在线客服

结构设计论文实用13篇

引论:我们为您整理了13篇结构设计论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

结构设计论文

篇1

1.结构设计说明

主要是设计依据,抗震等级,人防等级,地基情况及承载力,防潮做法,活荷载值,材料等级,施工中的注意事项,选用详图,通用详图或节点,以及在施工图中未画出而通过说明来表达的信息。如:正负零以下应采用水泥砂浆,以上采用混合砂浆。等等。

2.各层的结构布置图,包括:

(1).预制板的布置(板的选用、板缝尺寸及配筋)。标注预制板的块数和类型时,不要采用对角线的形式。因为此种方法易造成线的交叉,宜采用水平线或垂直线的方法,相同类型的房间直接标房间类型号。应全楼统一编号,可减少设计工作量,也方便施工人员看图。板缝尽量为40,此种板缝可不配筋或加一根筋。布板时从房间里面往外布板,尽量采用宽板,现浇板带留在靠窗处,现浇板带宽最好≥200(考虑水暖的立管穿板)。如果构造上要求有整浇层时,板缝应大于60。整浇层厚50,配双向φ6@250,混凝土C20。应采用横墙或横纵墙(横墙为主)混合承重方案,抗坍塌性能好。构造柱处不得布预制板。建议使用PMCAD的人工布板功能布预制板,自动布板可能不能满足用户的施工图要求,仅能满足定义荷载传递路线的要求。对楼层净高很敏感、跨度超过6.9米或不符合模数时可采用SP板,SP板120厚可做到7.2米跨。

(2).现浇板的配筋(板上、下钢筋,板厚尺寸)。尽量用二级钢包括直径φ10的二级钢。钢筋宜大直径大间距,但间距不大于200,间距尽量用200。(一般跨度小于6.6米的板的裂缝均可满足要求)。跨度小于2米的板上部钢筋不必断开,钢筋也可不画,仅说明钢筋为双向双排φ8@200。板上下钢筋间距宜相等,直径可不同,但钢筋直径类型也不宜过多。顶层及考虑抗裂时板上筋可不断,或50%连通,较大处附加钢筋。一般砖混结构的过街楼处板应现浇,并且钢筋双向双排布置。板配筋相同时,仅标出板号即可。一般可将板的下部筋相同和部分上部筋相同的板编为一个板号,将不相同的上部筋画在图上。当板的形状不同但配筋相同时也可编为一个板号。宜全楼统一编号。当考虑穿电线管时,板厚≥120,不采用薄板加垫层的做法。电的管井电线引出处的板因电线管过多有可能要加大板厚。宜尽量用大跨度板,不在房间内(尤其是住宅)加次梁。说明分布筋为φ6@250,温度影响较大处可为φ8@200。板顶标高不同时,板的上筋应断开或倾斜通过。现浇挑板阳角加辐射状附加筋(包括内墙上的阳角)。现浇挑板阴角的板下应加斜筋。顶层应建议甲方采用现浇楼板,以利防水,并加强结构的整体性及方便装饰性挑沿的稳定。外露的挑沿、雨罩、挑廊应每隔10~15米设一10mm的缝,钢筋不断。尽量采用现浇板,不采用予制板加整浇层方案。卫生间做法可为70厚+10高差(取消垫层)。8米以下的板均可以采用非预应力板。L、T或十字形建筑平面的阴角处附近的板应现浇并加厚,并双向双排配筋,附加45度的4根16的抗拉筋。现浇板的配筋建议采用PMCAD软件自动生成,一可加快速度,二来尽量减小笔误。自动生成楼板配筋时建议不对钢筋编号,因工程较大时可能编出上百个钢筋号,查找困难,如果要编号,编号不应出房间。配筋计算时,可考虑塑性内力重分布,将板上筋乘以0.8~0.9的折减系数,将板下筋乘以1.1~1.2的放大系数。值得注意的是,按弹性计算的双向板钢筋是板某几处的最大值,按此配筋是偏于保守的,不必再人为放大。支承在外墙上的板的负筋不宜过大,否则将对砖墙产生过大的附加弯距。一般:板厚>150时采用φ10@200;否则用φ8@200。PMCAD生成的板配筋图应注意以下几点:1.单向板是按塑性计算的,而双向板按弹性计算,宜改成一种计算方法。2.当厚板与薄板相接时,薄板支座按固定端考虑是适当的,但厚板就不合适,宜减小厚板支座配筋,增大跨中配筋。3.非矩形板宜减小支座配筋,增大跨中配筋。4.房间边数过多或凹形板应采用有限元程序验算其配筋。PMCAD生成的板配筋图为PM?.T。板一般可按塑性计算,尤其是基础底板和人防结构。但结构自防水、不允许出现裂缝和对防水要求严格的建筑,如坡、平屋顶、橱厕、配电间等应采用弹性计算。室内轻隔墙下一般不应加粗钢筋,一是轻隔墙有可能移位,二是板整体受力,应整体提高板的配筋。只有垂直单向板长边的不可能移位的隔墙,如厕所与其他房间的隔墙下才可以加粗钢筋。坡屋顶板为偏拉构件,应双向双排配筋。

(3).圈梁、构造柱布置及其剖面详图。圈梁要浇圈闭合拉通,穿过中间走廊,并隔一定距离将截面加强。注意圈粱(包括地基圈梁)在外墙楼梯、入口等处可能被截断,应在相应位置附加一道并满足搭接长度。坡屋顶为双层圈梁。单层空旷房屋层高超过4米宜在窗顶处增加一道圈梁。说明圈梁、构造柱纵筋的搭接及锚固长度。构造柱箍筋在上下端应加密。说明构造柱生根何处,当地面为刚性地面时,应将构造柱伸至基底。较大洞口两侧宜加构造柱(2.4米以上)。构造柱与下层相同的,可不标构造柱编号,但应在图中说明。圈梁、构造柱纵筋宜采用一级钢筋。为减少圈梁受温度变化的影响,和清水砖墙的立面效果,360外墙圈梁的外侧宜有120砖墙。设置构造柱后必须设置圈梁或暗圈梁。设置圈梁不一定设构造柱。斜交砖墙的交接处应增设构造柱,且构造柱间距不宜大于层高。建筑四角包括阴角,考虑到应力复杂和应力集中,应增大截面和配筋。请参照《设置钢筋混凝土构造柱多层砖房抗震技术规程JGJ/T13-94》

(4).过梁布置。核算圈梁下的高度是否足够放预制过梁,如果不够,则应圈梁兼过梁或圈梁局部加高。尽量采用过梁与圈梁整浇方式。此法方便施工并对抗震有利。当过梁与柱或构造柱相接时,柱应甩筋,过梁现浇。过梁配筋不得过小,以考虑地震时过梁上墙体出现裂缝不能形成拱的作用。当有大梁压在过梁上时,过梁一般用较大截面,兼梁垫用。过梁支承长度改360,并应验算过梁下砌体的局部承压。360墙可用一120矩形过粱加一120带挑沿过粱。现浇过梁荷载取值参见《砌体结构设计规范GBJ3-88》

(5).雨蓬、阳台、挑檐布置和其剖面详图。注意:雨棚和阳台的竖板现浇时,最小厚度应为80,否则难以施工。竖筋应放在板中部。当做双排筋时,高度<900,最小板厚100;高度>900时,最小板厚120。阳台的竖板应尽量预制,与挑板的预埋件焊接。雨棚和阳台上有斜的装饰板时,板的钢筋放斜板的上面,并通过水平挑板的下部锚入墙体圈梁(即挑板双层布筋)。两侧的封板可采用泰柏板封堵,钢筋与泰柏板的钢丝焊接,不必采用混凝土结构。阳台的门联窗处窗台应使用轻体材料砌筑,方便以后装修时凿掉。挑板挑出长度大于2米时宜配置板下构造筋。挑板内跨板上筋长度应大于等于挑板出挑长度,尤其是挑板端部有集中荷载时。内挑板端部宜加小竖沿,防止清扫时灰尘落下。当顶层阳台的雨搭为无组织排水时,雨搭出挑长度应大于其下阳台出挑长度100。挑板配筋应有余地,并应采用大直径钢筋,防止踩弯。挑板内跨板跨度较小,跨中可能出现负弯距,应将挑板支座的负筋伸过全跨。

(6).楼梯布置。采用X型斜线表示楼梯间,并注明楼梯间另详。尽量用板式楼梯,方便设计及施工,也较美观。

(7).板顶标高。可在图名下说明大多数的板厚及板顶标高,厨厕及其它特殊处在其房间上另外标明。

(8).梁布置及其下的梁垫布置。也可在梁支座处将梁加宽至500来代替梁垫。

(9).板上开洞(厨、厕、电气及设备)洞口尺寸及其附加筋,附加筋不必一定锚入板支座,从洞边锚入La即可。板上开洞的附加筋,如果洞口处板仅有正弯距,可只在板下加筋;否则应在板上下均加附加筋。留筋后浇的板宜用虚线表示其范围,并注明用提高一级的膨胀混凝土浇筑。未浇筑前应采取有效支承措施。住宅跃层楼梯在楼板上所开大洞,周边不宜加梁,应采用有限元程序计算板的内力和配筋。板适当加厚,洞边加暗梁。

(10).屋面上人孔、通气孔位置及详图。

(11).在平面图上不能表达清楚的细节要加剖面,可在建筑墙体剖面做法的基础上,对应画结构详图。

3.基础平面图及详图:

(1).在墙下条基宽度较宽(大于2米,部分地区可能更窄)或地基不均匀及地基较软时宜采用柔性基础。应考虑节点处基础底面积双向重复使用的不利因素,适当加宽基础。

(2).当基础上留洞、首层开大洞的洞口宽度大于洞底至基底高度时,如要考虑洞口范围内地基的承载力,洞口下基础应做暗梁。或将基础局部降低。

(3).素混凝土基础下不必做垫层,但其内有暗梁时应注明底部钢筋保护层厚为70,或做垫层。地下水位较高时或冬季施工时,不得做灰土基础。刚性基础一般300厚。

(4).建筑地段较好,基础埋深大于3米时,应建议甲方做地下室。地下室底板,当地基承载力满足设计要求时,可不再外伸。地下室内墙可采用砖墙,外墙宜用混凝土墙。每隔30~40米设一后浇带,并注明两个月后用微膨胀混凝土浇注。不应设局部地下室,且地下室应有相同的埋深。地下室顶板应考虑施工时材料堆积荷载。

(5).地面以下墙体如被管沟消弱较多,应考虑抗震的不利影响,地下墙体宜加厚。

(6).抗震缝、伸缩缝在地面以下可不设缝。但沉降缝两侧墙体基础一定要分开。

(7).新建建筑物基础不宜深于周围已有基础。如深于原有基础,其基础间的净距应不少于基础之间的高差的1.5至2倍。

(8).条形基础偏心不能过大,柔性基础必要时可作成三面支承一面自由板(类似筏基中间开洞)。一般情况下,基础底部不应因荷载的偏心而与地基脱开。

(9).当有独立柱基时,独立基础受弯配筋不必满足最小配筋率要求,除非此基础非常重要,但配筋也不得过小。独立基础是介于钢筋混凝土和素混凝土之间的结构。

(10).基础圈梁在建筑入口处或底层房间地面下降处应调低标高。当基础圈梁顶标高为-0.060时可取消防潮层。当地基不均匀时基底应增设一道基础圈梁。

(11).基础平面图上应加指北针。

(12).基础底板混凝土不宜大于C30。

(13).在软土地基上的建筑应控制建筑的总沉降量,在地基较不均匀地区应控制建筑的沉降差,砖混结构对差异沉降很敏感。因建筑的实际沉降和计算值是有差异的,很难算准,所以应从构造上入手,采用整体性强的基础形式。

(14).可用JCCAD软件自动生成基础布置和基础详图。应注意,在使用砖混抗震验算菜单产生的砖混荷载生成基础图时,其墙下荷载为整片墙的平均压力,墙体各段的荷载差异较大时,荷载较大处的墙下基础是不安全的,应人工调整。生成的基础平面图名为JCPM.T,生成的基础详图名为JCXT?.T

请参照《建筑地基基础设计规范GBJ7-89》和各地方的地基基础规程。

4.暖沟图及基础留洞图:

(1).沟盖板在遇到楼梯间和电线管时下降(500),室外暖沟上一般有400厚的覆土。

(2).注明暖沟两侧墙体的厚度及材料作法。暖沟较深时应验算强度。

(3).基础留洞大于400的应加过梁,暖沟应加通气孔

(4).基础埋深较浅时暖沟入口底及基础留洞有可能比基础还低,此时基础应局部降低。

(5).首层有门洞处不能用挑砖支承沟盖板

(6).湿陷性黄土地区或膨胀土地区暖沟做法不同于一般地区。应按湿陷性黄土地区或膨胀土地区的特殊要求设计。

(7).暖沟一般做成1200宽,1000的在维修时偏小。

5.楼梯详图:

(1).应注意:梯梁至下面的梯板高度是否够,以免碰头,尤其是建筑入口处。

(2).梯段高度高差不宜大于20,以免易摔跤

(3).两倍的梯段高度加梯段长度约等于600。幼儿园楼梯踏步宜120高。

(4).楼梯折板、折梁阴角在下时纵筋应断开,并锚入受压区内La,折梁还应加附加箍筋

(5).楼梯的建筑做法一般与楼面做法不同,注意楼梯板标高与楼面板的衔接。

(6).楼梯梯段板计算方法:当休息平台板厚为80~100,梯段板厚100~130,梯段板跨度小于4米时,应采用1/10的计算系数,并上下配筋;当休息平台板厚为80~100,梯段板厚160~200,梯段板跨度约6米左右时,应采用1/8的计算系数,板上配筋可取跨中的1/3~1/4,并不得过大。此两种计算方法是偏于保守的。任何时候休息平台与梯段板平行方向的上筋均应拉通,并应与梯段板的配筋相应。

(7).注意当板式楼梯跨度大于5米时,挠度不容易满足。应注明加大反拱。

6.梁、柱详图:

(1).梁上集中力处应附加箍筋和吊筋,宜优先采用附加箍筋。梁上小柱和水箱下,架在板上的梁,不必加附加筋。

(2).折梁阴角在下时纵筋应断开,并锚入受压区内La,还应加附加箍筋

(3).梁上有次梁时,应避免次梁搭接在主梁的支座附近,否则应考虑由次梁引起的主梁抗扭,或增加构造抗扭纵筋和箍筋。

(4).有圆柱时,地下部分应改为方柱,方便施工。圆柱纵筋根数最少为8根,箍筋用螺旋箍,并注明端部应有一圈半的水平段。方柱箍筋宜使用井字箍,并按规范加密。角柱应增大纵筋并全柱高加密箍筋。幼儿园不宜用方柱。

(5).原则上柱的纵筋宜大直径大间距,但间距不宜大于200。梁纵筋宜小直径小间距,有利于抗裂,但应注意钢筋间距要满足要求,并与梁的断面相应。布筋时应将纵筋等距,箍筋肢距可不等。

(6).梁高大于300,并与构造柱相连接的进深梁,在梁端1.5倍梁高范围内箍筋宜加密。端部与框架梁相交或弹性支承在墙体上的次梁,梁端支座可按简支考虑,但梁端箍筋应加密。

(7).考虑抗扭的梁,纵筋间距不应大于300和梁宽,即要求加腰筋,并且纵筋和腰筋锚入支座内La。箍筋要求同抗震设防时的要求。

(8).反梁的板吊在梁底下,板荷载宜由箍筋承受,或适当增大箍筋。梁支承偏心布置的墙时宜做下挑沿。

(9).挑梁宜作成等截面(大挑梁外露者除外)。与挑板不同,挑梁的自重占总荷载的比例很小,作成变截面不能有效减轻自重。变截面挑梁的箍筋,每个都不一样,难以施工。变截面梁的挠度也大于等截面梁。挑梁端部有次梁时,注意要附加箍筋或吊筋。

(10).梁上开洞时,不但要计算洞口加筋,更应验算梁洞口下偏拉部分的裂缝宽度。一般挑梁根部不必附加斜筋,除非受剪承载力不足。梁从构造上能保证不发生冲切破坏和斜截面受弯破坏。

(11).梁净高大于500时,宜加腰筋,间距200,否则易出现垂直裂缝。挑梁出挑长度小于梁高时,应按牛腿计算。

(12).梁应按层编号,如L-1-XX,1指1层,XX为梁的编号。

7.关于墙体问题:楼梯间的墙体水平支撑较弱,顶层墙体较高,在8度和9度时,顶层楼梯间横墙和外墙宜沿墙高每隔500设2φ6的通长筋,9度时,在休息平台处宜增设一钢筋带。顶层,为防止墙体裂缝,可采取如下措施:保温层聚苯板由45加厚。为防止聚苯板在施工时被踩薄,可用水泥聚苯板代替普通聚苯板。圈梁加高,纵筋直径加大。架设隔热层,不采用现浇板带加预制板(为了解决挑檐抗倾覆)的方式。顶部山墙全部、纵墙端部(宽度为建筑宽度B/4范围)在过梁以上范围加钢筋网片。构造柱至洞口的墙长度小于300时,应全部做成混凝土的,否则难以砌筑。小截面的墙(<600)如窗间墙应做成混凝土的。否则无法砌墙或受压强度不够。注意:在砖混结构中(尤其是3层及以下),可以取消部分横墙,改为轻隔墙,以减轻自重和地震力,减小基础开挖,也方便以后的房间自由分隔,不必每道墙均为砖墙。多层砌体房屋的局部尺寸限值过严,一般工程难以满足,在增设构造柱后可放宽。

8.重点注意:

(1).抗震验算时不同的楼盖及布置(整体性)决定了采用刚性、刚柔、柔性理论计算。抗震验算时应特别注意场地土类别。大开间房屋,应注意验算房屋的横墙间距。小进深房屋,应注意验算房屋的高宽比。外廊式或单面走廊建筑的走廊宽度不计入房间宽度。应加强垂直地震作用的设计,从震害分析,规范要求的垂直地震作用明显不足。

(2).雨蓬、阳台、挑沿及挑梁的抗倾覆验算,挑梁入墙长度为1.2L(楼层)、2L(屋面)。大跨度雨蓬、阳台等处梁应考虑抗扭。考虑抗扭时,扭矩为梁中心线处板的负弯距乘以跨度的一半。

(3).梁支座处局部承压验算(尤其是挑梁下)及梁下梁垫是否需要(6米以上的屋面梁和4.8米以上的楼面梁一般要加)。支承在独立砖柱上的梁,不论跨度大小均加梁垫。与构造柱相连接的梁进行局部抗压计算时,宜按砌体抗压强度考虑。梁垫与现浇梁应分开浇注。局部承压验算应留有余地。

(4).由于某些原因造成梁或过梁等截面较大时,应验算构件的最小配筋率。

(5).较高层高(5米以上)的墙体的高厚比验算,不能满足时增加一道圈梁。

(6).楼梯间和门厅阳角的梁支撑长度为500,并与圈梁连接。

(7).验算长向板或受荷面积较大的板下预制过梁承载力。

(8).跨度超过6米的梁下240墙应加壁柱或构造柱,跨度不宜大于6.6米,超过时应采取措施。如梁垫宽小于墙宽,并与外墙皮平,以调整集中力的偏心。

(9).当采用井字梁时,梁的自重大于板自重,梁自重不可忽略不计。周边一般加大截面的边梁或构造柱。

(10).问清配电箱的位置,防止配电箱与洞口相临,如相临,洞口间墙应大于360,并验算其强度。否则应加一大跨度过梁或采用混凝土小墙垛,小墙垛的顶、底部宜加大断面。严禁电线管沿水平方向埋设在承重墙内。

(11).电线管集中穿板处,板应验算抗剪强度或开洞。竖向穿梁处应验算梁的抗剪强度。

(12).构件不得向电梯井内伸出,否则应验算是否能装下。

(13).验算水箱下、电梯机房及设备下结构强度。水箱不得与主体结构做在一起。

(14).当地下水位很高时,砖混结构的暖沟应做防水。一般可做U型混凝土暖沟,暖气管通过防水套管进入室内暖沟。有地下室时,混凝土应抗渗,等级S6或S8,混凝土等级应大于等于C25,混凝土内应掺入膨胀剂。混凝土外墙应注明水平施工缝做法(阶梯式、企口式或加金属止水片),一般加金属止水片,较薄的混凝土墙做企口较难。

(15).上下层(含暖沟)洞口错开时,过粱上墙体有可能不能形成拱,所以过粱所受荷载不应按一般过粱所受荷载计算,并应考虑由于洞口错开产生的小墙肢的截面强度。

(16).突出屋面的楼电梯间的构造柱应向下延伸一层,不得直接锚入顶层圈梁。错层部位应采取加强措施。出屋面的烟筒四角应加构造柱或按97G329(七)P3地震区做法。女儿墙内加构造柱,顶部加压顶。出入口处的女儿墙不管多高,均加构造柱,并应加密。错层处可加一大截面圈梁,上下层板均锚入此圈梁。

(17).砖混结构的长度较长时应设伸缩缝。高差大于6米和两层时应设沉降缝。

(18).在地震区不宜采用墙梁,因地震时可能造成墙体开裂,墙和混凝土梁不能整体工作。如果采用,建议墙梁按普通混凝土梁设计。也不宜采用内框架。

(19).当建筑布局很不规则时,结构设计应根据建筑布局做出合理的结构布置,并采取相应的构造措施。如建筑方案为两端较大体量的建筑中间用很小的结构相连时(哑铃状),此时中间很小的结构的板应按偏拉和偏压考虑。板厚应加厚,并双层配筋。

(20).较大跨度的挑廊下墙体内跨板传来的荷载将大于板荷载的一半。挑梁道理相同。

(21).挑梁、板的上部筋,伸入顶层支座后水平段即可满足锚固要求时,因钢筋上部均为保护层,应适当增大锚固长度或增加一10d的垂直段。

(22).应避免将大梁穿过较大房间,在住宅中严禁梁穿房间。

(23).构造柱不得作为挑梁的根。

篇2

三:内力的计算,根据确定的构件截面和荷载值来进行内力的计算,包括弯矩,剪力,扭矩,轴心压力及拉力等等。

四:构件的计算。根据计算出的结构内力及规范对构件的要求和限制(比如,轴压比,剪跨比,跨高比,裂缝和挠度等等)来复核结构试算的构件是否符合规范规定和要求。如不满足要求则要调整构件的截面或布置直到满足要求为止。

施工图设计阶段的内容为:根据上述计算结果,来最终确定构件布置和构件配筋以及根据规范的要求来确定结构构件的构造措施。

3.各设计阶段的基本方法:根据方案阶段的主要内容,其基本方法就是根据各种结构形式的适用范围和特点来确定结构应该使用的最佳结构形式,这要看规范中对于各种结构形式的界定和工程的具体情况而定,关键是清楚各种结构形式的极限适用范围。还要考虑合理性和经济性。

在结构计算阶段,就是根据方案阶段确定的结构形式和体系,依据规范上规定的具体的计算方法来进行详细的结构计算,规范上的方法有多种,关键是结合工程的实际情况来选择合适的计算方法,以楼板为例,就有弹性计算法,塑性计算法及弹塑性计算法。所以选择符合工程实际的计算方法是合理的结构设计的前提,是十分重要的。

在施工图设计阶段,就是根据结构计算的结果来用结构语言表达在图纸上。首先表达的东西要符合结构计算的要求,同时还要符合规范中的构造要求,最后还要考虑施工的可操作性。这就要求结构设计人员对规范要很好的理解和把握。另外还要对施工的工艺和流程有一定的了解。这样设计出的结构,才会是合理的结构。

4.规范、手册及标准图集在具体工作中的应用:结构设计的准则和依据就是各种规范和标准图集。在进行不同结构型式的设计时必须要紧扣不同的规范,但这些规范又都是相互联系密不可分的。在不同的工程中往往会使用多种规范,在一个工程确定了结构形式后,首先要根据《建筑结构可靠度设计统一标准》来确定建筑的可靠度和重要性;然后再根据《中国地震动参数区划图》,《建筑抗震设防分类标准》《建筑抗震设计规范》确定建筑在抗震设防方面的规定和要求,在荷载的取值时要按照《建筑结构荷载规范》来确定,这是建筑总体需要运用的规范。在工程的具体设计方面,涉及到砌体部分的要遵循《砌体结构设计规范》的规定;涉及到混凝土部分的要遵循《混凝土结构设计规范》的规定;涉及到钢筋部分的要遵循《钢筋焊接及验收规程》和《钢筋机械连接通用技术规程》的规定;在基础部分的设计时需要遵循的是《建筑地基基础设计规范》的规定。最后在结构绘图时则要符合《建筑结构制图标准》的要求。

在各种结构设计手册中,给出了该结构形式设计的原理,方法,一般规定和计算的算例以及用来直接选用的各种表格。这对于深刻理解和具体设计各种结构形式具有良好的指导作用。我们推荐最好能参照设计手册来手算典型的结构形式。

标准图集是依据规范来制定的国家和省市地方统一的设计标准和施工做法构造。不同的结构形式有不同的标准图集。设计中常用的有,结构绘图时采用:平法制图(03G101-1),砌体中的钢筋混凝土过梁采用:过梁(L03G303),砖混结构抗震构造详图采用:L03G313,钢筋混凝土结构抗震构造详图采用:L03G323,地沟及盖板采用:02J331.需要说明的是,在选用标准图集时一定要根据具体工程的实际情况来酌情选用,必要时应说明选用的页号和图集号,不可盲目采用。

总之,结构设计是个系统的,全面的工作。需要扎实的理论知识功底,灵活创新的思维和严肃认真负责的工作态度。千里之行始于足下,设计人员要从一个个基本的构件算起,做到知其所以然,深刻理解规范和规程的含义,并密切配合其它专业来进行设计。在工作中应事无巨细,应善于反思和总结工作中的经验和教训。

在结构计算阶段,就是根据方案阶段确定的结构形式和体系,依据规范上规定的具体的计算方法来进行详细的结构计算,规范上的方法有多种,关键是结合工程的实际情况来选择合适的计算方法,以楼板为例,就有弹性计算法,塑性计算法及弹塑性计算法。所以选择符合工程实际的计算方法是合理的结构设计的前提,是十分重要的。

在施工图设计阶段,就是根据结构计算的结果来用结构语言表达在图纸上。首先表达的东西要符合结构计算的要求,同时还要符合规范中的构造要求,最后还要考虑施工的可操作性。这就要求结构设计人员对规范要很好的理解和把握。另外还要对施工的工艺和流程有一定的了解。这样设计出的结构,才会是合理的结构。

4.规范、手册及标准图集在具体工作中的应用:结构设计的准则和依据就是各种规范和标准图集。在进行不同结构型式的设计时必须要紧扣不同的规范,但这些规范又都是相互联系密不可分的。在不同的工程中往往会使用多种规范,在一个工程确定了结构形式后,首先要根据《建筑结构可靠度设计统一标准》来确定建筑的可靠度和重要性;然后再根据《中国地震动参数区划图》,《建筑抗震设防分类标准》《建筑抗震设计规范》确定建筑在抗震设防方面的规定和要求,在荷载的取值时要按照《建筑结构荷载规范》来确定,这是建筑总体需要运用的规范。在工程的具体设计方面,涉及到砌体部分的要遵循《砌体结构设计规范》的规定;涉及到混凝土部分的要遵循《混凝土结构设计规范》的规定;涉及到钢筋部分的要遵循《钢筋焊接及验收规程》和《钢筋机械连接通用技术规程》的规定;在基础部分的设计时需要遵循的是《建筑地基基础设计规范》的规定。最后在结构绘图时则要符合《建筑结构制图标准》的要求。

篇3

一:荷载的计算。荷载包括外部荷载(例如,风荷载,雪荷载,施工荷载,地下水的荷载,地震荷载,人防荷载等等)和内部荷载(例如,结构的自重荷载,使用荷载,装修荷载等等)上述荷载的计算要根据荷载规范的要求和规定采用不同的组合值系数和准永久值系数等来进行不同工况下的组合计算。

二:构件的试算。根据计算出的荷载值,构造措施要求,使用要求及各种计算手册上推荐的试算方法来初步确定构件的截面。

三:内力的计算,根据确定的构件截面和荷载值来进行内力的计算,包括弯矩,剪力,扭矩,轴心压力及拉力等等。

四:构件的计算。根据计算出的结构内力及规范对构件的要求和限制(比如,轴压比,剪跨比,跨高比,裂缝和挠度等等)来复核结构试算的构件是否符合规范规定和要求。如不满足要求则要调整构件的截面或布置直到满足要求为止。

施工图设计阶段的内容为:根据上述计算结果,来最终确定构件布置和构件配筋以及根据规范的要求来确定结构构件的构造措施。

3.各设计阶段的基本方法:根据方案阶段的主要内容,其基本方法就是根据各种结构形式的适用范围和特点来确定结构应该使用的最佳结构形式,这要看规范中对于各种结构形式的界定和工程的具体情况而定,关键是清楚各种结构形式的极限适用范围。还要考虑合理性和经济性。

在结构计算阶段,就是根据方案阶段确定的结构形式和体系,依据规范上规定的具体的计算方法来进行详细的结构计算,规范上的方法有多种,关键是结合工程的实际情况来选择合适的计算方法,以楼板为例,就有弹性计算法,塑性计算法及弹塑性计算法。所以选择符合工程实际的计算方法是合理的结构设计的前提,是十分重要的。

在施工图设计阶段,就是根据结构计算的结果来用结构语言表达在图纸上。首先表达的东西要符合结构计算的要求,同时还要符合规范中的构造要求,最后还要考虑施工的可操作性。这就要求结构设计人员对规范要很好的理解和把握。另外还要对施工的工艺和流程有一定的了解。这样设计出的结构,才会是合理的结构。

4.规范、手册及标准图集在具体工作中的应用:结构设计的准则和依据就是各种规范和标准图集。在进行不同结构型式的设计时必须要紧扣不同的规范,但这些规范又都是相互联系密不可分的。在不同的工程中往往会使用多种规范,在一个工程确定了结构形式后,首先要根据《建筑结构可靠度设计统一标准》来确定建筑的可靠度和重要性;然后再根据《中国地震动参数区划图》,《建筑抗震设防分类标准》《建筑抗震设计规范》确定建筑在抗震设防方面的规定和要求,在荷载的取值时要按照《建筑结构荷载规范》来确定,这是建筑总体需要运用的规范。在工程的具体设计方面,涉及到砌体部分的要遵循《砌体结构设计规范》的规定;涉及到混凝土部分的要遵循《混凝土结构设计规范》的规定;涉及到钢筋部分的要遵循《钢筋焊接及验收规程》和《钢筋机械连接通用技术规程》的规定;在基础部分的设计时需要遵循的是《建筑地基基础设计规范》的规定。最后在结构绘图时则要符合《建筑结构制图标准》的要求。

在各种结构设计手册中,给出了该结构形式设计的原理,方法,一般规定和计算的算例以及用来直接选用的各种表格。这对于深刻理解和具体设计各种结构形式具有良好的指导作用。我们推荐最好能参照设计手册来手算典型的结构形式。

标准图集是依据规范来制定的国家和省市地方统一的设计标准和施工做法构造。不同的结构形式有不同的标准图集。设计中常用的有,结构绘图时采用:平法制图(03G101-1),砌体中的钢筋混凝土过梁采用:过梁(L03G303),砖混结构抗震构造详图采用:L03G313,钢筋混凝土结构抗震构造详图采用:L03G323,地沟及盖板采用:02J331.需要说明的是,在选用标准图集时一定要根据具体工程的实际情况来酌情选用,必要时应说明选用的页号和图集号,不可盲目采用。

总之,结构设计是个系统的,全面的工作。需要扎实的理论知识功底,灵活创新的思维和严肃认真负责的工作态度。千里之行始于足下,设计人员要从一个个基本的构件算起,做到知其所以然,深刻理解规范和规程的含义,并密切配合其它专业来进行设计。在工作中应事无巨细,应善于反思和总结工作中的经验和教训。

在结构计算阶段,就是根据方案阶段确定的结构形式和体系,依据规范上规定的具体的计算方法来进行详细的结构计算,规范上的方法有多种,关键是结合工程的实际情况来选择合适的计算方法,以楼板为例,就有弹性计算法,塑性计算法及弹塑性计算法。所以选择符合工程实际的计算方法是合理的结构设计的前提,是十分重要的。

在施工图设计阶段,就是根据结构计算的结果来用结构语言表达在图纸上。首先表达的东西要符合结构计算的要求,同时还要符合规范中的构造要求,最后还要考虑施工的可操作性。这就要求结构设计人员对规范要很好的理解和把握。另外还要对施工的工艺和流程有一定的了解。这样设计出的结构,才会是合理的结构。

4.规范、手册及标准图集在具体工作中的应用:结构设计的准则和依据就是各种规范和标准图集。在进行不同结构型式的设计时必须要紧扣不同的规范,但这些规范又都是相互联系密不可分的。在不同的工程中往往会使用多种规范,在一个工程确定了结构形式后,首先要根据《建筑结构可靠度设计统一标准》来确定建筑的可靠度和重要性;然后再根据《中国地震动参数区划图》,《建筑抗震设防分类标准》《建筑抗震设计规范》确定建筑在抗震设防方面的规定和要求,在荷载的取值时要按照《建筑结构荷载规范》来确定,这是建筑总体需要运用的规范。在工程的具体设计方面,涉及到砌体部分的要遵循《砌体结构设计规范》的规定;涉及到混凝土部分的要遵循《混凝土结构设计规范》的规定;涉及到钢筋部分的要遵循《钢筋焊接及验收规程》和《钢筋机械连接通用技术规程》的规定;在基础部分的设计时需要遵循的是《建筑地基基础设计规范》的规定。最后在结构绘图时则要符合《建筑结构制图标准》的要求。

篇4

2新结构的设计方案

基于以上两种油进出管结构存在的问题,在综合考虑储罐的地基沉降、油品流动速度和流动状态等因素的基础上提出新型油进出管结构型式,具体结构如图3所示。该种结构分为两段,第一段管径与进口相等;第二段为扩散部分,设置带小孔的扩散管和防冲挡板;两段之间不采用焊接方式连接,仅需两段的中心线对齐即可,这样油品在通过第一段,可顺利流至第二段,通过扩散管和防冲板的作用降低流速。同时油进出管内伸为0.4D(D为储罐内径),且不应大于10m。该结构的优点:

2.1设置有扩散管和防冲挡板,可以有效降低油品的流速,避免产生静电;

2.2第一段与第二段不进行焊接,当发生地基沉降时,不会对罐壁产生拉力,避免油进出管与罐壁焊接部位产生过大的应力;

2.3油进出管内伸为0.4D,可使出口尽量靠近罐中心,不使罐内介质产生旋转运动;

2.4同时,油进出管内伸不超过10m,当扩散管直径较大时,可有效避免油进出管与罐底发生碰撞。

3结语

3.1油进出管设计应考虑地基沉降作用,避免地基沉降使油进出管对罐壁产生过大拉力;

3.2油进出管设计应考虑油品出口流速过大引起的摩擦静电;

3.3油进出管设计应使罐内油品流动平稳,避免形成油品旋转运动;

篇5

箱涵的各部分构件受弯矩、剪力和轴力三种内力作用,在进行配筋计算时根据不同部位所受上述三种内力的大小采用不同的公式进行配筋计算。根据受力分析,本文箱涵各构件按偏心受压构件计算。偏心受压构件计算方法参见《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62—2004)及参考文献[2]。本文根据内力计算结果,分别对箱涵各构件跨中及端点进行强度及配筋计算,经计算箱涵顶板、底板和侧壁受力钢筋采用16@150均可满足要求,其余钢筋按构造配置即可。

3基底应力计算

地基反力的分布与箱涵的跨径及地基等条件有关,本涵洞尺寸较小,为简化计算,假定地基反力按均匀分布。式中,N为短期效应组合在基底产生的竖向力,M为作用短期效应组合产生的水平力和竖向力对基底重心轴的弯距,W为基础底面偏心方向面积抵抗矩,A为1m箱带基底面积。由计算结果可知箱涵的地基承载力满足要求。

篇6

主楼超限内容[3]为:1)超过B级适用高度15%;2)2层局部挖空楼板,形成跃层柱。根据超限情况,确定主楼抗震性能目标为C级,多遇地震下满足第1水准,设防地震下满足第3水准,罕遇地震下满足第4水准,具体构件抗震性能目标如表2所示,并要求结构在罕遇地震作用下最大层间位移角不超过1/100。本工程2012年6月已通过广东省超限委员会的超限高层建筑专项审查。

3计算分析

3.1小震弹性反应谱分析小震弹性反应谱分析采用SATWE及MIDASBuilding软件。沿X,Y向输入地震波,安评谱计算的基底剪力大于规范谱的计算结果,故采用安评谱进行分析。考虑偶然偏心,采用刚性楼板假定,主楼周期折减系数为0.9,连梁刚度折减系数取0.7,嵌固端取地下室顶板,分析模型包含3层屋顶架构,共46层。主要分析结果见表3,从表3可以看出,两种软件计算结果比较吻合,各项指标均符合高规[4]和广东省高规[5](层间位移角限值为1/565)的要求。SATWE软件计算的层间位移角曲线见图4,楼层抗剪承载力比值曲线见图5。

3.2小震弹性时程分析小震弹性时程分析仍采用SATWE软件,采用2条天然波(Oakwh波、Sanfern波)及1条安评波。分析结果见表4。由表4可知,X,Y向单条地震波计算所得基底剪力最小值占CQC法计算结果的百分比分别为84%,78%,X,Y向3条地震波计算所得基底剪力平均值占CQC法计算结果的百分比分别为85%,86%,符合高规[4]的相关规定。

3.3中震分析中震分析采用SATWE软件,连梁刚度折减系数仍取0.7,不考虑构件承载力抗震调整系数及与抗震等级相关的内力调整系数,材料强度中震弹性取设计值,中震不屈服取标准值,其余输入参数(考虑偶然偏心、周期折减系数、双向输入地震力)同小震分析。配筋较大的第10层墙、柱、梁的配筋见表5,其中各构件编号见图3(b)。由表5可知,墙柱配筋取小震分析结果即可满足中震分析要求,梁的配筋取小震和中震分析的较大值。首层典型剪力墙抗剪承载力见表6。由表6可知,剪力墙抗剪承载力有很大富余。由表5,6可知,各构件均符合抗震性能目标的要求。

3.4大震动力弹塑性时程分析

3.4.1基底剪力和层间位移角采用MIDASBuilding进行大震动力弹塑性时程分析,梁柱铰特性值均采用武田三折线模型(考虑刚度退化修正),剪力墙采用纤维单元模拟,并采用施工图的实配钢筋。采用小震弹性时程分析的3条地震波,峰值加速度均为220cm/s2,持续时间均为30s,地震波的时间间距为0.02s。主要分析结果见表7,层间位移角响应见图6。由表7可知,大震动力弹塑性时程分析的基底剪力与小震弹性时程分析的基底剪力的比值的平均值为3.53(X向)、3.78(Y向),满足高规[4]要求,同时也说明结构耗能良好。Sanfern波作用下结构响应最大,X,Y向的最大层间位移角分别为1/195,1/189,均小于高规[4]限值1/100的要求。由图6可知,X向层间位移角呈弯剪型,Y向层间位移角呈剪切型,主楼X向采用弱连梁连接的双筒,比Y向有较好的耗能机制和耗能次序。

3.4.2结构抗侧力体系损伤情况取结构响应最大的1条天然波(Sanfern波)X向地震作用下的结果进行分析。由图7,8可知,在罕遇地震作用下,塔楼结构主要抗侧力构件没有发生严重破坏,大部分连梁和框架梁屈服耗能,框架柱未屈服,底部加强区墙体少量进入抗弯屈服状态,墙体未出现剪切屈服,这说明结构是“梁铰破坏”机制。计算结果还表明,结构的耗能机制和耗能次序为:弱连梁耗能屈服强连梁及框架梁耗能屈服核心筒部分抗弯耗能屈服框架柱部分开裂。这说明结构是通过弱连梁和框架梁的屈服作为第1道耗能防线,双核心筒作为第2道耗能防线,框架柱作为第3道耗能防线,实现了良好的耗能机制,有效保护了竖向构件,延缓了主体结构的损伤。由图9可知,弱连梁延性系数大部分在0.5~3.5之间,极少部分在3.5~5之间,弱连梁仍具有较大变形能力,可以承受竖向荷载作用,结构整体和各类构件还有较大的弹塑性变形能力储备。

3.5无梁楼盖的屈曲分析本工程设5层地下室,为满足在相同净空要求的前提下能有效减小建筑层高,同时也能够减少土方开挖量,地下3层~地下1层地下室楼盖采用无梁楼盖体系,板厚270mm,柱帽厚550mm。由于埋深较深,土的侧压力和水压力较大,故采用SAP2000软件(V15.2.1版)对地下3层无梁楼盖(图10)进行屈曲分析。取恒载G+活载L作为初始荷载,屈曲荷载工况为:(Kaγh1+γwh1)h。其中Ka为静止土压力系数;γ为土的浮容重;γw为水容重;h1为计算点深度;h为地下室层高。屈曲模态见图11。计算结果表明,第1阶屈曲模态特征值为54.1,第2阶屈曲模态特征值为62.5,第3阶屈曲模态特征值为72.3。由此可见屈曲模态特征值远大于10,无梁楼盖稳定性有足够的安全储备。

3.6抗震构造加强措施根据主楼超限内容及计算分析的结果,采取如下的抗震构造加强措施:1)全楼抗震等级按一级采用,适当提高核心筒剪力墙分布筋的配筋率。2)对于连接双核心筒的弱连梁,其承载力为抗弯控制,抗剪承载力富余较大,同时配置加强箍筋及横向拉筋,提高该处连梁的变形能力。3)底部第2层由于建筑双层柱廊要求,结构楼板缩进,形成边框柱跨两层高。柱计算长度l为14m,l/b(b为柱宽)为8.5>4,为中长柱,其稳定系数接近于1,具有很好的延性。为了提高1~2层结构的侧向刚度及水平承载力,采取了加大底部两层墙体厚度和加大边框柱截面的措施。4)工程无竖向不规则,无抗剪承载力突变,无楼层质量不均匀,除顶部局部平面不规则外无平面不规则;无扭转不规则,除个别楼层外,其余楼层的扭转位移比均在1.2以内;通过改变柱尺寸、剪力墙厚度、采用剪力墙开洞口等方式逐步缩短剪力墙长度,使结构刚度由下至上逐渐均匀减小,不出现刚度突变。5)工程双筒的连梁配筋取小震作用下两端刚接和两端铰接的较大值。

篇7

结构设计的阶段大体可以分为三个阶段,结构方案阶段,结构计算阶段和施工图设计阶段。方案阶段的内容为:根据建筑的重要性,建筑所在地的抗震设防烈度,工程地质勘查报告,建筑场地的类别及建筑的高度和层数来确定建筑的结构形式(例如,砖混结构,框架结构,框剪结构,剪力墙结构,筒体结构,混合结构等等以及由这些结构来组合而成的结构形式)。确定了结构的形式之后就要根据不同结构形式的特点和要求来布置结构的承重体系和受力构件。

结构计算阶段的内容为:2.1荷载的计算。荷载包括外部荷载(例如,风荷载,雪荷载,施工荷载,地下水的荷载,地震荷载,人防荷载等等)和内部荷载(例如,结构的自重荷载,使用荷载,装修荷载等等)上述荷载的计算要根据荷载规范的要求和规定采用不同的组合值系数和准永久值系数等来进行不同工况下的组合计算。2.2构件的试算。根据计算出的荷载值,构造措施要求,使用要求及各种计算手册上推荐的试算方法来初步确定构件的截面。2.3内力的计算。根据确定的构件截面和荷载值来进行内力的计算,包括弯矩,剪力,扭矩,轴心压力及拉力等等。2.4构件的计算。根据计算出的结构内力及规范对构件的要求和限制(比如,轴压比,剪跨比,跨高比,裂缝和挠度等等)来复核结构试算的构件是否符合规范规定和要求。如不满足要求则要调整构件的截面或布置直到满足要求为止。

施工图设计阶段的内容为:根据上述计算结果,来最终确定构件布置和构件配筋以及根据规范的要求来确定结构构件的构造措施。

3各设计阶段的基本方法

根据方案阶段的主要内容,其基本方法就是根据各种结构形式的适用范围和特点来确定结构应该使用的最佳结构形式,这要看规范中对于各种结构形式的界定和工程的具体情况而定,关键是清楚各种结构形式的极限适用范围。还要考虑合理性和经济性。

在结构计算阶段,就是根据方案阶段确定的结构形式和体系,依据规范上规定的具体的计算方法来进行详细的结构计算,规范上的方法有多种,关键是结合工程的实际情况来选择合适的计算方法,以楼板为例,就有弹性计算法,塑性计算法及弹塑性计算法。所以选择符合工程实际的计算方法是合理的结构设计的前提,是十分重要的。

在施工图设计阶段,就是根据结构计算的结果来用结构语言表达在图纸上。首先表达的东西要符合结构计算的要求,同时还要符合规范中的构造要求,最后还要考虑施工的可操作性。这就要求结构设计人员对规范要很好的理解和把握。另外还要对施工的工艺和流程有一定的了解。这样设计出的结构,才会是合理的结构。

4规范、手册及标准图集和计算机在具体工作中的应用

结构设计的准则和依据就是各种规范和标准图集。在进行不同结构形式的设计时必须要紧扣不同的规范,但这些规范又都是相互联系密不可分的。在不同的工程中往往会使用多种规范,在一个工程确定了结构形式后,首先要根据《建筑结构可靠度设计统一标准》来确定建筑的可靠度和重要性;然后再根据《中国地震动参数区划图》,《建筑抗震设防分类标准》《建筑抗震设计规范》确定建筑在抗震设防方面的规定和要求,在荷载的取值时要按照《建筑结构荷载规范》来确定,这是建筑总体需要运用的规范。在工程的具体设计方面,涉及到砌体部分的要遵循《砌体结构设计规范》的规定;涉及到混凝土部分的要遵循《混凝土结构设计规范》的规定;涉及到钢筋部分的要遵循《钢筋焊接及验收规程》和《钢筋机械连接通用技术规程》的规定;在基础部分的设计时需要遵循的是《建筑地基基础设计规范》的规定。最后在结构绘图时则要符合《建筑结构制图标准》的要求。

在各种结构设计手册中,给出了该结构形式设计的原理,方法,一般规定和计算的算例以及用来直接选用的各种表格。这对于深刻理解和具体设计各种结构形式具有良好的指导作用。推荐最好能参照设计手册来手算典型的结构形式。

标准图集是依据规范来制定的国家和省市地方统一的设计标准和施工做法构造。不同的结构形式有不同的标准图集。设计中常用的有,结构绘图时采用:平法制图(03G101-1),砌体中的钢筋混凝土过梁采用:过梁(L03G303),砖混结构抗震构造详图采用:L03G313,钢筋混凝土结构抗震构造详图采用:L03G323,地沟及盖板采用:02J331。需要说明的是,在选用标准图集时一定要根据具体工程的实际情况来酌情选用,必要时应说明选用的页号和图集号,不可盲目采用。

计算机在结构设计设计中起着极其重要的作用,现在工程中已经很少用手来绘制施工图,绝大部分的图纸是靠计算机来完成的。这就需要设计者要精通设计软件和软件的计算原理。现在结构设计中用到的软件种类很多,其中以中国建筑科学研究院的PKPM最为普及,当然还有很多应用CAD,天正,广夏结构等等。

篇8

目前设计院结构设计软件以PKPM为主,由于软件的使用,导致多数设计人员的基本设计理论知识淡化,过度依赖于软件设计,而对软件设计的基本原理关注较少,所设计图纸中多以软件结果为主,很少进行较为深入的修正。

1.软件固有的不足与缺陷

在绘制施工图时,多数设计人员会直接把梁端下部钢筋全部锚固于节点处或全部贯通节点,没有进行必要的截断修正处理,这种做法一会导致结构的配筋量增多费用加大,二会使结构在地震时处于危险的状态,主要是因为在结构设计时要用“强柱弱梁”的理念来引导设计,规范也有相关规定,但是在设计时,软件的处理方式却跟我们想要的结果有一定的差异,设计软件会选取柱中心点的弯矩作为梁端弯矩的计算值,而实际梁端弯矩为柱内侧弯矩值,软件选择裂缝控制配筋会对计算值进行一次放大,软件系统自动配筋时又会对计算值进行一次放大(1.1倍),根据《混凝土结构设计规范》(GB50010-2010)11.4.1-11.4.5条规定柱端弯矩设计值为梁端弯矩乘大于1的倍数,而此处的梁端弯矩为计算值,并非实际的配筋值,软件给出的结果是梁端部的配筋偏大,这样就导致了实际配筋时无法达到“强柱弱梁”的设计效果,抗震结构早就引入了“强柱弱梁”的延性理念,但是实际效果却差强人意,如汶川地震框架结构破坏,该破坏模式很大一部分原因就是设计缺陷——梁端部配筋上没有处理好。设计人员应该利用自己的专业理论知识去弥补软件的不足和缺陷。

2.计算参数的选取

PKPM结构分析需补充的SATWE参数有10项:总信息、风荷载信息、地震信息、活荷载信息、调整信息、设计信息、配筋信息、荷载组合、地下室信息和砌体结构,每一项都对应一些参数的设置,这些参数都会在一定程度上影响结构的造价和安全储备,设计时应该综合在安全储备和经济性上做一些对比分析,才能取得较好的综合效益。结构截面配筋图绘制前也有参数设置,这些参数的选取对结构造价也不可忽略,如:楼层梁、柱归并系数等。

篇9

2.1轴承

传统的同步电动机结构是采用座式滑动轴承,电动机机座与端罩及轴承同装在一个底板上,两轴承中心的轴向距离为2000mm(图3)。而采用端盖滑动轴承后两轴承中心的轴向距离压缩为1770mm。通过本次改进,采用滚动轴承后的两轴承中心的轴向距离压缩到了1297mm。

2.2集电环

对用户要求集电环防护等级为IP23的同步机,原来设计的集电环为下端采用支架承托和上端用螺杆拉紧联合固定形式(到机座端面距离为850mm)。在本电动机设计时改变大型同步机集电环的支撑形式,在电动机端盖上加工止口,并设计了高度为100mm的连接环,实行过渡连接(集电环端面到机座端面距离为650)。由于连接环的高度有限,原用轴承测温元件WZP-280体积大,考虑到安装特别困难,设计时改用体积小,经济实惠的端面热电阻WZPM-201来检测轴承温度。改进集电环连接形式后,安装方便,电动机结构因此而更加紧凑。

2.3连接环

设计连接环时,在保证连接环与轴承外盖不干涉的情况下,考虑用户给轴承加脂以及排脂时的空间、方便安装轴承测温和把合螺丝,所以连接环的圆周设计为辐射筋、周边为敞开的形式。

篇10

建筑工程质量直接关系到人民生命和财产的安全,而施工图的设计质量又是整个工程质量的基础,一份高质量的施工图是工程建设质量保证的前提。但是目前施工图纸的质量远没有人们所想象的那么精确和完善。通过在多项建筑结构设计施工图的设计及审查中发现,结构设计中存在比较常见的问题有:超长结构与基础设计、板面设置温度应力筋及梁筏基础板筋位置等问题。

1有关超长结构与基础设计

混凝土结构设计规范第91111条中规定钢筋混凝土框架结构伸缩缝最大间距为55m,而71112条则规定当采取后浇带分段施工,专门的预加应力措施或采取能减小混凝土温度变化或收缩的措施且有充分依据的,伸缩缝间距可适当增大。这两条使我们在实际设计过程中较难把握。工程实例中超过55m就设置伸缩缝,这显然是很难保证的,但采取后浇带分段施工后究竟应控制房屋长度多少而不至于产生裂缝等不良现象呢?笔者认为这取决于各地区的温差及混凝土不同的收缩应力。按本人在广东省地区所做的工程实例经验,多层房屋长度超过55m但在75m以内时,采取设置施工后浇带及相应的构造加强措施后,不设置伸缩缝是可行的,这在许多工程竣工使用多年后也已得到证实,多个工程(比如有40m×72m的四层厂房,10m×72m的九层教学楼,2m×65m的九层宿舍,还有长达近100m的三层商业建筑等)均未产生严重的裂缝。但在结构设计中必须对梁柱配筋进行概念上的调整。首先是长向板钢筋应双层设置,并适当加强后浇带处的梁板配筋;而两端梁柱,特别是边跨的柱配筋必须加强,以抵抗温度应力带来的推力;另外,超长结构在角部容易产生扭转效应,我们在设计中也必须对角部结构进行加强。当框架结构超过75m时,笔者认为必须采取特殊的措施才能不设置伸缩缝,譬如说采用预加应力,掺入抗裂外加剂等等,而且作为超过75m的结构,必须对温度及收缩裂缝采取定量的分析,并相应施加预应力,这在许多工程实例中应用的效果也是众目共睹的。如果对超长结构,不能有效的分析清楚受力情况,本人建议还是应按规范要求设置伸缩缝,毕竟建筑上缝只要处理得当还是不影响观瞻的。目前的短肢剪力墙体系小高层由于考虑埋置深度的要求,一般均设置地下室。基础则采用桩筏基础。如何对桩进行合理选型,将对整个地下室设计的经济性产生重要影响。

2防止由于地基沉降或不均匀沉降引起的构件开裂或破坏

预防或减少不均匀沉降的危害,可以从建筑措施、结构措施、地基和基础措施方面加以控制。诸如:避免采用建筑平面形状复杂、阴角多的平面布置;避免立面体形变化过大;将体形复杂、荷载和高低差异大的建筑物分成若干个单元;加强上部结构和基础的刚度;同一建筑物尽量采用同一类型基础并埋置于同一土层中等一系列措施。应该引起重视的是:对高层建筑来说,由于需要一定的埋置深度,从经济的角度考虑,基础一般采用桩箱或桩筏结合的形式,此时应保证箱体的整体刚度,群桩布置的形心应与上部结构重心相吻合。当土层有较大起伏时,应使用同一建筑结构下的桩端位于同一土层中,并应考虑可能产生的液化影响。

3从结构计算和构造上满足规范要求

3.1从结构计算角度,看结构计算应注意的问题:

避免荷载计算的错误。诸如漏算或少算荷载、活荷载折减不当、建筑物用料与实际计算不符,基础底板上多算或少算土重。底框砌体结构验算时就应注意:底部剪力法仅适用于刚度比较均匀的多层结构,对具有薄弱层的底层框架混合结构,应考虑塑性变形集中的影响,通常对底层地震剪力乘以1.2—1.5的增大系数;底层框架混合结构的剪力分配不能简单地按框架抗震墙的方法。连续板计算不能简单地用单向板计算方法代替;双向板查表计算时,不能忽略材料泊松比的影响,否则,由于跨巾弯矩未进行调整,将使计算值偏小对电算结果的正确性进行正确评价。

3.2从构造角度看应注意的问题:

注意构件最大配筋率和最小配筋率的限值。尤其是在抗震设计中既要保证建筑结构在地震发生时具有一定的延性,又必须满足最小配筋的要求。严格按照规范要求,保证钢筋在各个部位所需满足的锚固、延伸和搭接长度,材料选用也必须满足强度要求。为了防止屋面温度应力引起的墙体开裂,必须采取有效的通风散热措施。按抗震构造要求设置的构造柱,应在整个建筑物高度内上下对准贯通,上至女儿墙压顶,下伸人基础圈梁,或伸人室外地面以下500毫米,构造柱与圈梁、楼板和墙体的拉接必须符合规范要求。

4剪力墙设计

布置:剪力墙布置必须均匀合理,使整个建筑物的质心和刚心趋于重合,且X,Y两向的刚重比接近。在结构布置应避免一字形剪力墙,若出现则应布置成长墙(h/w>8)应避免楼面主梁平面外搁置在剪力墙上,若无法避免,则剪力墙相应部位应设置暗柱,当梁高大于墙厚的215倍时,应计算暗柱配筋,转角处墙肢应尽可能长,因转角处应力容易集中,有条件两个方向均应布置成长墙;规范中对普通墙及短肢墙的界定是墙高厚比8倍以下为短墙,大于8倍则为普通墙,这就引起高厚比为719倍及811倍的两种墙的受力特性截然不同,而配筋亦大相径庭,这显得比较机械而不合理,因此笔者建议布置长墙时高厚比能大于9。超级秘书网

5结束语

以上几点是对设计中经常出现的几个问题的理解。在今后的设计过程中,设计者要把提高设计质量作为终身奋斗的目标,应以规范为依据,不断总结,因为安全才是人民利益的根本所在,使我们的设计更经济合理。

参考文献:

李必瑜.房屋建筑学.武汉:武汉理工大学出版社,2003.

沈蒲生.混凝土结构设计原理.北京:高等教育出版社,2003.

尚守平.结构抗震设计.北京:高等教育出版社,2003.

应惠清.土木工程施工.同济大学出版社,2001,2.

龙驭球、包世华.结构力学教程.北京:高等教育出版社,2003.

篇11

单层轻型门式刚架结构是指以轻型焊接H形钢(等截面或变截面)、热轧H形钢(等截面)或冷弯薄壁型钢等构成的实腹式门式刚架或格构式门式刚架作为主要承重骨架,用冷弯薄壁型钢(槽形、Z形等)做檩条、墙梁;以压型金属板(压型钢板、压型铝板)做屋面、墙面;采用聚苯乙烯泡沫塑料、硬质聚氨酯泡沫塑料、岩棉、矿棉、玻璃棉等作为保温隔热材料并适当设置支撑的一种轻型房屋结构体系。

在目前的工程实践中,门式刚架的梁、柱多采用焊接H形变截面构件,单跨刚架的梁柱节点采用刚接,多跨者大多刚接和铰接并用;柱脚可与基础刚接或铰接;围护结构多采用压型钢板;保温隔热材料多采用玻璃棉。

1单层轻型门式刚架结构的特点和设计中的注意事项

1.1单层轻型门式刚架结构相对于钢筋混凝土结构具有以下特点:

(1)质量轻

围护结构采用压型金属板、玻璃棉及冷弯薄壁型钢等材料组成,屋面、墙面的质量都很轻。根据国内工程实例统计,单层轻型门式刚架房屋承重结构的用钢量一般为10~30kg/m2,在相同跨度和荷载情况下自重仅约为钢筋混凝土结构的1/20~1/30。由于结构质量轻,相应地基础可以做得较小,地基处理费用也较低。同时在相同地震烈度下结构的地震反应小。但当风荷载较大或房屋较高时,风荷载可能成为单层轻型门式刚架结构的控制荷载。

(2)工业化程度高,施工周期短

门式刚架结构的主要构件和配件多为工厂制作,质量易于保证,工地安装方便;除基础施工外,基本没有湿作业;构件之间的连接多采用高强度螺栓连接,安装迅速。

(3)综合经济效益高

门式刚架结构通常采用计算机辅助设计,设计周期短;原材料种类单一;构件采用先进自动化设备制造;运输方便等。所以门式刚架结构的工程周期短,资金回报快,投资效益相对较高。

(4)柱网布置比较灵活

传统钢筋混凝土结构形式由于受屋面板、墙板尺寸的限制,柱距多为6米,当采用12米柱距时,需设置托架及墙架柱。而门式刚架结构的围护体系采用金属压型板,所以柱网布置不受模数限制,柱距大小主要根据使用要求和用钢量最省的原则来确定。

1.2设计中的注意事项

(1)由于门式刚架结构构件的抗弯刚度、抗扭刚度较小,结构的整体刚度较弱,因此设计时应考虑运输和安装过程中要采取的必要措施,防止构件发生弯曲和扭转变形。

(2)要重视支撑体系和隅撑的布置,重视屋面板、墙面板与构件的连接构造,使其能参与结构的整体工作。

(3)组成构件的杆件较薄,设计中应考虑对制作、安装、运输的要求。

(4)设计中应充分考虑锈蚀对结构构件截面削弱的影响。

(5)门式刚架的梁柱多采用变截面杆件,梁柱腹板在设计时考虑利用屈曲后的强度,所以塑性设计不再适用。

(6)设计中对轻型化带来的后果必须注意和正确处理,比如风力可使轻型屋面的荷载反向等。

2结构形式和结构布置

2.1结构形式

门式刚架的结构形式按跨度可分为单跨、双跨和多跨,按屋面坡脊数可分为单脊单坡、单脊双坡、多脊多坡。屋面坡度宜取1/20~1/8。单脊双坡多跨刚架,用于无桥式吊车的房屋时,当刚架柱不是特别高且风荷载也不是很大时,依据“材料集中使用的原则”,中柱宜采用两端铰接的摇摆柱方案。门式刚架的柱脚多按铰接设计,当用于工业厂房且有桥式吊车时,宜将柱脚设计成刚接。门式刚架上可设置起重量不大于3t的悬挂吊车和起重量不大于20t的轻、中级工作制的单梁或双梁桥式吊车。

2.2结构布置

2.2.1刚架的建筑尺寸和布置。

门式刚架的跨度宜为9~36m,当柱宽度不等时,其外侧应对齐。高度应根据使用要求的室内净高确定,宜取4.5~9m。门式刚架的合理间距应综合考虑刚架跨度、荷载条件及使用要求等因素,一般宜取6m、7.5m、9m。纵向温度区段小于300m,横向温度区段小于150m(当有计算依据时,温度区段可适当放大)。

2.2.2檩条和墙梁的布置

檩条间距的确定应综合考虑天窗、通风屋脊、采光带、屋面材料、檩条规格等因素按计算确定,一般应等间距布置,但在屋脊处应沿屋脊两侧各布置一道,在天沟附近布置一道。侧墙墙梁的布置应考虑门窗、挑檐、雨蓬等构件的设置和围护材料的要求确定。

2.2.3支撑和刚性系杆的布置

(1)在每个温度区段或分期建设的区段中,应分别设置能独立构成空间稳定结构的支撑体系。

(2)在设置柱间支撑的开间,应同时设置屋盖横向支撑,以构成几何不变体系。

(3)端部支撑宜设在温度区段端部的第一或第二个开间。柱间支撑的间距应根据房屋纵向受力情况及安装条件确定,一般取30~45m,有吊车时不宜大于60m。

(4)当房屋高度较大时,柱间支撑应分层设置;当房屋宽度大于60m时,内柱列宜适当设置支撑。

(5)当端部支撑设在端部第二个开间时,在第一个开间的相应位置应设置刚性系杆。

(6)在刚架的转折处(边柱柱顶、屋脊及多跨刚架的中柱柱顶)应沿房屋全长设置刚性系杆。

(7)由支撑斜杆等组成的水平桁架,其直腹杆宜按刚性系杆考虑。

(8)刚性系杆可由檩条兼做,此时檩条应满足压弯构件的承载力和刚度要求,当不满足时可在刚架斜梁间设置钢管、H型钢或其他截面形式的杆件。

(9)当房屋内设有不小于5t的吊车时,柱间支撑宜用型钢;当房屋中不允许设置柱间支撑时,应设置纵向刚架。

3刚架设计

3.1荷载及荷载组合

3.1.1永久荷载

永久荷载包括结构构件的自重和悬挂在结构上的非结构构件的重力荷载,如屋面、檩条、支撑、吊顶、墙面构件和刚架自重等。

3.1.2可变荷载

可变荷载包括屋面活荷载(设计屋面板和檩条时应考虑施工和检修集中荷载,其标准值为1KN)、屋面雪荷载和积灰荷载、吊车荷载、地震作用、风荷载等。

3.1.3荷载组合

荷载组合一般应遵从《建筑结构荷载设计规范》GB50009-2002的规定,针对门式刚架的特点,《门式刚架轻型房屋钢结构技术规程》CECS102:98给出下列组合原则:

(1)屋面均布活荷载不与雪荷载同时考虑,应取两者中较大值。

(2)积灰荷载应与雪荷载或屋面均布活荷载中的较大值同时考虑。

(3)施工或检修集中荷载不与屋面材料或檩条自重以外的其他荷载同时考虑。

(4)多台吊车的组合应符合《建筑结构荷载设计规范》的规定。

(5)当需要考虑地震作用时,风荷载不与地震作用同时考虑。

3.2刚架内力和侧移计算

3.2.1内力计算

对于变截面门式刚架,应采用弹性分析方法确定各种内力,只有当刚架的梁柱全部为等截面时才允许采用塑性分析方法。变截面门式刚架的内力通常采用杆系单元的有限元法(直接刚度法)编制程序上机计算。地震作用的效应可采用底部剪力法分析确定。

根据不同荷载组合下的内力分析结果,找出控制截面的内力组合,控制截面的位置一般在柱底、柱顶、柱牛腿连接处及梁端、梁跨中等截面。控制截面的内力组合主要有:

(1)最大轴压力Nmax和同时出现的M及V的较大值。

(2)最大弯矩Mmax和同时出现的N及V的较大值。

(3)最小轴压力Nmin和相应的M及V,出现在永久荷载和风荷载共同作用下,当柱脚铰接时M=0。

3.2.2侧移计算

变截面门式刚架的柱顶侧移应采用弹性分析方法确定,计算时荷载取标准值,不考虑荷载分项系数。如果最后验算时刚架的侧移刚度不满足要求,需采用下列措施之一进行调整:放大柱或(和)梁的截面尺寸,改铰接柱脚为刚接柱脚;把多跨框架中的个别摇摆柱改为上端和梁刚接。

3.3刚架柱和梁的设计

(1)梁柱板件的宽厚比限值和腹板屈曲后的强度利用。(主要包括梁柱板件的宽厚比限值验算、腹板屈曲后强度利用验算、腹板的有效宽度验算等内容)

(2)刚架梁柱构件的强度验算。

(3)梁腹板加劲肋的配置。(梁腹板应在中柱连接处、较大固定集中荷载作用处和翼缘转折处设置横向加劲肋)

(4)变截面柱在刚架平面内的计算长度确定。

(5)变截面柱在刚架平面内的整体稳定计算。

(6)变截面柱在刚架平面外的整体稳定计算。

(7)斜梁和隅撑的强度和稳定性计算。

(8)节点设计。(包括斜梁与柱的连接及斜梁拼接、柱脚设计、牛腿设计、摇摆柱与斜梁的连接构造等内容)

4辅属结构构件设计

4.1压型钢板设计

(1)压型钢板材料的选择可根据建筑功能、使用条件、使用年限和结构形式等因素考虑,钢板基板的材料有Q215钢和Q235钢,工程中多用Q235-A钢。

(2)压型钢板的截面形式较多,根据波高的不同,一般分为低波板、中波板和高波板。波高越高,截面的抗弯刚度就越大,承受的荷载也就越大。

(3)压型钢板的强度和挠度可取单槽口的有效截面按受弯构件计算。计算内容包括压型钢板腹板的剪应力计算、支座处腹板的局部受压承载力计算、挠度限值验算等。

(4)压型钢板尚应满足其他相关构造规定。

4.2檩条设计

(1)檩条的截面形式可分为实腹式和格构式两种。当檩条跨度不大于9m时,应优先选用实腹式檩条。

(2)檩条属于双向受弯构件,在进行内力分析时应沿截面两个形心主轴方向计算弯矩。

(3)檩条应进行强度计算、整体稳定计算、变形计算。

(4)檩条尚应满足其他相关构造规定。

4.3墙梁、支撑设计

(1)墙梁一般采用冷弯卷边槽钢,有时也可采用卷边Z形钢。

(2)墙梁在其自重、墙体材料和水平风荷载作用下,也是双向受弯构件。

(3)墙梁应尽量等间距设置,在墙面的上沿、下沿及窗框的上沿、下沿处应设置一道墙梁。为减少竖向荷载作用下墙梁的竖向挠度,可在墙梁上设置拉条,并在最上层墙梁处设斜拉条将拉力传至刚架柱。

(4)墙梁可根据柱距的大小做成跨越一个柱距的简支梁或两个柱距的连续梁。

(5)门式刚架结构中的交叉支撑和柔性系杆可按拉杆设计,非交叉支撑中的受压杆件及刚性系杆按压杆设计。

(6)刚架斜梁上横向水平支撑的内力,根据纵向风荷载按支承于柱顶的水平桁架计算,并计入支撑对斜梁起减少计算长度作用而承受的力,对于交叉支撑可不计入压杆的受力。

(7)刚架柱间支撑的内力,应根据该柱列所受纵向风荷载按支承于柱脚的竖向悬臂桁架计算,并计入支撑对柱起减少计算长度而应承受的力,对于交叉支撑可不计压杆的受力。当同一柱列设有多道柱间支撑时,纵向力在支撑间可平均分配。

5小结

综上所述,轻型门式刚架结构设计应遵守以下原则:

篇12

根据上述思路,确定铝-空气电池系统的总体结构,见图1。本文所述铝-空气电堆至少是由两个彼此以电串联的单体铝-空气电池连接成的电堆,以此获得较大的输出功率和稳定的输出电能。在电堆的下方设有两个液流配置室,上方则是配液器。各单体铝-空气电池经各自的出液管与液流配置室相通,而该液流配置室经其各自的输液管与泵液腔、液流泵相通,该液流泵的送液管与上述配液器相通。配液器通过各进液管与位于其下方的各单体铝-空气电池相联通,从而构成完整的液流回路。铝-空气电池系统运行时,调节与液流配置室相连接的出液管开关,控制电池组的电解液交替流入两液流配置室之一,电解液在该液流配置室、泵液腔、配液器和电池组之间循环,而另一液流配置室则处于电解液静置、沉淀物沉降处理过程中。位于该电堆外侧的电能输出端分别与电堆的空气电极集流板和铝合金电极集流板相连通,并对外供电。

2.1铝-空气单体电池电堆铝-空气电池电堆设计成由若干个铝-空气电池单体串联而成。单体铝-空气电池具有腔体结构,如图2所示,主要包括以下三部分:进液分割室、电池反应室和出液分割室。电解液经进液管流至进液分割室,再经该分割室下部的进液管流入电池反应室。在该进液分割室上方,装有进液切割器,流进该分割室的电解液恰好注入转动的进液切割器栅格上,被该进液切割器的栅格斩断后流入电池反应室。电池反应室侧壁为空气电极,铝合金电极位于电池反应室内。空气电极与铝合金电极同时处于电解液中。铝合金电极和空气电极分别与铝合金电极集流板和空气电极集流板连接以输出电池反应的电流。出液分割室分隔为汇流区和出液区,通过汇流管连通。电池反应室内的电解液经溢流槽流入汇流区,经汇流管流入其下部的出液区。在出液区内装有出液切割器,由汇流管流出的电解液恰好注入该出液切割器的栅格上,即该电解液是被该出液切割器的栅格斩断后才流进该出液区。铝-空气单体电池中设计的进液切割器和出液切割器,可在电解液冲击下自行转动来斩断流过的电解液液流,来解决电堆中单体电池间液流短路的问题。

2.2液流配置室铝-空气电池系统运行期间,会有氧化铝等沉淀物生成。形成于单体铝-空气电池内的氧化铝若不及时移除,会覆盖在铝阳极和空气阴极的表面,降低铝阳极放电效率,堵塞空气电极的进气孔道,增大电池电阻,进而影响铝-空气电池系统的正常运行。为了将形成的氧化铝沉淀物及时排出单体电池,设计了完全对称的液流配置室。当其中一个液流配置室工作时,另一个液流配置室用于沉降和排出沉淀物,这样可以保持铝-空气电池长时间不间断地工作,又能保证沉淀物的及时排出。液流配置室的内部结构如图3所示。液流配置室通过出液管与铝-空气电池电堆相连接。当出液管流出的电解液撞击液流挡板后流进液流配置室中,沉淀物会在配置室底部沉积,通过沉淀物排出管排出铝-空气电池系统。

2.3配液器铝-空气电池系统的电堆由铝-空气电池单体串联而成,为保证电解液在单体电池内均匀分配,本系统设计了配液器,结构如图4所示,配液器为中空结构,通过送液管与液流泵相连,电解液经送液管进入配液器,在配液器中均匀分配电解液。并通过若干个出液管与每个铝-空气电池单体相通,将电解液均匀地分配到各个单体铝-空气电池中,结构如图5所示。

2.4液流泵液流泵和泵液腔使电解液不断循环,带出反应中各个单体所产生的沉淀及产生的热量。并且生成的沉淀也能在泵液腔中沉积,通过出液管将沉淀排出。液流泵的出液口与配液器的进液口相连,使电解液能源源不断地在铝-空气电池系统中循环。

篇13

洪泥河全长25.8km,设计流量50m3/s,为区管二级河道,六级航道,性质为排水,规划上河口宽度为50m、下河口宽度为25m。现状洪泥河上河口宽度为45m、下河口宽度为25m、两侧放坡各10m;堤岸为土质边坡,边坡系数为1∶2.5。河底高程为-2.7m,堤顶标高为3.2~3.6m,洪泥河常水位为1.4m,洪水位为2.5m。根据区域地质资料和勘察,本工程所在场地为第四系全新统(Q4)海相、陆相及海陆交互沉积地层。从上而下地层呈层状分布,按成因分为8层,按力学性质可进一步分成15个亚层。该区域主要由杂填土、素填土、粘土、淤泥质土、粉质粘土、粉土组成,各层土水平方向上总体分布稳定,从上而下土质渐好。本工程特殊性岩土主要为人工填土及淤泥质土,填土土质松散,淤泥质土土质软对桥梁桩基施工有一定影响。

3地铁与海沽道线位相对位置关系及安全要求

3.1位置关系

海沽道道路红线宽50m,线位与洪泥河河道斜交,角度为17°。1号线地铁线位分为左右双线,在洪泥河处线位间距为14.8m,每条线位地铁盾构区间宽为6.2m,地铁盾构区间净距为8.6m,地铁盾构顶埋深标高为-9~-15m之间。洪泥河中桥处地铁与海沽道平面位置关系详见图1。

3.2地铁盾构安全距离要求

地铁1号线盾构隧道与跨河桥梁桩基相距较近,二者之间安全间距要求以及附近土层是否需要加固与施工工序有很大关系。为了尽量减小本工程拟建桥梁与地铁1号线之间的相互影响确保工程实施的可行性,经与地铁1号线设计单位多次沟通,由地铁1号线设计单位对地铁盾构施工与桥梁桩基施工之间的安全距离提出具体要求。

(1)桩基先于盾构隧道施工(方案Ⅰ):①在此工况下,桥梁桩基础外边缘距离盾构结构外边缘的距离不得小于1.5m,隧道穿越时,周边土体不需要加固;但桩基设计应考虑桩侧摩阻局部损失。②为了保证桥梁桩基达到其设计强度,桥梁承台及桩基施工完成至盾构侧穿桩基的时间间隔应至少保证1个月。

(2)盾构隧道先于桩基施工(方案Ⅱ)。当盾构区间先行推进,桩基后施工,此种工况对区间隧道影响较大,桥梁桩基外边缘至盾构结构外边缘的最小距离不得小于4m,且周边土体需要加固。方案Ⅰ对本工程桩基影响最小;方案Ⅱ对本工程桩基影响非常大,由于安全距离要求大,周边土体需要加固,直接导致桥梁工程桩基不能实施。由于地铁规划1号线线位与海沽道线位已定,不能调整。最终经各方面沟通协调确定桥梁工程按先于地铁盾构施工进行设计和施工,即满足方案Ⅰ中的要求即可。

4桥梁下部结构设计

4.1桥梁下部结构设计方案的确定

洪泥河中桥桥梁中心桩号为K2+946.274,位于直线上,斜交角度为17°,采用分离式双幅桥,左幅桥宽为25.5m,右幅桥宽为23.5m,跨径为3×25m,梁高1.40m,结构形式采用预应力混凝土简支变连续小箱梁结构。桥梁下部结构的设计为了尽量减少对河道的影响,减少阻水效果,通常采用排架墩。由于地铁盾构的影响,与桩位有冲突,此桥不能采用排架墩,需特殊设计。经设计计算,采用较大跨径盖梁,盖梁下设双柱墩,墩底设承台及桩基,桩基之间预留地铁盾构空间,可以确保与地铁盾构之间安全距离大于1.5m的要求,以此保证后期地铁施工的安全性。地铁盾构间距内桩基1.5m,地铁盾构外侧桩基1.2m,立柱采用1.8m的圆柱墩,以减少河流阻力。由于桥位与河道斜交角度较大为17°,立柱间距较大为19.425m/cos17°=20.313m,导致盖梁截面较大,盖梁梁高2.5m,顺桥向宽度为2.0m,普通的钢筋混凝土结构已经不能满足计算要求,需要采用预应力混凝土结构进行设计。

4.2桥梁下部结构设计的特殊性及处理方法

由于地铁盾构的影响,通过下部结构特殊设计,可满足桩基边缘距盾构边缘距离大于1.5m安全距离的要求;但地铁盾构施工过程中对周围土体产生扰动,引起土体水平位移和竖向位移以及桩基受力及变形发生变化,仍有可能对桥梁桩基造成影响,因此设计及施工中采取以下措施:

(1)设计中不考虑盾构施工影响区域内土的桩侧正摩阻力,对桩长进行加长设计。

(2)设计中在位于地铁上下行之间的桥梁桩基盾构施工影响区域以上采用钢护筒进行防护,该钢护筒不拔出,作为永久性结构使用。

(3)根据地质报告本场地埋深约10.00m以上主要为欠固结软土,软土在自重及其它外荷载作用下将产生固结沉降,对桩侧产生负摩阻力。设计中在验算桩基承载力时,要充分考虑桩侧负摩阻力的影响。

(4)场地分布人工填土及淤泥质软土,填土土质松散,淤泥质土土质软,钻孔灌注桩桩身穿越填土及淤泥质软土时,须注意孔壁坍塌及缩颈现象,可采取埋设护筒、合理调配泥浆比重等措施。

(5)钻孔灌注桩桩身穿越厚层粉土、粉砂时,因钻进速度慢,钻孔施工时间长,易产生塌孔、桩身夹泥等不良现象,施工时应采取调节泥浆比重、成孔后加强清孔等措施防止塌孔、桩身夹泥等不良现象发生,确保成桩质量。

(6)在施工过程中,尚应进行必要的施工监测。检查施工引起的地表沉降是否超过允许范围,决定是否需要采取保护措施,并为确定经济、合理的保护措施提供依据,对桥梁的沉降及倾斜变形应进行相应的实时的监测。一旦发现实测位移超过警戒值应立即对桩周土体进行注浆加固。

(7)盾构施工至少应在桩基施工完成一个月后进行,桩基施工结束后,应对桩身完整性进行检测,在盾构顶进结束后,应重新对地铁上下行之间的桩基完整性进行检测,在检测结果满足规范要求后,方可施工承台。

5盾构施工注意事项

(1)合理安排盾构推进顺序。盾构施工至少应在桩基施工完成一个月后进行,先掘进左线,后掘进右线,为了减少对土的扰动,左右线盾构始发时间间隔为一个月。

(2)桥区段穿越前做好准备工作。在盾构到达桥区段30m界限前,检查刀具磨损量,有磨损立即更换滚刀;确保管片防水和拼装质量;选用质量优良的盾尾油脂。

(3)合理安排施工工序,安排专人负责掘进出土与管片拼装等主要工序,尽量缩短测量、管片、渣土车等待时间,提高运输效率,维持作业面连续施工,加快管片拼装作业,减少对周边土体的影响。

(4)控制施工进度,严格控制盾构纠偏量,稳步前进。增加刀盘转速,降低盾构推进速度,控制油缸推进力,减小盾构推进过程中对周边土体的剪切挤压作用,及时有效的纠正推进偏差。

(5)同步注浆。严格控制同步注浆量和浆液质量,通过同步注浆及时填充建筑空隙,减少施工过程中的土体变形,同步注浆量增加到建筑空隙的200%~250%左右。

(6)二次注浆。为减少同步注浆液早期强度低、隧道受侧向分力影响大、效果不佳等问题,在管片出盾尾5环后,需要进行二次注浆。浆液为瞬凝性好、具有较高的早期强度的双液浆。注浆量根据变形监测情况确定。

(7)根据施工进程和监测结果,及时调整同步注浆和二次注浆的配合比。