数不够精确。笔者针对以上情况以预抽石门揭煤钻孔为例阐述了钻孔最小控制范围和最少最优求值参数,以便精确、方便、快捷的设计钻场钻孔。
1、钻孔最小控制范围解析
《2009最新版防突细则》第四十九条(四):预抽石门揭煤钻孔的最小控制范围是:石门和立井、斜井揭煤处巷道轮廓线外12m(急倾斜煤层底部或下帮6m),同时还应保证控制范围的外边缘到巷道轮廓线的最小距离不小于5m。
据以上规定可知石门揭煤钻孔最小控制范围为两个充分必要条件,即:煤层倾角β<45°时,最小控制范围需满足上、下帮巷道轮廓线外倾向12m和法向5m,左、右两帮法向5m;β≥45°时,最小控制范围需满足上帮巷道轮廓线外倾向12m和法向5m,下帮巷道轮廓线外倾向6m和法向5m,左右两帮法向5m。
根据煤层空间位置关系可知:sinβ=法向控制范围/倾向控制范围,煤层倾角β越小,法向5m所控制的倾向范围越大。经分析石门揭煤钻孔最小控制范围如图表1所示。(注:asin(5/12)=24.6°,asin(5/6)=56.4°)
表1石门揭煤钻孔最小控制范围
煤层倾角范围
上帮
轮廓线外
下帮
轮廓线外
左、右两帮
轮廓线外
β≤24.6°
法向5m
法向5m
法向5m
24.6°<β≤56.4°
倾向12m
法向5m
法向5m
β>56.4°
倾向12m
倾向6m
法向5m
2、钻场情况及钻场设计
煤层厚2m,倾角β=30°;石门揭煤巷道高3m,宽5m,方位α0=195°。据《2009最新版防突细则》及表1设计石门揭煤钻场如图1。(为视图清晰,抽采半径假定为5m)
图1预抽石门揭煤钻场设计图
3、最少求值参数
以28号钻孔为例,预抽钻孔立体及简化图如图2所示。线EC为28号钻孔线,面ABCD为水平投影面,线AC为钻孔水平投影线,面ADHE为钻孔铅垂剖面,线ED为钻孔铅垂剖面线;α偏28钻孔方位偏角,θ为钻孔倾角,H为穿煤孔深等钻孔参数。
图2预抽钻孔立体及简化图
由图1中钻场设计剖面图,直角三角形AED除直角外有5个参数(三角形的3角3边)均可用CAD量出;由图1中钻场设计平面图,直角三角形ADC除直角外有5个参数均可用CAD量出。直角三角形ADC与AED有一条公共边AD,所以两三角形一共有9个参数,且均可量出,但量取参数是繁琐的重复过程,为此需确定最少的参数并准确的求取所需的钻孔参数。
如图2中28号孔空间立体简化图,经分析:需求解α偏28、θ28和H28必须求解四面体ACDE,而把直角三角形AED和ADC解出,四面体ACDE即解出。直角三角形已知2个参数(除直角外)即可求解,求解两个直角三角形需4个参数,因为直角三角形AED与ADC有一条公共边,所以求解这两个直角三角形仅需3个参数,且直角三角形AED与ADC各需至少一个参数(公共边AD除外),即求解钻孔α偏28、θ和H参数仅需3个参数。
4、最少求值参数种类
经上分析:已知求解参数有9个,为计算钻孔参数方便快捷仅需3个求解参数即可,直角三角形AED与ADC各需至少一个参数(公共边AD除外),即一个三角形2个参数,另一个三角形1个参数(不包括公共边)。
无公共边最少求值参数种类:(C42-C22)×C41×C21
有公共边最少求值参数种类:C41×C41
最少求值参数种类:(C42-C22)×C41×C21+C41×C41=56(种)
5、最优求值参数
已知求解参数有9个:包括4个角度,5条边。
结合图1与图2分析:
1)、方位偏角α偏可直接量出但每个钻孔的偏角不一,且量取角度误差较大;
2)、每个钻孔的AC与DE不一,需一一量出;
3)、1、5……25号孔,2、6……26号孔,3、7……27号孔和4、8……28号孔的X(CD)各均相同;
4)、1-4号孔、5-8号孔、9-12号孔、13-16号孔、17-20号孔、21-24号孔和25-28号孔的Y(AD)和Z(AE)各均相同。
篇3
Keywords:middleschoolyard;thebuildingofteaching;sitedesign;integrality;harmonization
在当代教育事业不断发展的大好形势下,学校招生规模在扩大,校园建设速度也在提高,在建设过程中面临校园总体布局重新整合的问题,新旧建筑和谐共处的问题,以及实现校园建设可持续发展的问题等。在既有环境中,一座新建筑的介入,建筑设计必须从建设基地特定的自然条件和人文环境出发,把新建筑视为既有环境中的一个重要组成部分,通过优化设计要素进行环境整合,只有这样,才能在一定程度上体现环境的特殊性,才能表现建筑师对建筑与环境理解的个性化,从而体现建筑与自然的和谐关系,使得建筑风格不仅兼具特定地域的环境特征和人文特色,又能提高校园整体可持续发展的适应性。
1工程概况
南安职业中等专科学校(以下简称“南安职专”)位于福建省南安市城南,泉州市鲤城区通往南安市的308省道线南侧。整个校园坐落于山丘之上,总体成北低南高的走势。从校园的总体布局上看,其主轴线从北侧的正大门始向西南方向至办公楼前的圆形绿化岛发生一次转折,使得轴线呈正南方向贯穿整个校园,叶飞将军教学楼(以下简称“将军楼”)建设基地处于这段正南轴线的东侧地块。由于山丘地形的影响,建筑沿等高线布置,使得将军楼建设基地东侧的其它建筑不是呈南北座向。将军楼是在校园中一座石构教学楼被确认为“危房”拆除后进行原址重建的项目,由南安市爱国华侨黄仲咸先生捐资人民币170万元,委托华侨大学关瑞明先生主持设计。将军楼的名称取自南安籍爱国将领叶飞先生的姓名,反映出南安人民对叶飞将军的纪念与缅怀。工程建设根据基地现状与投资情况,建筑面积控制在2600m2±5%以内,造价控制在650元/m2左右。
2基地条件
将军楼建设基地位于校园主轴线的东南侧,基地的正北侧为一座现有的教学楼“仙都楼”;东北侧紧挨着一座作为仓库的平房,朝向南偏西55O;在仓库背后且与之平行的是一座学生宿舍楼,形成了基地东侧半围合的形态。基地西侧为运动场,南侧为拟建的教学楼用地。地面经平整后,基地的室外标高与北侧的仙都楼一致(见图1)。
3场地设计的探索
建筑的形成过程,是吸取有利因素和排除不利因素的过程。在设计中运用节地设计思想,一方面为了能处理好建筑与其外部环境的协调关系,另一方面也能充分利用空间,达到节约土地资源的目的,对场地进行优化设计就是要提高建筑空间的使用效率,使得平面布局合理,发挥建筑空间的最大效用。
3.1总体布局
从校园总体规划图中可以看出,将军楼的选址位于教学区、宿舍区与活动区的空间节点上,针对建筑周边的既有建筑和道路的情况,对建筑平面的外轮廓进行限定,从而与环境建立起一种协调的关系,加强校园空间的整体性。考虑到建筑物的功能要求、地段的具体条件以及建筑物本身的经济性,建筑总体平面采用集中式布置。一般来说,集中式布置较分散式布置更能节约用地,因为采用集中式布置,建筑场地、道路、日照与防火间距等所需的空地比较少,这样,不仅能充分利用土地,并能兼顾之后的发展用地。具体的方法如下:
(1)对齐法:将军楼的西侧与仙都楼的西侧对齐,使将军楼角点B、F与仙都楼角点A处于同一条线上;
(2)平行法:根据设计规范要求,取d1值为25m,绘制与仙都楼平行的BC线;同样方法绘制与仓库平行的CD线,但d2值可以小于25m,根据建筑面积来计算具体取值;
(3)垂直法:直角作为教室空间的首选形状,因此,南侧边界与东南侧边界的确定采用垂直法,令FEBF,DECD,可得出带有三个直角的五边形BCDEF,其中五条边的长度待定(见图2)。
3.2单体设计
叶飞楼几乎是在学校教学区的边缘处,经过对建设地块环境的仔细研究,设计时充分考虑四周建筑走向,从图面上来看,建筑的主要形体围合成了一个凹形空间,犹如一凹形容器——兼具与外部景观间的最大渗透性和保持独立的最大内省性(见图3)。
3.2.1流线分析
基于与四周环境的互动关系,流线分析主要是对出入口的分布及交通流线进行设计,以此对人在空间环境中的活动行为加以协调组织。南面是采光通风最好的朝向,建筑物的主入口放置这一侧,并结合入口处预留的广场空间,使之能与操场互相呼应,建筑视野开阔。西北侧临着学生宿舍区,考虑另一入口放置在西北侧,以便能组织人流疏散。两个出入口节点的布置,加上以尽可能在南北侧多布置功能用房的前提,平面水平方向上自然形成了Z字折线形的交通流线。随着功能用房的叠加,竖直方向的交通核顺应而生,结合折线形水平流线的两个转折处设置楼梯,这样,折线形水平流线与点状竖直交通核构成了立体的交通系统。
3.2.2空间布局
以流线为基础的水平空间划分是在适合使用要求的几何网格上进行的,教室标准平面选用7.2m×8.4m网格上进行划分。设计时首先保证教室朝南,出于对该地区主导风向为东南向的考虑,将卫生间结合楼梯间放置在北侧,减少了对主体教室的影响。这样处理得到了五间完整的教室,并使得建筑平面布局更加完满(见图4)。
竖直方向空间布置采用功能分层的设计手法,一层设计成书库及阅览部分,便于大股人流疏散;二层以上布置成合班教室。在平面处理中,建筑体块的东北角出现折形空间,与主体走向成35°偏角。为使得教室尽量能朝南采光通风,在平面处理上设计四个折形窗,既满足了这一要求,也丰富了立面效果(见图5)。
3.2.3造型设计
基于建筑面积的控制,本方案的主体建筑层数设计为五层,在南面主入口的两侧突出的教室为四层,将军楼的造型通过这样对称的形式达到一种平衡。这一中高两底的形体构成,是闽南传统建筑交椅式建筑形象的缩影,是对传统建筑文化的一个延续,加强了建筑形象的立体感。闽南地区春夏盛行偏南风,秋冬盛行偏北风,建筑采用外廊,既符合当地气候条件,也能达到节能的目的。
在处理新建筑与原有建筑的关系时,大致是通过空间、造型、色彩等方面来建立新建筑与原有建筑两者之间的有机关系,使它们既有呼应又互相区别。基于相对有限的基地和资金条件,将军楼以实训中心楼的材质和色彩为参照体系,力求使其与周围的建筑环境和谐统一。在立面处理上,对窗与实墙的比例进行探索。在窗墙的虚实变化之中,形象得以生动体现,为使其具有较大的表现力,特别是立面上折形走廊的处理,不仅适当地放大了走廊交通空间,而且加强了立面上光影效果,增强了凹凸之感(见图6)。
4结语
在校园规模不断发展的过程中,为了创建一个良性的、可持续发展的空间形态,构筑合理的、有效的空间以适应多变的需求是势在必行的。张锦秋先生在设计实践中,逐渐体会到“和谐建筑”的理念包含两个层次。第一个层次是“和而不同”,第二个层次是“唱和相应”。“和”是指相异因素的统一,“同”是指相同因素的统一。[1]在汲取既有建筑风格特征的基础之上,通过创新的手法使得新建建筑风格能做到虽有别于已有建筑,却能与之相“和”的境界,从而达到和谐共生。
场地优化设计,不但节约用地和提高平面布局的合理性,而且给建筑与其场地之间关系的处理提供了一种恰当的方式。使得新旧建筑之间能进行良性的对话,从而建筑与多变的校园环境达到和谐共生,大大提高了新建建筑在校园环境中的适应性,这是本次方案设计过程中的一重大收获和尝试。
篇4
门盖闭合过程中,门盖与汽车壳体之间存在接触非线性.同时,工作过程中汽车壳体的刚度不是恒定的,它随着变形的大小而变化,即存在几何非线性.因此本文作SOL601,106高级非线性静力学分析.非线性分析和线性分析相比,非线性分析的计算时间和计算机存储量要大得多,而且在数值计算方法和求解参数的设定上有较大区别[2].边界条件包括载荷、约束和仿真对象[3].在门盖的左右轴套上分别施加轴承力,力的大小为800KN,方向为沿着油缸的轴向,指向门盖.在汽车壳体的底部作固定约束、门盖的旋转轴处作销钉约束.同时,忽略门盖组件各结合面之间的接触变形,近似将各接触部分看作刚性接触,在FEM下为门盖的各边、面之间添加1D连接[4-5].门盖与汽车壳体之间的接触是非线性的,在仿真模型下,定义高级非线性接触,汽车壳体作为“源区域”,门盖底板作为“目标区域”,“接触参数”保持默认.有限元计算模型如图3所示,分析结果如图4所示(只显示门盖).根据图形可知门盖最大等效应力为170.76MPa.应力主要集中在门盖的左右轴套上,即油缸与门盖连接处.门盖的材料为Q235号钢,屈服强度为235MPa,可见在该工况下门盖满足强度要求.
3优化设计
有限元分析的最终目的是进行优化设计,现在需要对门盖结构进行优化,优化的目标是模型的重量最小[6-7].约束条件是在不改变门盖模型网格划分、边界约束和载荷大小,并能满足强度要求的前提下,控制最大等效应力值不超过材料屈服强度的70%(约165MPa).
3.1筋板的布置
根据分析结果可知,应力主要分布在左右轴套处,大部分的筋板受力极小,因此,可通过布置筋板的分布进行优化设计.为便于加工和装配,门盖筋板布置采用均匀分布的方式.设计变量为筋板的数量,原结构中单行设置的筋板数量为10,考虑减重的目标及结构的稳定性,取筋板数量为3-7.图5为筋板数量与门盖最大应力和位移关系,图6为不同筋板数量对应底板的应力分布图.结果表明筋板数量对门盖的最大应力(轴套处)影响较小,对门盖底板的应力分布位置影响较大.底板最大应力发生在门盖油缸轴线方向上的临近筋板与主横筋板接触处,最大应力为N=4时σmax=61.52MPa.综合考虑最大应力、最大位移和底板的应力分布,以及实现减重的目的,确定新结构的筋板数量为4.
3.2筋板厚度的优化
3.2.1灵敏度分析
灵敏度分析是为优化设计做铺垫.通过灵敏度分析可以确定模型各参数对输出结果影响的大小.在模型校正过程中重点考虑对输出结果影响较大的参数,排除那些对输出结果影响很小的参数,这将在很大程度上减小模型校正的工作量,提高优化设计的效率[8-9].NX高级仿真中几何优化模块下提供了全局灵敏度解算方案.设计目标为门盖的重量最小,约束条件为门盖的最大应力,设计变量为筋板厚度.为便于加工与安装,门盖结构中相同结构的尺寸应保持一致.筋板厚度参数主要包括底板厚度T1、主横筋板厚度T2、横筋板厚度T3、竖筋板厚度T4、轴套厚度T5、前板厚度T6、门盖耳套帮板厚度T7和其他筋板厚度T8.对上述筋板厚度进行全局灵敏度分析,获得各参数对设计目标影响的全局灵敏度曲线,最后将所有灵敏度曲线调整到一幅图表中进行比较,根据各参数的全局灵敏度曲线的斜率大小判断设计参数对设计目标的灵敏程度,最终确定T1、T2、T3、T4.根据各参数对约束条件的影响曲线,确定T5.全局灵敏度曲线如图7所示.由图7(a)可知底板、主横筋板、横筋板及竖筋板的厚度对门盖的重量影响较大,其中底板的影响最大.由图7(b)可知轴套的厚度对约束条件的影响最大.为提高门盖强度以及减轻门盖的重量,主要对底板、主横筋板、横筋板、竖筋板厚度进行减小,同时适当增加轴套的厚度.
3.2.2尺寸优化
尺寸优化是建立在数学规划论的基础上,在满足给定条件下达到最佳经济技术指标[10].NX高级仿真结构优化的解算器采用的是美国Altair公司的AltairHyperOpt,它拥有高效、强大的设计优化能力.结合以上分析结果,进行筋板数量等于4时筋板厚度的优化分析.在“几何优化”对话框中作如下设置:①定义目标:重量定为最小;②定义约束:门盖上的最大等效应力为165MPa;③定义设计变量见表1;④控制参数:选择最大迭代次数为20.经解算,找到最佳方案:底板厚度由原来的52mm修改为45mm,主横筋板厚度由原来的50mm修改为45mm,横筋板厚度由原来的25mm修改为20mm,竖筋板厚度由原来的20mm修改为16mm,轴套厚度由原来的34.5mm修改为35.2mm,为了便于生产,将轴套的厚度圆整为35.5mm.优化后与优化前的分析结果对比见表2.从计算结果可看出,优化后的门盖强度得到明显提高.另外,重量由原来的10496kg降低为8786kg,减重17.2%,取得了优化设计的预期效果.
篇5
2.1基于过程模拟与控制的高边坡稳定性评价及灾害控制方法研究
高边坡岩土体具有地质体所具备的地质过程特性,对岩石进行的高边坡稳定性评价的主要目的就是对边坡变形破坏的过程以及机制进行阐述,并且基于地心力学来对问题进行刻画,实际上这种对岩石高边坡进行的稳定性评价更具体说来应该是一个变形稳定性的问题。对变形稳定性的分析是指对高边坡的变形以及相关的破坏情况、破坏机制进行研究,并且结合数学、力学以及计算机技术,利用数值模拟的方法来对边坡变形的过程进行模拟演示,并且对变形过程进行控制,基于这种模拟研究的结果对边坡的稳定性进行相关评价。变形稳定性分析的过程是在对应力环境、变形特征、破坏模式、潜在滑面位置进行模拟分析的基础上进行的,但目前对于稳定性系数以及推力值的估计还缺乏足够的理论支持,没有形成一个成熟、准确的计算方法。
2.2重点高边坡稳定性评价
对需要重点进行研究的边坡要随时进行施工跟踪,要注意对实际施工中遇到的岩体结构以及边坡变形的情况进行足够精确、细致的描述,并且要积极收集边坡以及施工过程中的反馈信息,对具体的坡体情况进行分析,根据上述资料以及研究分析,来建立相应的地质模型来反映控制性结构面空间展布特征,并且要根据具体边坡结构的实际特征来进行计算方法的选择,用来研究边坡变形的破坏模式以及稳定性情况。土质边坡、散体结构以及破裂结构边坡的稳定性大多都会受到最大剪应力面的控制,因此,对这类边坡的边坡开挖过程进行研究分析,就要在对潜在滑动面的位置的判断基础之上进行,并且根据强度稳定性分析来对相应的边坡稳定性进行评价,为支护设计的优化提高有效的参数。
2.3重点高边坡支护优化设计
在对边坡支护进行优化中,要由对变形破坏的过程进行模拟来研究边坡开挖过程的不同变形阶段,由地质体所处的演化阶段以及变形破坏机制来对支护方案进行筛选,要按照具体的规范标准来进行静力学设计,要按照数值模拟的结果来研究地质体以及治理工程结构之间的相互作用,并由此来进行方案的优化设计。高边坡优化设计要建立在精准的地质模型的基础上,利用控制过程技术来完成,而且还需要特别关注边坡的稳定性评价,根据原有的设计方案进行改进。边坡优化要注意变形控制以及灾害控制,要将采用适宜的支护措施来是变形控制在允许范围之内,要结合反馈信息以及稳定性分析结果来进行有针对性的优化。
篇6
1.2轴向应力弯曲载荷
当管柱发生弯曲时,由于狗腿度所产生的弯曲应力会产生附加的轴向力,计算中考虑了弯曲应力产生的附加轴向力的影响。
1.3三轴应力
当三轴应力超过屈服强度时,就会引起管柱屈服失效。三轴安全系数是材料屈服强度与三轴应力的比值,只是为了与单轴破坏准则(屈服强度)进行比较而设立的一个理论值。
2海上生产管柱结构设计实例分析
海上高温高压气井生产管柱需要满足气井全寿命周期内压力温度的变化,同时需重点分析高温高压气藏的应力敏感、井筒承压能力、现有海上施工工艺的成熟度、海洋作业环境以及后期修井措施等问题,确保施工作业的顺利进行、气井开发的安全高产。陆地高温高压气田常规射孔生产联作一趟下入的管柱形式能否满足海上气田生产和修井要求,还需进行进一步分析。以东方气田D2井为例,对一趟下入式和两趟下入式生产管柱分别进行了深入的分析。东方气田D2井的目的层为黄流组,压力因数1.50~1.93,地温梯度4.17℃/100m,完钻井深3358m,177.8mm(7in)尾管回接完井。
2.1井筒温度预测分析
利用Wellcat软件对洗井结束、开始生产、开始生产后关井、生产1a后、生产10a后这5种工况的井筒温度进行了预测和分析。由于地层与井筒和井筒内流体的传热作用,随着深度的增加,流体和井筒的温度是增加的,并最终趋向于井底的地层温度。开始生产时从井口到井底的温度变化是最小的,但是温度是最高的。生产10a后井口温度明显降低,这是由于长时间生产造成地层压力降低导致产量降低,并最终导致井口温度明显降低的显著原因。
2.2射孔生产联作一趟下入式生产管柱受力分析
D2井射孔联作一趟下入式生产管柱。基于以上5种工况下的井筒温度分布,利用Well-cat软件分别计算了初始状态、管柱下放、生产封隔器坐封、环空打压验封、过提、管柱内加压射孔、生产初期、稳定生产期、关井、油管掏空、油管泄漏等不同工况下生产管柱的受力情况。
2.3射孔生产联作两趟下入式生产管柱受力分析
考虑到气藏的高压特性和海上作业的安全风险,生产管柱若采用上部封隔器一道密封难以保证长期生产的井筒完整性,一旦封隔器密封失效,油套管环空连通,井筒全部充斥高压气,事故风险极高。所以,推荐D2井采用两趟下入式生产管柱,双封隔器坐封,形成两道环空屏障,保障井筒安全,管柱类型为射孔联作式生产管柱。第一趟管柱利用钻杆将射孔枪送入井底,送入到位后坐封顶部封隔器,脱手。第二趟下入生产管柱,下部插入密封,再投堵坐封生产封隔器,然后管柱内加压射孔。该管柱类型的主要特点是射孔管柱和生产管柱需要两趟下入工序,完井工期相对多,射孔作业后,射孔枪留在井内;但对于气井长期生产管柱设置双重密封,井筒安全更可靠。后期压力衰竭,上提上部生产管柱进行修井操作,简单易行。基于5种工况下的井筒温度分布,计算多种可能工况下生产管柱的受力情况。分析结果表明在各种工况条件下的生产管柱强度校核均可以满足设计要求。管柱内加压射孔工况下生产封隔器以上管柱受拉,以下生产管柱受压,两封隔器之间管柱受压最为严重,井口受拉最为严重。加压射孔时管柱强度安全系数大于临界安全系数,此时轴向安全系数为1.661,接近临界安全系数。因此在这一工况操作时,要严格注意封隔器有可能发生解封以及油管破坏的风险。
2.4环空密闭空间流体膨胀分析
D2井生产管柱上部采用油管携带式封隔器,下放至2651m;下部采用插入密封式封隔器,下放至2920m(两者之间相差269m)。这样出现了封隔器以上的油套环空和两个封隔器之间两个密闭区域。以下对环空密闭空间流体膨胀情况进行了分析。由环空密闭空间温度变化引起密闭压力变化结果:区域1(0~2651m),环形空间由于温度升高引起的圈闭压力为69.8MPa,可以在生产过程中通过井口放压控制压力;区域2(2651~2920m),密闭环空流体膨胀压力上升19.20MPa,通过强度校核,发现流体膨胀不会对油管及封隔器产生破坏。常规射孔生产联作一趟下入式管柱和两趟下入式生产管柱形式在不同工况条件下均能够满足海上气田开采要求,但考虑海上作业条件和风险承受能力,并结合后期井筒安全保障和修井作业难度,推荐海上高温高压气田采用射孔生产联作两趟下入式生产管柱。
3认识与建议
1)油管和井下工具应根据地层压力、流体性质及产能情况进行优化设计,满足井下温度和压力的要求,同时确保在高温高压的地质条件下满足生产的需要。在满足安全和工程需要前提下,高温高压气井尽量减少井下工具数量。
篇7
1.2液压控制元件
液压控制元件主要包括定量泵、溢流阀、平衡阀以及换向阀。下面对上述元件在液压控制中的动态特性进行分析。
2液压控制过程的优化设计
2.1改进遗传算法
基于上节获取的液压过程数学模型,采用改进的自适应遗传算法,使得交叉概率与变异概率可自动随适应值变化,获取数学模型的最优解,为塑造液压控制过程的仿真模型提供可靠的依据。
2.2基于simulink的液压控制过程的仿真模型
对液压控制过程中所涉及到的元件进行数学建模后,即可通过Simttlink提供的仿真模块对所有元件的数学模型进行描述,一个子模块可描述一个元件。再将所有组成元件的Simulink仿真子模块之间相应的输入输出相连。Simulink可为液压控制过程的仿真建模提供需要的全部子模块。所以,本文首先塑造能够反映所有元件特征的微分方程,再通过Simulink对其进行描述。同时通过Simulink中非线性模块对液压控制过程中常见的某些非线性因素进行保存,从而获取存在非线性环节的仿真模型,使得液压控制过程的仿真模型更加精确。前文所述的元件子模块均未经封装,在对液压控制过程进行仿真时,若需调整某个参数值,只需打开其所处的子系统进行调整。经过封装的元件子模块,可通过一个参数对话框实现与外界的通信,更加便于使用,适用于已经定型的仿真模块。
3仿真实验分析
本实验依据自适应交叉与变异概率思想,采用群体规模是100,最大进化代数是200的改进遗传算法完成优化。给出每个变量的取值范围,获取优化参数值集,分别采用优化后与优化前的参数值完成液压控制过程中几个元件的仿真,获取动态响应仿真曲线。
篇8
2.1绿色建筑的规划阶段的设计优化
在规划阶段,分析场地中的气候资源特点,结合计算机模拟的方法,从空间布局和朝向选择上对建筑的热、声、光、风场等进行优化。建筑设计项目一旦通过报规,是很难进行修改调整。如果前期仓促定案,会造成先天不足,是很大的缺憾。成都西南交通大学归谷低碳小区日照强度计算图,通过总平面设计的优化分析,对建筑物平面布置和体型的调整,优化建筑的阴影分布,保证充足的日光进入每一栋建筑内,日照效果达到最好。对建筑物进行通风模拟,以确定最佳的布局方式,并优化室内外空间布局,形成穿堂风,使建筑物达到最好的通风条件。该项目的室外风环境CFD模拟风场。
2.2建筑气候适应性与设计优化
在深入分析不同经典绿色建筑的基础上,通过对不同气候区建筑设计创作的研究,发现地域建筑的创新与发展都涉及到建筑基本属性。如功能与空间、结构与构造形式、室内外物理环境、经济投入、地域风格等,反映出安全、经济、舒适、美观等性能特征在建筑创作中的主导地位。建筑外观是在顺应气候、地形、地貌等自然条件,按照人的传统、文化、习俗和审美等的要求,作用于建筑,是地域建筑给外界的最直观的表达方式;建筑的功能是在满足工作与生活需求这一共性的基础上,对文化、、工作与生活习惯等个性特征的满足;环境问题是人工环境带给人体最直观的感受,它的好坏直接影响人体健康,也会导致资源、能源利用的差异;经济性决定了选取材料和技术的衡量标准,在经济欠发达地区,这一制约因素发挥着决定性作用;除此以外,与自然环境的协调发展是目前以及很长一段时期内任何建筑都必须面对和解决的难题之一,尊重自然,强调可持续发展的建筑产业是当务之急。通过对不同建筑的功能、文化、气候适应性研究,认为绿色建筑最显著特点之一是建筑的气候适应性。遵义市科技馆效果图,遵义市属于中亚热带高原湿润季风区,气候温和、夏无酷暑,冬无严寒。但地处山区,海拔高差较大,气流、降水以及气候具有典型的山地气候特征。建筑场地在海拔1500m以上的山地,以石作为造型理念,采用半覆土建筑形式,以厚重实体回归自然,由西向东,由南向北逐渐延伸入土中,整个体量从屋面到松林做到自然过渡,浑然一体。利用地下土壤的热稳定性和地下温度的恒温性,体现出建筑的地域特色,具有创新的理念。建筑设计按照被动优先的原则,通过计算机模拟,采用围护结构隔热、遮阳,充分利用自然采光、加强自然通风等技术措施,来减少建筑能耗,提高建筑的功能要求和室内舒适度。护结构主要为非透明实体围护结构,以减少夏季强烈的太阳辐射对建筑室内过热和空调能耗的增加,同时满足科技馆建筑室内采光与照明对科技作品、艺术作品的功能要求。半覆土建筑形式对场地内地形地貌进行最大限度的保护,避免进行大开挖,大填方。对场地内的水系和现有植物进行利用。景观专业对现有水系和植物的利用,包括现有竹林,树木,灌木等等。结合给排水专业设置雨水蓄积方案,确定雨水蓄积的方式和位置,雨水蓄积同时作为景观水景,同时满足功能和绿色建筑对水资源节约的要求。瓦努阿图国家会议中心效果图,瓦努阿图位于南太平洋,最热月平均气温为26.4℃,最冷月平均气温为21.6℃,年平均气温24.1℃。全年太阳高度角较大,直接辐射强。气候温和湿润,属于典型的低纬度海洋性气候。建筑设计尤其注重遮阳、通风。利用海洋性气候条件下海陆风的昼夜变化特点,增强自然通风效果。地形对风向和风速的修正以符合项目所在的背景风场。利用种植屋面良好的隔热机理和热稳定性,完全消除太阳辐射得热,实现超低能耗的运行方式,营造健康舒适的室内环境。昼夜海陆风和建筑平面通风流线,采用外挑屋面遮阳结合采光设计,具有遮阳功能的走廊和挑檐,在减小空调负荷,降低空调能耗的同时,可实现自然光亮度、均匀度满足使用要求,并有效控制眩光,最大限度减少昼间人工照明用电等。项目建成后,结合绿色运行手段,可望称为低纬度海洋性气候地区低能耗绿色建筑的典范。从以上工程实例可看出,具有气候适应性的建筑将有利于气候的自调节作用,这也是自古以来人类总结出的、今天流行的被动节能技术设计方法。因此,通过被动式自然能源的应用,对建筑进行优化设计,利用建筑围护结构的蓄热、自然通风等将室外温度波的衰减、延迟特性、围护结构内表面平均辐射温度(MRT)的日平均值和波幅值控制在人可接受的范围内。这种被动与主动相结合的节能技术,尽可能延长基本热舒适时间,减少采用主动干预室内热环境的方式实现热舒适环境时间,也就是说尽量减少空调和采暖时间,是气候适应性节能建筑的核心,也是我国绿色建筑的技术路线和方向。
2.3建筑形态设计与节能设计
绿色建筑设计与一般设计的根本性区别在于采用量化分析的方法代替感性认识,可以说没有定量化的分析就没有理性绿色建筑的诞生。采用计算模拟分析手段来推敲设计策略对建筑能耗的影响,进而优化建筑设计。成都双流机场T2航站楼,建筑围护结构屋面与外墙没有明显的分隔,而是屋顶由一个圆柱穹顶直接落地,屋顶采用透明材料和金属夹芯板形成虚实相间的“竹节虫”。对围护结构的热工与节能设计受到很大的限制,屋顶中天窗的比例高达28%,带来较大的空调负荷和高昂的运行费用,需对屋盖方案进行优化,经过模拟分析并与建筑设计进行交互优化调整,实现整体节能。可以看出方案一、方案二、方案四较方案三的装机负荷大34.9%、9.5%、23.9%,遮阳系数不同时的负荷,当SC=0.6)时,四种方案分别为30.2%、8.2%、0.0%、21.0%;当增加玻璃的遮阳系数由0.6降低到0.5,三个方案的装机负荷可分别减小6.7%、9.3%、8.3%由此带来设备初费用降低,机房面积减小400~2500m2,管道费用减少3%~15%左右。因此,我们在定量的计算模拟分析有时甚至纠正感性认识的错误。比如我们在采用能耗分析软件研究发现的西向水平遮阳措施对改善西向房间的热工性能也有很大的帮助,纠正了通过感性认识一般认为的西向水平遮阳措施对房间遮阳帮助不大的认识,进而可调整相应的设计策略。节能的同时为建设方节约投资,在投标方案竞争中定量地体现出设计方的技术水平和服务意识。
2.4采光遮阳与建筑设计
由于建筑进深大,侧窗采光造成内部采光不好,均匀性差,根据成都冬季日照率低和夏季太阳辐射特点,为保证大部区域白天不需人工照明,设置采光通风遮阳天窗,以及玻璃幕墙顶部通风遮阳措施,保证了候车厅深部空间日间自然采光满足亮度和均匀度要求,并在候车厅不同部位的环境平均辐射温度控制在27℃以下,使侯车大厅处于舒适性范围,同时降低空调能耗。由此,在西侧玻璃幕墙和天窗应采取遮阳措施。下图给出了采用倾角为10°的百叶遮阳措施后外进入室内的太阳辐射特征曲线图,由图可看出,采用百叶遮阳后,可以大幅消减对进入室内的太阳辐射,从而改善夏季室内的热舒适度,降低了空调能耗。
篇9
2.OrCAD/PSpice9软件的特点
OrCAD/PSpice9是美国OrCADINC.公司研制的一种电路模拟及仿真的自动化设计软件,它不仅可以对模拟电路、数字电路、数/模混合电路等进行直流、交流、瞬态等基本电路特性的分析,而且可以进行蒙托卡诺(MonteCarlo)统计分析,最坏情况(WorstCase)分析、优化设计等复杂的电路特性分析。相比PSpice8.0及以前版本,具有如下新的特点:
·改变了批处理运行模式。可以在WINDOWS环境下,以人机交互方式运行。绘制好电路图,即可直接进行电路模拟,无需用户编制繁杂的输入文件。在模拟过程中,可以随时分析模拟结果,从电路图上修改设计。
·以OrCAD/Capture作为前端模块。除可以利用Capture的电路图输入这一基本功能外,还可实现OrCAD中设计项目统一管理,具有新的元器件属性编辑工具和其他多种高效省时的功能。
·将电路模拟结果和波形显示分析两大模块集成在一起。Probe只是作为其中的一个窗口,这样可以启动多个电路模拟过程,随时修改电路特性分析的参数设置,并可在重新进行模拟后继续显示、分析新的模拟结果。
·引入了模拟类型分组的概念。每个模拟类型分组均有各自的名称,分析结果数据单独存放在一个文件中,同一个电路可建立多个模拟类型分组,不同分组也可以针对同一种特性分析类型,只是分析参数不同。
·扩展了模型参数生成软件的功能。模型参数生成软件ModelED可以统一处理以文本和修改规范两种形式提取模型参数;新增了达林顿器件的模型参数提取;完成模型参数提取后,自动在图形符号库中增添该器件符号。
·增加了亚微米MOS器件模型EKV2-6。EKV2-6是一种基于器件物理特性的模型,适用于采用亚微米工艺技术的低压、小电流模拟电路和数/模混合电路的模拟分析。
3.电路优化设计
所谓电路优化设计,是指在电路的性能已经基本满足设计功能和指标的基础上,为了使得电路的某些性能更为理想,在一定的约束条件下,对电路的某些参数进行调整,直到电路的性能达到要求为止。OrCAD/PSpice9软件中采用PSpiceOptimizer模块对电路进行优化设计,可以同时调整电路中8个元器件的参数,以满足最多8个目标参数和约束条件的要求。可以根据给定的模型和一组晶体管特性数据,优化提取晶体管模型参数。
3.1电路优化基本条件
调用PSpiceOptimizer模块对电路进行优化设计的基本条件如下:
·电路已经通过了PSpice的模拟,相当于电路除了某些性能不够理想外,已经具备了所要求的基本功能,没有其他大的问题。
·电路中至少有一个元器件为可变的值,并且其值的变化与优化设计的目标性能有关。在优化时,一定要将约束条件(如功耗)和目标参数(如延迟时间)用节点电压和支路电流信号表示。
·存在一定的算法,使得优化设计的性能能够成为以电路中的某些参数为变量的函数,这样PSpice才能够通过对参数变化进行分析来达到衡量性能好坏的目的。
3.2电路优化设计步骤
调用PSpiceOptimizer进行电路优化设计,一般按以下4个步骤:
(1)新建设计项目,完成电路原理图设计。这一歩的关键是在电路中放置OPTPARAM符号,用于设置电路优化设计过程中需要调整的元器件名称及有关参数值;
(2)根据待优化的特性参数类别调用PSpiceA/D进行电路模拟检验,确保电路设计能正常工作,基本满足功能和特性要求;
(3)调用PSpiceOptimizer模块,设置可调整的电路元器件参数、待优化的目标参数和约束条件等与优化有关的参数。这一歩是优化设计的关键。优化参数设置是否合适将决定能否取得满意的优化结果;
(4)启动优化迭代过程,输出优化结果。
电路优化设计的过程框图如图1所示。
3.3电路优化设计实例
滤波器电路如图2所示。优化目标要求中心频率(Fc)为10Hz;3dB带宽(BW)为1Hz,容差为10%;增益(G)为10,容差为10%。
在图2中,滤波器电路共有三个可调电位器R
gain、Rfc和Rbw,用来调整中心频率、带宽以及增益,且这种调整是相互影响的。三个可变电阻的阻值是由滑动触点的位置SET确定的,显然SET值的范围为0~1,所以将三个电位器的位置参数分别设置为aG、aBW和aFc。
由于对滤波器的优化设计是交流小信号分析,因此应将分析类型“Analysistype”设置为“ACSweep/Noise”;扫描类型“ACSweepType”设置为“Logarithmic”;“Points/Decade”设置为100;起始频率“Start”和终止频率“End”分别设置为1Hz和100Hz。
为了进行优化设计,在电路图绘制好后,应放置OPTPARAM符号并设置待优化的元器件参数。本例中参数属性设置值如表1所示。
设置好待调整的元器件参数以后,调用PSpiceOptimizer模块并在优化窗口中设置增益(G)、中心频率(Fc)和带宽(BW)三个优化指标。并利用PSpice中提供的特征值函数定义这三个优化指标,具体设置见表2。
调用PSpiceA/D进行模拟计算,在相应窗口中显示中心频率的值为8.3222,带宽为0.712187,增益为14.8106。显然这与要求的设计指标有差距,需要通过优化设计达到目标。
在优化窗口中选择执行Tune/Auto/Start子命令,即可开始优化过程。优化结束后,优化窗口中给出最终优化结果,如图3所示。
由图3可见,系统共进行了三次迭代,自动调用了9次电路模拟程序。当3个待调整的元器件参数分别取aG=0.476062;aFc=0.457928;aBW=0.702911时,可以使3个设计指标达到G=10.3499,Fc=9.98953,BW=1.00777。
可见,对电路进行优化设计后,电路指标均能满足设计要求。另外,完成优化设计后,还可以从不同角度显示和分析优化结果。
篇10
机械成本控制。土方工程施工时,根据施工组织设计中土方开挖方式、开挖机械的型号、吨位,直接套用定额可算出费用。在定额中,不同容量的挖掘机,配备不同的自卸汽车,单价不相同,这就要结合施工组织设计提供的哪种方案经济合理,再结合施工企业机械设备装备情况,以提高机械的效率为目的选定最优的土方开挖施工方案。以本工程路基土方开挖为例,经分析,容量相同的挖掘机配不同吨位的自卸汽车运土,吨位大的自卸汽车土方单价高;吨位相同的自卸汽车配不同容量的挖掘机运土,容量大的挖掘机土方单价低。施工组织设计根据工期要求、施工现场条件来配备施工机械;工程成本的计算又为优化施工组织设计提供可靠依据。随着工程机械化施工程度的不断提高,机械使用费在工程成本中的比重日益增长。因此,加强施工机械成本管理和核算,努力控制机械费用,对降低工程成本有着重要的意义。
采用“四新”技术。应用新技术、新材料、新工艺、新设备,既可以提高生产力,又可以控制成本。比如:大体积混凝土通仓浇筑、碾压混凝土筑坝及用土工布代替土石坝反滤料等新技术、新材料、新工艺,即可加快施工进度,节省材料消耗,减少设备数量,又可降低工程造价。
1.2优化施工组织设计要点
优化施工组织设计是对施工活动实行科学管理的重要手段,它具有战略部署和战术安排的双重作用。它体现了实现基本建设计划和设计的要求,提供了各阶段的施工准备工作内容,协调施工过程中各施工单位、各施工工种、各项资源之间的相互关系。施工组织设计与成本控制同等重要,二者并非想互独立的,二者是密切联系,相互确定的关系;工程成本的高低除了与预算知识有关外,其实很大程度上取决于施工组织、施工方案的先进与否,不同的施工组织、施工方案所反映的成本是不一样的。从本次研究的两个实例中就可以看出,对于施工组织设计来说,施工方案和人、材、机管理都对施工成本有足够的控制能力。施工组织编制质量是控制成本的关键;优化施工组织是控制成本的基础;采用新技术、新工艺是控制成本的主要手段。从这些方面考虑就必须对施工组织设计中施工方案、人工(费)、材料(费)(单价,采购材料形式)、机械(费)等方面进行优化设计控制。
2. 施工组织设计控制工程成本的策略
2.1合理选择施工方案
施工方案的选择是决定整个工程全局的关键,施工方案一经选定,整个施工的进程、现场状况、人员及机具的需要量及布置情况也就基本确定,施工方案的合理性,经济性,直接影响着概预算的高低和定额的查用,施工方案由与相应的设计阶段配套的施工组织设计文件提供,重点对施工方案进行认真分析,服从工期、质量、技术要求,降低成本,选择合理的施工方法、施工机械、施工顺序,进行流水施工的组织。预算编制人员要依据设计图纸准确地计算出与设计图纸相对应的工程量。当设计图纸深度有限时,还需要编制人员对设计进行延伸和细化,也就是说,不但要把图纸上的项目计算出来,还要计算出图纸中虽未做交待但实际会发生的项目。例如:采用脚手架类型,各种施工机械的性能与特性,以及建筑工程本身特点及施工中的特殊要求等。另外,对于材料成本的控制,鉴于建筑产品的特点和建筑工程概算的种类,施工设计这应该根据由大到小,由整体到局部的原则对工程项目进行多层次的分解和划细,相反计算造价时先求出每一基本构成要素的工料机消耗量和价值,然后根据设计文件等,汇总计算出整个建设项目的造价。
2.2合理进行规划设计
工程进入施工阶段必须对细节的施工过程进行合理地规划,首先要规划施工的设备、人员。对于人员的控制首先要进行人员的动员和安排布署。组建项目经理部,与业主或监理取得联系,开展息息相关业务工作;前期施工人员10天内到达施工指定地点,着手临建和施工准备工作;首批投入施工的机械设备15日内到达施工地点,保养维修,做好施工前的准备工作。人员的准备有利于缩短施工工期,进行合理化的人工控制,避免出现高薪紧急聘任的情况,并由此引发人员成本的增长。而对于设备的控制则要以就近就便的方式进行材料设备的运输,然后对施工设备进行合理地控制保养,以此来降低施工成本。例如:人员就近采用汽车、火车运送至现场;设备就近由汽车、火车、船运送至现场。
2.3合理进行技术控制
篇11
如何在众多形式的挡土墙中选择一种适合现场条件的档土墙结构是当前必须研究的课题。档土墙作为一般拦土结构物,常用在闸坝的翼墙和渡槽、倒虹吸的进出口边墙及其他路堤挡土部位等。对这类工程的优化设计问题往往易被忽视。我们的实践表明,各类挡土墙的技术经济效益有着相当大的差别。本项研究,从工程实际出发,意图在如减压式挡土墙、重力式挡土墙、悬臂式挡土墙和扶壁式挡土墙等四种结构中进行双向优选,即进行本类的优选设计和各类之间的优选比较,最后确定一种技术、经济状况最优、现场适应性最好的挡土墙方案用于本工程。现将研究过程介绍如下。
1.2课题研究思路
该课题的研究思路分三步的研究思路。
第一步,首先确定方案比选的统一标准。过去人们的观点认为挡土墙形状各异,结构不同,各有优缺点,要比较相当困难。实际上任何形式的挡土墙功能都是挡土拦土,因此研究认为,它们的正常挡土状态就应当是一个统一标准,而这个正常的挡土状态正是现行的规范状态,在规范状态下这些参与比选的各类挡土墙是处在同一个设计水平上,因而可以比较。
第二步,确定优化设计的风险决策方法。众所周知,任何挡土墙的稳定性特征值都是挡土墙背填土物理力学特性的函数,同时又受地基结构特性的约束;对于挡土墙的经济造价,又与结构特征相关的工程量及市场物价相关的分析单价密不可分。显然,这些都是描述挡土墙特征的随机变量。鉴于挡土墙具有上述特点,因此可以认为每类挡土墙也是离散随机变量,采用数学期望准则和优势比较准则完全能够将含离散随机变量的各个方案进行优劣比较,按照定义,离散随机变量的一切可能值Xi与对应的概率P(ζ=Xi)的乘积之和称为数学期望,记为Mζ。如果随机变量只取得有限个值:X1、X2、X3、……Xi,而取得这些值的概率分别是P(x1)、P(x2)、P(x3)……P(xi)则
Mζ=X1P(x1)+X2P(x2)+X3P(x3)……XiP(xi)
运用到风险决策中来,以Mζ值最小为最优方案。
优势比较准则实际是将方案的技术效益或造价进行比较。当方案Ⅰ的随机变量S1、S2、S3、……Si与方案Ⅱ的随机变量S1、S2、S3、……Si对应相减,其值为“0”或“+”值,则方案Ⅰ有优势;若相减后其值为“0”“0”“+”“-”或“0”“0”“-”“-”,则方案Ⅰ不存在优势。
第三步,选取拟比较的能反映方案特性的随机变量可能值。研究认为,方案的规范状态,挡土墙的墙基应力,墙基对围岩的扰动度参数——挡土墙的宽高比B/H和相对避扰度、工程造价及相对效益A等值,基本能描述挡土墙的特征,而且这些变量在分析过程中都能一一取得。故以它们作为研究比较的随机变量是合理的。
第四步,搜索各类挡土墙的规范状态并按数学期望准则和优势比较准则分别考核各个待选方案。选出最优秀方案。
2各类挡土墙的设计指标
2.1确定计算挡土墙的土压力理论
目前计算土压力的理论有多种,而各种理论又用各自不同的假设分析方法来求算土压力。根据初步筛选,除减压式挡土墙外,其余重力式挡土墙,悬臂式挡土墙和扶壁式挡土墙背墙顶与墙踵连线倾角均大于临界角εer,本工程εer=45-ψ/2。尽管一些方案的墙背可能出现第二滑裂面,尽管采用的计算公式可能出现误差,为方便起见确定统一采用郎肯主动土压力理论来计算各类挡土墙的主动±压力。初步分析估算,计算误差不会导致大方案比较结果出现错位。
有关郎肯主动土压力计算公式详见图2。
2.2现行规范(SD133-84)指标与现场地质的物理力学特性。
现行规范(SD133-84)指标与现场地质的物理力学特性见表1。
2.3四种挡土墙的现行规范状态的计算成果
根据前述2.1和2.2节确定的数学模型和物理力学指标,无论用手算方式还是计算机搜索都可得到现行规范状态下的挡土墙计算成果。详见图2、表2和表3。
表2中的“GF”是“规范”二字的汉语拼音缩写;“围岩相对避扰度”意思指“围岩避免扰动的相对程度”,此相对值越大表明围岩受扰动越小,反之则越大。
3挡土墙优化设计的风险决策
3.1按数学期望准则的风险决策
采用数学期望准则风险决策之前先将表2中的第(2)项和第(5)项、表3中的第(12)项集中到表4来,并认为表中所有随机变量X1、X2、X3的概率P(x1)、P(x2)、P(x3)值均为0.333,则可算出a、b、c、d各方案的数学期望Mζ值,详见表4。
由表4可见,减压式挡土墙Mζ值较小,而悬臂式挡土墙的Mζ值较大。比较结果表明,减压式挡土墙在这四种挡土墙方案中为最优方案。
3.2按优势比较准则的风险决策
在进行优势比较准则决策之前,先将表2中的第(3)项第(6)项和表5中的第(13)项集列成表5并进行优势比较。详见表5。
将表5中各个随机变量相互比较发现,减压式挡土墙对其他三类挡土墙比较均得到“0”“0”“+”“+”,表明减压式挡土墙方案比较优秀,为首选方案。重力式挡土墙和扶臂式挡土墙方案对悬臂式挡土墙,比较结果也显示“0”“0”“+”“+”,表明该两者也有一定优势,可作为备选方案。
总之,无论采用数学期望准则还是采用优势比较准则分别对减压式挡土墙,重力式挡土墙、悬臂式挡土墙和扶壁式挡土墙进行分析,结果基本一致。在规范状态下,减压式挡土墙方案对围岩土扰动较小、较好地适应现场受限制的地形条件、工程量及造价较低,是被考核的四个挡土墙方案最具优势者。
4减压式挡土墙在黄壁庄水库除险加固工程混凝土生产系统中的应用。
4.1减压式挡土墙设计应注意事项
混凝土标号应为C20以上。进行配筋计算时宜取安全系数K≥1.4。并且墙底不得有虚土。
4.2减压式挡土墙的施工
注意墙体分段施工程序:先浇筑Ⅰ墙基底板——Ⅱ垂直墙体下半部分——Ⅲ减压平台以下的土方回填夯实——Ⅳ浇筑减压平台——Ⅴ浇筑垂直墙体上半部——Ⅵ减压平台以上回填。
4.3减压式挡土墙应用效果
在储料场的两端,总长4×40m=160m,墙高8.4m,墙基宽2.51m的减压式挡土墙于1998年11月建成投入运用。当储料7000m3时,减压平台以上储料高度h>4m,墙顶变形2mm,墙基变形为0,运行正常。此种结构应用在储料场工程,减压平台可以代替部分混凝土硬化地面的工程量,一举两得,技术和经济效益明显。
5结语
本项研究采用数学期望准则和优势比较准则对不同类型挡土墙方案进行风险决策获得满意的效果,使工程实际中提出的问题得到解决,是对挡土墙结构优化设计的有益尝试。
减压式挡土墙是本项风险决策研究比选的出的优秀挡土墙方案。在黄壁庄水库工程应用结果表明,它的挡土效果与其他重力式挡土墙、悬臂挡土墙和扶壁式挡土墙相当,而工程造价仅为其他三类挡土墙的57%—81%、对围岩的扰动影响仅为其他三类挡土墙的41%—44%,对受限制的土基条件适应性较好,技术和经济效益明显。宜作闸坝翼墙及一般渠系建筑物进出口过渡段工程的选择方案。
本项研究的思路可供同类工程建设参考。
参考文献
篇12
1.2液压缸活塞导向装置的设计
在此产品中,导向轴是关键零件,它在螺旋槽中的运动较为重要,不能太过于松动,松动会造成锁紧功能消失,并且间隙过大会影响旋转的准确角度,因此要保证导向轴在槽内运动自如,又要保证间隙小。经过一段时间的试验,最后采用将导向轴的外形设计成椭圆形(已获专利),采用数控车削加工,效果较好,完全保证其在旋转槽中顺利运动。定位销中螺旋槽采用带圆弧形状设计,由于此螺旋槽的加工难度大,采用一般机床难以加工,采用数控车铣中心加工效果较好,且表面光洁。将此夹具装配后,转动灵活、定位准确。
1.3液压缸密封结构的设计
用于旋转夹紧油缸的液压油防渗装置在液压缸的工作过程中相当重要,作者采用的是对导向套内部进行改进,在防尘圈内侧增加一槽,并装入“O”型密封圈。装配好后的液压缸,外界灰尘进入缸内的可能性减少,液压油不产生渗漏现象,运动自如,液压系统的寿命提高3倍。此装置已获专利。稳定旋转活塞杆。由于活塞杆长期作往复运动,其失稳现象较为频繁,现在活塞杆外圆处增加一支撑环,并填入支撑环材料。装配好后的旋转夹紧机构,往上提升稳定,未发生失稳现象,运动自如,使整个液压系统的寿命提高3倍。
1.4液压缸密封材料的设计
氟橡胶是含有氟原子的合成橡胶,具有优异的耐热性、耐氧化性、耐油性和耐药品性,它主要用于航空、化工、石油、汽车等工业部门,作为密封材料、耐介质材料以及绝缘材料。分子结构中含有氟原子的合成橡胶,通常以共聚物中含氟单元的氟原子数目来表示,如氟橡胶23是偏二氟乙烯同三氟氯乙烯的共聚物。由于氟橡胶耐高温、耐油、耐化学腐蚀,采用氟胶作为防尘圈,对高温的适应性增强,外界灰尘不易进入缸内,使液压缸在超高温状态(大约200℃)下工作可靠。
2应用效果
此产品能在高温环境(相对于液压缸来讲200℃较高)中工作,可用较轻质量的液压缸提升金属冶炼中的炉盖及高端装备的动作,产生的压力较大,效果显著。
3结论
由于此产品开发中采用了液压与机械相结合的技术,利用了两者的优点,避免了两者的缺点,特总结如下:
(1)操作方便省力,大大降低工人劳动强度。采用旋转夹紧液压缸,为炉盖的起升提供了稳定的动力与控制;
(2)使用这种旋转夹紧液压缸,满足产品的需要的同时成本大大减少;
篇13
1.尊重学生的主体需求理念。现代高校化学教学使用多媒体教学技术,主要目的在于使用先进的教学技术促进学生掌握化学知识,深入研究化学现象,引导学生掌握完整的化学理论知识体系。2.运用刺激反映的教学规律。从本质上来说,在课堂上使用多媒体技术,实际上是增加了课堂教学的信息源,这对于学生掌握化学理论知识,给学生提高有效的教学渠道有重要意义。3.符合学生认知水平的理念。现代多媒体网络技术环境下的高校化学教学,可以实现线上线下的有机联系,可以给学生提供个性化的教学环境,能够促进学生深入的掌握化学知识。在认知主义教学理论的指导下,化学教学在多媒体条件下优化教学设计,更强调围绕着学生的需求选择进行教学,教师不只是信息的单向传递者,而且还要根据学生的主动需求,给学生提供他们需求的信息。
二、多媒体环境下化学教学设计原则
1.课件内容要有选择性。在多媒体环境下给学生呈现的教学内容要有选择性,注重从学生的学习需求出发,能够在课件中呈现出化学基本原理,化学实验的设计思路,以及化学教学的创新思想,注重把化学理论知识与化学学习方法融为一体。大学化学课堂使用多媒体课件进行教学,更注重反映课本没能体现的知识内容,注重结合课本充实各种化学实验,实现各种图表、关键知识点与化学公式的总结。特别是随着高校化学知识的深入复杂,化学多媒体课件应当充分借助动画、视频等有效的教学形式,着力通过课件建立线上线下联系,形成完善的课堂教学沟通体系。2.课件形式要有丰富性。只有提高多媒体课件形式的丰富性,才能提高课件对学生的吸引力,着力吸引学生参与到化学教学的全过程。多媒体课件是直观的教学载体,通过多媒体课件来演示教学内容,可以让学生获得更深刻直观的印象,可以让学生记住化学实验演示的过程。为了达到最佳的课件演示效果,应实现新旧教学内容有机结合,注重在归纳总结等一般思维的基础上,全面丰富课件教学的形式。
三、利用多媒体网络教学注重事项
1.多媒体教学不能代替传统教学。多媒体技术不能代替传统教学活动,高校化学课堂仍然要发挥教师的主导作用,注重通过师生的有效沟通,引导学生主动的思考和解析化学问题。多媒体课件可以把复杂的问题直观化、简单化和有效的分解。多媒体课件不能代替板书,不能代替教师讲授的过程,只有围绕着有效的师生互动探讨,才能激发学生的思路,促进学生主动的学习化学知识,发挥教师的实际指导作用。2.围绕网络丰富精品资源库。网络是实现师生有效互动的平台,教师可以在互联网或移动互联网的客户端为学生推送各种有价值的学习信息,教师也只有注重使用网络渠道获得精品教学信息,才能帮助学生掌握化学领导的前沿知识内容,从而不断提高学生的综合能力,满足学生学习前沿化学知识的实际需求。学生学习离不开各种资源的支持,网络已经成为学生获取资源的重要渠道。但是,学生辨识网络资源质量的能力稍差,还需要教师的有效引导把握,能够由教师推荐给学生丰富有效的化学教学内容,从而促进学生全面提高学习能力水平。
随着现代多媒体和互联网技术的快速发展,网络多媒体已经成为课堂教学的重要载体,只有注重使用网络和多媒体技术,才能发挥出现代教学手段的作用,全面提高化学课堂教学水平,满足学生的学习需求。
【参考文献】