在线客服

微波通信技术论文实用13篇

引论:我们为您整理了13篇微波通信技术论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

微波通信技术论文

篇1

1.2SDH微波通信概述

SDH微波通信传输线路是由一条主干线与若干分支组成[4]。为了更好地和现有光纤传输网络予以融合,还需要对新型微波设备予以改进。不管是设备功能、体积,还是组网方式、技术性能,均要跟随通信技术的发展趋势,进行多层面的融合。其融合主要包括以下内容:一是技术融合:利用一个硬件平台融合PDH微波通信与SDH微波通信,在软件控制下实现空中接口,保证在硬件设备没有更新的情况下,实现空中接口容量的更改,只要通过软件操作就可以设置成功,极大地节约了硬件设备升级成本[5]。二是设备融合:将原有的室内单元(IDU)、数字配线架(DDF)、分插复用器(ADM)等功能予以融合,全部融入到IDU中。如图2所示,在此IDU中,不仅具有连接天馈线的中频接口,还有连接光纤传输设备的STM-N光纤接口,同时还可以直接开展FE、E1等业务,各个接口之间可以通过IDU的统一集成进行业务调度。如果重新组合IDU业务板件,还可以形成树型、星型、链型、环型等复杂网络结构。在微波系统退出网络之后,IDU依然能够继续充当光纤传输的MADM设备,展开相应的通信。在某种程度上而言,高度集成的IDU可以用新型交叉连接代替原来的转接电缆,为系统的调试与维护提供了很大的便利条件。

2新型微波通信的关键技术

2.1编码

自适应调制编码(AMC)在移动通信中得到了广泛应用,根据信道质量对编码速率予以调整,以此来获取较高的吞吐量。当无线通信速率比较低的时候,信道估计相对准确,AMC的应用效果较好。随着终端移动速度的不断加快,信道质量已经无法满足信道的变化,在信道测量错误的情况下,导致AMC调制编码方式和实际情况不相同,影响了系统容量、吞吐量等性能指标,值得相关人员进行深入研究。

2.2多天线技术

在微波中继通信系统中,分集接收得到了广泛应用,是对抗多径衰落以及增强数字微波传输质量的主要途径。在SDH微波通信系统中,因为多状态调制方式的运用,使得其对频率选择性衰落更加敏感,所以,为分集接收的普遍应用创造了有利条件。分集技术就是为了削弱多径衰落与降雨衰落的干扰,对不同的特性收信信号予以合成或者切换,从而得到良好信号的技术。在微波中继通信系统中,分集技术主要包括四种:路由分集、角度分集、空间分集、频率分集[7]。在移动通信中,MIMO技术得到了普遍应用,其是在发送端与接收端借助天线传输无线信号的一种技术,属于一种智能天线。MIMO技术主要就是将用户数据分解成若干并行数据流,在指定的宽带内由多个发射天线同时发射,经过无线信道之后,由多个接收天线予以接收,结合各并行数据流的空间特征,对原有数据流予以解调。MIMO技术的核心内容就是空时信号的处理,也就是借助空间天线对时间域、空间域信号进行处理。MIMO技术可以有效提高频谱利用率,在无线频带有限的条件下,获取更高的传输速率,达到预期的业务效果。

篇2

1.引言

LMDS( Local Multipoint Distribution Services )本地多点分配业务系统工作在20-40 GHz 频段上的点对多点数字微波通信技术,适用于城域接入网的本地宽带业务传输和接入,基站典型覆盖半径为3-5km,每个基站可支持数百个端站,按用户的需求动态分配带宽,每个端站最高带宽可达 8-16Mb/s,可捆绑各种宽、窄带业务,支持数据、话音、视频、Internet,LMDS技术的成熟与完善,长期困扰运营商的接入网“瓶颈”问题便迎刃而解。

2.LMDS系统的构成

LMDS宽带无线接入网络主要包括下列组成部分:

·数字基站(DBS): 做为集中器,发送并接收所有用户业务。核心功能在于对RF信号的调制/解调,同时完成无线用户的汇聚,并与骨干网的连接。

·无线基站(RBS): 结构紧凑的室外单元,传输RF信号至扇型天线,IF信号至DBS。一般情况下,基站包括多个RBS,每个RBS提供一个扇区的容量及覆盖。RBS安装于铁塔或房顶。

·无线端站(RT):安装于用户端,墙面或抱杆安装,环境适应力强。包括设计非常紧凑的收发信单元及集成天线,与NT传输IF信号,由NT供电。

·网络终端(NT):室内单元,提供1个多个终端接口,可与用户直接连接,或与用户端集中设备相连(如Routers/多业务交换机、ADSM mux、VPN hub,或PBX)。核心功能在于对RF信号的调制/解调。可固定在机架,或桌面放置。

·网络及业务管理:对骨干网设备、基站、端站,即有线和无线系统所有的操作维护进行管理。提供业界功能最强大的管理系统,包括简单易用的完全图形接口,方便的路径及配置管理,良好的路由选择及恢复功能,超强的可扩展性及灵活性。

1-1 LMDS典型网络结构[1]

3.LMDS宽带无线接入网络应用举例。

LMDS是一个可以综合租用线、交换话音、ISDN和基于IP业务的多业务平台。本节将描述租用线业务的主要应用及相应的典型网络配置作为典型应用:

PBX 互连

数据租用线业务,通过集中器、FRAD(帧中继)、网桥或路由器提供广域网连接

租用线业务提供端站与基站之间 E1/T1 或 分档E1/T1 的透明传输。系统汇聚业务通过TDM E1/T1电路接口或DBS ATM接口传输至骨干网。所有配置和路径管理,包括无线资源的分配均由网管系统完成。

2-1租用线业务[1]

3.LMDS系统雨衰的影响。论文格式。论文格式。

LMDS使用约30GHz的频段作为传输媒介,这是因为微米波的波长与雨点的直径在同一数量级,因此抗雨衰性能差。通信质量受雨、雪等天气影响较大。雨衰影响是LMDS系统设计必须予以考虑的重要因素。

国际电信联盟对降雨的影响已进行了深入研究,在ITU-RP.837建议中,将地球分为15个降雨气候区,分别以大写字母A到Q来表示,每一降雨区是以与它相关的降雨强度统计来表证,并给出了对应不同降雨强度所发生的时间概率。遵照ITU-R P.838建议,可以针对工作频率、极化和降雨率计算比衰减(dB/Km)和有效路径长度(这是考虑到在整个传输段长度上降雨强度不是均匀分布的缘故),进而可以针对衰落储备值Ft计算出在一定传输距离下,降雨衰减超出Ft的时间百分数P,或反之,根据雨衰特性及Ft求出在保证P值一定的情况下可用的通信距离是多少。必要时,还可以根据在ITU-R P.841建议,从长期百分数P变换到最坏月份百分数Pu。在考虑LMDS因雨衰引起的不可用性指标时,时间百分数Pu即为不可用性指标。[2]

系统抗雨衰性能

系统增益

nA7390收发信机性能优异,在BER=10-6时上下行门限接收电平值可达到-83dBm和-81dBm,由于MII行业标准( -82dBm和-76dBm )。

n采用标准天线时,系统增益达148dB;高增益天线,达160dB。

自动增益控制(ATPC)性能

n为了满足不同通信距离和不同地区降雨率减对发射功率的要求,A7390 LMDS系统支持自动发射功率控制(ATPC)功能。

ATPC调整速度

nA7390 LMDS系统在上行链路实施ATPC,保证系统工作在理想的C/N指标。论文格式。ATPC动态范围为40dB(MII要求为35dB)。

nATPC工作方式:慢环路调整、快环路调整。

n快环路调整时,速度高于1000dB/s(MII要求为20dB/S)。

参考文献:

[1] 宽带无线接入解决方案 ,A7390 LMDS,Mobil Network Division, Fixed Wireless BU,Harry - August, 2003 。上海贝尔内部资料。

篇3

1通信系统传输手段

电缆通信:双绞线、同轴电缆等。市话和长途通信。调制方式:SSB/FDM。基于同轴的PCM时分多路数字基带传输技术。光纤将逐渐取代同轴。

微波中继通信:比较同轴,易架设、投资小、周期短。模拟电话微波通信主要采用SSB/FM/FDM调制,通信容量6000路/频道。数字微波采用BPSK、QPSK及QAM调制技术。采用64QAM、256QAM等多电平调制技术提高微波通信容量,可在40M频道内传送1920~7680路PCM数字电话。

光纤通信:光纤通信是利用激光在光纤中长距离传输的特性进行的,具有通信容量大、通信距离长及抗干扰性强的特点。目前用于本地、长途、干线传输,并逐渐发展用户光纤通信网。目前基于长波激光器和单模光纤,每路光纤通话路数超过万门,光纤本身的通信纤力非常巨大。几十年来,光纤通信技术发展迅速,并有各种设备应用,接入设备、光电转换设备、传输设备、交换设备、网络设备等。光纤通信设备有光电转换单元和数字信号处理单元两部分组成。

卫星通信:通信距离远、传输容量大、覆盖面积大、不受地域限制及高可靠性。目前,成熟技术使用模拟调制、频分多路及频分多址。数字卫星通信采用数字调制、时分多路及时分多址。

移动通信:GSM、CDMA。数字移动通信关键技术:调制技术、纠错编码和数字话音编码。

2数据通信的构成原理

数据终端(DTE)有分组型终端(PT)和非分组型终端(NPT)两大类。分组型终端有计算机、数字传真机、智能用户电报终端(TeLetex)、用户分组装拆设备(PAD)、用户分组交换机、专用电话交换机(PABX)、可视图文接入设备(VAP)、局域网(LAN)等各种专用终端设备;非分组型终端有个人计算机终端、可视图文终端、用户电报终端等各种专用终端。数据电路由传输信道和数据电路终端设备(DCE)组成,如果传输信道为模拟信道,DCE通常就是调制解调器(MODEM),它的作用是进行模拟信号和数字信号的转换;如果传输信道为数字信道,DCE的作用是实现信号码型与电平的转换,以及线路接续控制等。传输信道除有模拟和数字的区分外,还有有线信道与无线信道、专用线路与交换网线路之分。交换网线路要通过呼叫过程建立连接,通信结束后再拆除;专线连接由于是固定连接就无需上述的呼叫建立与拆线过程。计算机系统中的通信控制器用于管理与数据终端相连接的所有通信线路。中央处理器用来处理由数据终端设备输入的数据。

3数据通信的分类

3.1有线数据通信

数字数据网(DDN)。数字数据网由用户环路、DDN节点、数字信道和网络控制管理中心组成。DDN是利用光纤或数字微波、卫星等数字信道和数字交叉复用设备组成的数字数据传输网。也可以说DDN是把数据通信技术、数字通信技术、光迁通信技术以及数字交叉连接技术结合在一起的数字通信网络。数字信道应包括用户到网络的连接线路,即用户环路的传输也应该是数字的,但实际上也有普通电缆和双绞线,但传输质量不如前。

分组交换网。分组交换网(PSPDN)是以CCITTX.25建议为基础的,所以又称为X.25网。它是采用存储——转发方式,将用户送来的报文分成具用一定长度的数据段,并在每个数据段上加上控制信息,构成一个带有地址的分组组合群体,在网上传输。分组交换网最突出的优点是在一条电路上同时可开放多条虚通路,为多个用户同时使用,网络具有动态路由选择功能和先进的误码检错功能,但网络性能较差。

帧中继网。帧中继网络通常由帧中继存取设备、帧中继交换设备和公共帧中继服务网3部分组成。帧中继网是从分组交换技术发展起来的。帧中继技术是把不同长度的用户数据组均包封在较大的帧中继帧内,加上寻址和控制信息后在网上传输。

3.2无线数据通信

无线数据通信也称移动数据通信,它是在有线数据通信的基础上发展起来的。有线数据通信依赖于有线传输,因此只适合于固定终端与计算机或计算机之间的通信。而移动数据通信是通过无线电波的传播来传送数据的,因而有可能实现移动状态下的移动通信。狭义地说,移动数据通信就是计算机间或计算机与人之间的无线通信。它通过与有线数据网互联,把有线数据网路的应用扩展到移动和便携用户

4.1计算机网络

计算机网络(ComputerNetwork),就是通过光缆、双绞电话线或有、无线信道将两台以上计算机互联的集合。通过网络各用户可实现网络资源共享,如文档、程序、打印机和调制解调器等。计算机网络按地理位置划分,可分为网际网、广域网、城域网、和局域网四种。Internet是世界上最大的网际网;广域网一般指连接一个国家内各个地区的网络。广域网一般分布距离在100-1000公里之间;城域网又称为都市网,它的覆盖范围一般为一个城市,方圆不超过10-100公里;局域网的地理分布则相对较小,如一栋建筑物,或一个单位、一所学校,甚至一个大房间等。

局域网是目前使用最多的计算机网络,一个单位可使用多个局域网,如财务部门使用局域网来管理财务帐目,劳动人事部门使用局域网来管理人事档案、各种人才信息等等。

4.2网络协议

网络协议是两台计算机之间进行网络对话所使用的语言,网络协议很多,有面向字符的协议、面向比特的协议,还有面向字节计数的协议,但最常用的是TCP/IP协议。它适用于由许多LAN组成的大型网络和不需要路由选择的小型网络。TCP/IP协议的特点是具有开放体系结构,并且非常容易管理。

TCP/IP实际上是一种标准网络协议,是有关协议的集合,它包括传输控制协议(TransportControlProtocol)和因特网协议(InternetProtocol)。TCP协议用于在应用程序之间传送数据,IP协议用于在程序与主机之间传送数据。由于TCP/IP具有跨平台性,现已成为Internet的标准连接协议。网络协议分为如下四层:网络接口层:负责接收和发送物理帧;网络层:负责相邻节点之间的通信;传输层:负责起点到终端的通信;应用层:提供诸如文件传输、电子邮件等应用程序要把数据以TCP/IP协议方式从一台计算机传送到另一台计算机,数据需经过上述四层通信软件的处理才能在物理网络中传输。

篇4

    一、电子通信系统概述

    电子通信技术属于现代通信技术中的一大部分。电子通信技术还是信息社会的主要支柱,是现代高新技术的重要组成部分,甚至是国家国民经济的神经系统和命脉。在现代化信息社会,电子通信技术无处不在,它涉及的范围也很广,包括移动电信、广播电视、雷达、声纳、导航、遥控与遥测以及遥感等领域,还有军事和国民经济各部门的各种信息系统都要运用到电子通信技术。

    电子通信系统中最具代表性也最常见的就是移动通信和卫星通信。其中移动通信就包括了卫星通信,此外还有蜂窝系统、集群系统、分组无线网、无绳电话系统、无线电传呼系统等多个领域。

    二、电子通信系统关键技术问题

    近几年来,电子通信技术应用十分广泛,就其最具代表性的移动通信和卫星通信来看,就存在很多关键性的技术问题,有待加强和改善。移动通信技术在电子通信技术中发展范围最大最迅速,传统的蜂窝通信因为可用无线频谱资源的增加和无线信号的衰弱而变得越来越受局限。不断缩小的小区半径代表着基站的密度也在不断增加。除此之外,频繁的越区切换导致空中资源的浪费和频谱效率降低,这也使得网络建设的成本也是越来越高。从以上各种因素可以看出,要想获得更高的频谱效率和更大更充足的系统容量,就应该突破传统蜂窝体制,应用新的移动通信技术。

    1、移动通信系统关键技术问题

    在移动通信系统中采用分布式天线是很有效也很成功的一种方式,每个小区内都有很多个无线信号处理单元,这些单元距离都比载波波长要远得多,并且它们都能进行功放变频和信号预处理。要在核心处理单元实现信号处理的功能,首先就要完成信号的收发功能和一些简单的信号预处理,然后就要与核心处理单元连接,通过光纤和同轴电缆或微波无线信道来实现。有两种方式可以实现分布式移动通信,第一种就是在所有的无线信号处理单元上所有相同的下行链路信号同时发射,然后小区内的无线信号处理单元接收到上行链路信号之后直接传送到中心处理单元。这种方案优点是简单,缺点则是会不断干扰系统,阻碍了系统容量的扩大。第二种方式则是在整个业务区域内完成无线覆盖的分布式天线结构,通过用大量的无线信号处理单元来实现,从而突破传统蜂窝小区的理念。这种方式也可称之为“受控天线子系统”,即“仅与移动台相近的信号处理单元负责与移动台进行通信”的方式。第二种较之第一种更理想,但同时它也更复杂。

    分布式移动通信较传统的移动通信技术有几点优势,第一是小区间干扰低、SIR高且系统容量大,第二是它内部的分集能力不仅能用来抵抗阴影效应,还能够保证不衰落和扩大系统的容量。第三是它能全面提高其自身切换性能和接受信号的功率,还能降低其切换次数。第四是它对其他通信系统的干扰小并且在相同发射功率下覆盖的区域更大,反之其发射功率更低。第五是它不仅能更方便快捷地实现任意形状的无线业务服务区,还能核心处理单元集中处理信号。更能有效利用无线资源。

    子通信系统分为5层:应用层、驱动层、传输层、数据链路层和物理层。这5层之间功能划分应明确,接口应简单,从而为硬软件的设计实现奠定良好的基础:应用层是通信系统的最高层次,它实现通信系统管理功能(如初始化、维护、重构等)和解释功能(如描述数据交换的含义、有效性、范围、格式等)。驱动层是应用层与底层的软件接口。为实现应用层的管理功能,驱动层应能控制子系统内多路传输总线接口(简称MBI)的初始化、启动、停止、连接、断开、启动其自测试,监控其工作状态,控制其和子系统主机的数据交换。传输层控制多路传输总线上的数据传输,传输层的任务包括信息处理、通道切换、同步管理等。数据链路层按照MIL—STD一1553B规定。控制总线上各条消息的传输序列。物理层按照MIL—STD一1553B规定,处理1553B总线物理介质上的位流传输。应用层、驱动层在各个子系统主机上实现,传输层、数据链路层、物理层在MBI上实现。

    2、卫星通信系统关键技术问题

    卫星通信在电子通信技术中最为先进,它也有很大的优势,包括通信距离远并且容量大,通信线路质量稳定可靠以及机动性能优越和灵活地组网等这些都是别的技术没有的特点。但随着不断快速发展的全球信息化产业,人们对信息的需求也越来越复杂多样,电子通信技术已进入高速、多媒体、业务多样化和可移动的个性化时代。

    目前的卫星通信的一些关键技术也存在一些问题,它包括高速数据的业务需求。以及卫星通信应用宽带IP的难点。现代卫星通信技术采用一些关键技术来解决问题,一个就是数据压缩技术,它能让静态和动态的数据压缩都能有效提高通信系统在时间、频带、能量上的工作效率;第二个就是智能卫星天线系统;第三个就是宽带IP卫星通信技术的研究;第四个就是新型高效的数字调制及信道编码技术;第五个就是多址连接技术的改进和发展;第六个就是卫星激光通信技术。

    未来的卫星通信数据率会通过激光通信来实现,激光的优势会在互联卫星网中得到充分发挥,因为在那里经常会应用到激光通信技术,它在外层空间进行,所以不会受到大气层的影响。还可以利用“星际激光链路”技术来缩短全球卫星通信中的“双跳”法的信号时长。有专家提出“在卫星激光通信在比微波通信数据速率高一个数量级的理想情况下,天线孔径尺寸会比微波通信卫星减小一个数量级”的观点。那么如果在空间无线电通信中以激光作为载体来进行工作和运行未来的卫星之间进行激光通信是很有前途的。

    总而言之,电子通信系统在这个信息化时代无处不在。在电子通信系统中范围最广最常见的就是移动通信技术和卫星通信技术,移动通信技术体现在日常的电视广播网络等各种电子传输工具上,而卫星通信系统则运用在比较大型的工程上。电子通信系统的发达和完善与否直接决定了一个国家和社会的强弱,所以对其关键技术问题的分析和研究是很有必要的,掌握了其关键技术就能很好地运用和完善它。

    参考文献

    [1]刘旭东,卫星通信技术[M].北京:国防工业出版社,2000

篇5

电力通信网是为了保证电力系统的安全稳定运行应运而生的。它同电力系统的安全稳定控制系统、调度自动化系统被人们合称为电力系统安全稳定运行的三大支柱。我国的电力通信网经过几十年风风雨雨的建设,已经初具规模,通过卫星、微波、载波、光缆等多种通信手段构建而成为立体交叉通信网。随着无线通信技术的发展,无线通信系统的特性发生巨大的变化。鉴于采用无线通信网不依赖于电网网架,且抗自然灾害能力较强,同时具有带宽大、传输距离远、非视距传输等优点,非常适合弥补目前通信方式的单一化、覆盖面不全的缺陷。本文简单介绍一下无线通信传输体制的应用特点和优缺点,并分析其在电力系统的应用前景。

二、无线技术介绍

(一)无线通信技术的概念

目前,无线通信及其应用已成为当今信息科学技术最活跃的研究领域之一。其一般由无线基站、无线终端及应用管理服务器等组成。

(二)无线通信技术的发展现状

无线通信技术按照传输距离大致可以分为以下四种技术,即基于IEEE802.15的无线个域网(WPAN)、基于IEEE802.11的无线局域网(WLAN)、基于IEEE802.16的无线城域网(WMAN)及基于IEEE802.20的无线广域网(WWAN)。

总的来说,长距离无线接入技术的代表为:GSM、GPRS、3G;短距离无线接入技术的代表则包括:WLAN、UWB等。按照移动性又可以分为移动接入和固定接入。其中固定无线接入技术主要有:3.5GHz无线接入(MMDS)、本地多点分配业务(LMDS)、802.16d;移动无线接入技术主要包括:基于802.15的WPAN、基于802.11的WLAN、基于802.16e的WiMAX、基于802.20的WWAN。按照带宽则又可分为窄带无线接入和宽带无线接入。其中宽带无线接入技术的代表有3G、LMDS、WiMAX;窄带无线接入技术的代表有第一代和第二代蜂窝移动通信系统。

1.主流无线通信技术

从技术发展的趋势可以看出,以OFDM+MIMO为核心的无线通信技术将成为未来无线通信发展的主流方向。而目前基于该技术的无线通信技术主要有:B3G、WiMAX、WiFi、WMN等4种技术。

2.其他无线通信技术

除了上述主流的无线通信技术外,目前已存在的无线通信技术还包括:IrDA、Bluetooth、RFID、UWB、集群通信等短距离通信技术及LMDS、MMDS、点对点微波、卫星通信等长距离通信技术。

(1)IrDA:InfraredDataAssociation,是点对点的数据传输协议,通信距离一般在0~1m之间,传输速率最快可达16Mbps,通信介质为波长900纳米左右的近红外线。

(2)Bluetooth:Bluetooth工作在全球开放的2.4GHzISM频段,使用跳频频谱扩展技术,通信介质为2.402GHz到2.480GHz的电磁波。

(3)RFID:RadioFrequencyIdentification,即射频识别,俗称电子标签。它是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关数据。RFID由标签、解读器和天线三个基本要素组成。

(4)UWB:UltraWideband,即超宽带技术。UWB通信又被称为是无载波的基带通信,几乎是全数字通信系统,所需要的射频和微波器件很少,因此可以减小系统的复杂性,降低成本。

三、无线技术优劣分析

(一)WLAN技术分析

Wi-Fi的技术和产品已经相当成熟,而且大批量生产。该技术适用于无线局域网,作为有线网络的延伸,对于特殊地点宽带应用,尽管Wi-Fi技术应用非常广泛,但是它依然在安全性上存在一定的安全隐患,Wi-Fi采用的是射频(RF)技术,通过空气发送和接收数据。由于无线网络使用无线电波传输数据信号,所以非常容易受到来自外界的攻击,黑客可以比较轻易地在电波的覆盖范围内盗取数据甚至进入未受保护的公司内部局域网。

(二)WiMax技术分析

WiMax是一个先进的技术,推出相对较晚,存在频率复用性小、利用率低的问题,但由于最近才完成标准化,该技术的大规模推广还需要实践考验。从应用前景看,该技术可以在较大范围内满足上网要求,覆盖可以包括室外和室内,可以进行大面积的信号覆盖,甚至只要少数基站就可以实现全城覆盖。WiMax由于其技术的先进性和超远的传输距离,一直被业界看好,是未来移动技术的发展方向,并提供优良的最后一公里网络接入服务。

(三)WMN技术分析

WMN是正在研究中的技术,在研究中不断地在不同方面结合各种技术的特点进行融合,而且暂时没有一个成熟的产品系列来支持该技术的大规模应用。从应用前景看,WMN这一新兴网络不仅在无线宽带接入中有着广阔的应用空间,在其他方面如结合数据、图像采集模块可以对目标对象进行监控或数据采集,并广泛应用到环境检测、工业、交通等领域。随着其他技术的不断更新完善,WMN更好地与之相融合、互补,从而能够扬长避短,发挥出各自的优势。

(四)3G技术分析

3G于1996年提出标准,2000年完成包括上层协议在内的完整标准的制订工作。3G网络部署已具备相当的实践经验,有一成套建网的理论,包括对网络的链路预算、传播模型预算以及计算机仿真等。从商用前景看,目前,3G在部分地区已得到大规模的商业应用,比如欧洲很多国家、日本、韩国等都已经建设了3G的网络。3G技术已经进入可以实用的阶段,还有很多国家和地区正在建设或将要建设3G网络。

(五)LMDS技术分析

本地多点分布业务系统LMDS是一种提供点对多点通信的固定宽带无线接入技术,其工作频率在20GHZ以上,利用毫米波传输,可在一定的范围内提供数字双工语音、数据、因特网和视频业务,是一种非常好的宽带固定无线接入解决方案。在最优情况下,距离可达8公里;但是由于受降雨的原因,距离通常限于1.5公里。

其主要工作原理是通过扇区或基站设备将ATM骨干网基带信息调制为射频信号发射出去,在其覆盖区域内的许多用户端设备接收并将射频信号还原为ATM基带信号,在无需为每个用户专门铺设光纤或铜缆情况下,实现数据双向对称高带宽无线传输。

(六)MMDS技术分析

MMDS的主要缺点是有阻塞问题且信号质量易受天气变化的影响,可用频带亦不够宽,最多不超过200MHz。其次,MMDS对传输路径要求非常严格。由于MMDS采用的调制技术主要是相移键控PSK(包括BPSK、DQPSK、QPSK等)和正交幅度调制QAM调制技术,无法做到非视距传输,在目前复杂的城市环境下难以推广应用。另外,MMDS没有统一的国际标准,各厂家的设备存在兼容性问题。中国-七)集群通信技术分析

数字集群系统具有很多优点,它的频谱利用率有很大提高,可进一步提高集群系统的用户容量;它提高了信号抗信道衰落的能力,使无线传输质量变好;由于使用了发展成熟的数字加密理论和实用技术,所以对数字系统来说,保密性也有很大改善。

数字集群移动通信系统可提供多业务服务,也就是说除数字语音信号外,还可以传输用户数字、图像信息等。由于网内传输的是统一的数字信号,因此极大地提高了集群网的服务功能。

(八)点对点微波通信技术分析

微波传输的优势主要体现在以下几个方面:第一,可以降低运营商的运营成本。与租用线路相比,微波系统的投资只要一年左右即可收回。第二,微波传输系统部署简洁快速。与传统的传输手段相比,其快速部署的优势可以更快地满足新业务发展的需要。第三,目前的微波产品对未来的发展是有保障的,对于运营商的新业务和新需求都可以给予很好的支撑。未来,微波传输系统将升级到全IP的平台之上,可以全面支持运营商未来的发展。

(九)卫星通信技术分析

利用卫星在有些人口不很密集的地区来配合陆地通信。在这些地区散布着范围较广但不密集的用户,可以利用卫星作为用户连至固定有线网的接入设施。在陆地通信网已经构成宽带多媒体通信网的环境下,利用卫星建成宽带卫星接入系统是比较好而切合实际的方案,经济又可靠。

但是卫星通信毕竟是采用卫星作为通信平台,其地面站的建设、通信信道租用费用都需要花费大量资金,而且通信资源为卫星通信公司所有,受其带宽的限制,使得大量数据的传输需要付出非常大的代价。因此,作为日常生产、生活使用是极为不经济的;而将卫星通信作为应急通信、作战通信、海外通信等则比较适合。

四、无线技术综合比较

目前无线通信领域各种技术的互补性日趋鲜明。这主要表现在不同的接入技术具有不同的覆盖范围、不同的适用区域、不同的技术特点、不同的接入速率。3G可解决广域无缝覆盖和强漫游的移动性需求,WLAN可解决中距离的较高速数据接入,而UWB可实现近距离的超高速无线接入。

首先,从标准化程度上看,本报告所涉及的技术中,仅仅WMN技术没有成熟的标准体系,LMDS、MMDS、集群通信均有多种标准,只是没有统一的国际标准,其余的技术均已经完成标准化工作,并且都进行了试验网建设和商业网建设。

从频率上看,Wi-Fi技术、WMN均使用的是开放频段,WiMax技术、3G技术等其他技术使用的是授权频段。

从覆盖范围上看,Wi-Fi技术、WMN技术属于局域网无线接入技术,仅覆盖35m~100m;WiMax技术、3G技术、LMDS技术、MMDS技术、集群通信属于城域网接入技术,覆盖范围在1km~54km不等,而卫星通信、点对点微波则属于广域网技术,通常用于通信主干组网建设。

从传输速率上看,点对点微波和卫星通信属于干线传输技术,不同的情况速率变化较大,而其余的技术均为接入技术,仅仅是3G技术接入速率最小,仅为384k,而其余技术均为几十M甚至上百M的速率。

从调制技术上看,其中WiFi技术、WiMax技术、WMN、3G技术均采用最新的调制技术OFDM,其余的技术均未采用OFDM调制技术。

篇6

目前对于通信技术的学习主要是侧重于讲述某一特定技术,如:程控交换、光纤通信、微波技术、移动通信、接入技术、通信网等,学生很难由此建立起通信的整体概念。本研究项目从全局出发,优化课程体系,从全程全网的角度讲述各类通信技术,对所涉及的通信技术进行详细的讨论,构建具有科学性、准确性、系统性、完整性、新颖性和实用性的知识结构和内容体系,主要内容包括现代通信的概念和发展概况,通信业务与通信终端,通信传输系统,通信交换系统,通信网和新一代通信技术。不仅使学生在全程全网概念的基础上学习到各类通信技术知识,还强调工程方法论的学习,培养学生掌握科学的研究方法和迅速学习新技术的能力。

面向网络时代飞速发展的通信领域人才需求,研究、设计并实现一个有利于培养学生全程全网概念和具有现代通信技术基本素质、有利于鼓励学生自主思维和努力创新的教学平台,以体现现代通信与全程全网教学的整体内涵,体现课堂教学与实验教学的有机融合,体现培养模式的优化为研究目的。最终办出信息与通信工程类专业的特色,培养出高素质的应用型IT技术人才。

一、构建完整的“现代通信技术”课程体系,培养创新型、应用型通信工程专门人才

1.指导原则

以全面提高素质为根本,以建立宽厚的知识平台为基础,以培养创新能力、实践能力和科学综合能力为核心,以教学内容和课程体系的改革为重点,以教育模式和教学方法的改革为保障。

培养目标:培养在信息科学技术领域内具有创新精神、实践能力、全面素质的宽口径专门人才,能从事信息科技领域的研究、设计、制造、运行维护和经济管理等工作。

2.培养规格多样化

以培养工程技术型和应用型人才为主,兼顾经营管理型的有信息工程背景的复合型人才。

3.培养模式

实行面向创新的系统理论教学和面向创新的系统实践训练相结合。实行柔性培养计划和个性化教学,加大选修课比例,适应不同规格、不同爱好的人才的培养。我们同深圳润天智图像技术有限公司合作,采用“3+1”的人才培养模式,为企业实现订单式培养,第一批20名学生已于2008年7月毕业,其中70%的学生经过双向选择留在这家企业工作。并受到用人单位的好评。2008年我们又与冠捷科技集团武汉分公司合作开展人才培养的工作,选拔学生参加了冠捷公司有关液晶显示器的生产、调试、研发工作,提出学校与企业相结合的“系统创新训练”方案,均取得良好效果。目前,冠捷显示科技有限公司已吸纳我校多名学生就业。其中一名毕业生在该公司已担任总工程师,在该公司工作的许多学生均受到好评。

4.特色定位

随着互联网的普及,通信网络所承载的业务也从传统的以语音业务为主发展到多种不同带宽需求的业务并存,网络结构日益扁平化、IP化,各种现代通信技术发展迅速,其生命周期也长短不一,因此在通信工程人才培养方案中,除了设置各门专业基础课和专业课外,我们还系统地安排了能够反映目前主流通信技术的发展方向的选修课和技术讲座,对NGN、软交换、IMS、IPV6、第三代、第四代移动通信技术、ASON、OTN、G-PON等在现有通信网中逐渐应用甚至已成为主流的新技术进行全面的介绍。通过对电信行业发展深入细致的调查了解,我们认识到:经过十多年的电信业改革,我国的电信市场运营已经从一家垄断到了全行业充分竞争的市场格局。各运营商之间为争夺客户,获取更高的市场份额,在市场营销方面各展拳脚,客户不断被细分,差异化服务日趋明显,多种针对性强的业务不断推出。而通信工程专业的课程设置一向重技术轻业务、轻经营,而目前专业营销人才是我国电信业最需要的人才。因此,我们让学生通过讲座、社会调研、社会实践等形式充分了解目前电信市场的新业务种类和特点、市场竞争态势、主要营销手段及其利弊得失等,使我们的毕业生能够更适应行业的需求。我们与中国电信武汉分公司、武汉电信工程有限公司、湖北电信工程有限公司等单位保持长期的合作关系。聘请了电信工程有限公司有关领导和多名技术人员做我们的校外特聘教授,为学生的实习就业奠定了良好基础。

5.课程体系优化

我们以培养具有创新精神和实践能力的应用型人才为目标,以课程体系和教学内容改革为核心,优化信息通信类课程体系,从全程全网的角度讲述各类通信技术,构建具有系统性、完整性、实用性和新颖性的知识结构和内容体系。不仅使学生在全程全网概念的基础上学习各类通信技术知识,更重要的是培养他们掌握科学的研究方法,成为具备高素质的应用型人才。我们从传授知识、培养能力、提高素质三大目标出发,通过对信息通信类专业现代通信技术相关课程内容的深入研究和改革,结合各门课程教学的特点、难点和需求,建立了当前可实现的“知识平台”,按照整体优化原则调整课程的内外接口,减少交叉重复,精简学时,协调各相关课程内容之间的衔接,充实新内容。我们采用主教材、辅教材、CAI课件、教学仪器、教学实验和课程设计、远程网络课件等综合配套措施,形成了“理论、抽象、设计”三个过程相统一的课程教学体系,保证了教学质量,取得了良好的教学效果。以此为指导思想,我们在2009年完成了信息通信类课程大纲的重新修订工作,2010年完成了课程简介的编写工作。

二、理论联系实际,构建通信技术全程全网实验平台

21世纪的高等教育,教育方式应从应试教育向素质教育转变,人才观念应从单一专业型向复合型、创新型转变。要实现这两种转变,实践教学起着至关重要的作用,它是实现素质教育和创新人才培养目标的重要环节。实验教学相对于理论教学具有实践性、综合性与创新性等特点,在加强对学生的素质教育与创新能力培养方面起着重要的、不可替代的作用。而目前大多数针对信息与通信学科学生开设的实验多为专业基础实验,通信专业实验则较为薄弱,学生的学习范围主要集中在基础理论,对实际的通信设备与通信环境缺乏足够的接触与操作经验。因此建立通信专业实验室,开设通信专业实验,开拓学生视野,增强学生实际经验,提高学生的工程素质,使学生尽可能地不出校门就可以从实用角度理解并掌握通信技术。本成果通过建设一个尽可能覆盖实际通信网环境(包括数据网、电信网、移动网、智能网、接入网、信令网、同步网、传输网)等特点的全程全网通信专业实验室,开设出既与专业知识理论学习相关联,又与实际通信网络及设备相联系的实验课程,创建一个良好新型的具备通信专业特色的实验教学环境,提高实验教学水平,使学生能够通过实验环节,开拓视野,充分发挥主观能动性,理论联系实际,理论和实践有机结合,充分提高综合素质和创新能力,锻炼其组织能力、沟通能力,培养并提高学生的工程素质。

我们建设全程全网的现代通信实验平台的思路是:参考并利用国际国内知名公司以及著名学者所提供的现代通信网络专业实验室建设方案,立足于信息学院学生进行“现代交换”、“现代通信网”、“计算机网络”、“移动通信”、“光纤通信”、“NGN网络”等专业课程的实验教学基本需求,利用有限的经费尽量覆盖从物理层到应用层各个网络层次,从有线到无线、从电到光各种信道方式,从局域网到广域网各种网络形式的宽阔而广泛的实验内容,形成包括数据配置、维护管理、网络数据观测与分析、软件开发、硬件设计、网络设计与建设等基础型、综合设计型、研究探索型3层次专业实验教学模式。在基础型实验中,提供对有关课程的基本原理与基本问题的验证性、探索性实验,帮助学生理解、掌握、验证课程的基本原理、学习课程相关的基本实验方法,探索并找到学习难点的结果和方案;在综合设计型实验中,以Assignment(任务)的形式,由教师提出要求,学生独立完成实验项目的分析、设计、元器件采购、实现、调试、与实验报告撰写等工作,最后由教师验收和评判。在研究探索型实验中,采用Project(项目)的形式,由来自企业界的实际项目,教师科研项目与学生创新基金资助项目的形式确定项目研究方向和研究内容,由几个学生分工协作,每个学生独立承担一部分内容,在教师的指导下共同完成。

目前已建成的全程全网实验室包括:

(1)计算机40套;《通信原理》教学实验设备20套;《移动通信》教学实验设备10套;《光纤通信》教学实验设备10套;《现代通信网》教学实验设备4套;《程控交换》教学实验设备20套。

(2)数字电视系统5套,由视音频A/D,D/A模块,视音频信源编码、解码模块,TS流形成与解复用模块,DVB SPI收发接口等模块组成。

(3)微波设备3套,其中SD3100射频电路实验训练系统,是以300MHz可测量S参数的频率特性测试仪、DDS合成信号发生器、通用计数器和电视(TV)收、发系统为基础,进行射频通信设备及射频电路的实验系统。SD3200微波通信实验训练系统,是以1000MHz TV收发系统,进行图象和话音的微波传输为基础,进行微波通信设备及微波电路和器件的实验系统。可利用网络分析仪、频谱分析仪等测量仪器,开展对微波电路及器件特性参数的测量。SD3300移动通信射频工程实验训练系统,是以800-2500MHz可测量S参数的微波反射计、微波功率计、频谱分析仪、微波合成信号发生器和微波功率信号发生器、通用计数器及通信设备——直放站、干线放大器等为基础,进行移动通信网络优化的试验,同时,提供一套移动通信网络优化工程的实验——室内天线覆盖系统,开展移动通信射频工程的系统实验。SD3400微波中继传输实验训练系统,是以射频/微波TV收发信机和微波中继站组成的微波中继传输系统为基础,进行微波频率中继传输电视信号实验。

(4)接入网设备一套。本接入网实训系统依据实际的宽带接入应用,组织相应的典型设备,包括交换局端的部分设备、线路、以及用户接口设备,从机房、线路、到终端尽可能进行完整展现。

三、利用现代化教学手段提高教学效率

构建全程全网通信实验教学平台的在线系统,制作电子素材库,供学生利用校园网进行学习。充分利用多媒体技术开展基于计算机、网络的通信技术实验研究,精心选择具有代表性的实验,使学生可以通过网络浏览、熟悉和回顾实验内容,尽量利用多媒体方式和网络资源来表达实验内容,将现金、具体的教学手段引入到教学中,是的抽象的概念和理论更形象、生动和直观,提高实验环节的质量和效率。

四、研究的特色和应用情况

1.研究的特色

(1)随着通信技术的发展与社会需求日益多样化,现代通信网正处在变革与发展之中,本教改项目拟在改变以往授课方法,从新的网络构架入手,采用了网络分层的结构(应用层、业务网、传送网和下一代网)来讲述相关通信技术。

(2)根据通信技术类课程特点,从全局出发,对网络分层中所涉及的通信技术进行较详细的论述,目的是使学生建立起全程全网的概念,从而加强学生对现代通信技术的认识和全程全网的了解,在此基础上可根据专业和个人情况,今后就某一个专业技术方向进行更深入的学习。

(3)“全程全网现代通信网络”教学实验平台整合了多种通信技术,以实用设备构建出真实的通信网试验环境,突出通信全程全网的整体性,与课堂学习有机结合,相辅相成,实验内容从简单验证型向自主设计型过渡;实验教材由参考产品手册、资料光盘完成实验指导书的;实验方式以点带面,触类旁通,以专项通信实验促进专业课的学习,使学生有效建立起通信大网络的观念。

2.项目的创新点

(1)实现实验教学理念的改革:改变一成不变的命题式实验方式,结合理工科专业特色,引入现代通信网络中实际应用系统级设备,可实现如下功能:为低年级学生提供认知环境;为中年级学生提供测试环境;为高年级学生及学院老师提供研发环境。

(2)提高学生的理论知识与实践能力:摆脱传统的被动性验证性实验,通过师生们积极主动地设计实验拓扑,搭建实验平台,使理论和实践相结合,更好地掌握通信理论知识及通信业务发展的先进技术。

(3)为教师提供开发测试平台:目前,随着通信设备制造技术的日益成熟,在硬件上,业界的产品都大同小异,现今的重点是在软件和增值服务方面的发展。而“全程全网现代通信”实验平台为教师和学生提供了一个开放的、真实的开发环境和测试环境。

篇7

    光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。

    光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。

    2. 光纤通信技术的特点

    (1) 频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。

    (2) 损耗低,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。

    (3) 抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。

    (4)无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。

    除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。

    3. 光纤通信技术在有线电视网络中的应用

    20世纪90年代以来,我国光通信产业发展极其迅速,特别是广播电视网、电力通信网、电信干线传输网等的急速扩展,促使光纤光缆用量剧增。广电综合信息网规模的扩大和系统复杂程度的增加,全网的管理和维护,设备的故障判定和排除就变得越来越困难。可以采用 SDH +光纤或ATM+光纤组成宽带数字传输系统。该传输网可以采用带有保护功能的环网传输系统,链路传输系统或者组成各种形式的复合网络,可以满足各种综合信息传输。对于电视节目的广播,采用的宽带传输系统可以将主站到地方站的所需数字,通道设置成广播方式,同样的电视节目在各地都可以下载,也可以通过网络管理平台控制不同的站下载不同的电视节目。

    有线电视网络在全国各地已基本形成,在有线电视网络现有的基础上,比较容易地实现宽带多媒体传输网络,因此在目前的情况下,不应完全废除现有的有线电视网,而用少量的投资来完善和改造它,满足人们的目前需要。很多地区的 CATV已经是光纤传输,到用户端也是同轴电缆进入千万家。但是现在建设的CATV 大多是单向传输,上行信号不能在现有的有线电视网中传送。可以通过电信网 PSTN 中语音通道或数据通道形成上行信号的传送,也可以通过语音接入系统来完成。将电话接到各用户,这样各用户间即可以打电话,也可以利用广电自己的综合信息网中的宽带传输系统构成广电网中自己的上行信号的传送,组成了双向应用的Internet网。

    现在光通信网络的容量虽然已经很大, 但还有许多应用能力在闲置, 今后随着社会经济的不断发展, 作为经济发展先导的信息需求也必然不断增长,一定会超过现有网络能力, 推动通信网络的继续发展。因此, 光纤通信技术在应用需求的推动下, 一定不断会有新的发展。

    参考文献:

    [1]王磊,裴丽. 光纤通信的发展现状和未来[J].中国科技信息,2006,(4)

篇8

光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。

光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。

2. 光纤通信技术的特点

(1) 频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。

(2) 损耗低,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。

(3) 抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。

(4)无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。

除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。

3. 光纤通信技术在有线电视网络中的应用

20世纪90年代以来,我国光通信产业发展极其迅速,特别是广播电视网、电力通信网、电信干线传输网等的急速扩展,促使光纤光缆用量剧增。广电综合信息网规模的扩大和系统复杂程度的增加,全网的管理和维护,设备的故障判定和排除就变得越来越困难。可以采用 SDH +光纤或ATM+光纤组成宽带数字传输系统。该传输网可以采用带有保护功能的环网传输系统,链路传输系统或者组成各种形式的复合网络,可以满足各种综合信息传输。对于电视节目的广播,采用的宽带传输系统可以将主站到地方站的所需数字,通道设置成广播方式,同样的电视节目在各地都可以下载,也可以通过网络管理平台控制不同的站下载不同的电视节目。 转贴于

有线电视网络在全国各地已基本形成,在有线电视网络现有的基础上,比较容易地实现宽带多媒体传输网络,因此在目前的情况下,不应完全废除现有的有线电视网,而用少量的投资来完善和改造它,满足人们的目前需要。很多地区的 CATV已经是光纤传输,到用户端也是同轴电缆进入千万家。但是现在建设的CATV 大多是单向传输,上行信号不能在现有的有线电视网中传送。可以通过电信网 PSTN 中语音通道或数据通道形成上行信号的传送,也可以通过语音接入系统来完成。将电话接到各用户,这样各用户间即可以打电话,也可以利用广电自己的综合信息网中的宽带传输系统构成广电网中自己的上行信号的传送,组成了双向应用的Internet网。

现在光通信网络的容量虽然已经很大, 但还有许多应用能力在闲置, 今后随着社会经济的不断发展, 作为经济发展先导的信息需求也必然不断增长,一定会超过现有网络能力, 推动通信网络的继续发展。因此, 光纤通信技术在应用需求的推动下, 一定不断会有新的发展。

参考文献

[1]王磊,裴丽. 光纤通信的发展现状和未来[J].中国科技信息,2006,(4)

[2]何淑贞,王晓梅. 光通信技术的新飞跃[J]. 网络电信,2004,(2)

篇9

在发端输人的信息先调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经信息解调,恢复成原始信息输出。可见,一般的扩频通信系统都要进行3次调制和相应的解调。一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制,以及相应的信息解调、解扩和射频解调。与一般通信系统比较,多了扩频调制和解扩部分。扩频通信应具备如下特征:(1)数字传输方式;(2)传输信号的带宽远大于被传信息带宽;(3)带宽的展宽,是利用与被传信息无关的函数(扩频函数)对被传信息的信元重新进行调制实现的;(4)接收端用相同的扩频函数进行相关解调(解扩),求解出被传信息的数据。用扩频函数(也称伪随机码)调制和对信号相关处理是扩频通信有别于其他通信的两大特点。

二、扩频通信技术的特点

扩频信号是不可预测的、伪随机的宽带信号,其带宽远大于要传输的数据(信息)带宽,同时接收机中必须有与宽带载波同步的副本。扩频系统具有以下特点。

1.抗干扰性强

扩频信号的不可预测性,使扩频系统具有很强的抗干扰能力。干扰者很难通过观察进行干扰,干扰起不了太大作用。扩频通信系统在传输过程中扩展了信号带宽,所以即使信噪比很低,甚至在有用信号功率低于干扰信号功率的情况下,仍能不受干扰、高质量地进行通信,扩展的频谱越宽,其抗干扰性越强。

2.低截获性

扩频信号的功率均匀分布在很宽的频带上,传输信号的功率密度很低,侦察接收机很难监测到,因此扩频通信系统截获概率很低。

3.抗多路径干扰性能好

多路径干扰是电波传播过程中因遇到各种非期望反射体(如电离层、高山、建筑物等)引起的反射或散射,在接收端的这些反射或散射信号与直达路径信号相互干涉而造成的干扰。多路径干扰会严重影响通信。扩频通信系统中增加了扩频调制和解扩过程,利用扩频码序列间的相关特性,在接收端解扩时,从多径信号中分离出最强的有用信号,或将多径信号中的相同码序列信号叠加,这样就可有效消除无线通信中因多径干扰造成的信号衰落现象,使扩频通信系统具有良好的抗多径衰落特性。

4.保密性好

在一定的发射功率下,扩频信号分布在很宽的频带内,无线信道中有用信号功率谱密度极低,这样信号可以在强噪声背景下,甚至在有用信号被噪声淹没的情况下进行可靠通信,使外界很难截获传送的信息,要想进一步检测出信号的特征参数就更难了.所以扩频系统可实现隐蔽通信。同时,对不同用户使用不同码,旁人无法窃听通信,因而扩频系统具有高保密性。

5.易于实现码分多址

在通信系统中,可充分利用在扩频调制中使用的扩频码序列之间良好的自相关特性和互相关特性,接收端利用相关检测技术进行解扩,在分配给不同用户不同码型的情况下,系统可以区分不同用户的信号,这样同一频带上许多用户可以同时通话而互不干扰。三、扩频技术的发展与应用

在过去由于技术的限制,人们一直在走增加信号功率,减少噪声,提高信噪比的道路。即使到了70年代,伪码技术已经出现,但作为相关器的“码环”的钟频只能做到几千赫兹也无助于事.近几年,由于大规模集成电路的发展,几十兆赫兹,甚至几百兆赫兹的伪码发生器及其相关部件都已成为现实,扩频通信获得极其迅速的发展.通信的发展史又到了一个转折点,由用信噪比换带宽的年代进入了用宽带换信噪比的年代.从最佳通信系统的角度看扩频通信.最佳通信系统一最佳发射机+最佳接收机.几十年来,最佳接收理论已经很成熟,但最佳发射问题一直没有很好解决,伪码扩频是一种最佳的信号形式和调制制度,构成了最佳发射机.因此,有了最佳通信系统一伪码扩频+相关接收这种认识,人们就不难预测扩频通信的未来前景.从9O年代无线通信开始步人扩频通信和自适应通信的年代.扩频通信的热浪已经波及短波、超微波、微波通信和卫星通信,码分多址(CDMA)已开始广泛用于未来的峰窝通信、无绳通信和个人通信以及各种无线本地环路,发挥越来越大的作用.接入网是由传统的用户线、用户环路和用户接入系统,逐步发展、演变和升级而形成的.现代电信网络分为3部分:传输网、交换网和接入网.由于接入网发展较晚,往往成为电信发展的“瓶颈”,各国都很重视接入网的发展,因此各类接人技术和系统应运而生.由于ISM(IndustryScientificMedica1)频段的开放性,经营者和用户不需申请授权就可以自由地使用这些频段,而无线扩频技术所使用的频段(2.400~2.483)正是全世界通用的ISM频段,包括IEEE802.11协议架构的无线局域网也大部分选用此频段.在无线接人系统中,扩频微波与常规微波相比有着3个显著的优点:抗干扰性强、频点问题容易处理、价格比较便宜.而且,扩频微波接入技术相对有线接入技术来说,有成本低、使用灵活、建设快捷的优势,在接入网中起着不可替代的作用.

扩频微波主要应用在以下几个方面.语音接入(点对点);数据接入;视频接入;多媒体接入;因特网(Internet)接入。

四、结语

扩频通信是通信的一个重要分支和发展方向,是扩频技术与通信相结合的产物。本文主要论述了扩频通信的特点、理论可行性及典型的工作方式。扩频通信的强抗干扰性、低截获性、良好的抗多路径干扰性和安全性等特点,使它的应用迅速从军用扩展到民用通信中,它的易于实现码分多址的特点,使它能与第三代移动通信系统完美结合,发展前景极为广阔。

参考文献:

篇10

随着数字移动通信的发展,频带资源日益宝贵,对数据传输质量的要求也越来越高。因此,如何提高信息传输系统的有效性和可靠性,便成为了该领域研究的重要课题。把编码调制技术应用于高速信息传输的通信中,较好地解决了这一问题。

一般的纠错编码技术对信息传输性能的改善是建立在带宽扩展的基础上的。因此,在带宽受限的信道中,依靠传统的纠错编码技术是难于提高信道利用率的。1974年Messy根据Shannon信息理论最早证明了将编码与调制作为一个整体考虑的最佳设计,就可大大改善系统的性能。1982年,Ungerboeck在IEEE Trans Information Theory上发表题为“Channel coding with multilevel/phase signals”的论文,正式宣布了人们研究多年的调制编码相结合的网格编码调制(Trellis Coded Modulation,简记为TCM)技术的诞生。该技术把信道编码和调制结合在一起进行设计,可以在既不增加信道频带宽度、也不降低信息传输速率的情况下,获得3~6dB的编码增益,宣告了一个划时代的、新的纠错编码技术的开始,成为继Shannon奠基以来信道编码技术发展的一个新的里程碑。随后,对TCM技术进行研究的热潮迅速的在全球范围内兴起,TCM研究领域取得了众多令人瞩目的成就,使得TCM技术从理论研究阶段逐步进入实用阶段。目前,TCM技术在无线通信、微波通信、卫星通信以及移动通信等各个领域中的应用前景非常广阔。

近年来,讨论衰落信道中应用编码调制方案的性能已成为编码调制中新的热点。由于TCM网格编码调制在衰落信道中的性能有一定的局限性,另一种编码调制方式-多级编码调制MLC(Multilevel Coding),进入了我们的视线。H.Lmai于1977年首先提出了MLC思想。MLC中使用多级的编码来保护信号点的每一个二进制向量元素。每一级编码器的码型选择也是以欧氏距离最大化为依据的。在接收端,每个码字都经过多级译码,从最低级开始的,高级考虑前一级的译码结果。MLC方案码率设计灵活、可实现不等错误保护度、易于使用信道容量规则,是Rayleigh衰落信道下有效的编码调制方案之一。

2.TCM调制技术的原理与特点

众所周知,应用纠错编码可以在不增加功率的条件下降低误码率,但是付出的代价是占用的带宽增加了。如何才能同时节省功率和带宽,是人们长久追求的目标。将纠错编码和调制相结合的网格编码调制(TCM)就是解决这个问题的途径之一。与传统编码技术相比,TCM网络编码调制技术将编码与调制技术有效地结合在一起,以增大编码符号之间的最小欧式距离为目的,这种调制在保持信息传输速率和带宽不变的条件下能够获得3dB-6dB的功率增益,因此得到广泛的关注和应用。

网络编码调制TCM技术利用编码效率为n/(n+1)的卷积码,并将每一码段映射为2n+1个调制信号集中的一个信号,在收端信号解调后经反映射变换为卷积码,再送入维特比译码器译码,其状态转移图呈网络状。

TCM有两个基本特点:第一是在信号空间中的信号点数目比无编码的调制情况下对应的信号点数目要多,这些增加的信号点使编码有了冗余,而不牺牲带宽;第二是采用卷积码的编码规则,使信号点之间引入相互依赖关系。仅有某些信号点图样或序列是允许用的信号序列,并可模型化成为网络状结构,因此又称为“格状”编码。

3.TCM调制技术的发展趋势

伴随着20世纪90年代以后先进的蜂窝数字移动、微蜂窝数字移动通信系统、个人通信技术、多媒体通信技术和CDMA技术的发展,TCM技术迎来了新一轮的发展势头,出现了许多新的研究领域和新的发展趋势。其中包括:BCM(Block-Coded Modulation)分组编码调制;TCM与扩频码分多址相结合;TCM码在 AWGN信道中研究的日趋完善;关于多重TCM在衰落的卫星、 陆地等典型衰落信道中的研究等等。这些研究热点几乎主导了TCM应用研究的整个市场。

TCM是 20世纪 80年代在数字编码通信领域中取得的重大成果之一,对于高效可靠地进行信息传输具有划时代的意义。纵观TCM技术二十多年的发展历程,我们可以得到这样的启示:通过系统内部的组合优化,可以使系统的整体性能得到极大的提高。TCM对数字通信领域变革的影响广阔深远。TCM技术方兴未艾, 正在迈向新的高峰。

参考文献

[1] 樊昌信,曹丽娜.通信原理(第六版)[M].北京:国防工业出版社,2009.

篇11

1、光纤通信的发展历程

1966年,美籍华人高锟同霍克哈姆发表了关于传输介质新概念的论文,这篇论文具有划时代的意义,它奠定了利用光纤进行通信的基础,指明了利用光纤进行通信的可能性。1970年,美国康宁公司成功了研制出了损耗20dB/km的石英光纤。促使光纤通信研究的进一步发展。1976年,NTT公司继续将光纤损耗度降低,达到了0.47dB/km。1977年,美国首先推出了用多模光纤进行光纤通信实验。实现了第一代光纤通信系统。1981年,实现了第二代光纤通信系统。1984年,实现了第三代光纤通信系统。80年代后期,实现了第四代光纤通信系统。而后,利用光波分复用提高速率,利用光波来增长传输距离的系统,即第五代光纤通信系统。

2、光纤通信技术的特点

2.1 大容量、高速度

光纤通信的第一特点就是容量大,光纤比铜线或电缆有大得多的传输带宽,虽然现在的单波长光纤通信系统由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势,但是经过一系列的技术处理,单波长光纤通信系统的传输容量也在大幅增加,目前,光纤的传输速率一般在2.5Gbps 到10Gbps,还有很大的扩展空间。

2.2 损耗低

和以往的任何传输方式相比,光纤传输的损耗都是最低的,目前,商品石英光纤损耗可低于0~20dB/km,随着科技的进步,将来采用非石英系统极低损耗光纤,那么,它的损耗可能更低,这就意味着通过光纤通信系统可以跨越更大的无中继距离,这无疑就减少了中继站数目,成本也就可以大幅降下来。

2.3 保密性好

大家都知道,电波传输时容易出现电磁波的泄漏,保密性差,而光波在光纤中传输,光信号被完善地限制在光波导结构中,泄漏的射线则被环绕光纤的不透明包皮所吸收,不会出现泄漏,因而光纤通信不会造成串音,也不会被窃听,保密性非常好。

2.4 抗电磁干扰能力强

光纤材料由石英制成的,不仅绝缘性好,抗腐蚀,更重要的是抗电磁干扰能力强,它既不受雷电、电离层和太阳黑子的变化和活动的干扰,也不受人为释放的电磁干扰,可以与高压输电线平行架设或与电力导体复合构成复合光缆,也特别适合于军事应用。

另外,光纤还有很多其他的优点,比如光纤径细、轻柔、易于铺设,其原料资源丰富,成本低,其自身温度稳定性好、寿命长等等,这些特点决定了光纤将在各个领域得到广泛应用。

3、光纤通信技术的应用

3.1 光纤通信技术的分类

(1)光纤传感技术。因为光纤传感器具有耐腐蚀、宽频带、防爆性、体积小、耗电少的优点,所以其可分为功能型传感器和非功能型传感器;(2)波分复用技术。根据每一信道光波的频率不同,利用单模光纤低损耗区带来的巨大宽带资源,可以将光纤的低损耗窗口划分成为若干个信道,采用分波器来实现不同光波的耦合与分离;(3)光纤接入技术。光纤接入技术的应用十分广泛,已经应用到千家万户。光纤接入技术不仅仅可以解决窄带的业务,也可以解决多媒体图像等业务。

3.2 光纤通信技术的现实应用

现今,我国的光纤通信产业发展十分迅速,尤其是广播电视网、电信干线传输网、电力通信网等发展极其迅速,使得对于光纤光缆的需求量急剧地增加。因为广电综合信息网规模的扩大和系统的复杂难度的提升,让我们在对于全网的管理和维护以及设备故障的判定等问题上存在着很大的难度。为了解决以上存在的问题,采用了ATM+或者是SDH+光纤组成宽带数字传输系统。对于这个传输网,我们可以采用环网传输系统,也可以采用链路系统或者是用它们组成的各种不同形式满足不同需要的符合网络。我们可以采用宽带传输系统,可以将通道设置为广播的方式,这样的话,可以让人们在任何地方都可以对同样的电视节目进行下载,也可以让工作人员对下载的权限进行统一设置,更有利于管理。在全国各地目前已经具有基本规模的有线电视网络的基础上,宽带多媒体传输网络是比较容易实现的。我们可以通过数据通道或者是电信网中的语音通道来形成上行信号,也可以通过语音接入系统来完成上行信号的传送。

4、光纤通信技术发展趋势

4.1 向超高速、超大容量发展

目前10Gbps系统已开始大批量装备网络,在理论上,基于时分复用的高速系统的速率还有望进一步提高,例如在实验室传输速率已能达到4OGbps,然而,采用电的时分复用来提高传输容量的作法已经接近硅和镓砷技术的极限,电的40Gbps系统在性能价格比及在实用中是否能成功也还是个未知因素,可以说采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用了不到1%,99%的资源尚待发掘。于是人们将目光转向波分复用,采用波分复用系统可以将光纤容量迅速扩大几倍乃至上百倍,可以大大降低成本,可以方便快捷的引入宽带新业务,有望实现光联网,基于此,近几年波分复用系统发展十分迅速,预计不久实用化系统的容量即可达到1Tbps的水平。

4.2 实现光联网的全面发展

尽管波分复用系统技术有诸多好处,但依旧是以点到点通信为基础的系统,其灵活性和可靠性还不够理想,如果在光路上也能实现类似SDH 在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力。根据这一基本思路,光的分插复用器(OADM)和光的交叉连接设备(OXC)均已在实验室研制成功,并已投入商用。实现光联网的基本目的是:(1)实现超大容量光网络;(2)实现网络扩展性,允许网络的节点数和业务量的不断增长;(3)实现网络可重构性,达到灵活重组网络的目的;(4)实现网络的透明性,允许互连任何系统和不同制式的信号;(5)实现快速网络恢复,恢复时间可达100ms。光联网的全面发展将对21世纪的中国产生重要的影响。

4.3 新一代的光纤

近几年来随着IP 业务量的爆炸式增长,传统的单模光纤已暴露出力不从心的态势,目前已出现了两种不同的新型光纤,即非零色散光纤(G.655光纤)和无水吸收峰光纤(全波光纤)。

4.3.1 新一代的非零色散光纤

非零色散光纤(G.655光纤)的基本设计思想是在1550 窗口工作波长区具有合理的较低色散,足以支持10Gbps的长距离传输而无需色散补偿,从而节省了色散补偿器及其附加光放大器的成本;同时,其色散值又保持非零特性,具有一起码的最小数值(如2ps/(nm.km)以上),足以压制四波混合和交叉相位调非线性影响,适宜开通具有足够多波长的DWDM系统,同时满足TDM和DWDM两种发展方向的需要。

4.3.2 全波光纤

与长途网相比,城域网面临更加复杂多变的业务环境,要直接支持大用户,因而需要频繁的业务量疏导和带宽管理能力,显然开发具有尽可能宽的可用波段的光纤成为关键。全波光纤就是在这种形势下诞生的,全波没有了水峰,光纤可以开放第5 个低损窗口,从而使可复用的波长数大大增加,使元器件特别是无源器件的成本大幅度下降,从而降低了整个系统的成本;另外上述波长范围内,光纤的色散仅为1550nm 波长区的一半,因而,容易实现高比特率长距离传输。

5、结语

在新世纪的信息技术发展中,光纤通信技术将成为重要的支撑平台,光纤通信也将成为未来通信发展的主流,光纤通信有着巨大的潜力等待人们的开发。

参考文献

[1]苏赐民.从光纤通信技术的发展中看前景[J].工业设计,2011(05).

篇12

1 我国电力通信系统的发展历程 

我国的电力通信系统,经历了一个较快的发展时期,几十年内,经历了一个从纵横交换到程控交换、从明线和同轴电缆到光纤传输、从模拟网到数字通信网、从定点通信到移动通信以及从主要面向硬件到主要面向软件技术的发展阶段变化。 

1.1 四十年代至五六十年代 

电力通信的发展始终与电网的发展相同步,互相支持、互相配合。在我国,四十年代,主要以东北输电线为主,除城市外,其他地区都较为孤立,且明线电话在当时占主要地位,长距离调度所使用的载波机主要依靠日本机器。随着五六十年代我国用电量的明显剧增,东北电网又向华北地区扩散,建成了华北电网,但我国的公网通信仍然较为落后。此阶段我国使用的电力线载波机仍是国外进口,在向苏联进口的同时我国开始自行研发生产。 

1.2 七十年代 

七十年代初期开始,我国的电力通信系统开始在一些信息需求量大和重要部门采用微波通信;到末期,我国的电力通信系统又有了进一步发展,电力线载波通信占主导地位,其它有小容量(120路以下)fdm模拟微波、邮电多路载波、电缆及架空明线等,我国的电网已经扩大到拥有华北、东北和华东三大电网,部分地区开始形成自己的独立通信网络。此阶段我国电力通信以音频、载波、模拟微波等通信方式为主。不过全国范围内,大多地区十万千瓦以上的电网没有通信干线,且通信电路不太健全、自动化水平不高,部分地区还经常出现停电现象,通信系统的落后成为我国电力工作的薄弱环节之一,给我国的工农业生产带来了较大影响,与国外差距仍然较大。 

1.3 八十年代 

八十年代是我国电力通信的高速发展时期,随着大规模集成电路的发展,出现了数字微波、光纤通信和程控交换机等,大电站、大机组、超高压输电线路不断增加,电网规模越来越大。承接七十年代末的电力系统数字化网络的建设,八十年代,我国开始建设电力专用通信网。此阶段,数字微波、卫星通信、光纤通信、移动通信、对流层散射通信、特高频通信、数字程控交换机等得到了推广与运用。当然,电网的飞速发展也为电网的管理和技术提出了新的要求,我国紧跟时代脚步,自上而下成立了电力通信网建设和管理的专门机构,并逐步形成和完善了一套指导建设电力通信网的技术政策,制订了有关通信的规章制度和技术要求,培养出了一批熟悉通信设计、建设、运行、维护、管理的人才,在政策和制度方面加强了力量建设。 

1.4 九十年代 

九十年代,我国的电力通信系统发展较快,有了进一步提高,新技术和新设备的应用更快更灵活,在其他网络上,例如传输网和交换网等得到了进一步的完善,并开始引入一批高新网络技术,为现在的电力通信发展打下了良好基础。 

2 我国电力通信的现状 

2.1 电力通信网的主要业务形式 

在我国,电力通信网是一种专业性极强的通信网,是电网的重要组成部分,在网络通信技术不断发展的今天,电力通信网的业务形式也在不断扩大和发展,其主要业务形式表现在以下几个方面: 

2.1.1 电网安全监视和稳定控制方面 

在我国各个城市中经常出现电力系统崩溃的现象,其中一个重要原因就是电力网络结构过于薄弱,而且使用极不合理。对此,许多地区在电网的安全监视和稳定性控制方面给予了不少投入。例如,购置了及时定位线路故障点的线路故障测距装置;对通信网络不稳定的地方设置了实时监控系统,监视通信网路的健康状况;通过全球卫星定位系统的实时相量测量,在电力系统中实施相量控制等手段,使得我国大部分地区的电力系统稳定运行成为了可能。 

2.1.2 气象与新能源方面 

电力通信系统目前在气象监测方面正发挥着日益增大的作用,例如:对于常年无人监守的户外水电站,可借助电力通信系统在水电站的上游选取合适位置安放监测台,对一年降水情况进行采集和网络分析,然后通过网络将信息传播,对数据进行全面具体的分析。同时,它在新能源方面的作用也正不断突出,对太阳能、风能、潮汐等新能源的发电技术研究正是今后国家电力进程的一个长期方向,因此电力通信系统对新能源的开发利用也是今后电力通信网络的业务方向之一。 

2.1.3 环境保护方面 

在环境保护力度不断加大的今天,对各个领域的各种排放物的监控要求正不断提高,目前,我国电力通信系统在对部分火电厂、核电站的废气、烟尘、放射线等的排放上已形成全面的监测系统。此系统综合利用gps系统、地理信息系统(gis)、遥感技术(rs)等先进技术,将采集到的数据和实物样本就地进行分析处理,并通过网络,传输到总部统一备案处理,大大提高了效率,对环境保护做出了巨大贡献。 

2.1.4 电网商业化运营方面 

电网商业化运营主要依托于全国的联网工程,在我国电力改革深入发展的今天,要求形成与国际互联网企业接轨的大的网络环境。电子商务系统安全性大、快捷方便,收益空间大,建立互动式电子商务平台,不仅能扩展业务范围,还能扩大信息交流。高速而又安全的电力通信网络,对电子商务的实时交易和电力网络环境的安全维护,发挥着越来越重要的作用。 

2.2 我国电力通信的主要问题 

2.2.1 电力通信网络管理标准不完善 

我国的电力通信网络,其标准和体制虽然符合国家和国际标准,但在电力系统的特点和要求下,其通信网发展的标准和规范都极不完善,规划等制定和更新也不及时。这在新技术更新发展速度如此迅速的今天,电力通信网络的管理标准不完善对电力通信网的整体全面发展影响较大。 

2.2.2 区域发展不平衡 

在我国,各地受经济发展水平、政策贯彻落实程度和科技运用程度的差异,每个地区的电力通信发展水平极不平衡。部分地区和单位早已实现数字化和光纤化环网,该地区的电网及通信业务服务能力大大加强;而有些地区受地理和经济因素的共同制约,在发展速度上落后于发达地区,有的甚至偏远到变电站连成最基本的调度电话都难以保证,各地区发展极不平衡。 

3 电力通信的发展方向 

3.1 加快光纤传输网的设置,加大全面网络建设 

我国部分地区的电力通信系统中,电力光纤通信网存在着纤芯容量不足、设备容量小的情况。因此很有必要加大投入在加快传输网的建设上。要对该地区主干光纤传输网加大改造和建设力度,吸引投资,以点带面,在工程建设上做好工作。而且,要在电力通信和动作流程中加大网络的全面、系统建设。例如,在通信网的非话业务方面和网内ip技术等方面要加大开拓和推广力度,努力扩大电力通信网络的覆盖面,在各交换机制的组网工作中做好相关完善工作,把信息交换网络朝着高速高效率、安全性强、稳定性高的方向建设。 

3.2 加大科研力度和技术研究 

我国的电力传输技术有待提高,要在维护已有的传统传输模式的基础上,加强改造和新技术的研发,增加业务管理力度和方面,在研究和建设电力通信网络的同时,要鼓励科技创新,将宽带ip等新技术的运用深入到现代通信网络的建设当中,多角度加大经费投入和科研技术的研究。 

3.3 各地严抓电力通信电路的建设质量 

在我国电力通信发展速度飞快的现状下,要努力减少通信电路误码率高、公务监控不力、监控系统不通等系列问题,杜绝电力通信网络工程中的低质量工程项目的出现。各个地区应避免“地方保护”、“门户观念”对工程选择和决定的不良影响。且在网络系统的建设过程中,加大科研力度和投入,其工程项目负责人还要实行责任制,做好检测和监管工作,及时验证工程指标是否合格,确保建设质量。 

3.4 积极建设宽带多业务数字网络平台 

在电力通信发展规划中,要积极地建设宽带多业务数字网络平台,在语音、图像、数据、媒体、新闻等各业务领域为现在和今后的发展打好基础,提供统一的多优先等级,确保业务质量。 

3.5 致力于国内和国际市场的开发 

保证业务质量的服务,在优化核心层基础上,广泛开展接入层、用户层工作。在电力通信网络成为功能强大的通信网络时,要按照市场机制和市场运行规律,充分合理地利用我们的通信网络资源,积极拓宽新的增值业务和服务范围,规划、建设、完善好一批具有一定规模和发展潜力的电力通信系统模式,加大自身竞争力,逐步走向社会,参与竞争。 

电力通信的战略地位非同一般,做好电力通信行业的发展,必须依托于坚固的电网结构、先进的通讯网络,并有完善的金融和法制体系作支撑。我国的电力通信技术目前正处于稳步上升发展时期,其具有光明的发展前途和强大的生命力。政府各部门也应该加大关注力度和资金投入力度,同时电力通信行业还要积极提高自身业务水平和素质,在技术和装备上不断改进,将科技含量更高、技术更全面的成果广泛实施,为我国的电力通信行业和全国人民带来便利和服务。 

参考文献: 

[1]孙业成,赵大平,陈希.《电力系统信息产业的发展方向》.中国电力科学研究院通信研究所,2001年10月10日. 

篇13

对熟悉他的人来说,于全当选为院士这一消息并不意外,自幼天资聪颖的他,求学与科研之旅可谓一路坦途――

1982年,于全17岁时以九江市高考理科第二名的成绩考入南京大学信息物理系,成为其母校同文中学和九江市三中的荣光。1986年,本科毕业后又考入以“西军电”之称蜚声海内外的西安电子科技大学,攻读物理系电波传播专业硕士学位,1988年6月30日,作为该校唯一入选的国家公费研究生,被派往在欧洲通信界大名鼎鼎的法国里摩日大学光纤微波通信研究所继续深造。

初到法国,按法国规定必须首先取得攻读法国博士的资格(即DEA),一年后,不服输的他以全优的成绩在来自世界各地的60多位同学中名列前茅。此后3年,在集光纤、通信、计算机等多学科为一体的法国里摩日大学光纤微波通信研究所,于全苦心修炼,先后取得了多功能光纤传感器、光纤网络的计算机辅助设计系统等3项重要科研成果,撰写的6篇学术论文在国际著名学术刊物上发表,创造的可调式光纤藕合器获得法国专利,出色的科研能力令人刮目相看。

1992年5月11日,于全顺利地通过了博士答辩,《多模光纤效应的研究及在光纤网络CAD中的应用》作为一等论文,被列为里摩日大学的博士毕业论文范本,专家评判“非常出色”。尤为人称道的是,于全在论文中解决了法国巴黎地铁公司、煤气公司、电力公司光纤网络建设中的技术难题,取得了良好的经济效益和社会效益。一时间,法国、美国、加拿大等国外诸多企业、大学与研究机构纷纷邀请于全加盟,他却毅然谢绝了许多人梦寐以求的优越条件与丰厚待遇,在1992年6月30日即他出国4周年这一天回到祖国,成为同期70多位留法中国留学生中第一个学成归国的博士。

“4年留学生活,开拓了我的思维,也给了我自信。我受不了西方人居高临下的同情与怜悯,不甘于做发达国家的‘二等公民’,选择回国创业就是希望能在祖国这块土地实现自己的价值,寻求一种在科技创新上与西方列强精神平等的途径。”在于全心中,国家绝不仅仅只是一个概念。“祖国送我出国深造,4年就得花费50多万元人民币,相当于5000个农民1年的农业税,这是人民的血汗钱呀!”留学4年,承载着祖国消息的《人民日报》海外版成为他了解祖国的窗口,这种独特的爱国主义教育已在1400多个日夜中深深浸入他的血液。

彼时,像于全这样的人才,在国内也是“宝贝疙瘩”。在首都机场,于全就被清华大学电子工程系给“预订”了,很快航天部中国精密机械进出口总公司也向他伸出了“橄榄枝”,有意请他加盟的单位络绎不绝。与于全同期回国的学者,不少选择了高等学府,成为了行业领军者,保持着在全世界行走的高度自由。那时,中关村已经出现了收入高达5万元的年薪,像于全这样的“海归”精英,可以拿得更多。

这时,一位好友给他介绍了总参某研究所。所领导和于全促膝长谈,谈的不是条件,不是待遇,而是我军目前的通信现状及其与国外的差距。于全感觉自己的血管里有一股热流在奔涌,他出人意料地谢绝了多个国内知名学府与大型企业的邀约,义无反顾地选择了部队。这个选择,意味着月薪300多元,而且,要受到部队高度的组织纪律约束。

在当时,于全的选择太出人意料,以至于很长一段时间,他每天都在回答为什么回国、入伍这两个问题,只因为好奇、不解的人实在太多了。“后来的事实证明,我的选择是对的。”

于全含笑谦称:“像我这样的人,在中国比比皆是,但是有我这样机遇的人不是很多,是部队给我提供了干大事的条件。要说起来,我当时的选择也是一种思维上的创新。那时,国内洋博士不多,军队里更是凤毛麟角,因此,我到军队后很受重视。正所谓,别人不太容易想到的,往往是机会最多的;不随大流,机会概率才会高。”

1992年9月4日,于全穿上国防绿,成为总参某研究所通信研究中心工程师,17年间,他历任高级工程师、研究员、中心主任、总工程师,2009年12月当选中国工程院院士,成为万众瞩目的焦点之一。

洋博士的自适应

许多人都以为于全在部队顺风顺水,实际上,这位留法4年的“洋博士”曾经经历了一个相当痛苦的自适应过程――

初进军营,部队并不因为于全是一名特殊的新兵,就给他特殊的照顾。几个月封闭的新兵训练,让于全感觉丝毫不比搞科研轻松,但这也锻就了他作为军人的刚毅与坚韧。

在山西完成新兵训练后,于全回到北京。当时各种舆论都将于全“举得很高”,媒体的轮番“轰炸”与重压,让他感觉压力很大。“最痛苦的不是后来睡实验室吃方便面做项目的日子,而是那段找不着北的日子。”

一次与同学聚会时,同学跟于全开玩笑说:“在法国,你好比‘人头马’,是高档货;刚回国,你好比‘五粮液’是抢手货;当了兵,变成了‘二锅头’,是大路货。怎么样,现在你是不是有点想吃后悔药了?”于全表面上嘿嘿一笑,心头却是沉重的,怎样尽可能快地完成自适应过程成为他那段时期重点考虑的问题。

放下“洋博士”身价,虚心向“老人”学习,是他对自己的要求。“我原来学的是物理专业,读博时学的是光纤通信,进入总参某研究所后,转攻无线通信。而且,军事通信与民用通信之间存在差异,我对军队的特点、需求完全不了解,因此很多东西都要从零学起。”半年时间,他所阅读的书籍与资料,摞起来比人还高。

那段时间,于全每天清晨7时就第一个来到办公室,去几百米外的食堂打来开水,然后拖地、擦桌子。“我想通过这种朴实无华的方式告诉大家,洋博士没什么了不起。同时,也想看看,从无拘无束到纪律严明,自己的自适应能力究竟怎样。”就这样坚持了三四个月,于全的心慢慢沉静下来,所里的“老人”们也渐渐接受了这个脚踏实地的“洋博士”。

这段自适应心得,后来被于全总结为“打扫卫生理论”,成为其所在单位人所周知的信条之一。在于全看来,扫地、拖地、打水、擦桌子,这些一般人眼中的小事,却很能反映出一个人的综合素质,体现出一个人的工作态度、处事心态与精神格调,只有脚踏实地干事、真正融入团队的人,才有可能成就大事业。

“如果只看外表,没人知道他是海归。”于全的战友们说。他经常会穿着作训服,与野战部队最基层的战士们混在一起。“只有这样,我才知道部队需要什么样的通信装备。”于全解释说。

凡是蹲过点的部队,于全都能叫出每一名通信士官的名字。在他的带动下,课题组的同事都爱上了基层蹲点试验,正是在这种深入接触与调研中,于全与他的团队创造了一个又一个奇迹。

耐得大寂寞,才出大成果

接到第一个课题后的一年多时间里,为了加快项目进度,于全与他的两名助手放弃了休息日,加班加点查资料、编程序,每天都干到深夜,饿了就吃方便面,困了就凑合着在实验室睡一觉,500多个日日夜夜,就这么不知不觉地过去了。计算机程序枯燥而又繁琐,他们反复地编写、修改,再编写、再修改,光编制的程序就达几十万条,打印出来足有几公里长……

1994年12月,于全主持设计的野战通信网计算机仿真系统研制成功,并荣获1995年度军队科技进步一等奖。这个系统不仅填补了国内空白,而且有10多项技术指标都达到了国际领先水平。其研制时间之短、质量之高,令专家们惊叹,更让人惊叹的还是它的神奇功效,如今,这一成果已广泛应用于卫星通信、无线通信、保密通信、电子对抗等军事领域,产生了巨大的军事、经济和社会效益。

近年来,随着科技的日新月异,信息已成为掌控战场物质和能量流向的关键因素,制信息权成为决定战争胜负新的战略制高点,军队信息化建设成为当前世界新军革和各国军队转型的核心内容。多年来,协同通信一直是困扰世界各国军队通信畅通的一大难题。这一世界性难题引起了于全的关注和思考。

“软件无线电”这项刚刚萌芽的新技术进入了他的视野。研究所领导全力支持他的大胆设想,筹备60多万元人民币,从全所选调精兵强将,组成一个包括2名博士、5名硕士在内的课题组,协助于全一起攻关。

“军用软件无线电网关”课题的研究需要大量野战电台运行数据来支持,在立项后一年多时间里,于全和他的团队从青藏高原到天涯海角,从辽东半岛到东海之滨,跋山涉水,战严寒,冒酷暑,深入陆海空通信部队,掌握第一手资料,仅搜集、归纳的各类数据就有数百万条。

1998年11月,于全和他的团队以最少的经费和最快的速度,研制出中国第一台“军用软件无线电网关”电台,成功地实现了我军不同频段、不同体制电台的互连互通,较好地解决了三军协同通信这一世界难题,被誉为“自模拟过渡到数字之后无线通信领域的又一场革命”,使我军在野战通信技术研究上第一次走在了西方发达国家的前面。

荣誉接踵而至,“耐得大寂寞,才出大成果”,为排除干扰,于全给自己定了“三条规矩”:成果不急于报奖,不急于出专著,不接受媒体采访。他淡泊名利,多次在报奖时划去自己的名字,还常把自己所得奖金悉数分给他人。他常说:“泰戈尔说得好啊!鸟儿的翅膀绑上了黄金,怎能飞得远呢?”

正是在这种清醒与淡定下,于全率领他的团队继续瞄准世界军事信息技术发展前沿,马不停蹄地创新,先后完成了20余项重大科研项目,成功研制出我军第一代战术通信网,实现了通信保障模式的跨越式发展,为我军打赢信息化战争提供了强有力的保障。

17年来,于全刻苦攻关,不断创新,先后荣获国家科技进步一等奖1项、二等奖1项;军队科技进步一等奖4项;国家重点资助优秀留学回国人员;全国优秀归国留学人员;全国优秀科技工作者;中国青年科技奖;全国青年科技奖一求是工程奖;全军学习成才标兵;全军通信系统优秀科技骨干;总参青年标兵;总参优秀中青年专家;总参优秀科技干部;一等功1次,二等功2次,三等功1次;第十二届“中国青年五四奖章标兵”等奖项。一批科研人员在他的带动和影响下,成为我军通信领域的中坚力量,而他自己也成为我军最年轻的军事通信学科带头人,是当代青年景仰的偶像之一。

文理兼备的“交联”式读书与学习

当选中国工程院院士,对于全来说,惊喜之外,更是责任。“它是我人生的重要节点,今后,我将在这个更高的平台与更大的舞台上,为自己所钟爱的军事通信事业而奋斗。”

在一般人眼里,于全是一个传奇,他的人生写满精彩,充满创新。前辈称赞他“思维不拘一格”,学生说他“善于出奇制胜”,而于全自己却谦逊地说这得益于“交联”式的读书与学习。“交联”本是物理和化学领域的一个专业词语,于全借用过来,旨在强调一种互联互通、融会贯通、触类旁通的学习方式。“虽然工作繁忙,但他至今依然保持平均每周读一本书的习惯。“工作再忙,也不能放松学习;不学习,就意味着放弃明天。”这是于全给自己的忠告。