在线客服

裂缝控制论文实用13篇

引论:我们为您整理了13篇裂缝控制论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

裂缝控制论文

篇1

2.2分段分层浇筑方案将结构适当分成若干段,每段再分若干层,逐层逐段浇筑混凝土,该方案适用于厚度不大而面积或长度较大的结构。(3)斜面分层浇筑方案。当结构长度较大而厚度不大时,可采用斜面分层浇筑方案。浇筑时混凝土一次浇筑到顶,让混凝土自然流淌,形成一定的斜面。这时混凝土的振捣应从下端开始,逐步向上,这种方案较适合泵送混凝土工艺,因为可免去混凝土输送管反复拆装。

3分析大体积混凝土裂缝产生的原因

3.1干缩裂缝。混凝土干缩主要和混凝土的水灰比、水泥的成分、水泥的用量、集料的性质和用量、外加剂的用量等有关。是混凝土内外水分蒸发程度不同而导致变形不同的结果:混凝土受外部条件的影响,表面水分损失过快,变形较大,内部湿度变化较小变形较小,较大的表面干缩变形受到混凝土内部约束,产生较大拉应力而产生裂缝。

3.2塑性收缩裂缝。塑性收缩裂缝一般在干热或大风天气出现,裂缝多呈中间宽、两端细,且长短不一,互不连贯状态。常发生在混凝土板或比表面积较大的墙面上,较短的裂缝一般长20~30cm,较长的裂缝可达2~3m,宽1~5mm。从外观分为无规则网络状和稍有规则的斜纹状或反映出混凝土布筋情况和混凝土构件截面变化等规则的形状,深度一般3~10cm,通常延伸不到混凝土板的边缘。

3.3沉陷裂缝。沉陷裂缝的产生是由于结构地基土质不匀、松软,或回填土不实或浸水而造成不均匀沉降所致。或者因为模板刚度不足,模板支撑间距过大或支撑底部松动等导致混凝土出现沉陷裂缝。特别是在冬季,模板支撑在冻土上,冻土化冻后产生不均匀沉降,致使混凝土结构产生裂缝。

3.4温度裂缝。温度裂缝多发生在大体积混凝土表面或温差变化较大地区的混凝土结构中。混凝土浇注后,在硬化过程中,水泥水化产生大量的水化热。由于混凝土的体积较大,大量的水化热聚积在混凝土内部而不易散发,导致内部温度急剧上升。而混凝土表面散热较快,这样就形成内外的较大温差。较大的温差造成混凝土内部与外部热胀冷缩的程度不同,使混凝土表面产生一定的拉应力。当拉应力超过混凝土的抗拉强度极限时,混凝土表面就会产生裂缝,这种裂缝多发生在混凝土施工中后期。

4.对大体积混凝土裂缝采用材料控制技术

4.1水泥的合理选取。优先选用收缩小的或具有微膨胀性的水泥。因为这种水泥在水化膨胀期(1~5d)可产生一定的预压应力,而在水化后期预压应力部分抵消温度徐变应力,减少混凝土内的拉应力,提高混凝土的抗裂能力。

4.2骨料的合理选取。选择线膨胀系数小、岩石弹性模量低、表面清洁无弱包裹层、级配良好的骨料,这样可以获得较小的空隙率及表面积,从而减少水泥的用量,降低水化热,减少干缩,减小了混凝土裂缝的开展。

4.3尽可能减少水的用量。混凝土具有双重作用,水化反应离不开水的存在,但多余水贮存于混凝土体内,不仅会对混凝土的凝胶体结构和骨料与凝胶体间的界面过度区间的结构发展带来影响,而且一旦这些水分损失后,凝胶体体积会收缩,如果收缩产生的内应力超过界面过度区间的抗力,就有可能在此界面区产生微裂缝,降低混凝土内部抵抗拉应力的能力。

5.加强混凝土的养护混凝土拌合物经浇筑捣密后,即进入静置养护期,其中水泥和水逐渐起水化作用而增长强度。在这期间应该设法为水泥的顺利水化创造条件,称混凝土的养护。水泥的水化要有一定的温度和湿度的条件。温度的高低主要影响水泥水化的速度,而湿度条件则影响水泥水化能力。混凝土如在炎热气候下浇筑,又不及时洒水养护,会使混凝土中的水分蒸发过快,出现脱水现象,使已形成凝胶状态的水泥颗粒不能充分水化,不能转化为稳定的结晶而失去了粘结力,混凝土表面就会出现片状或粉状剥落,降低了混凝土的强度,另外,混凝土过早失水,还会因收缩变形而出现干缩裂缝,影响混凝土的整体性和耐久性。所以在一定温度条件下混凝土养护的关键是防止混凝土脱水。

6.掺入外加剂与掺合材料提高混凝土耐久性

6.1粉煤灰。混凝土中掺用粉煤灰后,可提高混凝土的抗渗性、耐久性,减少收缩,降低胶凝材料体系的水化热,提高混凝土的抗拉强度,抑制碱集料反应,减少新拌混凝土的泌水等。这些诸多好处均将有利于提高混凝土的抗裂性能。但是同时会显着降低混凝土的早期强度,对抗裂不利。试验表明,当粉煤灰取代率超过20%时,对混凝土早期强度影响较大,对于抗裂尤其不利。

6.2硅粉。(1)抗冻性:微硅粉在经过300~500次快速冻解循环,相对弹性模量隆低10~20%,而普通混凝土通过25~50次循环,相对弹性模量隆低为30~73%.(2)早强性:微硅粉混凝土使诱导期缩短,具有早强的特性。(3)抗冲磨、控空蚀性:微硅粉混凝土比普通混凝土抗冲磨能力提高0.5~2.5倍,抗空蚀能力提高3~16倍。

6.3减水剂。缓凝高效减水剂能够提高混凝土的抗拉强度,并对减少混凝土单位用水量和胶凝材料用量,改善新拌混凝土的工作度,提高硬化混凝土的力学、热学、变形等性能起着极为重要的作用。

篇2

一、开裂情况:

地下室侧壁开裂的情况比较多,裂缝宽度小于0.5mm、间距1—4m、长度有的贯通墙壁全高,侧壁两端附近裂缝较少,中部附近较多。

裂缝往往在砼浇筑的60天之内出现,随着时间的推移裂缝数量增多,部分裂缝加宽。尤其是在进入冬季气温骤变的时候。

二、裂缝原因分析:

1、直接原因:

砼结构裂缝产生的原因比较复杂,概括起来有两类原因,一种由外荷载引起的,因结构承载力不足而发生变形,另一种是结构因温差,收缩徐变,不均匀沉降等因素引起。据统计,在工程实践中,由后者(变形荷载)引起的裂缝约占80-85%,地下室砼裂缝大多数属于后者。

砼在浇筑后,由于水泥的水化作用,释放大量的水化热,因为砼构件表面与构件截面中部温差超过25℃就引起砼内部裂缝,构件表面温度和周围空气温差超过25℃,就引起构件表面裂缝。砼浇筑后温度提高,砼初期体积有微膨胀作用,以后温度下降体积急剧收缩。砼除了温度收缩外,还有较大的化学收缩和干燥收缩,砼早期(10天-15天)极限拉伸很低,这造成砼的早期裂缝。因砼的收缩,较高的弹性模量和早期低徐变,会使砼内部产生较大的拉应力,超过砼的极限拉伸,则是造成砼后期裂缝的主要原因。

砼在浇筑一个月左右,完成收缩40%。60天内完成收缩65%,20年后完砼收缩的98%。砼的收缩变形是一个初期大,以后逐渐减少的过程。

2、间接原因:

边界条件如地基和侧面土对砼构件的变形约束作用,砼构件的刚度差异,使砼变形不协调。

侧壁砼浇捣时地板刚度大,受到地板的刚度约束,早期形成压应力,后期砼温度下降,产生拉应力,当拉应力大于钢筋的抗拉强度时则出现裂缝。

砼变形与限制膨胀条件有关。当气温上升时,地板和底板砼因为温度升高而向外膨胀,侧壁和地板相互约束,在侧壁的外侧形成垂直裂缝,当地板和顶板受冷收缩时,侧壁内侧形成垂直裂缝。由于侧壁在边角部分受到的变形量比中部大,同时纵横侧壁的相互约束,因而侧壁两端附近裂缝小,中部附近裂缝多。

侧壁内有柱时,由于截面突变,刚度有差异,侧壁的变形受到柱的约束,往往产生应力集中,在离柱子1∽2m的墙体上易出现纵向收缩裂缝。

三、控制裂缝的措施

根据《砼规》,现浇钢筋砼地下室墙壁最大间距为20m(室外)、30m(室内或土中),而又同时说明了对下列情况,如有充分依据和可靠措施,伸缩缝最大间距可适当加大;

①砼浇筑采用后浇带分段施工。

②采用专门的预应力措施。

③采取能减少砼温度变化或砼收缩的措施。

当增大伸缩缝间距时,尚应考虑温度变化和砼收缩对结构的影响。

伸缩缝虽然是根本解决砼收缩裂缝的措施,也有许多缺点,主要是造价高,地下室不能连成整体,影响功能,伸缩缝的防水处理比较麻烦,防水效果并不理想,同时近几年来超长砼结构的无缝设计与施工技术不断实践与发展,且有许多成功的工程应用,取得良好的效益。

采取的主要措施有以下这点:

1、补偿收缩砼

即在砼中渗入UEA、HEA等微膨胀剂。例如用UEA膨胀剂,以10~20%等量取代水泥,拌制成补偿收缩砼,其限制膨胀率ξ2=0.02~0.05%,按公式α=µESξ2,可在砼中建立0.2~0.7MPa的预压应力,从而抵制砼在硬化过程中全部或大部分拉应力,以砼的膨胀值减去砼的最终收缩值的差值大于或等于砼的极限拉伸即可控制裂缝:ξ2–Sm≧ξp,使砼结构不裂。

2、膨胀带

由于砼中膨胀剂的膨胀变形不会与砼的早期收缩变形完全补偿,为了实现砼连续浇注无缝施工而设置的补偿收缩砼带,根据一些工程实践,一般超过60m设置膨胀加强带。

膨胀带要求设置在砼收缩应力发生最大部位,一般地板和侧墙长度方向的中间位置。对于超过普通砼伸缩缝设置间距的超长砼结构,要进行连续无缝施工可设置多条膨胀加强带。

作用:①膨胀加强带砼的设计强度常比相邻的砼设计强度提高5MPa-10MPa,从而提高膨胀加强带砼的抗拉强度,防止砼在此部位开裂。

②膨胀带内砼的膨胀剂应比带外其它砼掺量高一点,产生较大膨胀,而两侧砼的膨胀率较小,形成中部大两边小的膨胀区,从而补偿相应的收缩曲线,使任意长度可以不设伸缩缝。

做法:膨胀加强带宽2-3m,带的两侧布置中5mm的密孔钢丝网,将带内砼和带外砼分开,为的是不让砼中石子通过,钢丝网垂直布置在上下层(或内外层)钢筋之间,网两端分别绑扎在钢筋上。

膨胀带内增设10%水平温度加强钢筋。与膨胀带方向垂直布置,两端伸出膨胀带2m各与上下层(内外层)钢筋固定,配筋直径减小,间距加密。

由于设置膨胀带主要是为了避免砼早期收缩变形,故膨胀带的保留时间可为10—15天,这比传统后浇带缩短30天的工期。满足工程连续无缝设计施工的要求。

3、后浇带

后浇带作为膨胀加强带一样作为砼早期短时期释放约

束力的一种技术措施,较长久性变形缝已有很大的改进并广泛任用。

根据文献②:结构长度是影响温度应力的因素之一,但只在一方范围对温度收缩应力较为显著,因此设置后浇带是“先放后抗、以放为主”的主要技术措施。

后浇带的设计做法也各不相同。尤其是带内钢筋是否断开,有的不但钢筋连续,还做加强筋连接。带的宽度具体多少为宜各不相同,笔者认为:

①尽量减少穿越后浇带钢筋的总量,以尽可能释放砼的收缩应力。对于楼板内钢筋和侧壁,由于焊接或搭接施工比较方便均应作断开处理。由于梁钢筋连接焊接等施工比较困难,可以留一部分连续钢筋,尽量切断梁腹纵向钢筋和梁顶纵筋截断,保留梁底钢筋连续贯通。

②后浇带宽度内钢筋抗拉刚度EAs远比后浇带两侧砼的抗拉刚度EA小,拉伸变形将主要由后浇带宽度范围内的钢筋提供,对于钢筋全部截断的后浇带,理论上宽度仅有100mm就可以了,为施工方便常取800-1000mm,但对于钢筋连续的后浇带,尽可能增大后浇带的宽度。

③后浇带保留时间为42~60d,一般为60d,这样早期温差和砼收缩完成30—50%。

④材料:用高一等级的微膨胀砼封闭,并进行不少于15d的砼养护。

⑤位置:设在梁墙内力较小位置,后浇带间距为30~40m。后浇带可做成企口式,在浇砼前,必须凿毛清理干净。

4、提高钢筋砼的抗拉能力

砼的抗裂能力取决于砼的极限拉伸值,根据有关资料:混凝土的极限拉伸值与配筋有关。固此,砼应考虑增加抗变形钢筋,即增强对砼由于长期干缩和气温度化引起的热胀冷缩的抗变形能力。对于侧壁,增加水平温度筋,在砼面层起强化作用。选择冷轧带肋钢筋,冷轧扭钢筋,明显增强砼的抗裂能力。

在墙柱连接处设水平附加筋,附加筋的长度为1500∽2000mm,配筋率提高10%∽15%。

钢筋在保持总面积不变的情况下,根据直经小,钢筋布置间距密的方式选择钢筋,能减少裂缝的最大宽度。同时也要考虑砼易于振捣密实。

《砼规》规定:地下室等与土体直接接触的砼构件最大裂缝宽度充许值为0.2mm。当裂缝宽度为0.1~0.2mm,水进入砼与水泥产生反应,砼具有自愈能力。裂缝若控制在0.1mm以内时,则所配钢筋数量增多而不经济。

侧壁受底板和顶板的约束,砼胀缩不一致,可在墙体中部设一道水平暗梁抵抗拉力,水平构造筋放在竖筋的外侧,有利于控制墙体裂缝的发生。

5、施工措施

①优化砼配合比设计:通过试验优选合适的外加剂和掺合料,适当降低水灰比和减少水泥用量,选用水化热低的矿渣硅酸盐水泥,选用优质粉煤灰,砂和石含泥量要小,级配良好。

②砼应严格振捣密实,提高砼密实度。

③落实好砼浇筑后的养护措施,尽量做好保湿保温养护,既可使砼初期获得更高的强度,还可减少砼的温度应力与收缩应力,养护时间在14d以上。

④降低室外温差的影响。夏季施工时应尽量避免在烈日下浇筑楼板砼。降低砼的入模温度。地板垫层上干铺油毡作滑动层。地下室四周土要及时回填,且应分层夯实,既加强地下室顶板作为上部结构的嵌固部位,又可尽快避免室外温度变化对侧壁的影响。

四、工程实例

广州某住宅小区,地上为10栋6层的住宅,地下由一层地下室连成一个整体,长度150m,宽度95m,相当于大底盘多塔楼结构。

地下室未设伸缩缝,为了有效克服砼的收缩裂缝,在地下室钢筋砼结构中掺10%的HEA膨胀剂(内掺量),做成补偿收缩砼。

长边方向设3条后浇带,宽度方向设2条后浇带,后浇带沿住宅之间的道路位置,地下室底板、顶板和侧壁贯通设置。梁钢筋连续,板和侧壁钢筋断开,后浇带做成弯折线形,避免钢筋在一条直线上断开,保留时间为60天,封闭前把钢筋焊接。后浇带宽度为1.0m。为保险起见,预先在底板和侧壁后浇带设置止水带和多道外防水以加强防水。

顶板在室外道路部分,覆土1米厚,既可铺设设备管道,也作为顶板的保温隔热层。底板采用厚板形式,双层双向配筋。侧壁厚300,C30砼,适当加强了侧壁水平钢筋作为抗拉筋。采用严格的施工措施,加强振捣密实和养护,侧壁外及时回填土并夯实,工程建成后观测,地下室使用情况良好。

参考文献:

篇3

Key words: concrete; temperature cracks; control measures

1引言

混凝土裂缝的存在对工程结构的安全性及耐久性有很大的危害,也给广大居民的使用造成一定的安全隐患,因此我们应该从施工的各个环节人手,不放过影响施工质量的任何一个细节,防微杜渐,积极采取各种行之有效的措施控制裂缝的产生,以极度负责和认真的工作态度对待自己亲历的每一个工程。

控制混凝土在现代工程建设中占有重要地位。在今天,混凝土的裂缝较为普遍,在桥梁工程中裂缝几乎无所不在。尽管我们在施工中采取各种措施,小心谨慎,但裂缝仍然时有出现。究其原因,我们对混凝土温度应力的变化注意不够是其中之一。在大体积混凝土中,温度应力及温度控制具有重要意义。这主要是由于两方面的原因。首先,在施工中混凝土常常出现温度裂缝,影响到结构的整体性和耐久性。其次,在运转过程中,温度变化对结构的应力状态具有显著的不容忽视的影响。我们遇到的主要是施工中的温度裂缝,因此本文仅对施工中混凝土裂缝的成因和处理措施做一探讨。

2 混凝土裂缝产生的原因

裂缝的原因混凝土中产生裂缝有多种原因,主要是温度和湿度的变化,混凝土的脆性和不均匀性,以及结构不合理,原材料不合格(如碱骨料反应),模板变形,基础不均匀沉降等。混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力。后期在降温过程中,由于受到基础或老混凝上的约束,又会在混凝土内部出现拉应力。气温的降低也会在混凝土表面引起很大的拉应力。当这些拉应力超出混凝土的抗裂能力时,即会出现裂缝。许多混凝土的内部湿度变化很小或变化较慢,但表面湿度可能变化较大或发生剧烈变化。如养护不周、时干时湿,表面干缩形变受到内部混凝土的约束,也往往导致裂缝。混凝土是一种脆性材料,抗拉强度是抗压强度的1/10左右,短期加荷时的极限拉伸变形只有(0.6~1.0)×104,长期加荷时的极限位伸变形也只有(1.2~2.0)×104.由于原材料不均匀,水灰比不稳定,及运输和浇筑过程中的离析现象,在同一块混凝土中其抗拉强度又是不均匀的,存在着许多抗拉能力很低,易于出现裂缝的薄弱部位。在钢筋混凝土中,拉应力主要是由钢筋承担,混凝土只是承受压应力。在素混凝土内或钢筋混凝上的边缘部位如果结构内出现了拉应力,则须依靠混凝土自身承担。一般设计中均要求不出现拉应力或者只出现很小的拉应力。但是在施工中混凝土由最高温度冷却到运转时期的稳定温度,往往在混凝土内部引起相当大的拉应力。有时温度应力可超过其它外荷载所引起的应力,因此掌握温度应力的变化规律对于进行合理的结构设计和施工极为重要。

3 混凝土温度应力的分析

温度应力的分析根据温度应力的形成过程可分为以下三个阶段:(1)早期:自浇筑混凝土开始至水泥放热基本结束,一般约30天。这个阶段的两个特征,一是水泥放出大量的水化热,二是混凝土弹性模量的急剧变化。由于弹性模量的变化,这一时期在混凝土内形成残余应力。(2)中期:自水泥放热作用基本结束时起至混凝土冷却到稳定温度时止,这个时期中,温度应力主要是由于混凝土的冷却及外界气温变化所引起,这些应力与早期形成的残余应力相叠加,在此期间混凝上的弹性模量变化不大。(3)晚期:混凝土完全冷却以后的运转时期。温度应力主要是外界气温变化所引起,这些应力与前两种的残余应力相迭加。根据温度应力引起的原因可分为两类:(1)自生应力:边界上没有任何约束或完全静止的结构,如果内部温度是非线性分布的,由于结构本身互相约束而出现的温度应力。例如,桥梁墩身,结构尺寸相对较大,混凝土冷却时表面温度低,内部温度高,在表面出现拉应力,在中间出现压应力。(2)约束应力:结构的全部或部分边界受到外界的约束,不能自由变形而引起的应力。如箱梁顶板混凝土和护栏混凝土。这两种温度应力往往和混凝土的干缩所引起的应力共同作用。要想根据已知的温度准确分析出温度应力的分布、大小是一项比较复杂的工作。在大多数情况下,需要依靠模型试验或数值计算。混凝土的徐变使温度应力有相当大的松驰,计算温度应力时,必须考虑徐变的影响,具体计算这里就不再细述。

4 混凝土温度的控制和防止裂缝措施

温度的控制和防止裂缝的措施为了防止裂缝,减轻温度应力可以从控制温度和改善约束条件两个方面着手。控制温度的措施如下:(1)采用改善骨料级配,用干硬性混凝土,掺混合料,加引气剂或塑化剂等措施以减少混凝土中的水泥用量;(2)拌合混凝土时加水或用水将碎石冷却以降低混凝土的浇筑温度;(3)热天浇筑混凝土时减少浇筑厚度,利用浇筑层面散热;(4)在混凝土中埋设水管,通入冷水降温;(5)规定合理的拆模时间,气温骤降时进行表面保温,以免混凝土表面发生急剧的温度梯度;(6)施工中长期暴露的混凝土浇筑块表面或薄壁结构,在寒冷季节采取保温措施;改善约束条件的措施是:(1)合理地分缝分块;(2)避免基础过大起伏;(3)合理的安排施工工序,避免过大的高差和侧面长期暴露;此外,改善混凝土的性能,提高抗裂能力,加强养护,防止表面干缩,特别是保证混凝土的质量对防止裂缝是十分重要,应特别注意避免产生贯穿裂缝,出现后要恢复其结构的整体性是十分困难的,因此施工中应以预防贯穿性裂缝的发生为主。在混凝土的施工中,为了提高模板的周转率,往往要求新浇筑的混凝土尽早拆模。当混凝土温度高于气温时应适当考虑拆模时间,以免引起混凝土表面的早期裂缝。新浇筑早期拆模,在表面引起很大的拉应力,出现“温度冲击”现象。在混凝土浇筑初期,由于水化热的散发,表面引起相当大的拉应力,此时表面温度亦较气温为高,此时拆除模板,表面温度骤降,必然引起温度梯度,从而在表面附加一拉应力,与水化热应力迭加,再加上混凝土干缩,表面的拉应力达到很大的数值,就有导致裂缝的危险,但如果在拆除模板后及时在表面覆盖一轻型保温材料,如泡沫海棉等,对于防止混凝土表面产生过大的拉应力,具有显著的效果。加筋对大体积混凝土的温度应力影响很小,因为大体积混凝土的含筋率极低。只是对一般钢筋混凝土有影响。在温度不太高及应力低于屈服极限的条件下,钢的各项性能是稳定的,而与应力状态、时间及温度无关。钢的线胀系数与混凝土线胀系数相差很小,在温度变化时两者间只发生很小的内应力。由于钢的弹性模量为混凝土弹性模量的7~15倍,当内混凝土应力达到抗拉强度而开裂时,钢筋的应力将不超过100~200kg/cm2..因此,在混凝土中想要利用钢筋来防止细小裂缝的出现很困难。但加筋后结构内的裂缝一般就变得数目多、间距小、宽度与深度较小了。而且如果钢筋的直径细而间距密时,对提高混凝土抗裂性的效果较好。混凝土和钢筋混凝土结构的表面常常会发生细而浅的裂缝,其中大多数属于干缩裂缝。虽然这种裂缝一般都较浅,但它对结构的强度和耐久性仍有一定的影响。为保证混凝土工程质量,防止开裂,提高混凝土的耐久性,正确使用外加剂也是减少开裂的措施之一。例如使用减水防裂剂,笔者在实践中总结出其主要作用为:(1)混凝土中存在大量毛细孔道,水蒸发后毛细管中产生毛细管张力,使混凝土干缩变形。增大毛细孔径可降低毛细管表面张力,但会使混凝土强度降低。这个表面张力理论早在六十年代就已被国际上所确认。(2)水灰比是影响混凝土收缩的重要因素,使用减水防裂剂可使混凝土用水量减少25%。(3)水泥用量也是混凝土收缩率的重要因素,掺加减水防裂剂的混凝土在保持混凝土强度的条件下可减少15%的水泥用量,其体积用增加骨料用量来补充。(4)减水防裂剂可以改善水泥浆的稠度,减少混凝土泌水,减少沉缩变形。(5)提高水泥浆与骨料的粘结力,提高的混凝土抗裂性能。(6)混凝土在收缩时受到约束产生拉应力,当拉应力大于混凝土抗拉强度时裂缝就会产生。减水防裂剂可有效的提高的混凝土抗拉强度,大幅提高混凝土的抗裂性能。(7)掺加外加剂可使混凝土密实性好,可有效地提高混凝土的抗碳化性,减少碳化收缩。(8)掺减水防裂剂后混凝土缓凝时间适当,在有效防止水泥迅速水化放热基础上,避免因水泥长期不凝而带来的塑性收缩增加。(9)掺外加剂混凝土和易性好,表面易摸平,形成微膜,减少水分蒸发,减少干燥收缩.许多外加剂都有缓凝、增加和易性、改善塑性的功能,我们在工程实践中应多进行这方面的实验对比和研究,比单纯的靠改善外部条件,可能会更加简捷、经济。

5 混凝土温度裂缝预防

混凝土的早期养护实践证明,混凝土常见的裂缝,大多数是不同深度的表面裂缝,其主要原因是温度梯度造成寒冷地区的温度骤降也容易形成裂缝。因此说混凝土的保温对防止表面早期裂缝尤其重要。从温度应力观点出发,保温应达到下述要求:1)防止混凝土内外温度差及混凝土表面梯度,防止表面裂缝。2)防止混凝土超冷,应该尽量设法使混凝土的施工期最低温度不低于混凝土使用期的稳定温度。3)防止老混凝土过冷,以减少新老混凝土间的约束。混凝土的早期养护,主要目的在于保持适宜的温湿条件,以达到两个方面的效果,一方面使混凝土免受不利温、湿度变形的侵袭,防止有害的冷缩和干缩。一方面使水泥水化作用顺利进行,以期达到设计的强度和抗裂能力。适宜的温湿度条件是相互关联的。混凝上的保温措施常常也有保湿的效果。从理论上分析,新浇混凝土中所含水分完全可以满足水泥水化的要求而有余。但由于蒸发等原因常引起水分损失,从而推迟或防碍水泥的水化,表面混凝土最容易而且直接受到这种不利影响。因此混凝土浇筑后的最初几天是养护的关键时期,在施工中应切实重视起来。

6 结束语

以上对混凝土的施工温度与裂缝之间的关系进行了理论和实践上的初步探讨,虽然学术界对于混凝土裂缝的成因和计算方法有不同的理论,但对于具体的预防和改善措施意见还是比较统一,同时在实践中的应用效果也是比较好的,具体施工中要靠我们多观察、多比较,出现问题后多分析、多总结,结合多种预防处理措施,混凝土的裂缝是完全可以避免的。

参考文献

【1】纪午生.常用建筑材料试验手册

篇4

随着桥梁技术的突飞猛进,大体积混凝土在桥梁结构中应用的越来越多。我国普通混凝土配合比设计规范规定:混凝土结构物中实体最小尺寸不小于1m的部位所用的混凝土即为大体积混凝土;美国则规定为:任何现浇混凝土,只要有可能产生温度影响的混凝土均称为大体积混凝土。目前,国内外对机械荷载引起的开裂问题研究得较为透彻。而对温度荷载引起得有关裂缝的研究尚不充分。我们应对此加以重视,防止危害结构的裂缝产生。另外对于大体积混凝土内温度应力与裂缝控制也多集中在水利工程中的大坝、高层建筑的深基础底板。而对于桥梁中大体积混凝土的裂缝的研究并未得到足够的重视。

2.大体积混凝土裂缝产生的原因

2.1水泥水化热

水泥水化过程中放出大量的热,且主要集中在浇筑后的2~5d左右,从而使混凝土内部温度升高……尤其对于大体积混凝土来讲,这种现象更加严重。因为混凝土内部和表面的散热条件不同,因此混凝土中心温度很高,这样就会形成温度梯度,使混凝土内部产生压应力,表面产生拉应力,当拉应力超过混凝土的极限抗拉强度时混凝土表面就会产生裂缝。

2.2混凝土的收缩

混凝土在空气中硬结时体积减小的现象称为混凝土收缩。混凝土在不受外力的情况下的这种自发变形受到外部约束时(支承条件、钢筋等),将在混凝土中产生拉应力,使得混凝土开裂。引起混凝土的裂缝主要有塑性收缩、干燥收缩和温度收缩3种。在硬化初期主要是水泥水化凝固结硬过程中产生的体积变化,后期主要是混凝土内部自由水分蒸发而引起的干缩变形。

2.3外界气温、湿度变化

大体积混凝土结构在施工期间,外界气温的变化对裂缝的产生有着很大的影响。混凝土内部的温度是由浇筑温度、水泥水化热的绝热温升和结构的散热温度等各种温度叠加之和组成。浇筑温度与外界气温有着直接关系,外界气温愈高,混凝土的浇筑温度也就会愈高;如果外界温度降低则又会增加大体积混凝土的内外温度梯度。如果外界温度下降过快,会造成很大的温度应力,极易引发混凝土的开裂。另外外界的湿度对混凝土的裂缝也有很大的影响,外界的湿度降低会加速混凝土的干缩,也会导致混凝土裂缝的产生。

3.大体积混凝土施工质量控制措施

3.1大体积混凝土配合比设计

1)原材料选用。①水泥:由于水泥的用量直接影响着水化热的多少及混凝土温升,大体积混凝土应选用水化热较低的水泥,如低热矿渣硅酸盐水泥、中热硅酸盐水泥等,并尽可能减少水泥用量。②细骨料:宜采用Ⅱ区中砂,因为使用中砂可减少水及水泥的用量。③粗骨料:在可泵送情况下,选用粒径5-20mm连续级配石子,以减少混凝土收缩变形。④含泥量:在大体积混凝土中,粗细骨料的含泥量是要害问题,若骨料中含泥量偏多,不仅增加了混凝土的收缩变形,又严重降低了混凝土的抗拉强度,对抗裂的危害性很大。因此,骨料必须现场取样实测,石子的含泥量控制在1%以内,砂的含泥量控制在2%以内。⑤掺合料:应用添加粉煤灰技术。在混凝土中掺用的粉煤灰不仅能够节约水泥,降低水化热,增加混凝土和易性,而且能够大幅度提高混凝土后期强度,推移温升峰值出现时间。

2)减水剂的使用。采用减水剂,如SF一1缓凝高效减水剂;膨胀剂采用广泛使用的U型膨胀剂,如无水硫铝酸钙(C4S)或硫酸铝(Al2(SO4)),试验表明在混凝土添加了膨胀剂之后,混凝土内部产生的膨胀应力可以抵消一部分混凝土的收缩应力,相应地提高混凝土抗裂强度。

3.2温控措施及施工现场控制

1)温度预测分析。根据现场混凝土配合比和施工中的气温气候情况及各种养护方案,采用计算机仿真技术对混凝土施工期温度场及温差进行计算机模拟动态预测,提供结构沿厚度方向的温度分布及随混凝土龄期变化情况,制定混凝土在施工期内不产生温度裂缝的温控标准及进行保温养护优化选择。

2)混凝土浇筑方案。采用延缓温差梯度与降温梯度的措施,在浇筑前经详细计算安排分块、分层浇筑次序、流向、浇筑厚度、宽度、长度及前后浇筑的搭接时间;控制混凝土入模温度并加强振捣,严格控制振捣时间,移动距离和插入深度,保证振捣密实,严防漏振及过振,确保混凝土均匀密实;做好现场协调、组织管理,要有充足的人力、物力,保证施工按计划顺利进行,保证混凝土供应,确保不留冷缝;浇筑后对大体积混凝土表面较厚的水泥浆进行必要的处理(一般浇筑后3~4h内初步用水长刮尺刮平,初凝前用铁滚筒碾压两遍,再用木抹子搓平压实)以控制表面龟裂;混凝土浇灌完及拆模后,立即采取有效的保温措施并按规定覆盖养护。

3)混凝土温度监测。在混凝土内部及外部设置温度测点,并且设置保温材料温度测点及养护水温度测点,现场温度监测数据由数据采集仪自动采集并进行整理分析,每一测点的温度值及各测位中心测点与表层测点的温差值,作为研究调整控温措施的依据,防止混凝土出现温度裂缝。

4)温度应力检测。为反映温控效果可在少数混凝土层中埋设应变计进行温度应力检测,应变计沿水平方向布置,检测水平向应力分量。

5)通水冷却。采用薄壁钢管在一些混凝土浇筑分层中布设冷却水管,冷却水管使用前进行试水,防止管道漏水、阻塞,根据混凝土内部温度监测,控制冷却水管进水流量及温度。

3.3构造设计上采取的防裂措施

1)设计合理的结构形式,减少工程数量,降低水化热。如可根据悬索桥锚碇受力特点,设计挖空非关键受力部分混凝土体积,利用土方压重方案,减少混凝土结构体积。

2)充分利用混凝土在基坑有侧限条件,在混凝土中掺加微膨胀剂,使其在基坑约束下成一定的预压力,补偿混凝土内部温度、收缩产生的拉应力,从而有效的避免混凝土裂缝的产生。

3)大体积混凝土体积庞大,施工周期一般较长,依据结构受力情况(如悬索桥锚碇受力是逐步参与的,施工期仅承受自重和施工过程产生的次应力,此阶段受力不足其最终受力的30%),可合理的确定混凝土评定验收龄期,打破正常标准28d的评定验收龄期,改为60d或更多天,评定验收龄期充分考虑混凝土的后期强度,从而减低设计标号,达到减少混凝土水泥用量,降低水化热的目的。

4)由于边界存在约束才会产生温度应力,采用改善边界约束的构造设计,如遇有约束强的岩石类地基、较厚的混凝土垫层时,可在接触面上设滑动层来减少温度应力。在外约束的接触面上全部设滑动层,则可大大减弱外约束。

5)在设计构造方面还应重视合理配筋对混凝土结构抗裂的有益作用。可采取增配构造钢筋(配筋应尽可能采用小直径、小间距,全截面含筋率控制在0.3%~0.5%之间)、在混凝土表面增设金属扩张网等有效措施,有效地提高混凝土抗裂性能。

4.大体积混凝土的裂缝检查与处理

篇5

Abstract: the concrete in the construction process, temperature crack is common quality problems is also facing a construction crew of the technical problems. The cracking of the temperature will influence the structure performance, serious when still can affect the safety of the structure is used. Therefore, this paper expounds the cause of cracking of concrete temperature, analyzes the temperature stress related problems, this paper puts forward the control of the temperature cracks measures aimed at reducing the cracking of the temperature, ensure the quality of concrete.

Keywords: concrete; Temperature crack; Temperature stress; Control measures; maintenance

目前,混凝土依然是工程建设中应用最为广泛的建筑材料。但在混凝土浇筑完后,经常还会发现有很多的裂缝出现,可以说混凝土的裂缝问题一直是其应用中的质量通病。在这些裂缝当中,我们遇到的主要是在施工中出现的裂缝。引起裂缝的原因是多方面的,比如混凝土的脆性和不均匀性、配合比不合理、施工不规范等等,而其中最主要的还是由于温度和湿度的变化,在大体积混凝土中,温度应力及温度控制是影响温度裂缝形成的关键,只有控制这个过程,才能有效的防治有害温度裂缝的出现。所以必须从根本上分析温度裂缝,来保证混凝土的质量。为此,本文对混凝土温度裂缝产生的过程和控制措施进行了阐述。

1 混凝土温度裂缝的成因

混凝土中产生裂缝有多种原因,主要是温度和湿度的变化,混凝土的脆性和不均匀性(安定性),以及结构不合理,原材料不合格(如碱骨料反应),模板变形,基础不均匀沉降等。

2 温度应力的分析

根据温度应力的形成过程可分为以下三个阶段:

1)早期:自浇筑混凝土开始至水泥放热基本结束,一般约30d。这个阶段的两个特征,一是水泥放出大量的水化热,二是混凝上弹性模量的急剧变化。由于弹性模量的变化,这一时期在混凝土内形成残余应力。

2)中期:自水泥放热作用基本结束时起至混凝土冷却到稳定温度时止,这个时期中,温度应力主要是由于混凝土的冷却及外界气温变化所引起,这些应力与早期形成的残余应力相叠加,在此期间混凝上的弹性模量变化不大。

3)晚期:混凝土完全冷却以后的运转时期。温度应力主要是外界气温变化所引起,这些应力与前两种的残余应力相迭加。

根据温度应力引起的原因可分为两类:

1)自生应力:边界上没有任何约束或完全静止的结构,如果内部温度是非线性分布的,由于结构本身互相约束而出现的温度应力。例如,轧线基础底板,结构尺寸相对较大,混凝土冷却时表面温度低,内部温度高,在表面出现拉应力,在中间出现压应力。

2)约束应力:结构的全部或部分边界受到外界的约束,不能自由变形而引起的应力。如箱梁顶板混凝土和护栏混凝土。

这两种温度应力往往和混凝土的干缩所引起的应力共同作用。

要想根据已知的温度准确分析出温度应力的分布、大小是一项比较复杂的工作。在大多数情况下,需要依靠模型试验或数值计算。混凝土的徐变使温度应力有相当大的松驰,计算温度应力时,必须考虑徐变的影响,具体计算这里就不再细述。

3 温度裂缝控制措施

为了防止裂缝,减轻温度应力可以从控制温度和改善约束条件两个方面着手。控制温度的措施如下:

1)采用改善骨料级配,用干硬性混凝土,掺混合料,加引气剂或塑化剂等措施以减少混凝土中的水泥用量;

2)拌合混凝土时加水或用水将碎石冷却以降低混凝土的浇筑温度;

3)热天浇筑混凝土时减少浇筑厚度,利用浇筑层面散热;

4)在混凝土中埋设水管,通入冷水降温;

5)规定合理的拆模时间,气温骤降时进行表面保温,以免混凝土表面发生急剧的温度梯度;

6)施工中长期暴露的混凝土浇筑块表面或薄壁结构,在寒冷季节采取保温措施。

改善约束条件的措施是:

1)合理地分缝分块;

2)避免基础过大起伏;

3)合理的安排施工工序,避免过大的高差和侧面长期暴露;

此外,改善混凝土的性能,提高抗裂能力,加强养护,防止表面干缩,特别是保证混凝土的质量对防止裂缝是十分重要,应特别注意避免产生贯穿裂缝,出现后要恢复其结构的整体性是十分困难的,因此,施工中应以预防贯穿性裂缝的发生为主。

在混凝土的施工中,为了提高模板的周转率,往往要求新浇筑的混凝土尽早拆模。当混凝土温度高于气温时应适当考虑拆模时间,以免引起混凝土表面的早期裂缝。新浇筑早期拆模,在表面引起很大的拉应力,出现“温度冲击”现象。在混凝土浇筑初期,由于水化热的散发,表面引起相当大的拉应力,此时表面温度亦较气温为高,此时拆除模板,表面温度骤降,必然引起温度梯度,从而在表面附加一拉应力,与水化热应力迭加,再加上混凝土干缩,表面的拉应力达到很大的数值,就有导致裂缝的危险,但如果在拆除模板后及时在表面覆盖一轻型保温材料,如泡沫海棉等,对于防止混凝土表面产生过大的拉应力,具有显著的效果。

加筋对大体积混凝土的温度应力影响很小,因为大体积混凝土的含筋率极低。只是对一般钢筋混凝土有影响。在温度不太高及应力低于屈服极限的条件下,钢的各项性能是稳定的,而与应力状态、时间及温度无关。钢的线胀系数与混凝土线胀系数相差很小,在温度变化时两者间只发生很小的内应力。由于钢的弹性模量为混凝土弹性模量的7~15倍,当内混凝土应力达到抗拉强度而开裂时,钢筋的应力将不超过100~200kg/cm2。因此,在混凝土中想要利用钢筋来防止细小裂缝的出现很困难。但加筋后结构内的裂缝一般就变得数目多、间距小、宽度与深度较小了。而且如果钢筋的直径细而间距密时,对提高混凝土抗裂性的效果较好。混凝土和钢筋混凝土结构的表面常常会发生细而浅的裂缝,其中大多数属于干缩裂缝。虽然这种裂缝一般都较浅,但它对结构的强度和耐久性仍有一定的影响。

为保证混凝土工程质量,防止开裂,提高混凝土的耐久性,正确使用外加剂也是减少开裂的措施之一。例如使用减水防裂剂,笔者在实践中总结出其主要作用为:

1)混凝土中存在大量毛细孔道,水蒸发后毛细管中产生毛细管张力,使混凝土干缩变形。增大毛细孔径可降低毛细管表面张力,但会使混凝土强度降低。这个表面张力理论早在六十年代就已被国际上所确认。

2)水灰比是影响混凝土收缩的重要因素,使用减水防裂剂可使混凝土用水量减少25%。

3)水泥用量也是混凝土收缩率的重要因素,掺加减水防裂剂的混凝土在保持混凝土强度的条件下可减少15%的水泥用量,其体积用增加骨料用量来补充。

4)减水防裂剂可以改善水泥浆的稠度,减少混凝土泌水,减少沉缩变形。

5)提高水泥浆与骨料的粘结力,提高的混凝土抗裂性能。

6)混凝土在收缩时受到约束产生拉应力,当拉应力大于混凝土抗拉强度时裂缝就会产生。减水防裂剂可有效的提高的混凝土抗拉强度,大幅提高混凝土的抗裂性能。

7)掺加外加剂可使混凝土密实性好,可有效地提高混凝土的抗碳化性,减少碳化收缩。

8)掺减水防裂剂后混凝土缓凝时间适当,在有效防止水泥迅速水化放热基础上,避免因水泥长期不凝而带来的塑性收缩增加。

9)掺外加剂混凝土和易性好,表面易摸平,形成微膜,减少水分蒸发,减少干燥收缩。

许多外加剂都有缓凝、增加和易性、改善塑性的功能,我们在工程实践中应多进行这方面的实验对比和研究,比单纯的靠改善外部条件,可能会更加简捷、经济。

4 混凝土的早期养护

实践证明,混凝土常见的裂缝,大多数是不同深度的表面裂缝,其主要原因是温度梯度造成寒冷地区的温度骤降也容易形成裂缝。因此,混凝土的保温对防止表面早期裂缝尤其重要。从温度应力观点出发,保温应达到下述要求:

1)防止混凝土内外温度差及混凝土表面梯度,防止表面裂缝。

2)防止混凝土超冷,应该尽量设法使混凝土的施工期最低温度不低于混凝土使用期的稳定温度。

3)防止老混凝土过冷,以减少新老混凝土间的约束。

混凝土的早期养护,主要目的在于保持适宜的温湿条件,以达到两个方面的效果,一方面使混凝土免受不利温、湿度变形的侵袭,防止有害的冷缩和干缩。一方面使水泥水化作用顺利进行,以期达到设计的强度和抗裂能力。

适宜的温湿度条件是相互关联的。混凝上的保温措施常常也有保湿的效果。

从理论上分析,新浇混凝土中所含水分完全可以满足水泥水化的要求而有余。但由于蒸发等原因常引起水分损失,从而推迟或防碍水泥的水化,表面混凝土最容易而且直接受到这种不利影响。因此混凝土浇筑后的最初几天是养护的关键时期,在施工中应切实重视起来,最好是用塑料薄膜进行包裹养护,如果进入冬季施工,塑料薄膜上表面还应该加盖保温被。

5 结束语

总之,通过控制温度和改善约束条件,并在材料选择、施工工艺、以及后期的养护过程中能够充分考虑各种因素的影响,采取相应的技术措施,混凝土温度裂缝还是可以有效控制的。笔者相信,随着工程技术的不断发展,新的施工工艺、新材料的不断出现,一定会有更加先进的温度裂缝控制措施出现。

篇6

一、裂缝的原因

混凝土中产生裂缝有多种原因,主要是1混凝土具有热胀冷缩的性质,当环境温度发生变化或水泥化热使混凝土温度发生变化时,钢筋混凝土结构就会产生温度变形。众所周知,建筑工地物中的结构构件往往受到各种约束,在温度变形和约束的共同作用下,产生温度应力,当这种应力超过混凝土的抗裂强度时,就产生裂缝。2钢筋混凝土受热后,物理力学性能恶化,轴心抗压,弯曲抗压或抗拉强度随受热温度的提高而下降。混凝土受热后,因游离水蒸发和水泥结石脱水收缩而形成裂缝,钢筋与混凝土的粘结力也随之下降,这种现象在光圆钢筋中尤为明显。

二、温度应力的分析

1、根据温度应力的形成过程可分为以下三个阶段

(1)早期:自浇筑混凝土开始至水泥放热基本结束,一般约30天。这个阶段的两个特征,一是水泥放出大量的水化热,二是混凝土上弹性模量的急剧变化。由于弹性模量的变化,这一时期在混凝土内形成残余应力。

(2)中期:自水泥放热作用基本结束时起至混凝土冷却到稳定温度时止,这个时期中,温度应力主要是由于混凝土的冷却及外界气温变化所引起,这些应力与早期形成的残余应力相叠加,在此期间混凝土的弹性模量变化不大。

(3)晚期:混凝土完全冷却以后的运转时期。温度应力主要是外界气温变化所引起,这些应力与前两种的残余应力相加。

2、根据温度应力引起的原因可分为两类

(1)自生应力:边界没有任何约束或完全静止的结构,如果内部温度是非线性分布的,由于结构本身互相约束而出现的温度应力。混凝土冷却时表面温度低,内部温度高,在表面出现的温度应力。混凝土冷却时表面温度低,内部温度高,在表面出现拉应力,在中间出现压应力。

(2)约束应力:结构的全部或部分边界受到外界的约束,不能自由变形而引起的应力共同作用。要想根据已知的温度准确分析出温度的应力的分布、大小是一项比较复杂的工作。在大多数情况下,需要依靠模型试验或数值计算。混凝土的徐变使温度应力有相当大的松驰,计算温度应力时,必须考虑徐变的影响,具体计算这里就不再细述。

三、温度的控制和防止裂缝的措施

为了防止裂缝,减轻温度应力可以从控制温度和改善约束条件两个方面着手。

1、控制温度

控制温度的措施如下:(1)采用改善集料级配,掺用掺合料,外加剂和降低混凝土坍落度等综合措施,合理的减少单位水泥用量,并尽量选用水化热低的水泥;(2)混凝土拌合时,可采用低温水、加冰等降温;(3)粗集料预冷可采用风冷法、浸水法、喷洒冷水法;(4)在混凝土中埋设水管,通入冷水降温;(5)降低混凝土浇筑温度,减少水化热温升;(6)加强混凝土原材料、浇筑温度及内务部温度的监测。

2、改善约束条件

改善约束条件的措施是:(1)混凝土浇筑的分段、分缝、分块高度及浇筑间歇时间;(2)基础过大起伏;(3)合理的安排施工工序,避免过大的高差和侧面长期暴露;

为保证混凝土工程质量,提高混凝土的耐久性,正确使用外加剂也是减少开裂的措施之一。例如使用减水防裂剂等。(1)水灰比是影响混凝土收缩的重要因素,使用减水防裂剂可使混凝土用水量减少25%。(2)减水防裂剂可以发送水泥浆的稠度,减少混凝土泌水,减少沉缩变形。(3)提高水泥浆与骨料的粘结力,提高混凝土抗裂性能。(4)混凝土在收缩时受到约束产生拉应力,当拉应力大于混凝土抗拉强度时裂缝就会产生。减水防裂剂可有效的提高的混凝土抗拉强度,大幅提高混凝土的抗裂性能。(5)掺加外加剂可使混凝土密实性好,可有效地提高混凝土的抗碳化性,减少碳化收缩。(6)掺外加剂混凝土和易性好,表面易摸平,形成微膜,减少水分蒸发,减少干燥收缩。

四、混凝土的早期养护

实践证明,混凝土常见的裂缝,大多数是不同尝试的表面裂缝,其主要原因是温度造成寒冷地区的温度骤降也容易形成裂缝。因此说混凝土的保温对防止表面早期裂缝尤其重要。从温度应力观点出发,保温应达到下述要求:(1)防止混凝土内外温度差及混凝土表面,防止表面裂缝;(2)防止混凝土超冷,应该尽量设法使混凝土的施工期最低温度不低于混凝土使用期的稳定温度;(3)防止混凝土过冷,以减少新老混凝土间的约束。

混凝土的早期养护,主要目的在于保持适宜的温湿条件以达到两个方面的效果,一方面使混凝土免受不利温、湿度变形的侵袭,防止有害的冷缩和干缩。一方面使水泥水化作用顺利进行,以期达到设计的强度和抗裂能力。

适宜的温湿度条件是相互关联的。混凝土的保温措施常常也有保湿的效果人。从理论上分析,混凝土中所含水分完全可以满足水泥水化的要求而有余。但由于蒸发等原因常引起水分损失,从而推迟或防碍水泥的水化,表面混凝土最容易直接受到这种不利影响。因此混凝土浇筑后的最初几天是养护的关键时期,在施工中应切实重视起来。

篇7

广东奥林匹克体育场是九运会的主会场,设固定观众座位8万席,总建筑面积达14.56万m2,规模巨大,造型新颖,质量标准高,施工难度大,工期短,由广东建工集团总承包施工,本工程(包括场外环境及附属结构)高性能混凝土用量达13万m3。本工程面积巨大的环状结构看台楼层采用现浇混凝土结构,由于其特殊功能要求,花瓣形看台面积达4.25万m。,属超大面积钢筋混凝土结构。看台下各楼层面积分别为:首层3.79万m。,2层2.84万m2,3层1.52万m。,4层1.4万nfl。,5层1.24万m2。看台楼层沿径向设计有6道永久性伸缩缝,其间距超长,约为90m。地下室底板面积近2.5万m。,浇筑混凝土量达1.87万m3,虽然其厚度仅为600mm,但分布其中的众多大承台和底板合在一起浇筑施工,合并后的最大厚度达1.7m,亦属大体积混凝土施工。底板设计有7条后浇带,分为8大块,最大一块面积达4100m。,底板宽约36m,长约120m,底板后浇带间距超长。超长、超大面积及大体积混凝土是本工程结构的重要特色之一,其裂缝控制也就成为工程施工的重点与难点。

2采用高性能混凝土施工技术

本工程混凝土最大输送距离达300m,最大输送高度为60m,为满足泵送混凝土和体育场复杂特殊造型的施工要求,我们大量采用了高性能混凝土施工技术。在体育场北区配置了l台意大利进口的大型现代化搅拌站,产量为90m’/h;南区配置了自动上料和自动称量系统的混凝土搅拌站2座,产量为30~50m3/h。针对本工程的需要,配制高性能混凝土时为了优选原材料和配合比,我们应用“双掺”技术,除提高混凝土的可泵性外,还有意识地预先通过试验确定低收缩率的混凝土配合比,同时减少水泥用量,降低混凝土的水化热和改善其收缩性能。

2.1优选原材料

选用优质的原材料,如底板施工中采用连续级配骨料,增大混凝土的密实度。严格控制混凝土出机和人泵坍落度,随不同施工阶段的设计要求与天气变化情况跟踪调整配合比,详见表1。

2.2采用“双掺技术

在本工程施工中,地下室底板使用KFDN-SP8外加剂,看台楼层等混凝土结构根据具体情况,选用HPM一2高效缓凝减水剂、FE—C2外加剂等,这些高效外加剂具有高减水率和良好的保塑性能。掺外加剂混凝土与基准混凝土的减水效应比较如图1所示。

根据本工程的具体情况,我们分别选用黄埔电厂、广州发电厂等的I级或Ⅱ级粉煤灰,采用粉煤灰这种活性的水硬性材料代替部分水泥,补充泵送混凝土中的细骨料,提高混凝土的抗渗性、耐久性和流动性,并改善其可泵性和降低水化热,从而提高混凝土的后期强度。

2.3配合比选择

混凝土的配合比决定了混凝土的强度、抗渗性、和易性、坍落度、水泥用量、水化热大小、初凝和终凝时间以及混凝土收缩率等性能指标。根据结构的不同特点和设计要求、气候条件,掺人粉煤灰的影响以及施工现场的生产管理状况,采用不同技术指标,由实验室试配确定。

(1)地下室底板施工阶段根据现场条件,对底板混凝土提出以下指标:①坍落度12—14cm;②初凝时间6—8h;③掺加高效减水剂,超量掺加I级粉煤灰,减少水泥用量,降低水化热;④通过试验选定收缩率较小的配合比。为了确保混凝土具有高性能,我们提前对混凝土配合比进行了大量反复多次的试验,取得十几组试配数据,测试了不同配合比混凝土的收缩率及收缩与龄期的关系,并采用钢环试验方法测试混凝土的长期收缩情况。测定混凝土收缩率后,有意识地模拟浇筑一块混凝土试件进行试验,测试其温度变化和收缩率,确定了表2的配合比,其收缩率为0.12%0,且在14d后基本上不再收缩。实践证明,本配合比是成功的,用I级粉煤灰代替部分水泥,大大减少了水泥用量和降低了水化热,在确定了收缩率较小的配比后,据此收缩率确定底板分块的最大长度为45m,相邻块之间混凝土浇筑的时间间隔为14d。

(2)看台楼层选择不同的水泥和多种外加剂进行配合比试验研究,对外加剂的适应性进行对比试验,得出针对不同阶段和不同施工部位的优化配合比。北区采用深圳产FE—C2外加剂掺量为1.6%,黄埔电厂的Ⅱ级粉煤灰掺量为22%,既满足了混凝土的强度要求,又具有良好的可泵性和经济性。南区采用HPM一2高效缓凝减水剂和黄埔电厂的Ⅱ级粉煤灰得出的配合比,即:水泥:混合材:砂:石:水:外加剂=l:0.23:2.17:3.20:0.53:0.016,水泥、砂、石、水、粉煤灰、外加剂用量分别为332,722,1063,176,77,5.28~m3,水胶比0.44%,含砂率40.4%,坍落度145mm,质量密度2370kg//m3,初凝n,-Jl''''~q5—8h,终凝时间8—10h。

篇8

一、建筑结构件工程中温度变化引起裂缝的主要原因

1、建筑结构件随着温度的变化而产生变形,即通常所说的热胀冷缩。当变形受到约束时,便产生了裂缝,约束的程度越大,裂缝就越宽。

2、水泥和水所引起化学反应引起裂缝。大体积混凝土开列的主要原因之一,是由于混凝土在硬化过程中,水泥和水起化学反应,产生大量的水化热引起混凝土的温度上升,如果热量不能很快散失,内部和外部温差过大,就将产生温度应力,使结构内部受压,外部受拉。混凝土在硬化初期,只有很低的抗拉强度,如果由内外温度差引起的拉应力超过混凝土早期抗拉强度时,混凝土就要产生裂缝。

3、构件硬化成型后,在使用中,如果温度较大,构件内部温度梯度就极大,也会引起构件开裂。

4、建筑结构件浇筑、养护及拆模过程中采用不当的施工方法,从而加剧温度变化产生裂缝。

二、建筑结构件工程质量控制的一般措施

1、组织措施

组建项目监理机构,配置满足工作需要的监理人员,并在约定的时间内,总监理工程师及其他监理人员派驻工地。建立现代企业制度,建立和健全质量控制体系,加强内部管理,对监理人员进行技术管理培训,建立考核奖惩制度。确定监理机构各部门职责分工及各级监理人员权限,并报送发包人和通知承包人。组织第一次工地会议,监理例会、监理专题会议和编写会议记录分发与会各方,保障工程质量,要求或建议承包人组织一定数量高素质的民工参与建设,督促承包人做好生活后勤工作,保障工地人员健康专注地投入施工。建议或要求必包人提供便利的施工条件,确保控制工程质量。

2、管理措施

健全技术文件审核、审批制度。根据施工合同约定,由双方提交的施工技术图纸以及由承包人提交的施工组织设计及施工计划、施工进度计划等文件应经过监理机构核查、审核、审批。督促承包商严格按照设计图纸、施工规范、验收标准,工作的各种商洽必须经有关监理工程师签字后方可实施。审查主要材料、设备的质量和核定其性能,参加工程验收工作,参与工程质量事故的处理。

3、经济措施和合同措施

严格质量检验和验收,严格按照双方的合同实行严格公平、公正的奖惩措施。对经验收不合格的工场部位拒付工程款。

三、建筑结构件工程中温变裂缝质量控制的主要技术措施

1、预防热胀冷缩的措施:(1)撤去约束,允许自由的产生变形;(2)设置伸缩缝。

2、防止化学反应引起裂缝产生的措施是:(1)尽量选用低热或中热降低泥矿渣水泥、粉煤灰水泥;(2)降低水灰比,一般混凝土的水灰比控制在450kg/m2以下;(3)降低水灰比,一般混凝土的水灰比控制在0.60以下;(4)改善骨科级配,掺加粉煤灰或高效减少水剂等来减少水泥用量,降低水化热;(5)改善混凝土的搅拌工艺,采用”二次风冷“新工艺降低混凝土的浇筑温度;(6)在混凝土中掺加一定量的具有减水、增塑、缓凝等作用的外加剂,改善混凝土拌和物的流动性、保水性,降低水热化,推迟热峰出现的时间;(7)合理安排施工工序,分层、分块浇筑,以利于散热,减小约束;(8)在大体积混凝土内部设置冷却管道,通过冷水或冷气冷却,减小混凝土的内部温差;(9)加强混凝土温度的监控,及时采取冷却保护措施;(10)、加强混凝土养护,混凝土浇筑后,及时用湿润的草帘、麻片等覆盖,并洒水养护,适当延长养护时间,保证混凝土表现缓慢冷却,在寒冷季节,混凝土两面必须采取保温措施,以防寒潮袭击。

3、预防产生比类裂缝的措施是:采用隔热(或保温)措施,尽量减少构件内部温度梯度,在配筋时应考虑温度力的影响。

4、预防结构件浇筑及养护过程产生裂缝的措施:

(1)针对建筑结构件伸缩较大的特点,浇筑混凝土时每隔30m左右设置后浇带。(2)浇筑中,下落高度不超过1.5m,混凝土不得成堆,及时出料、及时成活,以免产生离析现象,使得现浇板配料不均;严格按照操作规程进行施工,选择熟练的混凝土振捣工人,掌握好振捣时间,以保证混凝土振捣均匀、密实,避免漏振、欠振,并做好混凝土施工记录。(3) 建筑结构件混凝土浇筑成型后,应及时覆盖塑料薄膜,避免水分蒸发;浇筑1h~2h后对混凝土二次振捣,以消除收缩裂纹及表面泌水,2h~3h后进行二次压面,并适时用木抹子磨平搓毛2遍以上。(4) 建筑结构件混凝土养护时间不得少于7d,对有抗渗要求的混凝土养护时间不得少于14d;留置混凝土同条件试块,并设专人检测混凝土强度增长情况,在其强度未达到1.2Mpa时,不得在其上踩踏或安装模板及支架。(5)严格按照GB50204-2002混凝土结构工程施工质量验收规范中的强度要求确定模板拆除时间,拆模时要轻拿轻放,不得对楼层形成冲击荷载,拆除的模板和支架要分散堆放并及时清运。

四、建筑结构件工程质量控制的保证措施

1、质量的事前控制

审核由发包人提供的各种工程资料。检查场内道路、供水、供电等施工辅助设施的准备。审核承包人中标后的施工组织设计、施工措施计划等技术文件。明确质量要求,掌握和熟悉质量控制的技术依据。参与承包人对发包人提供的测量基准点复核情况,并督促承包人在此基础上完成施工测量控制网的布设及施工区原地形图的测绘。严格审核工程开工应具备的各项条件,并审批开工申请。

2、质量的事中控制

施工工艺过程质量控制,采用现场检查、查阅施工记录以及材料和构配件、监督试验、见证取样,按照旁站方案进行旁站、及时对承包人可能影响工程质量的施工方法以及各种违章作业行为发出调整、制止、整顿直至停止施工批示。发现承包人使用的材料、构配件、工程设备等原因可能导致工程质量不合格或千万事故时,要求承包人采取措施纠正。发现施工环境可能影响工程质量时,应批示承包人采取有效的防范措施。坚持上道工序不检查不准进行下道工序的原则。上道工序完成后,先由施工单位进行自检、专职检,认为合格后再通知现场监理工程师或其他代表到现场会同检验。检验合格后签署认可,方能进行下道工序。隐蔽工程检查验收,隐蔽工程完成后,先由施工单位自检、专职检,初难合格后填报隐蔽工程验收单,报告现场监理工程师检查验收。分项、分部工程验收。应对施工过程中出现的质量问题,以及处理措施或遗漏问题进行详细的记录和拍照,保存好照片等相差资料。工程质量事故处理,质量事故原因、责任的分析--质量事故处理措施的研究确定及处理效果的检查。

3、质量的事后控制

事后严肃把关,对于质量控制要点、要害部位或质量有疑问的部位进行事后复检。严格按照质量评判标准对单元、分部、单位工程组织验收认证。实行质量保证金制度,让“制造”者跟踪一段时间的质量保证,完善其缺陷服务责任。在一定的时间内,尽量让工程在设计负载条件下运行后,再对整个工程组织验收。

为了确保建筑结构件工程质量,工程管理者应讲究质量控制的措施,实行事前控制与事后控制。而典型质量问题――温变裂缝则应采取具体的控制措施,以防治因裂缝产生质量事故的发生。

参考文献:

[1]高等学校试用教材.建筑材料,1985.

篇9

砖砌体结构在我国目前普遍使用,在地处粤西山区的信宜,在普通的房屋建筑中,都是在使用砖砌体的围护结构,而裂缝是砌体结构质量中最主要也是最难处理的问题之一,我在平时的施工管理过程中,就曾经遇到过这样的情况,当温度变化幅度较大时,砌体便会产生裂缝。通过不断学习和实践积累,我明白到这是由于温度应力造形超过砌体的正常使用极限时,砌体便会产生裂缝。虽然由于砖砌体结构采用材料的抗拉强度和抵抗变形的能力一般情况下不会直接引起建筑物的破坏,但会影响建筑物的正常使用,例如:墙体风化腐蚀、渗漏、抹灰层脱落和耐久性能的降低等,从而导致建筑物承载能力的降低、整体刚度的减小、抗震性能的降低等,所以在施工过程中一定要注意控制这个问题。这里就这个问题我提出在日常施工管理过程中认识和积累的一些经验和看法。

一、要在施工过程中控制砌体结构的裂缝,首先要清楚出现这个问题的原因和裂缝种类,温度裂缝的种类、成因及特征有下面七点:

(1)、内外纵墙和根墙的“八”字形裂缝。

这种裂缝多出现在每片墙体的端部,而且集中出现在门窗洞口的角部,呈“八”字形。当温度升高时,屋面板伸长比相应砖墙伸长大,使顶层墙体因屋面板的推力作用受拉和受剪。拉应力和剪应力的分布情况大体是:房屋平面中间为零,两端最大,因此墙体的两端部位大多出现“八”字形裂缝,屋面保温隔热层的质量越差,屋面板和墙体的相对位移越大,裂缝越明显。

(2)、窗台出现水平裂缝、斜裂缝。

当房屋的长高比较大,而且室内空间比较宽敞高大的房屋,顶层外墙常在窗台部位出现水平裂缝,窗口出现对角斜裂缝。当温度升高后屋面板伸长对墙产生水平推力,使窗台部位的墙体内侧向外扩展,外墙在水平推力作用下发生侧向弯曲而导致开裂。

(3)、屋面板下面的外墙水平裂缝和外墙阳角的包角裂缝。

这种裂缝出现在屋面板底部,顶层QL底部墙体,门过梁上部墙体,裂缝有时贯通墙厚。当升温时,屋面板对顶层QL及墙体产生推力,降温时,屋面板对墙体产生拉力,墙体抗拉强度不能抵抗水平剪力而导致墙体开裂。

(4)、女儿墙裂缝。

不少房屋女儿墙建成后发生侧向弯曲,女儿墙的根部和平屋顶面交接处墙体外凸或女儿墙外倾,造成女儿墙开裂,房屋的短边裂缝比长边明显。形成这种现象的主要原因是:钢筋砼屋盖和屋面的水泥砂浆面层,在气温升高后的伸长比砖墙大,砖墙相对阻止屋盖结构和水泥砂浆面层伸长,因此屋盖结构和砂浆面层对墙体产生推力导致女儿墙开裂。温差越大房屋越长,面层砂浆越密越厚,这种推力越大,墙体开裂越严重。

(5)、温度裂缝大多分布在顶层,一般楼层分布不多,出现的方式有:墙体水平缝、墙体斜缝和窗角缝。

(6)、温度裂缝的发展特征。

大多数工程在主体竣工时即已出现温度裂缝,但由于未作粉刷与装修,一般不易被发现,大多数在工程竣工2~6个月内被发现,特别是经过夏、冬较大温差之后,但一个冬夏后又逐渐稳定。

(7)、温度裂缝对结构的安全耐久性的影响。

一般不影响安全,但裂缝引起的建筑物渗漏,可能导致钢筋锈蚀,结构承载能力下降,缩短结构的合理使用年限,使其耐久性降低。

二、根据砌体材料的特征和砌体结构的特点,墙体裂缝是不可避免的,但是可以在材料、设计、施工等方面采取综合措施,有效地加以控制。

我在施工实践中,总结出了“防、抗、防”的经验和看法以防止结构裂缝,有的体现在现行的各种规范之中。如《砌体结构设计规范)GB50003―2001的抗裂措施主要有二条:一是第6.3.1条,即防止房屋在正常使用条件下,由温差和墙体干缩引起的墙体竖向裂缝,应在墙体中设置伸缩缝;二是第6.3.2条,即为了防止或减轻房屋顶层墙体的裂缝,可采取设置保温层或隔热层;采用有檩屋盖或瓦材屋盖;增加构造措施等方法。《砌体规范》的其他抗裂措施,如在相关墙体及部位增加钢筋,采用粘结性好的砂浆,不仅针对干缩小、块体小的粘土砖砌体结构的,而且对干缩大、块体尺寸比粘土砖大得多的混凝土砌块和硅酸盐砌体房屋,也是适用的。

但不同地区的气候温度、湿度的巨大差异,所以应有不同的措施。对于温度裂缝的防治措施,一是在较长的墙上设置控制缝(变形缝),这种控制缝是在单墙上设置的缝。该缝的构造既能允许建筑物墙体的伸缩变形,又能通风隔声和防风雨,当需要承受平面外水平力时,可通过设置附加钢筋达到。

结合信宜的实际情况,在设计、施工、材料等方面采取综合措施控制墙体温度裂缝,并提出如下看法:

(1)、建筑物温度伸缩缝的间距除应满足《砌体结构设计规范》GB50003―2001第6.3.1条的规定外,宜在建筑物顶层墙体的适当部位设置控制缝,控制缝的间距宜控制在l0~15m.

(2)、屋盖上设置保温层或隔热层;以减少钢筋混凝土屋盖的温度,达到减少屋盖温度变形总量,减轻板(梁)、墙交接面变形裂缝灾害的目的。目前较多的做法是将屋面由平顶改成坡顶,并从建筑功能考虑,充分利用坡顶层,提高使用率,减少建设单位或开发商成本。

(3)、改进施工工艺与施工技术,组砌按规范接槎,错缝搭接满足施工工艺要求,工程的各种材料必须合格,施工人员的技术应经过培训,砌筑砂浆必须饱满,加强墙体的整体性。顶层砌体及女儿墙砌筑砂浆强度等级不低于M5.

(4)、顶层砌体门、窗洞口加小构造柱、小圈梁,与建筑物构造柱、圈梁连接为整体,以改善应力集中现象,以强度、变形性能优于砌体的钢筋混凝土构件抵抗温度应力,减轻顶层端部门窗洞口开裂现象。

三、温度裂缝治理措施

(1)、对温度裂缝,不要忙于及早治理,等观察一个热胀冷缩周期,裂缝不再产生新的变化时再采取治理措施。鉴定裂缝是否稳定方法:可在裂缝内嵌抹水泥浆或玻璃纸。形态完整无损,说明裂缝已基于稳定,不再有较大发展可能性。

篇10

0 引言

近年来随着国家经济的迅速发展,民用建筑工程大量快速上马,混凝土的应用在现代化建设中可以说占据着举足轻重的位置。混凝土是由胶结材料,骨料和水按一定比例配制,被认为是现代建筑中最不可或缺的建筑材料,原料丰富,价格低廉,生产工艺简单,同时因为混凝土优点显著,具有抗压能力强,耐久性能好,强度等级范围宽等优势,因此使用量越来越大,在现代的民用建筑工程中,大体积的混凝土施工越来越普遍。因为使用范围十分广泛。

一般整个施工途中,混凝土浇筑后出现温度裂缝非常难以避免,虽然现代技术的发展,大体积混凝土的浇筑已经很成熟了,但裂缝的出现会影响到结构的整体性和耐久性能。其中最关键的就是施工温度的控制及温度应力,裂缝问题现在是施工中常见的通病,出现频率很高,究其原因就是因为混凝土本身会产生水化热,从而进一步导致温度应力的形成,我们对混凝土温度应力的变化注意不够是其中之一的原因。如果温度应力超过了混凝土的拉伸极限当然就会出现裂缝,因此针对施工中的温度裂缝,结合实际工程,本文将对施工中混凝土裂缝的成因,控制和处理措施做进一步的研究探讨。

通常高层住宅基础,大型设备基础或者桥梁工程最容易遇到大体积的混凝土施工,一般这些工程的最主要特点是表面积比较小但体积巨大,而水泥水化热释放比较集中,内部温升较快,容易产生较大内外温差,从而产生温度裂缝,进而影响到结构系统的安全性和工程的正常使用,所以我们应根据施工温度,进行温度控制,采取相应的裂缝控制措施。

1 大体积混凝土施工裂缝产生原因

通常来说,大面积混凝土内出现的裂缝可以分为三大类,根据其裂缝深度,分别为表面裂缝,深层裂缝及贯穿裂缝,所谓贯穿裂缝就是由混凝土的表面裂缝进一步发展为深层裂缝,最终形成了贯穿裂缝,一般来说,贯穿裂缝切断了结构的表面,从而破坏了基础结构的整体性和稳定性,危害程度一般比较严重,而深层裂缝与之相比只是部分地切断了结构断面,但危害性也很大。与另外两个相比,表面裂缝一般危害性相对较小,但也影响混凝土耐久性和外观质量。

裂缝产生的原因具有多样性,首先是施工过程中,湿度和温度容易产生变化,另外施工基础的沉降的不均匀,结构设计的不合理性,或者选用材料未达到一定的合格标准,混凝土材料的不均匀性以及脆性,模板的变形等等众多的问题。一般来说,混凝土的硬化期间水泥凝结过程会产生大量水化热,内部温度会不断上升,从而在混凝土表面产生了一定拉应力。而后期混凝土在整个降温过程中,又由于会受到基础或老混凝土的约束,混凝土的内部结构中会产生一定的拉应力。另外,施工过程中,如果气温产生变化,温度降低同时也会在混凝土的表面引起非常大的拉应力。一般结构设计中会要求不出现拉应力或者只出现很小的拉应力。但其实在施工过程中混凝土由最高温度冷却到运转时期的稳定温度,往往在混凝土内部引起相当大的拉应力。有时温度应力可超过其它外荷载所引起的应力,所以为了控制裂缝的产生,如何掌握温度及温度应力的变化规律对于进行合理的结构设计和施工极为重要。

2 根据温度应力引起的原因可分为两类

2.1 自生应力:也就是通常称为没有任何约束或完全静止的结构,一般如果内部温度是非线性分布的,由于结构本身互相约束而出现的温度应力。因为大体积混凝土的尺寸相对较大,在冷却的时侯表面温度低,但是内部温度高,所以在表面出现拉应力,在中间出现压应力。

2.2 约束应力:也就是结构的全部或部分边界受到外界的约束,不能自由变形而引起的应力。

3 工程概况及材料的选用

本项目工程为坐落于合肥的一座商业综合体建筑,同时集中办公公寓和商业为一体,地下一层地上裙楼四层,基地面积为9300余平方米,项目总建筑面积约为8100余平方米,A楼为22层,B楼为28层,选用的结构型式为框支剪力墙结构。一层至四层为商业裙房及部分办公,五层起为电梯公寓,地下室主要安排为停车,发电机室,消防水池和一些机电设备用房,根据设计,基础地下室部分分为8个作业分区,3、4区为1600厚筏板基础,其余为400厚基础抗水板,采用C40防渗混凝土,抗渗等级为0.8Mpa,承台设计底标高-5.2米,整个基础底板的混凝土量约为5000立方米。除3区、4区外,其它已经浇筑完成,施工期间为夏季,天气较热,为了控制裂缝,针对施工温度和温度应力,采用了一定的措施来尽量降低裂缝的产生,减小裂缝的深度。在本案例中将有针对性的探讨相关的3区和4区的基础混凝土浇筑施工。

篇11

随着我国国民经济的发展,我国建筑业施工技术取得了巨大的进步,建筑规模不断的扩大,大型的现代化施工实施、大型建筑物,以及重载的大工程与日俱增,大体积混凝土结构因其本身的刚度大、承载性强、施工方便等特点成为了建筑公司的主要建筑材料,大体积混凝土是大型工程项目的主要设施和构筑物的主体,对于混凝土在浇筑的过程中,由于受热不均,水化热的现象等,造成混凝土的体积变形,出现裂缝,裂缝的出现对于建筑物的美观、耐久性和整体性以及结构的承载力等都有较大的影响,因此,在建筑施工中大体积混凝土的温控和裂缝的控制是人们倍加关注的问题。

一、 大体积混凝土的概述

1、 大体积混凝土的定义

到目前为止,建筑行业尚没有为大体积混凝土提出明确的定义,大体积混凝土顾名思义是尺寸较大的混凝土,美国的混凝土学会给大体积混凝土下了定义:任何现浇混凝土,其尺寸达到必须解决水化热及随之引起的体积变形问题,以最大限度的减少开裂硬性的。

2、 大体积混凝土的特点

大体积混凝土的特点是结构厚实,混凝土量大,工程的条件较为复杂,一般采用的是地下现浇钢筋混凝土结构,施工技术要求较高,水泥水化热释放比较集中,内部升温比较快,混凝土的温差较大时,使得混凝土产生温度裂缝,影响结构安全和正常使用。

大体积混凝土是融合了钢筋混凝土和预应力混凝土的优点,所以在我国大型的土建工程中大体积混凝土得到了普遍的使用,尽管其最大限度的减少了开裂现象,但是它的开裂问题依然存在,因此要对大体积混凝土采用有效的措施。

二、 大体积混凝土的裂缝的分类

大体积混凝土出现的裂缝的主要的原因就是温差引起的,裂缝按照深度的不同可以分为贯穿裂缝、深层裂缝和表面裂缝三种。其中贯穿裂缝是由混凝土表面裂缝发展为深层裂缝,最终形成贯穿裂缝,它切断了结构的断面,对于机构的整体性和稳定性有一定的破坏作用,危害较为严重;而深层裂缝部分地切断了结构断面,也会产生一定的危害;表面裂缝一般的危害是比较小的。大体积混凝土施工阶段所产生的温度裂缝,一方面是混凝土内部因素:由于内外温差而产生的;另一方面是混凝土的外部因素:结构的外部约束和混凝土各质点间的约束,阻止混凝土收缩变形,混凝土抗压强度较大,但受拉力却很小,所以温度应力一旦超过混凝土能承受的抗拉强度时,即会出现裂缝

三、 大体积混凝土裂缝产生的最主要的原因

大体积混凝土的开裂主要是由于温差造成的。首先,在混凝土浇筑的初期,会产生大量的水化热现象,由于混凝土本身是热的不良导体,水化热现象的发生会聚集在混凝土的内部而不会轻易的散发出来,混凝土内部的温度会逐渐的升高,而在混凝土的外表的温度就是正常的大气温度,这样就形成了混凝土内外的温度差,而在混凝土凝结的初期抗压力比较弱,而温差在混凝土内部引起的拉应力较强,从而导致了大体积混凝土裂缝的出现;其次,在混凝土完全的凝结以后,要把外面固定混凝土的模具拆除,在拆模的前后表面的温度会出现骤降的情况,这样会出现温度差,造成混凝土的开裂;最后在混凝土内部温度达到最高时,由于外部还是标准的大气温度,因此温度会随着时间的推移而逐渐的散发而达到最低的温度,这样和以前的最高温度相比,在混凝土的内部就形成了一个温度差,造成混凝土出现裂缝。

四、 建筑施工中大体积混凝土的主要温控技术

1、 合理的控制水泥水化热温度

合理的控制水泥水化热的温度是对混凝土实施温控的一个重要技术,在水泥的选用上要尽量使用低热或是中热的水泥配制混凝土;在水泥中渗加粉煤灰等渗和料或是渗加减水剂等用来改善水泥的和易性、降低水泥的水灰比,从而控制水泥的塌落度,降低水化热的现象;此外,在水泥和混凝土配置的过程中,预埋一个冷却水管,通入循环冷却水,从而降低配置好的混凝土的水化热温度,而在一些厚大的混凝土中,要掺入百分二十以下的块石进行吸热,从而达到节省混凝土的目的。

2、降低混凝土浇筑入模的温度

对大体积混凝土进行浇注入模的过程中,要尽量的避开夏季等温度较高的天气,而是选择温度较低的季节里进行浇注混凝土,对于浇筑量不大的块体,最好安排在下午三点以后或是夜间进行;如果由于工期的限制混凝土的浇筑在夏季,要选用低温水或是使用冰水配制混凝土,对骨料通过喷冷水经行降温,在运输中要加盖遮阳,从而降低混凝土拌合物的温度。

五、 建筑施工中大体积混凝土的主要裂缝控制措施

1、 原材料选择的控制

在原材料的购置上采用由预制混凝土供应商为主,项目部为辅的控制方式;混凝土搅拌单位应该和项目部签订合同,严格的执行相关的规范,混凝土搅拌单位应该根据混凝土性能决定用于制造工程中混凝土的原材料,保证工程所用的一切材料、设备、设施和技术复核所规定的种类标准。

2、 加入适量的添加剂

在混凝土中加入外加剂能够减少其收缩开裂的次数,其中减水剂能够起到改善混凝土的和易性、降低水灰比、提高混凝土的强度等作用,在混凝土中加入减水剂能够有效的防止其开裂的机会;引气剂在混凝土中的主要作用是改善混凝土的和易性、可泵性,提高混凝土的耐久性,因此在混凝土中加入引气剂能够防止混凝土裂缝在较短时间内出现。

3、 混凝土的浇筑控制措施

对于建筑物底板的大体积混凝土采用的是斜面式分层浇筑,利用自然流淌形成的斜坡,由远到近,自上而下的逐层沿着混凝土的流淌方向进行连续的浇筑,并且采用减小浇筑层的厚度和采用合理的浇筑顺序,来加快混凝土在凝结初期的水泥水化热的散失,进而有效的降低混凝土中心温度。避免混凝土因为受热不均或是温度下降过快而出现裂缝。

六、 总结

在建筑施工中,大体积混凝土的使用尽管最大限度的降低了裂缝的出现,但是由于混凝土的本身的特性,裂缝的出现依旧是无法避免的,只有对大体积混凝土在原材料的配置,浇筑,搅拌的过程中进行合理的温度控制,才能做到有效的降低裂缝的出现,从而提高建筑结构的安全性,实现建筑物的使用功能。

参考文献:

篇12

地下室是结构物比较特殊的一部,它位于结构的底部,并且与基础相连接,这样地下室通过基础或者直接与地基相互作用。(1)地基对地下室地板的约束。地下室底板浇注在地基上,地基和底板之间有粘结。摩擦作用。当底板发生温度变形或者收缩变形时,底板和地基之间将产相对运动,但由于粘结作用和摩擦作用的存在,地基将阻止底板的相对运动,在地基与底板接触面上必然会产生剪应力,这个剪应力就是地基对底板的约束作用。(2)桩基础对结构的约束。桩基础是一种承载性能高。稳定性好。沉降及差异变形小。沉降稳定快。抗震能力强及能适应各种复杂地质条件且适用范围广的基础形式,因而在工程中的运用愈来愈广泛。在分析地下室结构的约束时,必然要考虑桩基的存在所来带的约束作用。

二、混凝土温度、收缩应力的理论计算公式

混凝土裂缝的产生可以从两个指标来进行判别:其一就是混凝土的拉应力超过了混凝土的抗拉强度;其二是混凝土的拉应变超过了混凝土的极限拉应变。混凝土的极限拉应变不容易测得,因而用混凝土的拉应力是否达到混凝上的抗拉强度作为判断混凝土的是否开裂的依据比较方便,运用也比较普遍。(1)温度收缩应力计算的公式。假定:结构物同地基接触面上的剪应力与水平变位成线性比例:上式中T-底板与地基结束面上的剪应力;Cx-水平阻力系数,即产生单位位移的剪应力,取值同前文所述;U-产生剪应力:的地基水平位移;结构物为地基上的长条形结构物一薄板。矮墙等,板厚或者墙高与长度之比HlL_0.20 结构物厚度t均匀,高度H均匀,受力沿高度和厚度均匀,结构物相对地基有温差T,计算的是只考虑对贯穿裂缝起控制作用的平均拉应力。(2)温度收缩应力的有限元计算。对于单一的混凝土构件,譬如一片规则的墙体或是一块规则的混凝土底板受到均匀的约束及均匀的温度。收缩变形的作用时,运用上一小节的理论计算公式时比较方便的,但当我们面对的是一片不规则的墙体,不规则的底板,不均匀的约束和荷载时,运用以上的理论公式就比较难以反映构件的真实应力状态。当我们要掌握整个结构在温度。收缩变形作用下的应力分布状态时,用以上的理论公式时难以得到比较满意的结果。

三、地下室温度收缩裂缝控制的措施

篇13

Key words: shrinkage compensation concrete;cracks;maintenance

中图分类号:TU74 文献标识码:A文章编号:1006-4311(2010)18-0080-02

1补偿收缩混凝土控制裂缝的原理

现时市场上的膨胀剂大部分都是硫铝酸盐型膨胀剂,其膨胀源是钙矾石(C3A・3CaSO4・32H2O)。为配制补偿收缩混凝土,最常用的方法是在混凝土中掺加膨胀剂。掺加膨胀剂配制的补偿收缩混凝土与普通混凝土一样,必须将设计、施工、材料三者紧密结合的方式来解决混凝土的裂缝问题。而认为只要掺加了膨胀剂,就能控制混凝土不产生裂缝的概念是错误的。因为,在设计配筋和施工合理的条件下,衡量补偿收缩混凝土补偿收缩能力的最重要的指标是混凝土的限制膨胀率。在应用中,必须根据采用的水泥、外加剂等原材料情况,以及设计上的配筋分布和配筋率情况、工程部位的约束状态、构件的尺寸、混凝土的标号、施工面积、混凝土的塌落度、是否掺加粉煤灰、膨胀剂的质量等进行合理的抗裂混凝土配合比设计。在设计和试配补偿收缩混凝土配合比时,除对混凝土的强度、抗渗等指标进行检验外,最重要的是进行混凝土限制膨胀率的测试,根据工程不同部位约束的大小,来设计混凝土限制膨胀率的大小,从而确定膨胀剂的合理掺量。

当混凝土膨胀时受到钢筋或其他限制物的限制,钢筋则因混凝土的膨胀而伸长,此时在钢筋中产生拉应力,在混凝土中相应产生压应力,这种压应力能够抵消导致混凝土开裂的全部或部分拉应力,在混凝土中产生0.2-0.8MPa预压应力,能有效地补偿混凝土的干缩和冷缩,从而避免混凝土的开裂。同时,大量的钙矾石晶体填充了混凝土的毛细孔缝,改善了混凝土的孔结构,使毛细孔变细、减小,增加了致密性,显著提高了混凝土的抗裂防渗性能及耐久性和抵抗周围环境介质侵蚀的能力。适用于结构自防水、抗裂防水混凝土和超长混凝土结构的无缝施工等场合。

2补偿收缩混凝土的配合比设计

在进行补偿收缩混凝土的配合比设计时,除应进行常规的试验外,还应增加对混凝土的限制膨胀率的设计、测试内容。

2.1 膨胀剂的选择目前市场上膨胀剂的品种很多,质量存在参差不齐,甚至还存在不合格、假冒、伪劣的产品。在合格的膨胀剂中,产品的性能也不尽相同,其膨胀率的大小存在高低之别。有的膨胀剂虽然膨胀率高,但干空的收缩率很大,存在膨胀与收缩“落差”太大的现象。因而在选择膨胀剂时,必须检验膨胀剂的膨胀率。只有对膨胀剂的质量有了充分的了解,才能选择适宜的膨胀剂。

2.2 补偿收缩混凝土配合比设计原则研究表明,在固定膨胀剂掺量的情况下,混凝土的限制膨胀率远小于砂浆的限制膨胀率,而砂浆的限制膨胀率又远小于净浆的限制膨胀率,这是因为影响混凝土的限制膨胀率的因素远多于砂浆净浆,除砂、石、水泥品种、水灰比、砂率等对混凝土的限制膨胀率有影响外。以下因素对混凝土的限制膨胀率起着显著的作用,如膨胀剂的掺量、外加剂、混凝土塌落度、混凝土凝结时间、混凝土标号及每立方米混凝土中水泥的用量、粉煤灰掺量等。