在线客服

电源技术论文实用13篇

引论:我们为您整理了13篇电源技术论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

电源技术论文

篇1

脉冲电源是适用于电除尘器的电源,目前在世界各地的电厂、钢铁厂及水泥厂的环保除尘机械设备中得到了广泛应用,除尘效果显着。它主要由控制柜和高压输出变压器两部分组成,分别放置于控制室和电除尘器顶部。脉冲电源系统一般由基础电压产生部分、脉冲电压产生部分、控制部分及通讯部分组成。其原理图如图2所示。1)基础电压Vdc产生部分三相交流电源输入至三相升压变压器,经三相整流桥和滤波电路后,产生一个高压直流电压,再经扼流电感L2和耦合电感L4送至电除尘器中,供应电除尘器ESP所需的基础电压。2)脉冲电压产生部分三相交流AC380V输入至三相升压变压器,经整流桥、滤波电路后,得到一个高压直流电压,经扼流电感L1给储能电容Cs充电。当高压IGBT(SW1)导通时,储能电容Cs、扼流电感L3、耦合电感L4、电除尘器ESP等效电容形成谐振回路,储能电容Cs内的电量在该回路内谐振,在电除尘器ESP两端形成一个脉冲电压。该脉冲电压与基础电压叠加,产生最终所需的加至电除尘器ESP上的电压波形,如图3所示。谐振后半部分,电量回充给储能电容Cs,节约电能。当高压IGBT关断时,谐振回路断开,电源继续给储能电容充电至原电压,等待下次脉冲的产生,如此循环。3)控制部分通过一个核心控制器(嵌入式系统),控制基础电压、脉冲电压的产生,并接收脉冲电源的反馈信号、监控关键位置的运行状况,调整脉冲电源的运行状态,使脉冲电源适应各种复杂工况的要求,产生最大的收尘效率及节能目标。同时采用快速、智能的火花响应、处理机制,保证火花状态下设备的安全、稳定运行。4)通讯部分通过以太网控制器,在通讯协议,比如Modbus的基础上搭建整个通讯系统,在上位机界面上监控各个脉冲电源的运行情况,并统一控制、调配,便于运行和管理,提高工作效率。

3.脉冲电源除尘的特点和优势

篇2

作者:张亚婷 丑修建 郭涛 熊继军 单位:中北大学

近年来,为了探索新型的使用寿命长、能量密度高的微能源,国内外学者开始收集人体、声音、道路、高层建筑等周围环境中的振动,以实现微纳机电系统的自我供能,这将有望解决能源微型化过程中电池体积大、一次性使用寿命短、能量密度小等问题。静电式微能源目前,T.Sterken等人[5]提出的静电式发电机采用静电梳齿结构和MEMS工艺,在150V的激励下、振动频率为1020Hz的环境中,获得1μW功率输出;在3750Hz下得到16μW功率。美国Berkeley大学S.Roundy等人[6]研制出的静电式发电机采集120Hz的低频振动(图略),采用变间距式改变电容,仿真和实验结果证实变间距式的结构更有优势,当在120Hz,2.25m/s2的加速度振动下,输出功率密度达116μW/cm2。(图略)为变面积式结构。Y.Chiu等人[7]提出了一种静电式微能源,利用钨球调节装置的固有频率,整合机械开关被安放在换能器内,实现同步能量转换。东京大学T.Tsutsumino等人[8]提出了一种静电式发电机,其利用高性能的有机膜全氟树脂(CYTOP)作为驻极体材料来提供电荷,加载20Hz振动,振动幅度的峰峰值为1mm,最大输出功率达6.4μW。电磁式微能源目前在电磁能量转换研究方面工作较突出的是英国Southampton大学,从2004年开始采用硅微加工技术制作了微型电磁式振动能量采集器,在1.615kHz的振动频率下,输入加速度为0.4g时,其产生的最大输出功率为104nW[9];此外还提出了一种发电机在9.5kHz,1.92m/s2加速度振动驱动下,获得21nW的电能[10]。D.Spreemann等人[11]设计了一个双自由度电磁式能量采集器,中心转子带动磁铁运动,使磁通量产生变化,产生感应电动势,克服了单自由度能量采集器固有频率的限制,适用于实际环境中的振动。在低频环境中30~80Hz,可得到3mW的功率。H.Kulah等人[12]提出了一种铁圈同振型发电机,通过一个电磁式频率放大器将低频振动转换成高频振动,而输出功率与振动频率的三次方成正比,从而提高了能量转换效率。P.H.Wang等人[13]提出了一种铜平面弹簧式结构,为了获得更低的固有频率,测试结果显示在121.25Hz频率和1.5g的加速度下,开路电压为60mV。以上研究初步达到了电磁发电单独供能的目的,但在提高电源的能量密度和转换效率,以及输出能量收集与控制方面仍需要进行大量的研究工作。

压电式微能源为了在低频低强度的普通环境中提高转换效率,大多数研究对微能源的结构进行了改进。S.Roundy等人[14]制作的矩形单悬臂梁结构的压电发电机在120Hz、加速度为2.5m/s2下,产生25μW/cm2的能量。D.Shen等人[15]研制的低频(183.8Hz)能量采集器,采用单矩形悬臂梁-质量块结构,体积仅为0.769cm3,输出平均能量为0.32μW,能量密度为41.625μW/cm2。E.K.Reilly等人[16]研究了矩形、梯形、螺旋形等不同结构的压电悬臂梁。研究表明,螺旋形结构承受的应力最大,可产生较大的形变,输出较高的电能,梯形结构次之。但是由于矩形结构加工简单,故被广泛应用。2010年,G.Zhu等人[17]收集说话声音,采用竖直结构的ZnO纳米线阵列代替常用的PZT压电材料制成了纳米发生器,通过实验证实了在-100dB强度的声波振动下,输出峰值为50mV的交流电压。近年来国内吉林大学、上海交通大学、大连理工大学等[18-20]也开展了关于压电振子发电的微能源研究工作,并在压电微能源应用研制方面取得了一定的研究成果。通常环境下振动分布在一个较宽的频率范围内,如果微能源带宽过窄,则不能满足实际需求。目前的频带扩展方法主要有阵列式[21-22]、多梁-多质量块系统[23]以及频率可调式[24-25]。阵列式是通过具有不同固有频率的单悬臂梁-单质量块结构来实现频带扩展,即使振动频率改变,某些频率的悬臂梁也会处于工作状态;多梁-多质量块系统是通过使结构某两阶频率接近来实现频带扩展;频率可调式分为主动调频和被动调频。主动调频需要调频器,而调频器耗能大于产生的能量,故不可行;被动调频需要激励和传感器,这提高了复杂性和成本。2006年,M.Ferrari等人[26]提出了一种多频能量转换器,覆盖100~300Hz波段;2007年A.IbrahimSari等人[27]采用不同长度悬臂梁阵列式结构扩大了微型发电机的带宽,在4.2~5kHz的振动频率下,产生4μW的能量,覆盖800Hz的波段。上海交通大学的马华安等人[28]采用永磁铁代替传统的质量块,并且在质量块的上方和下方也放置了不同极性的永磁铁,通过吸引力和排斥力来调整压电悬臂梁的固有频率,固有频率范围拓宽为80~100Hz。电能采集、存储电路微小能量的采集、存储也是微能源系统的关键技术,否则振动产生的微电压并无实用价值。能量采集存储电路主要包括整流电路、升压电路和存储电路。对于此部分的研究已经较为成熟,但大部分都是基于经典的分立器件所搭建而成,具有静态电流高、采集存储效率低的特点。LINEAR公司[29]新推出了一款专门面向能量收集的集成芯片LTC3588,它内部集成了AC/DC、电荷泵以及电源管理模块,可以直接采集微小交流电压信号,持续输出100mA的电流信号,且其静态电流只需950nA。TI公司[30]在2011年底推出的BQ25504芯片,也同样集成了采集存储电路的几个模块,其静态电流仅为330nA,可以将能量存储在锂电池、薄膜电池以及超级电容中,同时其良好的电源管理实现了充放电保护的功能,极大地提高了系统的集成度。它们都具有操作简单、能量采集存储效率高、性能稳定、价格低廉的特点,可以广泛地应用于由振动驱动的微能源系统。电能存储的介质选择也是研究的一项重要内容。沈辉[31]对超级电容、镍氢电池和锂电池的储存电荷能力进行了比较,发现电容器的充放电速度较快,可以迅速地回收产生的电能,同时其充电效率最高可达95%,并且充电次数理论上也可达无穷次;与之相反,电池的充电速度慢,不能立即使用回收的电能,同时其充电效率仅为92%(锂电池)、69%(镍氢电池),使用寿命为500~1000次,但其具有放电时间长、输出电压比较稳定的特点。经过一个月的自放电测试,超级电容自放电效率最高,剩余电量仅为65%,镍氢电池为70%,锂离子电池为95%。但是对于需要经常充放电的场合,自放电可以忽略,超级电容凭借其可以无限次重复使用的特点,受到了科研人员的青睐。三种不同类型的微能源相比较,压电式微能源有结构简单、易于集成和微型化的独特优点,已经应用到生活中。日本的研究员在东京火车站的地面上铺上了四块包含压电发电装置的地板,其可以显示产生的能量,可为自动检票门提供能量[4]。以色列Innowattech公司[32]建立了第一条发电公路,用预制块和环氧树脂作保护,防止压电晶体破损。英飞凌公司[33]推出了MEMS传感器、MCU、RF、MEMS自供电电源四合一的新型TMPS。

电磁式微能源的设计仅在理论指导下进行,对器件进行仿真分析较少[34],所以,难以得到最优的结构模型;压电微能源的大部分研究都通过改变几何结构来降低共振频率、优化电路以提高能量转换效率,而对于研究新型的压电材料来提高系统性能的研究相对较少;由于MEMS的微加工、微装配与封装技术处于发展阶段,使得振动式微能源不能按照设计要求达到精确制作与装配,从而难以得到理想结果。振动驱动微能源技术存在以下应用方面的问题:实际生活环境中振动频率范围比较宽,从十几赫兹到几百赫兹,至今没有提出有效调节频率的方法。因此,有人提出使用非线性振动模型来研究微能源[35],但目前,这方面的研究还很少。储存电能的介质需要做进一步研究,特别是超级电容,其放电速度快、输出电压不是很稳定的特性需要改进。理论上微能源具有寿命较长的优点,但是实际应用环境中振动加速度和频率对微能源寿命有很大的影响。振动驱动微能源已成为各国科学家研究的热点。目前,电磁式、压电式微能源的研究相对较多,但是为了提高其性能指标,从而更快应用到实际中,振动式微能源的结构还在不断得到改进、优化,并且提出新的结构模型。而静电式微能源由于需要外部电源,限制了其应用,因而研究相对较少。振动驱动微能源技术向低频、多频、宽频、非线性振动模型、复合微能源发展[36-37]。同时,将几种不同转换形式的微能源集成在同一芯片上,可以综合不同原理微能源的优点,提高能量密度,这些都是微型化和实用化的关键。振动驱动微能源有望为野外和置入结构的微系统提供高可靠、长时间的电能,为无线传感网络节点和便携式微电子产品提供充足的电源,所以研究振动式微能源有重要的实用意义。

篇3

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.现代电力电子的应用领域

2.1计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3.高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

3.3数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4绿色化

篇4

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.现代电力电子的应用领域

篇5

一、开关电源占据通信电源的主导地位

通信直流稳压电源按照其实现直流稳压方法的不同,可分为:线性电源、相控电源和开关电源三种。

1.1线性电源是通过串联调整管来连续控制,其功率调整管总是工作在放大区。由于调整管上功率损耗很大,造成电源效率较低,只有20~40%,发热损耗严重,安装有体积很大的散热器,因而功率体积系数只有20~30W/dm3。因此线性电源主要用于小功率、对稳压精度要求很高的场合,如通信设备内部电路的辅助电源等。

1.2相控电源是将市电直接经整流滤波后提供直流,通过改变晶闸管的导通相位来控制直流电压。由于相控电源的工作频率低,工频变压器的体积和噪声大,造成对电网干扰和负载变化的响应慢,设备笨重,且危害维护人员的身体健康。另外,其功率因数较低,只有0.6~0.7,严重污染电力电网,效率较低,只有60~80%,造成能源的极大浪费。因此传统的相控电源已逐渐被淘汰。

1.3开关电源的功率调整管工作在开关状态,主要的优点在"高频"上。其工作频率高,大都在40kHz以上,无烦人的噪声。体积小,重量轻,适用于分散供电,可与通信设备放在同一机房。效率高,大于90%,在当前能源比较紧张的情况下,能够在节能上做出很大的贡献。功率因数高,大于0.92,当采用有效的功率因数校正电路时,功率因数可接近于1,且对公共电网基本上无污染。模块化的设计,可实行N+1配置,可靠性高。维护方便,可在运行中更换模块,而不影响系统供电,扩容方便、分段投资,可在初建时,预留终期模块的机架,随时扩容。调试方便,内设模拟测试电路,无需另配假负载。具有监控功能,并配有标准通信接口,可实现集中监控,无人值守。

二、开关电源的关键技术

开关电源中具有技术突破主要有体现在以下四个方面:

2.1均流技术

大功率电源系统需要用若干台开关电源并联,以满足负载功率的要求,另外通信电源必须通过并联技术来实现模块备份,以提高电源系统的可靠性。因此并联技术在供电系统中必不可少,而并联运行的整流模块间需要采用均流措施,它是实现大功率电源系统的关键,用以保证模块间电流应力和热应力的均匀分配,防止一台或多台模块运行在限流或满载状态,同时延长电源系统的寿命和平均无故障时间。

2.2软开关技术

DC-DC变换器是开关电源的主要组成部分,因此功率变换技术一直受到全世界电力电子学科和行业研究的关注。而如何降低开关损耗,提高开关电源的频率和开关电源的系统效率,代表了开关电源的发展趋势。在经过了硬开关PWM(或PFM)技术和硬开关加吸收网络技术后,软开关技术得到了广泛应用。这样能够极大地降低开关损耗,减小功率器件电和热应力,改善器件工作环境,降低电磁干扰,提高功率密度等,为开关电源实现高效、节能、体积小、重量轻和高可靠性的要求做出了贡献。软开关技术有:谐振技术、准谐振技术、PWM和准谐振相结合的技术。

2.3功率因数校正技术

功率因数校正技术有:采用三相三线制整流,即无中线整流方式,可使谐波含量大大降低,功率因数可达0.86以上;采用无源功率因数校正技术,即在三相三线整流方式下加入一定的电感,可使功率因数达0.93以上,谐波含量降到10%以下;采用有源功率因数校正技术,即在输入整流部分加入一级功率处理电路,使无功功率几乎为0,功率因数可达0.99以上,谐波含量降到5%以下。

2.4智能化监控技术

开关电源大量应用控制技术、计算机技术,进行各种异常保护、信号检测、电池自动管理等,实时监视通信电源设备运行状态,记录和处理有关数据,及时发现故障,以先进的、集中的、自动化的维护管理方式来管理通信电源设备,从而提高供电系统的可靠性。智能化监控技术的应用,使得维护人员面对的不再是复杂的器件和电路,而是一个人机表达和交流的信息,大大改进了维护管理方式。

三、开关电源的发展

开关电源在发展,今后仍要不断提高开关电源和供电系统的高新技术含量,以支撑高速发展的现代化通信网络的建设和运行维护管理为主导方向,以高可靠性、高稳定性和可维护性为最终目的。具体有以下几个方面:

3.1小型化

随着通信设备日益集成化、小型化和分散化的发展,以及势在必行的分散供电的广泛应用,要求开关电源也相应小型化,而开关电源工作频率高频化和控制电路集成化,使开关电源的小型化成为可能。特别是随着小型化开关电源的市场迅速扩大,如接入网、数据产品、移动基站、无线市话等,一些小功率模块插件形式的开关电源将应运而生,大有蓬勃发展之势。如中兴通讯的ZXDU45嵌入式电源,在结构上采用标准的19英寸插框设计,高度为4U,功能齐全,使用起来极为安全方便。

3.2高智能化

随着开关电源在通信领域多方面的广泛使用,而维护人员又不是专业电源维护人员,只有借助其智能化,对电源设备的运行状态自动检测,对电源故障及时发现、诊断和处理。这就要求智能化在原有监控功能的基础上,增加诊断功能,即故障诊断专家系统,以指导维护人员处理问题,加快故障诊断和检修过程。

3.3电池管理

篇6

电动自卸卡车采用双电源供电技术时,需要安装架空线。对于露天开采来说,减少发动机损耗,减少废气排放本身就是节能降耗的有效措施。

1)动力接线:

以该露天矿最早进口的UCLED-190型大卡车为例,属于柴油机电传动卡车,其基本方式为:柴油机寅同步发电机寅整流系统寅直流电动机。在此状态下可用两个方案:淤切断原来的电源输出端G,将同样电压的单相交流电压通过滑板和受电弓在此输入。于在直流电动机输入端切断,持同样的支流电源从滑板受电弓在此输入。如果采用第二方案,需在电动机接入大容量的起制动电阻,要占很大体积,现有大卡车不易容许;所以最好采用第一方案,此时整流系统采用可控硅(SCR)代替硅二极管,就可实现输出电压的大范围调整。

2)接触网与受电弓:

电能源大卡车虽应使用双柑式受电弓,但是现在的工矿用自卸式车(自翻车)的后斗在卸载时要向上抬起,故受电弓不宜采用双柑式受电弓。工矿用电力机车有E弓子和旁弓子两种受电器:E弓采用检E接触网上,旁弓子用于翻车线及稿线的旁架线上。现在用的工矿自卸车上没有铁道,必须有两根架线,同时要安装两个互相绝缘的受电弓。这也是不可能的:淤因为架线不可能在车斗的正上方。于两个并排放置的E受电弓也是可能的。所以最有可能的是采用工矿电力机车两台旁受电弓。在不同的高度稍错开点位置安放。

3)材料的使用:

淤架空线可采用钢芯铝绞线。于受电弓上的接触滑板可采用电化石墨,这样就省去了经常换铜滑板和铜导线的麻烦。采用这种材料是经北京铁道科学院(1976年)的磨合实验的。

4)操作步骤:

篇7

1医院的分类及规模版权所有

根据我国医院建设的规划,综合医院按床位可分为300、400、500、600、800及1000床。

按照医院等级可分为三、二、一级医院,目前经常涉及的一般为二级以上的医院。

在这些范围内的医院就用电负荷而言,有一类负荷,还有部分二类负荷及三类负荷。

医院按照功能划分,一般分为门诊部、医技部、护理部、行政部、后勤部等。目前综合性医院的布局有分散式、集中式和半集中式。目前建筑设计中考虑节能及使用便利,多采用半集中式。

2医院负荷分析

2.1医院负荷计算

按照目前调研的医院负荷情况,医院的用电负荷比例仍然以空调照明为主体,医疗设备用电所占比例很小,这也许与我国目前的医疗设备的水平有关。根据日本有关资料,80年代的医院变压器安装容量为250~300va/m2,当然日本等国的用电负荷计算与变压器的安装容量与我国差别很大,总体变压器容量较我国大很多。但这其中医疗设备用电占50%。而我国目前医疗设备用电总体占不到20%。因此目前我国的医院设计的用电负荷总体上仍然是以空调照明为主要负荷。其中空调电制冷的45%~55%,照明30%,动力包括医疗用地15%~25%。

根据近10年来完成的医院工程的运行情况可以得出如下结论,我国医院的用电负荷标准与商业写字楼相比是较低的。综合医院护理单元照度需求较低

由以上数据可以看出,医院虽然为功能性民用建筑,用电设备较多,但它总体照明的标准比起商业楼、写字楼要低。从用电负荷计算的角度而言并不高,按照北京市供电规划8va/m2,即可满足要求。医院变压器安装指标并不是很高,一般在65~75va/m2之间,分析原因如下:

真正意义上的医疗用电负荷并不多,且大型设备的需要系数较低。

综合医院护理单元的面积所占比例较大,此部分用电量较低。

医院目前的运行状况,全日制的门诊医技面积不大,白天空调等用电高峰时照明需求较小。

2.2医院的负荷性质及负荷类型

医院供电系统应遵循国内供电规范,并参考国际iec相关标准进行设计,按照我国现行医院等级和标准地区医院及二类医院的供电等级为一级或二级负荷。因此电源一般采用两路10kv供电。根据医院的规模可分为如下几类系统形式;

1采用两路10kv电缆专用供电、自备柴油发电机,重要设备末端采用ups供电。此类系统适用于特级及三甲级医院。

2采用两路10kv电缆专线供电,重要设备末端采用ups供电。此类系统适用于三甲级医院。

3采用两路10kv供电或一路10kv专线供电,一路低压供电,此类系统适用于二甲级医院。

4一路10kv供电,重要设备末端采用ups供电,仅用于一级医院。

根据医疗建筑用电负荷的特殊性并考虑到医院的可持续发展,低压系统建议采用如下形式:

电压波动大的空调及动力负荷为一个低压系统,如空调采用专用变压器供电;

电压波动小的照明及一般医疗用电插座负荷为一个低压系统;

电压要求高且自身压降大,医用数字检影成像系统设备,单独采用一台变压器。对于电网电压变化较大的系统,建议采用有载调压变压器。

按照iec标准,医院各部位的供电等级,接地方式见表2。

2.3应急电源系统

医院存在着大量的一级、二级用电负荷,应急电源系统一般采用柴油发电机系统、ups系统。柴油发电机容量一般为变压器总安装容量的15%~20%。而重要设备则采用ups系统。

3低压配电系统

医院用电负荷一般分成照明系统、医疗动力插座系统、空调系统新风机、空调机、风机盘管,应急照明系统等。

大型、重要性设备由配电变电所放射式供电,一类负荷均为双路供电末端自投。冷水相组、真空吸引、x光机、ct机、mri机、dsa机、ect机等设备主机、烧伤病房、血透中心、中心手术部的电力及照明、ct机、mri机、dsa机、ect机的空调电源、电梯及屋顶排风机、洗衣房及营养部的动力也分别由变电所低压屏放射式供电。

树干式供电由变电所将各类电源分别引至各竖井,通过母线输至各层。各竖井内分别设有照明、配电、空调及应急照明配电箱。配电、照明分别放射至各科室的配电、照明配电箱,各科室的计量表设在竖井配电箱内,空调配电箱配电至末竖井区域内的普通空调机及风机盘管。应急照明配电箱由双路电源供电并自动切换,供各应急照明灯及防火卷帘门,排烟风机的用电。

医技检验科、血液透析室等处的仪器对电源要求较高,部分电源通过稳压器后备ups供电。

4数字检影成像设备的配电要求及内阻计算

数字检影成像设备是医院的重要设备,现代医院数字检影设备的种类很多,目前比较常见的有:x光透视机、x光摄影机、x光治疗机、x光造影机包括x光介入机、心血管造影机dsa、计算机断层扫描机ct机、同位素断层扫描机ect、磁共振机mri以及x刀、γ刀、直线加速器等设备。根据设备的不同用途、设备的工作制分为长期工作制、短时反复工作制。各种设备工作制见表3。

目前,许多x光机同时具有摄影、造影、透视、治疗等多种功能。

4.1数字检影设备供配电系统

数字检影设备工作原理各有不同,但统一的一点是对电源的要求较高。由于数字检影设备的以上特性,如果医院有一定规模,此类设备应由专用变压器供电。设备球管电流在400ma以上的设备应采用放射式供电。

心血管造影机、磁共振机、同位素断层扫描机ct机、大型介入机等设备的主机电源一般需要双路供电。且有些设备本身需要冷却,设备有冷水机组,此部分的电源与主电源同样重要。主电源进一步分成高压发生器电源、行走机构电源、影像设备电源及插座电源。此类设备的布置一般为扫描室、控制室两部分。系统的电源一般送至控制室。大型设备还专门有电源室配电室。

心血管造影机房的高压发生器电源、行走机构电源、影像设备电源采用一般配电方式,其插座电源与胸腔手术室的要求相似:病人可能接触用电设备采用it系统及局部等电位接地,电位差小于50mv。设备厂家对于电源的要求引出了电源内阻这一技术指标。设备对电源电压的要求越高,电源内阻越小。

4.2用电负荷计算

x射线机瞬时最大用电负荷一般由设备厂家提供,如未提供也可根据如下公式计算:

sm=1/k×1/f×esf×10-3

sj=a×ssm/η

4.3电源变压器容量的确定

1单台设备的计算负荷。

2二项式法计算多台设备计算负荷。

多数数字检影设备是短时反复工作制,因此,进行负荷计算时可以采用较小的需要系数,根据目前一些医院的实际运行结果表明,4台设备同时曝光的可能性很低,日本有关资料也表明,选择电源变压器时,4台以下的设备可以按1台容量进行考虑。10~15台设备的场所采用防止同时曝光设备可共用1台变压器。

4.4保护设备的选择

数字检影设备瞬时电流很大,保护设备宜用熔断器。目前多数设备的技术要求中已对保护设备提出具体要求。

4.5配电线路导线截面的确定

数字检影设备的配电线路导线截面要满足设备的内阻及压降的要求。

电源变压器内部电阻:rt

电源变压器额定容量:ptkva

电源变压器相数:三相

电源变压器电压变动率:ε%

额定二次电压:vtv

1计算变压器内部电阻rt

rt=2×ε×0.01×vt2/pt×103ω

计算干线电阻r1ω:

考虑到低压开关的电阻及其它接触电阻,电源变压器和电源变压器二次侧的干线电阻为总电源电阻的80%。

r1=80%rg-rtω

最大允许内阻:rgω

计算干线截面:amm:

单相设备a=2×p×l/r1mm

三相设备a=p×l/r1mm

由上可见,要满足设备内阻要求,实际就是要满足设备的电源电压要求。它受来自变压器阻抗、变压器至设备的配线长度、配线截面三个方面的因素的影响。

在系统设备时,应尽量减小变压器阻抗、减小变压器至设备的距离、在满足电源内阻的条件下、减少配线电缆截面,以节约投资。

5医院的电气安全及电力系统保护方式

医院电气安全是医院电气设计的一个重要环节。涉及到的电力系统的保护方式有接地保护tn-s系统、局部中性线不接地系统it系统、医用局部等电位接地电位差小于10mv、建筑物总等电位及卫生间局部等电位接地、漏电保护lm=30ma。

一般场所的移动式设备均采用了漏电断路器进行保护。冶疗室、功能检查室、手术室、抢救室、心血管造影室dsa、卫生间浴室均设置了局部等电位连接。中心手术室的配电系统为保证病人的安全采用了it系统。

医院接地问题,是一个较为敏感的问题,它涉及到病人的安全,设备正常运行等。按照我国现行各类规范中医院设计的规定,我院目前设计采用的是防雷接地、电力系统接地、设备保护接地公用接地系统。目前各医院及设备厂家经常提出医疗设备、医用等电位接地要单独设置接地极,且要求与防雷接地、保护接地绝缘。实践证明,由于场地的原因,这些单独接地极不可能完全与建筑物的金属大地绝缘,而一旦绝缘遭到破坏,医用等电位接地与电力系统的保护接地则可能不是一个等电位,此时,在患者的周围如果存在这样两个电位,将产生触电的危险。

电气设备对病人的影响,即电击。电击包括宏电击和微电击。防止宏电击可以采用接地线及漏电保护器来完成。而引起微电击的主要因素是电子仪器的泄漏电流及病人所处的环境非等电位。因此减少泄漏电流及局部等电位,是在保证电子仪器cf型绝缘的条件下的克服微电击的重要手段。

减少泄漏电流的方式是将电源进行隔离。通过隔离变压器,二次侧两相导线对地高阻抗,减小了系统的泄漏电流。当泄漏电流在0.7ma~2ma范围内设绝缘监视报警。以上系统称之为局部it系统。采用局部it系统辅以局部等电位连接,就可以保证防止心脏手术及检查中的微电击。目前,我院地本工程中对需要仪器进入心脏区域的局部地区,如心脏手术室、icu等处配置了上述系统。以上配电方式也是国际电工委员会iec所倡导的。电子仪器的接地宜采用共用一点接地。基于目前电子仪器的频率较高,要求地线短而粗,地线过长反而成为干扰源。

目前我国与国际上防雷接地的规范是除爆炸危险场所外均为利用建筑物金属体作为防雷、接地体,因此建筑物内的所有金属体如钢筋等不可避免的与防雷系统为一体。而作为病人周围的金属体如水管、金属门窗等均与建筑物金属体连接。为保证病人的安全,也要求设备仪器等的保护接地与病人周围的金属体局部等电位。因此防雷接地、设备的保护接地是不能分开设置的,否则病人反而会因接触到不同电位而有触电的危险。因此,此类与人体有接触的医疗设备是不能单独接地的。

医院目前有着越来越多的先进仪器和设备,多数归结为敏感电子设备。而雷电对敏感电子设备的影响,可通过设置spd加以保护。对于有大电流接地的医疗设备的接地,应避免接地线过长,宜采用就地接地,因采用局部等电位接地,周围的病人也是相对安全的。

对于电磁干扰的问题,为减少电磁干扰的感应效应,我院采用了如下措施:

1建筑物及房间外部设置屏蔽,如建筑中含金属的墙、柱均可以作为格栅屏蔽分流,将建筑物金属等电位连接。

2电气线路采用穿金属管,减少干扰。

关于雷电对病人的影响,由于雷电的陡度大,散流快,建筑中含金属的墙、柱均可以作为格珊屏蔽分流,且病人周围采取了等电位的措施。因此在屏蔽范围内雷电病人是安全的。在手术部等设备进入病人体内的部位均位于建筑物内部,没有外墙,因此病人是很安全的。

我们认为在医疗工程中防雷接地、电力系统接地、设备保护接地采用公用接地系统是可能的,也是必须的。只有完善好这一方法,病人的安全才能得到保证。我院在近几年的医院工程设计中均采用了上述接地方式,实践证明也是很有效果的。该做法不仅节约了大量投资,而且真正实现了病人的电气安全。数字检影等设备投入使用的后,图像清晰,运行良好。

在国内,推行iec关于医疗场所局部it系统的设计思想也是为进一步保证病人的安全。由于没有相应的强制规范及投资等方面的原因,这一设计思路在设计中很难得到充分的体现。目前仅在与心脏介入相关的场所设置了it系统,而在iec推荐标准中目前要求多处场所设置该系统。

6手术部、icu、血透等场所的配电系统

中心手术部是医院的核心,手术部的配电采用双路电源末端切换。这包括手术室内配电及手术室洁净空调系统的配电。电源由变电所专线供电。每一间手术室应单独设置配电箱,按照新的《医院洁净手术部建设标准》中的规定,容量不能小于8kva。每间手术室的电源进线是否采用三相进线。主要根据布局及医院的具体要求进行。目前部分手术室内设置的高低温冷柜等三相设备,电源三相引起的情况越来越多。作为与病人接触的电源部分,应尽量考虑单相供电。每间手术室考虑3~4个插座组,其中一组在综合医疗柱上,每组插座组3~4组插座及2~3组接地端子。手术室内设置观片灯、书写板照明、接地中心可设置在配电箱内。配电箱可与手术室内的控制面板结合。控制面板上有各类气体出口、时钟及定时钟、实施空调检测及控制、照明控制、废气检测及排放。

心血管造影室除数字成像系统采用专门配电外,室内设置要求与心脏手术室相同。

目前国内心脏手术室、icu、心血管造影、抢救室、血液透析等采用局部it系统。iec标准强烈要求it系统不配出n线,目前病人接触的用电设备均为单相设备,通过隔离变压器配出的it系统均为单相。

it系统应注意如下问题:版权所有

必须设置绝缘监视装置;

尽量减少系统容量,减小系统线路的长度;

增加线路的绝缘等级;

辅助以局部等电位接地,等电位干线保证在16mm2,支线在6mm2以上;

配电线路采用穿钢管敷设,减少干扰;

变压器二次出线采用双极保护开关。

7照明设计

由于经济发展水平的差异,我国与国外发达国家的医院照度标准相差甚远,发达国家的照度标准约是我国现行标准的5~10倍。目前完成的各医院工程的照度水平在我国现行标准的基础均有所提高,如一般环境为150lx、诊室等为200lx、医技科室300~500lx、病房100lx。实施后效果良好,体现了现代化医院的良好形象。设计中应注意医疗功能性用房照明的特殊要求。

诊室、病房、急诊观察室、治疗室等处采用高显色荧光灯,以便于观察病人的情况。色温在3500k左右,病房、急诊观察室、治疗室等处的顶灯采用漫反射型灯具,以减少眩光。在病房建议用间接照明,手术室、手术部清洁走廊、传染科、污物、污洗等处与业主结合确定是否设置紫外线灯。

对特殊场所的照明采取了不同方式:磁共振扫描室、理疗室、脑血流图室等需要电磁屏蔽的地方,灯具采用了直流电源;测听室的照明采用白炽灯;眼科暗室采用可调光的白炽灯。

8其他

医院发展快,变化多,在设计中我们将配电箱设置在夹墙内,此方式配合吊顶线槽配电,使系统更加灵活,方便日后用电的发展需要。在检验科、中心实验室等用房设置了沿墙附设的电气配电槽,并将电源断路器设置其上,以适应实验室用电设备多,用电变化多的需求。

在病房设置综合医疗槽、槽内设置插座组,接地端子,局部照明等,并在床头方向距地0.3m处加设一组电源插座,方便电动床等固定设备的使用。

篇8

电力电子技术的核心就是整流、逆变、斩波和交交变换四大基本电路,在电路工作过程的分析中,通常一个电路都有多个工作状态,不同的工作状态又分别对应着不同的电压电流波形,也就是说电路的工作过程往往都是动态的过程,而传统的书本上的文字和原理图是无法很好地展现动态过程的。这时,如果采用幻灯片等多媒体形式,可以将电路工作的动态过程很好地展现给学生们观看,把书本上静态的电路以及波形图动起来,这样就能够让学生们更好地理解电力电子电路的工作过程。与此同时,结合书本上的理论,再将不同电路的特点进行总结,使同学们复习时结合着书中的理论,头脑中联想着多媒体演示动画,便会在学习中事半功倍,容易记忆,提高学生的分析计算和实际解题的能力。

2.器件与控制部分应注重练习。

电力电子器件及控制部分具有覆盖面大、定性与定量相结合的特点,学好这一部分,就必须将概念的理解与相关的计算进行练习,在习题式的教学中,不断提高分析问题和解决问题的能力。研究生阶段,各高校几乎很少带领学生做与课程相关的习题,多数学生也只有在考试的时候才有机会在试卷中解答一些问题,虽说现在不提倡传统针对考试的题海战术,但是平时适当做一些典型的练习还是有必要的,电力电子器件种类多、特点各不相同,而控制方法也有很多,甚至与自动控制原理等其他学科相关联,在教学中适当找一些典型例题进行讲解,可以让同学们在繁杂的知识中抓住重点内容进行突破,最终掌握这部分知识要点。

3.学生自主参与新技术教学。

电力电子技术具有发展速度快的特点,新的技术和应用领域不断出现,加强电力电子新技术的教学可以扩展学生知识面,掌握电力电子技术发展新方向。这一部分的特点是没有定量计算、难度不大、但对于资料的收集工作量比较大,根据这些特点,在教学中,可以将这部分安排给每个学生进行讲解,在讲解前每个同学查找相关资料,然后对资料进行分类总结,加入自己的理解,在讲解过程中既可以使用多媒体也可使用板书的形式,讲解后学生之间可以相互提出问题,相互讨论,形成良好的研究氛围。在这种学生自主教学的过程中,既提高了学生查找资料的能力,也能提高学生的概括的创新能力,还为研究生毕业学术论文的撰写提供了相关的经验。

二、实验教学应进行分类

电力电子技术是一个应用性很强的一门学科,在理论教学的同时一定要有相应的实验来配合和补充,开设实验课是对理论课的延伸和补充,更能够突出应用型学科的特色。在实验教学上,应分为验证实验、探究实验、拓展实习三个部分进行教学。

1.验证实验应紧密结合课本。

验证性实验的特点是对已经有的理论进行实验验证,与学生的理论教学紧密衔接,通过书上的理论来指导实验的操作,同时实验的结果又可以加深学生对于书本理论的深度理解。在理论课程之后,应当有相应的实验课程相跟进,在实验开始前,老师带领学生对课本知识点进行回顾,确定实验目的和实验步骤,同学们按照实验要求完成相应的实验操作,并能够运用书本上的知识来解释实验中的现象,最后通过实验报告的形式进行总结,得出验证性的结论。

2.鼓励开展探究性试验。

电力电子技术是一门正在快速发展的学科,在实验教学中,应当鼓励学生进行自主探究,通过对已有知识的学习让学生们充分发挥想象力,制作一些相关的小制作、小发明,在探究性试验的过程中培养学生的创新能力。学生根据自己掌握的知识,结合当今电力电子发展的前沿技术,加上自己的想象力和创造力,独立设计出属于自己的电子作品,而在探究的过程中难免会遇到一些问题,这时老师应进行适当指导,给出一些方案,让学生自主解决实际问题。平时尽可能地开放实验室,使学生增加动手操作机会。此外还应当鼓励学生参加“挑战杯”等科技比赛,增加在创新方面的交流合作,从而学会更多解决问题的新方法。

3.拓展实习应突出实际应用。

在传统的教学环节之外,对于电力电子技术这种应用型很强的学科,应适当组织学生到某个单位进行参观学习。学习的目的是为了应用,当今电力电子技术已经应用在了许多领域之中,在实验教学中可以联系某个具体单位进行参观,在实际的生产过程中,让学生们更加具体地了解电力电子技术的应用。除了参观之外,也可由老师或者学生找一些与电力电子技术应用相关的视频资料,分享给大家进行观看,也可以起到非常好的效果。实习结束之后,学生以报告的形式写出自己学到了什么或者是心得体会。这样,理论联系实际,对于理工科的教学是有很大帮助的。

篇9

2.器件与控制部分应注重练习。

电力电子器件及控制部分具有覆盖面大、定性与定量相结合的特点,学好这一部分,就必须将概念的理解与相关的计算进行练习,在习题式的教学中,不断提高分析问题和解决问题的能力。研究生阶段,各高校几乎很少带领学生做与课程相关的习题,多数学生也只有在考试的时候才有机会在试卷中解答一些问题,虽说现在不提倡传统针对考试的题海战术,但是平时适当做一些典型的练习还是有必要的,电力电子器件种类多、特点各不相同,而控制方法也有很多,甚至与自动控制原理等其他学科相关联,在教学中适当找一些典型例题进行讲解,可以让同学们在繁杂的知识中抓住重点内容进行突破,最终掌握这部分知识要点。

3.学生自主参与新技术教学。

电力电子技术具有发展速度快的特点,新的技术和应用领域不断出现,加强电力电子新技术的教学可以扩展学生知识面,掌握电力电子技术发展新方向。这一部分的特点是没有定量计算、难度不大、但对于资料的收集工作量比较大,根据这些特点,在教学中,可以将这部分安排给每个学生进行讲解,在讲解前每个同学查找相关资料,然后对资料进行分类总结,加入自己的理解,在讲解过程中既可以使用多媒体也可使用板书的形式,讲解后学生之间可以相互提出问题,相互讨论,形成良好的研究氛围。在这种学生自主教学的过程中,既提高了学生查找资料的能力,也能提高学生的概括的创新能力,还为研究生毕业学术论文的撰写提供了相关的经验。

二、实验教学应进行分类

电力电子技术是一个应用性很强的一门学科,在理论教学的同时一定要有相应的实验来配合和补充,开设实验课是对理论课的延伸和补充,更能够突出应用型学科的特色。在实验教学上,应分为验证实验、探究实验、拓展实习三个部分进行教学。

1.验证实验应紧密结合课本。

验证性实验的特点是对已经有的理论进行实验验证,与学生的理论教学紧密衔接,通过书上的理论来指导实验的操作,同时实验的结果又可以加深学生对于书本理论的深度理解。在理论课程之后,应当有相应的实验课程相跟进,在实验开始前,老师带领学生对课本知识点进行回顾,确定实验目的和实验步骤,同学们按照实验要求完成相应的实验操作,并能够运用书本上的知识来解释实验中的现象,最后通过实验报告的形式进行总结,得出验证性的结论。

2.鼓励开展探究性试验。

电力电子技术是一门正在快速发展的学科,在实验教学中,应当鼓励学生进行自主探究,通过对已有知识的学习让学生们充分发挥想象力,制作一些相关的小制作、小发明,在探究性试验的过程中培养学生的创新能力。学生根据自己掌握的知识,结合当今电力电子发展的前沿技术,加上自己的想象力和创造力,独立设计出属于自己的电子作品,而在探究的过程中难免会遇到一些问题,这时老师应进行适当指导,给出一些方案,让学生自主解决实际问题。平时尽可能地开放实验室,使学生增加动手操作机会。此外还应当鼓励学生参加“挑战杯”等科技比赛,增加在创新方面的交流合作,从而学会更多解决问题的新方法。

3.拓展实习应突出实际应用。

在传统的教学环节之外,对于电力电子技术这种应用型很强的学科,应适当组织学生到某个单位进行参观学习。学习的目的是为了应用,当今电力电子技术已经应用在了许多领域之中,在实验教学中可以联系某个具体单位进行参观,在实际的生产过程中,让学生们更加具体地了解电力电子技术的应用。除了参观之外,也可由老师或者学生找一些与电力电子技术应用相关的视频资料,分享给大家进行观看,也可以起到非常好的效果。实习结束之后,学生以报告的形式写出自己学到了什么或者是心得体会。这样,理论联系实际,对于理工科的教学是有很大帮助的。

篇10

作者:张建英 范春甫 胡建云 单位:重庆工业自动化仪表研究所

系统特点我们通过对优化设计前智能切换屏存在的问题进行了大量分析,并依据《GB/T19826-2005电力工程直流电源设备通用技术条件和安全要求》及《YD/T5027-2005通讯电源集中监控系统工程设计规范》等相关要求,对该装置进行了优化设计,确保在设备正常运行方式、交流电源中断或充电装置发生故障的情况下,直流母线连续供电[1]。该装置具有掉电保持、信息多点处理、远程监控等特点,实现了机房对该装置进行集中监控管理的功能,设备更加安全、可靠,更加人性化[2]。据梁平供电局值班人员的信息反馈:在近19个月的运行过程当中,通过监控管理系统发现并解决相关设备问题已有3次,告警及时准确,维修人员反应迅速,没有导致输出电源中断现象发生;并且,在蓄电池充放电过程中,该装置都成功切换,除了定期巡检外,真正实现了机房无人值守。系统介绍系统参数工作方式:设有手动和远程控制方式(手动时采用刀闸并联在接触器旁);标称电压:直流48V;输入电压:2路直流-48V,正极接地;输出电压:2路直流-48V,每路分别对应10个电流为15A的配电回路;工作电压:-56V到-42V(范围通过管理系统可调节),正极接地;启动电压:≥-42.5V或≤-56.5V(可调),正极接地;故障切换时间:0秒;网络通讯:采用RS485与触摸屏通讯进行现场监控,通过以太网与上位机通讯进行集中管理;通用参数按照相关规定[1]设计。

模拟量数据采集采用EM231的8回路输入模块,用来测量母线电压和电流值;以太网模块选CP243-1作为通讯模块,和监控站进行信息联络,监控中心通过监控站对智能切换屏进行集中管理。接触器之前的设备选用的是NDZ1-400K型接触器,其主触点为常开状态,当系统出现故障或控制线圈故障时,接触器主触点失电断开,导致整个通信电源设备掉电。为了避免这种情况的发生,我们选用了天水213电器厂的单级直流接触器,型号为:GSZ2-400D,其主触点为常闭,故障时其主触点会立即闭合,同时PLC向监控站发出故障信号,等待处理。这里需特别注意的是,在检修输出设备需断电时,必须取出对应输出回路熔断器FU3、FU4的熔芯,防止故障时接触器掉电闭合。触摸屏为了方便现场巡检人员查看设备的运行状态,同时维修人员可以更加直观的查看告警记录,快速判断故障位置,我们选用威伦通科技生产的8寸触摸屏,型号为:MT4403TE。该款触摸屏配置了10M/100M自适应以太网接口RJ45,支持给予CS架构的以太网通讯,同时也可以通过以太网接多个HMI构成多HMI联机或与PC机通讯,方便了多点监控和通讯,这样,大大提高设备的可扩展性。组态软件MT5000可以实现参数设定、数据监视、运行监控、故障显示、历史记录及数据报表,功能十分强大,这也是我们选它的主要原因。开关电源开关电源在本系统中作为控制电源起着非常关键的作用。这里我们选用航天朝阳军品电源:4NIC-TX250DC/DC输入直流48V,输出直流24V。其特点是:低纹波、免维护、功率密度大及良好的电磁兼容性;在工作时,该电源是双路输入,双路输出,当任意一路出现电源故障将不会影响两路输出,而且电源输出两个回路并联使用,其中的一路出现故障将不影响另外一路的电压波动;它还具有宽电压输入范围:DC36V-DC72V,同时电压精度达到:≤±1%,纹波Vrms≤0.1%VP-P≤1%。上述这些特点正是我们选择控制电源最关注的地方,也是其它同类开关电源不具备的方面。集中监控管理系统优化设计前设备只有唯一人机交互界面——触摸屏,并且只能在现场监控,值班人员必须每天值守。不仅如此,设备没有跟其他相关设备联网,不能和其它设备联动,且只有本地操作,及不方便。优化后,设备集中监控管理系统具有故障管理、性能管理、配置管理和系统本身安全管理功能,实现了供电电源相关设备无人自动联动功能,并且可以进行远程集中管理。值班人员只需在通信局监控(站)中心对该设备集中监控,派专人进行需定期巡检和设备保养即可,无需专人值守机房。使设备更加可靠、更加人性化。

新型智能切换屏内部具有监控性能和通信接口的PLC监控模块(以太网模块),通过该模块与通信局(站)的监控站通信,最终将信息上传至上级监控中心。新型智能切换屏的工作状态通过监控中心实现的管理功能有:(1)故障管理功能:当出现熔断器熔断、接触器误动作、母线掉电、系统运行异常等情况时,具有多点、多事件同时告警的能力,并向值班人员提示故障位置及处理建议,同时支持操作人员对告警信息进行确认。(2)性能管理功能:可以进入到智能切换屏元件工作状态的画面,对其运行状态进行监控;能对告警、值班人员的操控等信息进行保留;所保存的历史数据可以以图形和表格的方式显示和打印。(3)配置管理功能:监控中心能调整PLC内部的系统参数、修改操控人员的权限等功能。(4)安全管理功能:具有完备的操作管理功能,对该装置参数设置和系统参数设置具有多级管理权限,通过操作口令可以对设备进行“遥控”和“遥调”。

篇11

1.2文化传承

园林景观设计师必须对国内优秀的风景园林景观案例加以深入研究,挖掘出富有本土文化特征的景观元素加以运用,才能设计出具有“中国味道”的风景园林景观作品。园林景观艺术是直观体验性艺术,观赏者无需接受专门的培训,就可以感受到园林景观的形式美。同时,这种直观艺术受时代背景和文化氛围的影响,可以使观赏者耳濡目染的感受到当时的文化修养和审美情趣。

2当代居住区景观设计常见问题

2.1不尊重自然环境

许多居住区的景观设计和营造过程中对景观的功能性考虑不足,注重表现外表的美观。某些开发商为了追求表面的气势和美观效果,达到增加成交量的目的,不惜重金做面子活,为此增加了成本,加重了购房者的资金支出,也使得后期的物业管理面临巨大考验。

2.2缺乏神韵

现代居民小区已经成为居民,尤其是老人和孩子日常休闲活动的主要场所,因此,设置的休闲活动空间充足,有健身区、儿童游乐场地、休闲步道等,这些空间普遍尺度较大,且多以铺装为主,相对缺乏可供好友休闲小憩的私密空间。3.3施工时间短随着社会生产水平的不断提高,很多传统建造技术已经被机器化大生产式的快速施工技术所淘汰,当代施工者往往依靠现代技术手段,使得传统建造技术开始失传,其精髓更难以再现。现代居住小区中经常可以看到其它建筑材料仿制木材建成的亭台水榭,虽然形似,却没有了木材的生动,传统工艺的风采不复存在。

3传统造园艺术对现代居住区的影响

3.1理解古典园林的内涵

要设计具有中国元素的居住区景观设计,必须从观念上彻底改变,不能完全依赖新技术、新材料,更不能对现代西方园林的成功典范照搬照抄,要学习中国古典园林景观艺术的造园理念和设计手法。

3.2尊重自然原则

大自然是园林景观设计中取之不尽、用之不竭的资源,因此,中国古典园林艺术遵从天人合一的思想,在人与自然之间寻求和谐。尊重自然是中国古典园林艺术文化的核心精髓,采用尊重生态自然的客观规律来造园,以自然景致为主,强调设计师对大自然的深刻理解和艺术化的表现。

3.3现代主义与古典主义相结合

中国古典园林讲究依山林而建,通过借景、比喻等方法将园内景观和周围自然生态结合起来,同时,也可以起到延展空间的作用,使各个区域之间相互连接、渗透,彼此呼应,形成一个整体。现代景观设计也要求设计师将视域作为设计范围,以地平线为空间参照,突出与本地区景观的融合。这与古典造园手法中追求无限想象的外延空间理念是一致的。

篇12

2.1能源互联网构成

构建“能源互联网”的主要目的是优化能源结构(更多应用新能源)、提高能源效率(发挥不同能源优势和新型负荷的技术优势),从而改善用户体验。优化能源互联网资源,首先需要确认能源互联网构成要素,界定优化范围。根据文献[1]和[2]描述,结合智能电网研究成果,图1描述了能源互联网总体构成:电、供热及供冷等形式的能源输入通过与信息等支撑系统有机融合,构成协同工作的现代“综合能源供给系统”。该系统内多种能源(化石能源、可再生能源)通过电、冷、热和储能等形式之间的协调调度供给,达到能源高效利用、满足用户多种能源应用需求、提高社会供能可靠性和安全性等目的;同时,通过多种能源系统的整体协调,还有助于消除能源供应瓶颈,提高各能源设备利用效率。不同能源对环境的影响不同,传统能源供应体系中,特定能源已经形成了相对稳定的消费市场,比如石油主要用于交通、化工、发电等行业;天然气则主要于日常生活、供热、发电、交通等领域。可再生能源目前几乎全部用来发电。一次能源长期以来形成了自身的产业链条,不同种类能源间互相补充空间有限。但是,电能可以充当不同能源间的桥梁。目前可再生能源绝大部分转化为电能。如果通过电能用绿色可再生能源替换其他高污染一次能源,可以提高能源消费的整体环境友好程度。要实现这种能源的优化供给需要具备几个条件:①要具备不同种类能源间的(供求关系等)信息互通;②要具备能源输出互相替代的必要技术手段,即通过电能能够满足被替代能源消费主体的需求;③要能够给能源消费者清晰、及时的引导信号,吸引能源消费主体参与能源消费优化配置。具备以上条件,配合必要的技术手段,最终实现社会能源的整体优化利用。实现这一目标可以通过技术手段构建“能源互联网”。

2.2能源互联网技术框架

为了达到上述整体优化目标,在明确能源“互联”范围基础上,需要进一步研究合理的能源互联网技术框架,应用先进技术发挥多种能源与用户互联、互动的整体优势。这种能源互联网技术框架设计的唯一目的是发挥技术优势,从技术角度提高能源的使用效率。在不存在政策、市场和技术条件限制的前提下,设计满足上述条件的能源互联网技术框架模型,如图2所示。图2所示“能源互联网技术框架”包括“市场环境”、“能源供给、转化和消费”、“信息支持”以及“调度控制”4个部分。市场环境包括能源供给侧市场和能源需求侧市场。其中,能源供给侧市场负责不同种类能源的市场价格信号,调节市场能源供应结构(可以在这个环节使用价格信号或补贴鼓励使用清洁能源,减小环境污染);能源需求侧市场负责吸引可控负荷和具有反向送电(或其他能源形式)的“发用电联合体”参与需求侧调度控制的价格或其他激励信号,以鼓励负荷参与需求侧响应。能源供给、转化及消费是能源互联网中的能源流,也是整个技术框架的最终优化协调对象。多种能源发出的电、热、冷等能量形式通过输电电网、管网或者运输通道最终抵达用户侧,满足用户的用能需求。能源互联网框架在以上基础上,加强了对分布式电源和微电网的支持,同时应用各种储能以及电转化为气体等技术,结合信息共享和多种能源的成本对比,以电能为中心实现有目标(优化或降低污染、提高清洁能源比例等)的多种能源间的替代和转换。消费环节除了包括传统用户还增加了智能可控用户以及可以反向供能的发用电联合体等。信息共享支持是整个技术框架中的信息流。“高速、可靠和安全”的未来信息网络技术是实现能源互联网技术框架下大量数据采集、传输、分析再到优化计算的基础条件。在信息技术支持下,为保障整个能源框架的安全优化运行,需要设置必要的运营管理机构,对能源进行集中调度管理,这种调度管理可以采用与外部市场环境相适应的商业运营模式并根据能源管理范围进行分级设计。同时针对用户侧可控负荷和具有发电及其他供能(供热、制冷等)能力的“发用电联合体”在自愿的前提下可以直接参与或通过“负荷调度控制”,应用“虚拟发电厂”技术参与能源互联网的调度控制。这种基于信息共享的通过能源整体调度控制实现能源的整体优化利用是能源互联网技术框架的核心内容。

2.3能源互联网优化控制概念模型

在上述能源互联网技术框架内能源消费有如下特性。(1)能源供应能够“互联”。能源互联网技术框架下不同能源间可以相互支持以及一定程度上的替代转换。这种互联可以通过控制系统实现面向用户最终需求的“应用转化”,也可以直接通过能源间的转换与替代实现。(2)能源互联后不影响用户的使用。方便用户安全高效使用,原来互相割裂的能源供应“互联”后应提升用户体验,不影响用户的正常使用。(3)能源互联后能够优化。能源互联网技术框架下的能源供应应该比“互联”之前有更高的效率。可见,能源互联网是一个以对能源进行整体优化为目标的复杂能源供用系统,为了实现整体优化的目的,需要建立相应的优化模型。综上所述,不同种类能源消费行为的成本是变动的,同时,不同种类能源供应对环境的影响不同。再考虑到新型负荷的可控性,建立如下能源互联网优化模型。以上模型的物理意义是在满足能源总供给与需求之间平衡和能源与供给消费约束的前提下,追求能源供应总成本最低或者污染排放最小等优化目标。能源互联网的优化模型根据不同市场运营规则细节上将有所不同,这里讨论的优化模型是对能源互联网技术框架的一种目的性描述,求解该模型需要确定不同能源的成本函数和其他约束条件,这些约束条件与具体的能源互联网运营规则和物理环境密切相关。

3能源互联网研究现状

上述“能源互联网”技术框架是对未来能源整体供用体系的概念性设想,关于未来的能源发展,国内外普遍开展了基于先进信息通信技术的包含能源互动思想(包含能源间的转化和替代)的相关研究。除了文献[1]中关于“能源互联网”的设想外,美国各大研究机构和高校都在进行相关研究。在用户互动方面,美国在需求侧响应方面已经进入实际应用阶段,电网中出现了专职的“调荷服务商”用于为电网提供负荷调度服务;能源的互联与转换方面,美国发电公司长期根据市场需要选择出售天然气与电力的比例。欧盟也在开展“智能能源的未来网络”(FINSENY)项目,研究将能源与信息的整合,汇集了能源和ICT(信息通信技术)行业的关键技术以确定智能能源系统对ICT的要求,从而提供创新性的能源解决方案以优化能源传输,改变人们的能源消费方式,减少CO2的排放,改善生活环境[3]。日本则在微网及分布式电源基础上致力于研究冠名为“电力路由器”的电能控制技术及相关装备[4]。在国内,关于未来能源供应技术的研究一直受到高度重视,国家电网公司明确“能源互联网”是未来的智能电网,智能电网是承载第三次工业革命的基础平台,对第三次工业革命具有全局性的推动作用。目前,国家电网公司已积极开展、部署相关研究工作。北京市科委组织了“第三次工业革命”和“能源互联网”专家研讨会,并启动了相关软课题研究,以期形成详细的能源互联网调研报告和路线图。中国能源发展目前面临总量供应(石油、天然气对外依存度高)、资源配置(能源与生产力分布不均衡)、能源效率(大量煤炭直接燃烧,整体能效偏低)、生态环境(土壤、水质、大气污染)四大问题。针对以上问题,可以采用增加清洁能源发电比例、提高能源效率的方法加以改善。本文所述能源互联网技术框架统一配置能源资源,从能源供给和使用2个方面进行整体优化,基于信息共享建立必要的市场调节机制,优化引导能源的开发和使用,最终实现增加清洁能源发电比例、提高能源效率,以电能为中心统一优化配置能源资源;使能源发展方式由消耗型向可持续、可再生和更环保的发展轨迹过渡;实现能源供应安全、清洁、环保与友好地发展[5-11]。

篇13

为了满足独立学院将学生培养成为应用型人才的目标,借鉴职业教育理念,我们准备对模拟电子技术课程进行项目化教学改革,目的是将传统意义下的模拟电子技术课程知识进行解构、整合、序化,加入电子工艺学知识,配合课程实验、课程设计项目,按照“做中学,学中做,递进交互”的教学理念,以行业和岗位需求为导向,以培养学生的实践技能为主线,以具体的电路产品为载体,实施项目化教学,一步步提升学生的专业实践能力。

2.1项目化教学目标的分析

根据项目化教学要求,以社会就业行业和岗位需求为导向,通过对独立学院往届电信和通信相关专业的毕业生及其就业单位企业、工作需求市场进行调研,分析其就业岗位,总结出主要的职业岗位群;然后通过分析各种岗位群对模电课程相关内容的要求,确立独立学院模拟电子技术课程的知识要求、能力要求及素质目标。

2.2项目化教学理念与思路的确立

根据项目化教学要求,以生活中具体的电路产品为载体,探索基于工作过程的课程开发与设计,通过分析真实产品的生产流程,以培养学生的实践技能为主线,以职业资格标准为参照来开发和设计模拟电子技术项目化教学中合适的项目,实施行动导向的项目式教学方法,使学生在获取知识、提高实践能力的同时,获得再学习能力和职业技术能力。

2.3项目化教学课程内容新体系的构建

模拟电子技术项目化教学中,课程内容和体系改革是课程建设的核心。本课程在进行教学的时候,应考虑哪些知识是进行项目所需的基础,或者项目进行过程中关键点所在。课程内容选取遵循独立学院教育的基本规律,基于行动优先原则,针对独立学院电信和通信类专业培养目标及学生就业岗位需求,以职业能力培养为重点,根据职业岗位的任职要求,构建新的教学做一体化课程内容体系。根据课程教学的需要,将教学内容划分为两个大的模块。基础模块:包括基本器件和基本放大电路。在教学过程中,突出应用,以电子产品实例为载体,使学生掌握模电基本知识点、基本放大电路的分析和设计方法。这个模块应该强调基础,支撑后续课程的学习,培养学生的学习兴趣。实用模块:包括集成运放电路和应用模块。通过该模块的学习,基本掌握实用模拟电子系统分析、计算、调试、检测、设计的能力。教学过程中知识应该精炼,教学内容及时更新,尽量与实际岗位工作要求相符,更好地培养学生的应用能力和实践能力。

2.4项目化教学方法与手段的设计

对课程进行基于行动导向的教学改革与实践。实践课程中选取多个项目,根据项目重新整理课程内容,将原模拟电子技术课程理论教学与实践教学有机融合到这些制作项目中,通过完成产品组件的分析、制作与调试等综合性学习任务,使教学内容更加丰富、直观,更加贴近工程实际。理论教学主要采用以下方式:(1)“精讲+演示”的教学方式,通过各个具体项目的实物电路呈现,使学生最直观地认识电子产品的设计、制作与调试等相关知识,通过应用实例启发学生兴趣、举一反三。(2)根据学习情境和教学对象的特点,灵活运用基于行动导向的多种教学方法,通过多媒体课件、动画演示、课程学习网站及基于Protel、Proteus、EWB、Multisim的软件测试等多种现代化教学手段。将传统教学手段与现代教学手段紧密结合,增强教学内容的动感和趣味性,从而实现更生动的教学模式。(3)引导学生使用相关软件工具分析和设计电子电路、重视课后答疑并及时组织习题讨论课,引导学生进行研究性的学习,鼓励学生大胆提出问题、研究解决问题的途径和方法。实践教学主要采用以下方式: