制动技术论文实用13篇

引论:我们为您整理了13篇制动技术论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

制动技术论文

篇1

在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。

在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。

在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。

二、能耗制动

利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动。

其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。

一般在通用变频器中,小功率变频器(22kW以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kW以上)就需外置刹车单元、刹车电阻了。

三、回馈制动

实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动。回馈制动的优点是能四象限运行,如图3所示,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。

四、新型制动方式(电容反馈制动)

1、主回路原理

整流部分采用普通的不可控整流桥进行整流,滤波回路采用通用的电解电容,延时回路采用接触器或可控硅都行。充电、反馈回路由功率模块IGBT、充电、反馈电抗器L及大电解电容C(容量约零点几法,可根据变频器所在的工况系统决定)组成。逆变部分由功率模块IGBT组成。保护回路,由IGBT、功率电阻组成。

(1)电动机发电运行状态

CPU对输入的交流电压和直流回路电压νd的实时监控,决定向VT1是否发出充电信号,一旦νd比输入交流电压所对应的直流电压值(如380VAC—530VDC)高到一定值时,CPU关断VT3,通过对VT1的脉冲导通实现对电解电容C的充电过程。此时的电抗器L与电解电容C分压,从而确保电解电容C工作在安全范围内。当电解电容C上的电压快到危险值(比如说370V),而系统仍处于发电状态,电能不断通过逆变部分回送到直流回路中时,安全回路发挥作用,实现能耗制动(电阻制动),控制VT3的关断与开通,从而实现电阻R消耗多余的能量,一般这种情况是不会出现的。

(2)电动机电动运行状态

当CPU发现系统不再充电时,则对VT3进行脉冲导通,使得在电抗器L上行成了一个瞬时左正右负的电压(如图标识),再加上电解电容C上的电压就能实现从电容到直流回路的能量反馈过程。CPU通过对电解电容C上的电压和直流回路的电压的检测,控制VT3的开关频率以及占空比,从而控制反馈电流,确保直流回路电压νd不出现过高。

2、系统难点

(1)电抗器的选取

(a)、我们考虑到工况的特殊性,假设系统出现某种故障,导致电机所载的位能负载自由加速下落,这时电机处于一种发电运行状态,再生能量通过六个续流二极管回送至直流回路,致使νd升高,很快使变频器处于充电状态,这时的电流会很大。所以所选取电抗器线径要大到能通过此时的电流。

(b)、在反馈回路中,为了使电解电容在下次充电前把尽可能多的电能释放出来,选取普通的铁芯(硅钢片)是不能达到目的的,最好选用铁氧体材料制成的铁芯,再看看上述考虑的电流值如此大,可见这个铁芯有多大,素不知市面上有无这么大的铁氧体铁芯,即使有,其价格也肯定不会很低。所以笔者建议充电、反馈回路各采用一个电抗器。

(2)控制上的难点

(a)、变频器的直流回路中,电压νd一般都高于500VDC,而电解电容C的耐压才400VDC,可见这种充电过程的控制就不像能量制动(电阻制动)的控制方式了。其在电抗器上所产生的瞬时电压降为,电解电容C的瞬时充电电压为νc=νd-νL,为了确保电解电容工作在安全范围内(≤400V),就得有效的控制电抗器上的电压降νL,而电压降νL又取决于电感量和电流的瞬时变化率。

(b)、在反馈过程中,还得防止电解电容C所放的电能通过电抗器造成直流回路电压过高,以致系统出现过压保护。

3、主要应用场合及应用实例

正是由于变频器的这种新型制动方式(电容反馈制动)所具有的优越性,近些来,不少用户结合其设备的特点,纷纷提出了要配备这种系统。由于技术上有一定的难度,国外还不知有无此制动方式?国内目前只有山东风光电子公司由以前采用回馈制动方式的变频器(仍有2台在正常运行中)改用了这种电容反馈制动方式的新型矿用提升机系列。

篇2

一、防寒保暖

蛋鸡的生长发育最适温度为16~18℃,16~24℃时,蛋鸡产蛋率较高。当鸡舍温度低于5℃时,产蛋率下降,低于0℃时产蛋量显著减少,低于-10℃时停产,同时还会增加饲料的消耗量,所以适宜的鸡舍温度是提高母鸡冬天产蛋率的关键。因此,入冬前应堵塞迎风口面的窗户,装好玻璃或塑料薄膜;随时检查四壁及屋顶,在修补除换气孔窗以外的所有孔洞及裂缝的同时,适当提高饲养密度或加厚垫料,采用这种方法可使鸡舍温度提高5℃以上。垫料要干燥,经常翻动,与鸡粪混合,促进微生物活动,使其发酵,达到厚垫草的目的。另外,坚持每天听天气预报,防止寒流的突然袭击。

二、补充光照

光照能促进性腺的分泌,从而促进产蛋,蛋鸡每天需16h的光照,但是冬季昼短夜长,自然光照短于12h,不能满足蛋鸡对光照的需要,因此,需人工补光。一般1m2鸡舍地面有2.7~3.0W白炽灯光源就能保证光照强度,灯离地1.8~2.0m,灯与灯之间3m左右,灯与灯之间的距离要相等,一般适宜的光照强度为5~10Lx,舍内各处光照均匀,保持灯泡清洁,否则影响光照强度。另外,凌晨是一天当中气温最低的时候,此时的低温对处于睡眠状态的鸡所造成的冷刺激最严重,因此早晨4时开灯喂料,使鸡在温度低的时候开始采食和运动,增加机体产热量,以提高其抵御寒冷的能力,缓解冷刺激所造成的不良影响。一般情况下,晚上8时即可关灯。补充光照时间一旦确定,就要准时开、关灯,持之以恒,切不可时断时续,忽早忽晚。

三、通风换气

养鸡场多采用高密度饲养,冬季许多养殖户为了给鸡舍保温,都将鸡舍门窗紧闭,有的养鸡户甚至整个冬天也不打开1次,致使鸡舍内有害气体氨、硫化氢、二氧化碳增多。氨和硫化氢浓度过高时,会刺激呼吸道黏膜,诱发鸡的慢性呼吸道疾病,导致产蛋量下降,进而降低经济效益。因此,要定期进行通风换气,以排出舍内的有害气体,保持空气清新,一般可利用中午比较暖和时打开门窗进行换气,并注意不要让冷空气直接吹向鸡体,更要防止贼风。另外,为有效清除或降低舍内氨气等有害气体浓度,可撒过磷酸钙,每周0.05kg/m2或30mL/m3,进行过氧乙酸喷雾,每周1次。舍内的粪便、污物要每天清扫,也可降低氨和硫化氢浓度。

四、控制鸡舍湿度

舍内的相对湿度以50%~70%为宜,最高不得超过75%。要经常检修饮水系统,避免水管、饮水器或水槽漏水淋湿鸡体、饲料,造成舍内湿度和鸡体散热加大。要保证排水畅通,及时排除舍内污水。

五、注意饮水

蛋鸡的饮水量与气温高低有直接关系,水温过低会明显降低鸡的耗水量。这是因为鸡饮低温水后会增加体热的损失,加重冷应激,同时对消化道黏膜造成不良的刺激,甚至引起痉挛,而影响消化和吸收。因此冬季饮温水为好,最好饮大蒜水,能健胃,促进食欲,助消化,而且能提高鸡的抗病能力,对鸡瘟、鸡白痢等都有预防作用。水量偏少也会影响产蛋量。一般来说,喂干料时鸡的饮水量约为采食量的2倍,若连续36h不给饮水,母鸡产蛋量下降直至停产,因而要保证产蛋鸡的饮水。

六、改善营养水平

冬季气温低,体热容易散失,需要更多的营养维持正常体温,产蛋也需要大量营养物质,为保持高产稳产,必须改善营养以满足鸡体抵抗寒冷和产蛋的需要。首先,增加日粮的能量水平,提高玉米、稻谷等能量饲料的比例,亦可添加适量油脂,适当减少麸皮、米糠等粗纤维饲料,并依产蛋情况适当增加日粮。其次,增加维生素和矿物质,全面满足蛋鸡对蛋白质、矿物质、维生素等的需要,可提高蛋鸡产蛋量。另外,每隔几天喂点碎辣椒,以刺激食欲,增加鸡的抗寒力,同时夜间补喂1次粒料。:

七、疾病防疫

冬季常见的呼吸系统疾病有传染性喉气管炎、传染性支气管炎、传染性鼻炎和慢性呼吸道病等。对于这些疾病,除了做好日常的饲养管理工作外,还要按当地的疫病流行情况制定科学的免疫程序,并按程序有条不紊的免疫,使产蛋鸡获得较强的抵抗力,以防止疾病在鸡群内扩散,从而在产蛋相对较少的冬季获得较好的经济效益。

八、减少应激

各种应激反应都会造成鸡产蛋量下降或停产。因此,要保持鸡舍内外及周围环境安静,禁止高声播放音响、鸣笛等,以防鸡受惊吓而影响产蛋。饲养人员要穿着固定的工作服,严禁穿着红色衣服进入鸡舍,工作时动作要轻缓,严禁外界人员和车辆进入鸡舍。要堵塞鸡舍及鸡场内外的鼠洞,定期在鸡舍及鸡场内外投放鼠药以消灭老鼠;要防止犬、猫、鼠等进入鸡舍惊吓鸡群。如有应激因素存在时,可在饲料中添加多种维生素,对由于应激反应造成的产蛋量下降具有良好的防治作用。

参考文献

[1]付健康,王玉红,崔春生,等.谈谈冬季的饲养管理[J].河南畜牧兽医,2007,28(2):40.

篇3

信息时代的高新技术流向传统产业,引起后者的深刻变革。作为传统产业之一的机械工业,在这场新技术革命冲击下,产品结构和生产系统结构都发生了质的跃变,微电子技术、微计算机技术的高速发展使信息、智能与机械装置和动力设备相结合,促使机械工业开始了一场大规模的机电一体化技术革命。

随着计算机技术、电子电力技术和传感器技术的发展,各先进国家的机电一体化产品层出不穷。机床、汽车、仪表、家用电器、轻工机械、纺织机械、包装机械、印刷机械、冶金机械、化工机械以及工业机器人、智能机器人等许多门类产品每年都有新的进展。机电一体化技术已越来越受到各方面的关注,它在改善人民生活、提高工作效率、节约能源、降低材料消耗、增强企业竞争力等方面起着极大的作用。

在机电一体化技术迅速发展的同时,运动控制技术作为其关键组成部分,也得到前所未有的大发展,国内外各个厂家相继推出运动控制的新技术、新产品。本文主要介绍了全闭环交流伺服驱动技术(FullClosedACServo)、直线电机驱动技术(LinearMotorDriving)、可编程序计算机控制器(ProgrammableComputerController,PCC)和运动控制卡(MotionControllingBoard)等几项具有代表性的新技术。

2全闭环交流伺服驱动技术

在一些定位精度或动态响应要求比较高的机电一体化产品中,交流伺服系统的应用越来越广泛,其中数字式交流伺服系统更符合数字化控制模式的潮流,而且调试、使用十分简单,因而被受青睐。这种伺服系统的驱动器采用了先进的数字信号处理器(DigitalSignalProcessor,DSP),可以对电机轴后端部的光电编码器进行位置采样,在驱动器和电机之间构成位置和速度的闭环控制系统,并充分发挥DSP的高速运算能力,自动完成整个伺服系统的增益调节,甚至可以跟踪负载变化,实时调节系统增益;有的驱动器还具有快速傅立叶变换(FFT)的功能,测算出设备的机械共振点,并通过陷波滤波方式消除机械共振。

一般情况下,这种数字式交流伺服系统大多工作在半闭环的控制方式,即伺服电机上的编码器反馈既作速度环,也作位置环。这种控制方式对于传动链上的间隙及误差不能克服或补偿。为了获得更高的控制精度,应在最终的运动部分安装高精度的检测元件(如:光栅尺、光电编码器等),即实现全闭环控制。比较传统的全闭环控制方法是:伺服系统只接受速度指令,完成速度环的控制,位置环的控制由上位控制器来完成(大多数全闭环的机床数控系统就是这样)。这样大大增加了上位控制器的难度,也限制了伺服系统的推广。目前,国外已出现了一种更完善、可以实现更高精度的全闭环数字式伺服系统,使得高精度自动化设备的实现更为容易。其控制原理如图1所示。

该系统克服了上述半闭环控制系统的缺陷,伺服驱动器可以直接采样装在最后一级机械运动部件上的位置反馈元件(如光栅尺、磁栅尺、旋转编码器等),作为位置环,而电机上的编码器反馈此时仅作为速度环。这样伺服系统就可以消除机械传动上存在的间隙(如齿轮间隙、丝杠间隙等),补偿机械传动件的制造误差(如丝杠螺距误差等),实现真正的全闭环位置控制功能,获得较高的定位精度。而且这种全闭环控制均由伺服驱动器来完成,无需增加上位控制器的负担,因而越来越多的行业在其自动化设备的改造和研制中,开始采用这种伺服系统。

3直线电机驱动技术

直线电机在机床进给伺服系统中的应用,近几年来已在世界机床行业得到重视,并在西欧工业发达地区掀起"直线电机热"。

在机床进给系统中,采用直线电动机直接驱动与原旋转电机传动的最大区别是取消了从电机到工作台(拖板)之间的机械传动环节,把机床进给传动链的长度缩短为零,因而这种传动方式又被称为"零传动"。正是由于这种"零传动"方式,带来了原旋转电机驱动方式无法达到的性能指标和优点。

1.高速响应由于系统中直接取消了一些响应时间常数较大的机械传动件(如丝杠等),使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。

2.精度直线驱动系统取消了由于丝杠等机械机构产生的传动间隙和误差,减少了插补运动时因传动系统滞后带来的跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。

3.动刚度高由于"直接驱动",避免了启动、变速和换向时因中间传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,同时也提高了其传动刚度。

4.速度快、加减速过程短由于直线电动机最早主要用于磁悬浮列车(时速可达500Km/h),所以用在机床进给驱动中,要满足其超高速切削的最大进个速度(要求达60~100M/min或更高)当然是没有问题的。也由于上述"零传动"的高速响应性,使其加减速过程大大缩短。以实现起动时瞬间达到高速,高速运行时又能瞬间准停。可获得较高的加速度,一般可达2~10g(g=9.8m/s2),而滚珠丝杠传动的最大加速度一般只有0.1~0.5g。

5.行程长度不受限制在导轨上通过串联直线电机,就可以无限延长其行程长度。

6.运动动安静、噪音低由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。

7.效率高由于无中间传动环节,消除了机械摩擦时的能量损耗,传动效率大大提高。

直线传动电机的发展也越来越快,在运动控制行业中倍受重视。在国外工业运动控制相对发达的国家已开始推广使用相应的产品,其中美国科尔摩根公司(Kollmorgen)的PLATINNMDDL系列直线电机和SERVOSTARCD系列数字伺服放大器构成一种典型的直线永磁伺服系统,它能提供很高的动态响应速度和加速度、极高的刚度、较高的定位精度和平滑的无差运动;德国西门子公司、日本三井精机公司、台湾上银科技公司等也开始在其产品中应用直线电机。

4可编程计算机控制器技术

自20世纪60年代末美国第一台可编程序控制器(ProgrammingLogicalController,PLC)问世以来,PLC控制技术已走过了30年的发展历程,尤其是随着近代计算机技术和微电子技术的发展,它已在软硬件技术方面远远走出了当初的"顺序控制"的雏形阶段。可编程计算机控制器(PCC)就是代表这一发展趋势的新一代可编程控制器。

与传统的PLC相比较,PCC最大的特点在于它类似于大型计算机的分时多任务操作系统和多样化的应用软件的设计。传统的PLC大多采用单任务的时钟扫描或监控程序来处理程序本身的逻辑运算指令和外部的I/O通道的状态采集与刷新。这样处理方式直接导致了PLC的"控制速度"依赖于应用程序的大小,这一结果无疑是同I/O通道中高实时性的控制要求相违背的。PCC的系统软件完美地解决了这一问题,它采用分时多任务机制构筑其应用软件的运行平台,这样应用程序的运行周期则与程序长短无关,而是由操作系统的循环周期决定。由此,它将应用程序的扫描周期同外部的控制周期区别开来,满足了实时控制的要求。当然,这种控制周期可以在CPU运算能力允许的前提下,按照用户的实际要求,任意修改。

基于这样的操作系统,PCC的应用程序由多任务模块构成,给工程项目应用软件的开发带来很大的便利。因为这样可以方便地按照控制项目中各部分不同的功能要求,如运动控制、数据采集、报警、PID调节运算、通信控制等,分别编制出控制程序模块(任务),这些模块既独立运行,数据间又保持一定的相互关联,这些模块经过分步骤的独立编制和调试之后,可一同下载至PCC的CPU中,在多任务操作系统的调度管理下并行运行,共同实现项目的控制要求。

PCC在工业控制中强大的功能优势,体现了可编程控制器与工业控制计算机及DCS(分布式工业控制系统)技术互相融合的发展潮流,虽然这还是一项较为年轻的技术,但在其越来越多的应用领域中,它正日益显示出不可低估的发展潜力。

5运动控制卡

运动控制卡是一种基于工业PC机、用于各种运动控制场合(包括位移、速度、加速度等)的上位控制单元。它的出现主要是因为:(1)为了满足新型数控系统的标准化、柔性、开放性等要求;(2)在各种工业设备(如包装机械、印刷机械等)、国防装备(如跟踪定位系统等)、智能医疗装置等设备的自动化控制系统研制和改造中,急需一个运动控制模块的硬件平台;(3)PC机在各种工业现场的广泛应用,也促使配备相应的控制卡以充分发挥PC机的强大功能。

运动控制卡通常采用专业运动控制芯片或高速DSP作为运动控制核心,大多用于控制步进电机或伺服电机。一般地,运动控制卡与PC机构成主从式控制结构:PC机负责人机交互界面的管理和控制系统的实时监控等方面的工作(例如键盘和鼠标的管理、系统状态的显示、运动轨迹规划、控制指令的发送、外部信号的监控等等);控制卡完成运动控制的所有细节(包括脉冲和方向信号的输出、自动升降速的处理、原点和限位等信号的检测等等)。运动控制卡都配有开放的函数库供用户在DOS或Windows系统平台下自行开发、构造所需的控制系统。因而这种结构开放的运动控制卡能够广泛地应用于制造业中设备自动化的各个领域。

篇4

1.1.2人机界面取代按钮和操作器由人机交互式操作屏全面取代传统的按钮操作,也彻底改变了造纸传动工业现场。操作屏不仅可以任意设置按钮的功能和数量,还可以实时监视系统的各个运行状态以及参数等。在系统结构方面,目前普遍采用双端口网络系统,其中一个端口用于传动系统及各个执行单元,另一个用于操作屏进行数据传输,提高抗干扰能力。操作屏的使用,使用户节省了大量的现场电缆的铺设以及操作台的安装,节约了自然资源和工作量。目前由于自然资源的价格上涨,显示操作屏的价格下降,在一次成本投入上已经十分相近,如果考虑辅助传动控制的按钮连线,操作屏的投入成本更具优势。

1.2公共直流母线的推广和应用

1.2.1公共直流母线与交流母线的区别与特点公共直流母线系统的应用在造纸传动自动化技术领域具有标志性作用。所谓公共直流母线,简单地说就是将变频器的交直交内部结构,变为交直交外部系统结构。图1和图2是公共直流母线和交流母线的原理结构图,以说明两者的区别。从图中可以看出,交流母线变频器是各个变频器分别与交流电网连接,各自工作是独立的;而公共直流母线结构则是有一个总的进线整流单元,通过直流向各个逆变器单元供电。这种结构上的变化,导致其工作方式和效果不同。从相关资料和研究分析可以归纳这两者的主要区别和特点如下:(1)由于烘缸等大惯性负载的存在,在交流母线系统中往往会出现过压跳闸等情况。但在公共直流母线系统中,因为能量可以通过直流母线在所有电机之间互相流动,从而解决因为负载波动引起的跳闸,很好地克服多电机间电动状态和发电状态之间的矛盾。(2)通过集中整流,可以使公共直流母线电压在技术手段上做得更加可靠,降低故障率。但是事物总是利弊相伴,集中整流尽管可以通过技术手段提高可靠性,但毕竟是一个单机运行,一旦整流单元故障,也会造成整个系统停机。而交流母线系统,由于每台变频器都是独立的,因此,一台故障不影响整个生产线的运行,排除故障相对简单。(3)关于节能和降低成本。由于在技术上明显复杂,如果不采用特殊手段,公共直流母线的价格目前高于交流母线的价格。关于节能的观点,目前尚没有理论和实验数据证明这一说法。(4)关于谐波抑制问题。变频器的谐波主要来源于高频开关的脉冲电流,使电网的电流波形失真,导致大量谐波产生。从统计学的角度看,当采用公共直流母线后,母线上的电流是多台变频器不规则的脉冲电流叠加,各个变频器的电容相当于并联,理论上比交流母线电流波形好,谐波影响会得到改善。但由于整流单元的集中,对变压器的影响比交流母线要大,特别是普通六脉波系统,会在电网侧产生很大的5次谐波,甚至达到干扰其他用电设备的程度。因此,当功率超过2000kW时,建议采用12脉波整流单元,这样可以有效减小谢波干扰的影响。而交流母线系统,由于没有集中大功率整流,因此5次谐波的影响要小。关于回馈制动问题。由于纸机传动是一种长期稳速运行的系统,是否考虑增加回馈制动单元,应当根据系统的总投资、运行车速及停机的要求综合考虑。一种说法是通过能量回馈可以节省能源,但实际上纸机正常生产后是很少需要紧急停车的,因此用相当增加一套整流系统的代价来解决回馈能量的回收问题值得权衡利弊。当车速1000m/min以上时,为使惯性部分尽快停下来,适当增加一定功率的能耗制动,也是一个不错的选择。

1.2.2公共直流母线实现方案及运行维护成本分析目前在ABB、AB和西门子公司的标准产品系列中,都有标准的直流母线系统。除AB系统在直流母线产品和交流母线产品中差别不大以外,其他两家公司的直流母线系统都比交流母线系统价格要高。特别是整流逆变单元,比国产产品价格要高出数倍。因此,目前普遍解决方案是在不带逆变回馈单元时较多采用的是国产整流单元,配以上述公司的逆变器或变频器,这已经在国内许多造纸生产线上使用。当然如果系统投资资金充足,客户要求,采用更高性能的PWM整流逆变系统,既可以实现整流回馈,又可以降低谐波影响。现将可能的方案介绍如下:(1)可控硅整流逆变回馈供电系统。这种系统是目前各大公司主推的系统,造价较高,具有能量回馈能力,谐波影响根据功率大小、6脉波和12脉波而不同。(2)国产整流单元,配逆变器加能耗制动公共直流母线系统。这种系统经济性较好,性能与整流回馈相同,谐波影响与上一方案相同。(3)国产整流单元,配变频器加能耗制动公共直流母线系统。这种方案是国内的系统集成商,在激烈竞争下采用的一种降低成本的方案。这种方案适合于当变频器价格低于逆变器价格时,具有一定竞争力,但如果与逆变器价格相当,则与方案(2)相同。(4)局部直流母线方案,其是在交流母线系统的基础上,为了解决惯性负载的过电压跳闸问题或针对某些负荷分配点需要能耗制动的情况下而采取的方案。整个系统仍然是交流母线即通常的变频器系统方案,但是将惯性负载传动点的变频器外接制动单元的端子通过一定的技术手段相互连接,在相连接的变频器之间形成公共直流母线。其性能和工作特点与集中整流直流母线相当,只不过集中整流由分散整流代替。特点是简单、低成本,但系统接线复杂,给系统的可靠性和维护带来不便,在小系统中应用比较适合。总之,从目前来看,公共直流母线、网络通讯和操作屏等现代信息技术已经成为纸机传动自动化的发展趋势;以AB公司等为代表的工业以太网技术以及远程监控和服务等将成为下一步技术发展的大方向,甚至无线网络和远程调试等在今后的发展中都是可能的;对纸机传动自动化来说,还有优化设计、程序化的安装和调试,以及精准的故障诊断与维护等问题。

2现代纸机传动自动化系统的组成与设计特点

2.1现代纸机装备的最新技术动向从2014CIPTE国际造纸技术报告会获悉,以芬兰维美德公司、德国福伊特公司为代表的纸机装备制造商,分别从各种不同的角度为纸机装备的发展提出了多种解决方案。其中,优化概念模块化纸机实际上是在整个系统中,将不同纸机的各个部分部件,用统一的设计和规划方案,尤其是连接部分、通用部件的标准方面,如同组装模块一样,可以批量生产适合各种不同纸机的产品部件。在需要的时候,可以迅速地通过模块组装和连接形成不同的造纸机生产线,这就是优化和模块化的核心所在。在纸机装备的模块化和优化设计的推动下,纸机传动自动化其实也正在朝着这个方向发展和变化。无论是从软件设计还是硬件结构,国外的大公司以及国内的一些企业已经在不同程度上实施并推进这一方法的实现。所谓面向对象的设计方法和解决方案,实际上是从软件工程的开发角度,来设计和构建电气传动系统的软件和硬件系统,从而最大限度地减少重复性工作和最大限度地降低制造和设备采购成本,提高工作效率,降低系统的故障率和增加可靠性。

2.2硬件模块化、通用化设计根据模块化的设计思想和标准化的系统目标,ABB和西门子的大功率变频器就是一个典型的实例。在ABB的大功率变频器设计中即采用了模块化的设计,一台大功率变频器可以由若干个硬件功率模块组成。当某个模块故障时,可以在不停机的状态下降低功率继续使用,直至更换新的模块以后恢复原功率运行。西门子S120变频器系统则在模块化方面体现更加彻底,不但主回路模块化,连控制回路也一起模块化了。在新的系统中变频器本身就组成了一个小型分布式控制系统,控制中心管理着变频器的各个主回路模块,每个模块仅相当于一个功率单元。如果说ABB变频器是变频器并联运行的话,西门子变频器就是一个小型集散控制系统。控制单元独立于功率单元,一台控制器可以管理多个功率单元。这种硬件结构的设计使模块化达到了电力电子装置的最新高度。除此之外,在诸如电控柜、操作台以及辅助传动的控制回路设计方面,模块化的设计也体现了面向对象的特征。将一台电控柜从柜体设计到安装板以及柜内的每一个部件和回路,统统按照对象描述和封装模块的思想进行设计。在硬件的选择上尽可能做到对于整个公司的硬件系统要求做到模块化设计,即凡是运转方式、功率等级基本一致的对象,采用一样的模块加以控制,同时在对比较重要的控制单元的柜体设计中,凡是控制模块在条件许可的情况下再增加一块备用的控制模块(与厂家协调),这样当某个受控对象的控制回路出现故障时,抽出故障模块,换上备用模块,系统先恢复运行再维修故障模块。在整个系统的硬件设计中,类的设计即每一种抽屉状模块的设计中,系统面向对象所必须具备的封装及数据隐藏得以着重体现。在这里,我们强调的是每个受控对象(独立的用电负载)不仅仅要有一个实实在在的硬件类与之对应,在PLC程序中也会存在一个相对应软件类与硬件类对应,这样,每一个受控的实体对象都在控制系统对这两个相互依存的类对象的调用中,实现工艺的要求。而在此时面对纸机装备的优化概念模块化处理中,对于相对应的控制系统,我们也应该有同等的要求。在面向对象的硬件系统设计中,最大的特点就是控制回路的模块化,使其在强电回路封装的基础上继续封装控制回路,从而使得系统具有以下特点:(1)尽管模块受到被控对象功率的不同、运行方式的差异导致具体电路上的差别,但在外观上尽量标准化,使得除了模块之外,柜体也可柔性化设计;(2)从元器件到模块,应尽量体现出最大程度的通用与互换性;(3)模块的接口尽量简单,互换时简单方便;(4)模块设计应尽量使得可靠性足够高。在面向对象的硬件系统设计中,我们可以做到:(1)大大简化系统构建及设计过程的难度;(2)形成柔性化的控制系统;(3)更加利于专业化分工;(4)更有利于系统未来的扩容和改造。在这里,我们以最为常见的电动机控制回路的设计来详细说明面向对象的硬件系统如何实现:首先分析普通电机(对象)的特性:(1)电机直接启动,自由停止;(2)无反接制动及能耗制动的需求;(3)电机内无报警装置,提供额外异常信号指示;(4)短时间的电机堵转等异常情况在热保护等手段作用之前,不会给电机带来伤害。下面以一个简单的电机控制系统为例,说明我们在硬件设计时采用的方法,如图3、图4。我们将一个普通的电机作为对象,对它进行分析,从而得到控制要求,利用面向对象技术,将跟它有关系的操作封装在一个结构系统,使得在一张图纸上可以看到它的全部信息,并且全部模块化设计,利用端子接线。对于图4,我们可以在它的基础上,针对具体的工控要求,很快进行修改而不破坏其内部封装,改造成适用于变频和软启等硬件设计,几乎没有什么太大的变化,这一现象,体现面向对象中继承的思想。同样的设计完全可以在电控柜和操作台上实现,从而将我们的关注点完全放在这样一个个对象上,而不是一个庞大系统的每一个细节,可以极大地节省设计时间,简化设计步骤。而对于相同或者差异不大的对象或者项目,完全可以很方便的完成,而不用再担心改动错误。因为在封装对象的时候,我们投入了极大的精力,使得每一个对象里面的每个元件都有跟随作用。如果封装后有错误,是无法通过测试的。这首先保证了自己所使用的“元件”是无误的,而不像面向过程中每一步都没有电气属性,改动完之后不知道是否正确的尴尬局面。目前,对于整个造纸机传动自动化来讲,我们往往对于辅助传动的着力点过少,从现在这个行业的故障率来讲,目前应该将辅助传动控制与主传动进行一体化设计。对此,我们还是针对于每一个项目进行具体设计,因为辅助传动在各自的分布可能要求不一致,系统之间又没有具体的联系,还是采用面向过程的设计思路,简单方便、可靠性高。

2.3软件模块化、通用化设计在国外,1999年Benitez等人提出面向对象方法在PLC程序设计应用中的必然性。2010年ChiacchioP.等人提出IEC61131标准中的PLC程序设计方法已无法满足自动化系统的发展需求,提出面向对象的编程方法。AdnanSalihbegović等人也提出将软件工程方法运用到工业自动化控制中。在国内,2000年陈娟等人将面向对象方法运用到粮食储运自动化系统中,讨论了类的抽象和封装的实现。2009年张逸群等人将面向对象方法运用到煤炭输送机控制系统的PLC程序设计中,阐述了基于STEP7的面向对象程序设计方法。2009年12月,祝瓛冰出版了《面向对象的现代工业控制系统的实用设计技术》一书,更是取得突破性技术,使得面向对象的方法更加实用于PLC程序设计。综上所述,在国内外研究中面向对象方法已经在工业控制中崭露头角。但在此时,纸机传动自动化软件设计还是处于传统的阶段,对于此次当代纸机装备制造商提出的优化概念模块化纸机,为了提高工业效率的适应性,还是难以满足,所以我们将面向对象方法引入纸机传动自动化行业,在硬件上加以强类封装,同时相对于每一个硬件类,都有一个相对应的软件类。这样对于一个控制系统的对象,我们只要通过接口,操作硬件类与软件类相互联系,就可以很好地完成控制任务。下面以普通电机为例,介绍其每个环节的做法:(1)建立需求分析表,如表1。其作用就是以控制系统对此类目标的需求,对未来对象所执行的任务进行反向递推,将需求层层细化。(2)建立变量表,如表2。这个需要好好琢磨,以至于反复修改。(3)编制类的梯形图,测试修改,反复多次。这样,所有编程均基于所述接口,对于每一个具体的工程对象,仅仅只需要修改相对应的外部变量,而不需要在所封装的程序内部做修改。当然这个过程是循环往复的,它需要我们有足够的测试对象以及测试次数,但这一点,相对于以往工程项目毫无头绪的修改,导致的出错率还是可以接受的。

3现代纸机传动系统常见技术问题分析与处理方法

纸机在运行中,由于机械、电气紧密联系,相互配合,因而故障出现时,往往会导致很难确定是何原因。作为电气技术人员,在对所管设备充分了解后,理应对于其工作原理以及设计思想有所了解,最后依据现象做出分析判断,区分故障,从而解决问题。在造纸生产中,不可避免地会出现一些类似操作失灵、频繁断纸等表面现象,操作人员往往第一时间会认为是出现了电气故障。此时,作为电气工程师则必须首先对故障现象进行仔细分析,完整描述,准确判断。要做到一看、二想、三检验,即:一看就是先看准问题的部位和现象,进行细致分析和准确描述,分清问题所在。二想就是对于问题表现的现象,要冷静思考、综合判断,特别是结合公共和电气参数的记录值,对现象的产生原因做出判断,防止误判。三检验就是在可能情况下,通过一些参数的人为变化,检验和核对问题的原因,最终确定问题的原因和处理方法。下面通过对几种常见问题的分析和判断,以说明问题的处理方法。

3.1速度不稳、断纸、引纸困难这类问题在早期的新纸机调试和二手机开机过程以及更换产品品种时较易发生。由于目前机械和传动设备都已经设计比较完善,操作人员也已经比较熟练。在设备和工艺以及电气之间发生问题梳理不清的情况已经减少。但是,从电气技术原理的角度分析问题的根源和找出解决办法仍然是电气工程师应当具备的基本能力。面对速度不稳、断纸这样的现象,往往会伴随着工艺和机械设备等相互交织的问题。有经验的车间主任、班组长可以很快判断问题的原因所在。以下通过电气传动的参数数据分析来说明逻辑分析方法:(1)仔细观察上位机记录的转速和转矩变化曲线,在反应的断纸点观察是否有速度的突变和转矩突变以及突变的方向和规律。这一点非常重要,传动参数的记录数据,特别是实时数据对分析判断至关重要。(2)基本分析和判断:如果在断纸附近速度曲线变化不明显,而转矩或电流在断纸附近显著波动,通常可以认为调速系统是正常的。可以不予理会关于速度波动的说法,这是因为如果速度没有明显变化而转矩或电流有明显波动,则恰恰说明调速系统是正常的。在双闭环系统中,速度反馈是外环,电流或转矩是内环。内环的响应要远远大于外环,因此正是电流的波动才抑制了或抵消了速度的波动,是正常的响应。(3)反之如果先有速度的变化,不论是缓慢变化还是突变,之后才是电流的变化,那么可以怀疑调速系统或在设备的某些部位存在问题。可能的问题有:编码器或速度反馈干扰或不稳定,引起速度波动;可以进一步观察速度反馈系统或电机和编码器的连接部位,进行必要的检修和加固,对导线连线以及屏蔽等进行检查和再次接线;如果电气系统检查无误,则可以怀疑设备或安装存在的可能问题。在某厂的系统中曾经发现过施胶部在施胶过程中主传动点速度缓慢变化的情况,后经检查发现是由于主从控制的安装不当引起,当胶辊在受热后形变较大时,会发生直径增加的情况因而导致线速度缓慢增加。引起不稳定或张力增加而出现断纸,更改主从配置后问题得以解决。(4)另外,在压榨部也会出现莫名其妙断纸的现象。在观察电气记录后如果没有发现问题,则可以提醒操作人员注意真空度和湿纸的干度,真空度的变化也会引起纸的强度变化。同时,应当充分注意速度环PID参数整定要合适。举例说明,如图5。此为卷取部换卷时的曲线记录。从曲线上看,当换卷时从三烘到卷取的纸幅所承受的拉力减小,从而导致三烘部的负荷加大,引起速度下降,在速度闭环系统的控制下,变频器进行了自动调节,但是此过程持续时间较长,从而可以明显看到三烘之前的纸幅下垂现象。从图5(上)明显还可以看出,速度控制的调节时间太长,速度下跌较大,因此需要增大速度环的比例系数,缩短积分时间。从图5(下)明显可以看到,同样在进行换卷时,速度有波动,但是速度下跌较小,而且调节过程的时间明显缩短,纸幅变化量不大。总之,应对速度不稳问题,一定要以记录数据为依据,然后再根据工艺过程分析问题的根源所在。电气工程师不但应当能够发现自身系统的问题,更要能够分析和判断出其他方面的问题,才能是合格的工程师。

3.2负荷分配控制方案及存在问题对策在网部和压榨部以及施胶部等,都存在负荷分配的控制问题。早期直流系统中负荷分配控制是由模拟的转矩电流分配器来完成的,现代纸机由于采用了通讯控制方式,这种分配关系由模拟变为数字,但基本的控制原理是相同的。本文所要阐述的是在负荷分配控制中针对不同情况的控制策略选择问题,这也是本人及其团队多年来研究和实践的总结,现分几个问题介绍如下:(1)刚性负荷分配控制的稳定性问题通常情况下压榨部、网部、施胶部等各部分的负荷分配问题,都可以定义为刚性连接的负荷分配控制问题。所谓刚性连接就是指两个连接的电动机之间没有速度误差,例如压榨部,上下辊之间在正常时是不可能有速度偏差的,否则纸页就会产生质量问题,网部和施胶部都可以做类似的解释。在这种负荷分配控制中,普遍采用的方案是用转矩或电流叠加进行分配,其中一台作为主传动,另一台作为辅传动。通过转矩电流的比例分配,满足协调所需的工艺控制要求。但是,这种方案是否存在稳定性问题呢?长期以来一直没有理论的证明和分析,陕西科技大学2013届研究生张洪涛在参考相关资料的基础上,将速度反馈微差注入的方法引入到负荷分配控制的稳定性仿真分析中,在理论上证明了刚性连接情况下采用转矩或电流进行负荷分配控制是稳定的。现将这一原理仿真模型进行说明。图6中编号1代表的是速度给定,编号2和3是负载和负载扰动的加载点。模型中刚性耦合的模拟是通过求取两者的速差,然后再乘以刚性系数去叠加到各电流调节器的输出上,从而代表由于速差而引起的转矩传递。主传动点的速度给定直接乘以一个补偿系数作为从传动点的速度给定,此补偿系数一般大于1,目的是为了使从传动点的速度调节器饱和。将主传动点的电流反馈和主传动点的转速调节取最小运算,目的是为了使主传动点的电流反馈值对从传动点的电流给定值起到一个限幅的作用,也即从传动点跟随主传动点的电流反馈,从而模拟转矩控制的效果。仿真波形如图7所示。由仿真波形可以看出,速度的稳定性较高而且从点电流在整个过程当中都仅仅跟随主点电流,保证主从出力相同。在25s时在标号2处添加一个负载扰动信号,此时转速变化很小,而电流的波动相对转速要大,但在不到2s时间内又稳定下来,且主从电流一致。从仿真波形来看,用转矩控制的负荷分配方式对刚性耦合的负载进行控制,系统始终是稳定的。(2)柔性耦合的负荷分配控制的稳定性问题图8是柔性耦合负荷分配控制系统中基于速度控制的仿真模型,其中主从传动点都处于速度控制模式,通过比较主从点的电流反馈值,然后求差,再乘以柔性补偿系数叠加到从点的速度给定上,从而微调从点电流,使得从点的电流值跟随主点电流的目的。在柔性耦合的负荷分配控制中,同样先采用主从传动点都处于速度控制模式进行仿真分析。在速度控制模式下通过比较主从点的电流反馈值,然后求差,再乘以柔性补偿系数叠加到从点的速度给定上,从而微调从点电流,使得从点的电流值跟随主点电流。模拟柔性耦合机械上的连接还是通过求速差,再乘刚性系数去叠加到各电流调节器的输出上。和刚性耦合中不同的是,当在主点加负载扰动时,其对从点转矩的影响需要经过一定的延时,所以在此还是通过求速差,再乘刚性系数去叠加到各电流调节器的输出上。在此模型中,添加了一个延时模块,其延时取决于实际转矩的传递时间。仿真时,在编号2处加负载扰动,而延时环节则加在去主点电流环的一侧,此时代表当从点负载发生波动时,其到主点转矩的传递需要经过一定的延时。仿真波形如图9所示。从仿真波形可以看出,当从点加负载扰动时,主从点转速的波动仍然很小,电流波动相对较大,但在短暂调整后又趋于平稳,从点的电流跟随性良好,说明主从点负载均衡,达到了负荷分配的目的。从上面仿真结果来看,对柔性耦合的负载采用速度控制的负荷分配方式是稳定的。图10是柔性连接的转矩控制方式仿真模型,模型中柔性耦合的模拟与刚性连接相同,均采用求取速度反馈差值的办法,用差值乘以刚性系数后叠加到各电流调节器的输出上,代表由于速差而引起的转矩传递。主传动点的速度给定直接乘以一个补偿系数作为从传动点的速度给定,此补偿系数一般大于1,目的是为了使从传动点的速度调节器饱和,从而形成转矩控制的方式。将主传动点的电流反馈和主传动点的转速调节取最小运算,目的是为了使主传动点的电流反馈值对从传动点的电流给定值起到一个限幅的作用,也即从传动点跟随主传动点的电流反馈,从而模拟转矩负荷分配控制的效果。与刚性连接不同的是增加一个延时环节,图10是将主扰动的影响经过延时后叠加到从点上。由图11仿真波形我们发现,当柔性耦合的负载采用总线通讯转矩控制的负荷分配方式时,主从点的转速与转矩都发生了振荡的现象。而前面采用总线通讯速度控制方式时,主从点的速度与转矩都能经过短暂的调节趋于稳定,且从点的电流和主点的电流基本相等。这也说明了柔性耦合的负载当采用转矩控制的负荷分配方式时是不稳定的,此跟实际调试当中遇到的现象完全吻合。总之,对于负荷分配控制系统而言,正常情况下我们都可以看作是刚性连接的系统。因此,无论是速度控制方式还是转矩控制方式,系统本身都是稳定的。但是如果具有延迟特性的负荷分配控制系统,由于转矩和速度之间增加了反馈延迟,就会造成不稳定现象。典型的例子如高速卫生纸机的负荷分配控制系统,在网部和大缸之间由10m以上的毛布进行连接,毛布的弹性作用会导致转矩和速度的延迟。这时如果采用转速控制的负荷分配方案则是稳定的,反之如果采用通常的转矩负荷分配控制方案则极有可能会造成系统不稳定,理论研究和实践都证明了这一点。

篇5

2.1集成化应用分析

对于机械制造领域来说,其中所涉及到的集成化实际上主要是在技术功能、技术经营上所进行的集成。而也正是由于信息技术的作用影响,才能够使得计算机集成化技术转化成为对于机械制造的整体性优化。企业本身在实际进行经营管理的过程中,所涉及到的相关动态集成措施,能够让制造企业本身的动态集成为一个整体,通过这方面的措施才使得自动化技术保持自身的应用合理性,进而让企业信息管理系统、计算机辅助设计技术、数控加工技术等被应用到制造系统中。就现阶段来说,将CAD/CAM作为主要核心的CIMS工程应用措施,实际上已经在整个制造行业中进行了覆盖,其生产形式必然会成为未来的发展趋势。

2.2柔性化应用分析

柔性化最显著的特点在于其能够根据外界因素作用力的差异表现出与之相对应的适应能力。换句话说,在柔性化应用过程中,生产出的产品能够较好地适应市场的更改特性。现代机械制造行业必须针对终端用户的各类需求及时精确地做出反应,进而对机械制造产品类型和结构属性做出相应调整。从这一角度上来说,柔性化应用可以很好地解决该问题,其在确保必要生产柔性的基础上,对人机交互界面进行了合理优化,并在构建产品制造信息系统的基础上将计算机管理的工作效益发挥到最大。在当前技术条件的支持下,敏捷制造已成为柔性化应用的必然选择与发展趋势,其最显著的应用优势体现在以下几个方面:a.提高产品生产质量和生产效率。b.确保产品交货期,满足客户需求。c.强化信息系统运行全过程的可靠性。

2.3自动化的加工系统

机械是由不同的零部件组合而成,而成品是将零部件按照一定的顺序和技术要求进行组装而成的。自动化的加工系统能够有效地完成生产过程中的重复劳动,能够大大降低工人的重复劳动,节省体力,保证充足的人力资源。

2.4智能化应用分析

智能化机械制造技术,主要是将自动化技术、人工智能技术、机械制造技术、系统工程管理技术等多项不同的技术进行了良好的结合。而通过和专家系统所进行的结合,智能机械实际上完全能够依据机械制造体系中所呈现出的环境不同变化。机械智能化体系中所存在的一个主要特性,便是其所呈现出的极为特殊的人机工作界面,在实际执行制造工作的过程中,可以利用交互界面来进行人机沟通。智能化技术的应用,其中所存在的关键,就在于使用智能技术来对于相关专家所呈现出的智力活动加以模拟,如此一来,便能够使得自动化机械按照专家化的模式来进行运转。同时,还由于智能技术的应用,使得运行的系统能够依据自身当前所呈现出的情况来执行实时性的检测工作,尽可能的保证运行得以优化。

篇6

第二代移动通信技术的特征

第二代的移动通信系统即2G技术,最开始是从二十世纪九十年代初期出现的,这种技术的出现主要是为了弥补第一代移动通信系统中存在的缺陷,并且扩展相应的功能。第二代移动通信系统的主要内容是网络应用逻辑更强,采用立即计费的方式,支持最佳路由,00/1800双频段,话语编解码等是完全兼容的而且速率更强,频率结构使用的是更高的加密技术,并且在这一代的通信技术中还应用了智能天线技术和双频段技术等。这样就满足了人们日益增长的需求,使业务数量持续的增长。移动通信技术所存在的GSM系统容量不足的缺陷,使GSM功能不断地得到改善和增强,具备了初步支持多媒体业务的能力。虽然第二代移动通信技术,在发展的过程中不断地得到较好的完善,但是2G的移动通信系统,随着用户和网络规模的不断扩大,频率资源也己经适应不了,移动通信业务发展的需求,呈现供不应求的趋式,频率资源也占有率也接近于枯竭,移动通信的语音质量,也不能达到用户所要求的高质量的标准,对于数据通信速率太低,这个2G无法在真正意义上满足移动多媒体业务的需求。

第三代移动通信技术

第三代移动通信系统技术,主要是在话音和数据通信速率等方面得到有效的改进,通信码率能够达到384kb/s,第三代移动通信系统,也就是通常所说的3G,是现阶段正在全力开发的移动通信的系统,这一代移动通信的系统,已经具备了最基本智能特征,应用了智能信号处理技术,智能信号处理单元,多媒体数据通信和话音支持的技术,能够提供跟前两代产品相比,所不能提供的多种宽带信息业务,第三代移动通信技术具备慢速图像、高速数据、电视图像等功能。传输速率也比前两代,移动通信技术有高质量的提高,传输速率在用户静止时,移动通信速率最大为2Mbps,在用户高速移动时,移动通信速率最大支持144Kbps,所占频带宽度为5MHz左右。但是,就目前的第三代3G移动通信系统,通信标准总共有三大类CDMA2000、WCDMA、TD-SCDMA,共同组成3G移动通信IMT2000的体系,它们彼此之间存在相互兼容的问题,这就意味着从根本上来说,当前已有的移动通信系统,并不是真正的个人通信和全球通信系统。再进一步地说,目前的3G移动通信系统的频谱利用率还相当地低,并没有充分地利用频谱资源,达到普及和推广3G移动通信的业务,留下了很大的发展智能移动通信技术的空间。根据移动通信市场发展的需要,和3G移动通信所存在的一些欠缺,目前国际上有不少国家,已经开始研究第四代移动通信系统。也就是我们将要面对的4G移动通信智能系统,这一代移动通信技术,将从根本上弥补前三代移动通信所存在的不足,成为移动通信系统又一个闪光的亮点,在不断地研究和发展中,让更多的用户认识和接受。

篇7

2.1人工智能控制实现了数据的采集及处理功能

在电气设备的运行过程中,数据的采集和处理是了解电气设备自动化控制情况,发现运行过程中的问题和提出解决办法的重要依据。在传统的自动化控制中,由于技术水平和实际运行中的动态变化,数据的采集和传输无法做到准确和稳定,保存数据容易出现丢失的情况。人工智能技术的使用,可以保障电气自动化运行过程中对动态信息的及时收集和稳定传输,对相关数据的保存工作也更安全,这就提高了电气自动化的控制水平,充分保障了电气运行中的安全性和稳定性。

2.2人工智能控制实现了系统运行监视机报警功能

电气自动化控制是用电气的可编程控制器,控制继电器,带动执行机构,完成预期设计动作的过程。在此过程中,系统内部各部分之间的运行都要严格按照设计模型和函数计算的基础上进行,如果系统中的一点出现问题,就会造成整个自动控制系统的故障。在以往的自动化控制系统运行中,对系统内部各部分之间的运行数据和运行状态进行实时监测,对运行中的特殊情况进行及时的报警处理,帮助自动化系统及时处理可能出现的故障,提醒电气管理人员加强对电气系统的管理。

2.3人工智能控制实现了操作控制功能

电气自动化控制的主要特征之一就是通过计算机的一键操作,就可以实现对电气系统的整体控制,保障电气自动化运行符合现实的需要。传统的自动化系统的操作,需要靠人工对系统各个环节进行人工操作,从而促进自动化系统内部的协调和配合,这种方式既降低了自动化运行的效率,也增加了自动化系统的故障发生频率。人工智能技术对电气自动化系统的控制,是通过各种先进的算法,按照电气自动化的需求,对自动化系统进行自动化和智能化设计,从而实现对电气自动化控制系统的同时操作,大大提高了自动化控制的效率,减少了单独指令操作中容易出现的不协调情况的发生。

3人工智能技术在电气自动化控制中的控制方式

3.1模糊控制

模糊控制以模糊推理和模糊语言变量等为理论基础,并以专家经验作为模糊控制的规则。模糊控制就是在被控制的对象的模糊模型的基础之上,运用模糊控制器,实现对电气控制系统的控制。在实际控制设计过程中,通过对计算机控制系统的使用,使电气自动化系统形成具有反馈通道的闭环结构的数字控制系统,从而达到对电气自动化系统的科学控制。

3.2专家控制

专家控制是指在进行电气自动化控制过程中,利用相关的系统控制理论和控制技术的结合,通过对以往控制经验的模拟和学习,实现电气自动化控制中智能控制技术的实施。这种控制方式具有很强的灵活性,在实际运行中,面对控制要求和系统运行情况,专家控制可以自觉选取控制率,并通过自我调整,强化对工作环境的适应。

3.3网络神经控制

网络神经控制的原理就是基于对人脑神经元的活动模拟,以逼近原理为依据的网络建模。神经控制是有学习能力的,属于学习控制,对电气自动化控制中出现的新问题可以及时提出有效的解决办法,并通过对相关技术问题的分析解决,提高自身的人工智能水平。

篇8

信息时代的高新技术流向传统产业,引起后者的深刻变革。作为传统产业之一的机械工业,在这场新技术革命冲击下,产品结构和生产系统结构都发生了质的跃变,微电子技术、微计算机技术的高速发展使信息、智能与机械装置和动力设备相结合,促使机械工业开始了一场大规模的机电一体化技术革命。

随着计算机技术、电子电力技术和传感器技术的发展,各先进国家的机电一体化产品层出不穷。机床、汽车、仪表、家用电器、轻工机械、纺织机械、包装机械、印刷机械、冶金机械、化工机械以及工业机器人、智能机器人等许多门类产品每年都有新的进展。机电一体化技术已越来越受到各方面的关注,它在改善人民生活、提高工作效率、节约能源、降低材料消耗、增强企业竞争力等方面起着极大的作用。

在机电一体化技术迅速发展的同时,运动控制技术作为其关键组成部分,也得到前所未有的大发展,国内外各个厂家相继推出运动控制的新技术、新产品。本文主要介绍了全闭环交流伺服驱动技术(FullClosedACServo)、直线电机驱动技术(LinearMotorDriving)、可编程序计算机控制器(ProgrammableComputerController,PCC)和运动控制卡(MotionControllingBoard)等几项具有代表性的新技术。

二、全闭环交流伺服驱动技术

在一些定位精度或动态响应要求比较高的机电一体化产品中,交流伺服系统的应用越来越广泛,其中数字式交流伺服系统更符合数字化控制模式的潮流,而且调试、使用十分简单,因而被受青睐。这种伺服系统的驱动器采用了先进的数字信号处理器(DigitalSignalProcessor,DSP),可以对电机轴后端部的光电编码器进行位置采样,在驱动器和电机之间构成位置和速度的闭环控制系统,并充分发挥DSP的高速运算能力,自动完成整个伺服系统的增益调节,甚至可以跟踪负载变化,实时调节系统增益;有的驱动器还具有快速傅立叶变换(FFT)的功能,测算出设备的机械共振点,并通过陷波滤波方式消除机械共振。

一般情况下,这种数字式交流伺服系统大多工作在半闭环的控制方式,即伺服电机上的编码器反馈既作速度环,也作位置环。这种控制方式对于传动链上的间隙及误差不能克服或补偿。为了获得更高的控制精度,应在最终的运动部分安装高精度的检测元件(如:光栅尺、光电编码器等),即实现全闭环控制。比较传统的全闭环控制方法是:伺服系统只接受速度指令,完成速度环的控制,位置环的控制由上位控制器来完成(大多数全闭环的机床数控系统就是这样)。这样大大增加了上位控制器的难度,也限制了伺服系统的推广。目前,国外已出现了一种更完善、可以实现更高精度的全闭环数字式伺服系统,使得高精度自动化设备的实现更为容易。

该系统克服了上述半闭环控制系统的缺陷,伺服驱动器可以直接采样装在最后一级机械运动部件上的位置反馈元件(如光栅尺、磁栅尺、旋转编码器等),作为位置环,而电机上的编码器反馈此时仅作为速度环。这样伺服系统就可以消除机械传动上存在的间隙(如齿轮间隙、丝杠间隙等),补偿机械传动件的制造误差(如丝杠螺距误差等),实现真正的全闭环位置控制功能,获得较高的定位精度。而且这种全闭环控制均由伺服驱动器来完成,无需增加上位控制器的负担,因而越来越多的行业在其自动化设备的改造和研制中,开始采用这种伺服系统。

三、直线电机驱动技术

直线电机在机床进给伺服系统中的应用,近几年来已在世界机床行业得到重视,并在西欧工业发达地区掀起"直线电机热"。

在机床进给系统中,采用直线电动机直接驱动与原旋转电机传动的最大区别是取消了从电机到工作台(拖板)之间的机械传动环节,把机床进给传动链的长度缩短为零,因而这种传动方式又被称为"零传动"。正是由于这种"零传动"方式,带来了原旋转电机驱动方式无法达到的性能指标和优点。

1.高速响应由于系统中直接取消了一些响应时间常数较大的机械传动件(如丝杠等),使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。

2.精度直线驱动系统取消了由于丝杠等机械机构产生的传动间隙和误差,减少了插补运动时因传动系统滞后带来的跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。

3.动刚度高由于"直接驱动",避免了启动、变速和换向时因中间传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,同时也提高了其传动刚度。

4.速度快、加减速过程短由于直线电动机最早主要用于磁悬浮列车(时速可达500Km/h),所以用在机床进给驱动中,要满足其超高速切削的最大进个速度(要求达60~100M/min或更高)当然是没有问题的。也由于上述"零传动"的高速响应性,使其加减速过程大大缩短。以实现起动时瞬间达到高速,高速运行时又能瞬间准停。可获得较高的加速度,一般可达2~10g(g=9.8m/s2),而滚珠丝杠传动的最大加速度一般只有0.1~0.5g。

5.行程长度不受限制在导轨上通过串联直线电机,就可以无限延长其行程长度。

6.运动动安静、噪音低由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。

7.效率高由于无中间传动环节,消除了机械摩擦时的能量损耗,传动效率大大提高。

直线传动电机的发展也越来越快,在运动控制行业中倍受重视。在国外工业运动控制相对发达的国家已开始推广使用相应的产品,其中美国科尔摩根公司(Kollmorgen)的PLATINNMDDL系列直线电机和SERVOSTARCD系列数字伺服放大器构成一种典型的直线永磁伺服系统,它能提供很高的动态响应速度和加速度、极高的刚度、较高的定位精度和平滑的无差运动;德国西门子公司、日本三井精机公司、台湾上银科技公司等也开始在其产品中应用直线电机。

四、可编程计算机控制器技术

自20世纪60年代末美国第一台可编程序控制器(ProgrammingLogical Controller,PLC)问世以来,PLC控制技术已走过了30年的发展历程,尤其是随着近代计算机技术和微电子技术的发展,它已在软硬件技术方面远远走出了当初的"顺序控制"的雏形阶段。可编程计算机控制器(PCC)就是代表这一发展趋势的新一代可编程控制器。

与传统的PLC相比较,PCC最大的特点在于它类似于大型计算机的分时多任务操作系统和多样化的应用软件的设计。传统的PLC大多采用单任务的时钟扫描或监控程序来处理程序本身的逻辑运算指令和外部的I/O通道的状态采集与刷新。这样处理方式直接导致了PLC的"控制速度"依赖于应用程序的大小,这一结果无疑是同I/O通道中高实时性的控制要求相违背的。PCC的系统软件完美地解决了这一问题,它采用分时多任务机制构筑其应用软件的运行平台,这样应用程序的运行周期则与程序长短无关,而是由操作系统的循环周期决定。由此,它将应用程序的扫描周期同外部的控制周期区别开来,满足了实时控制的要求。当然,这种控制周期可以在CPU运算能力允许的前提下,按照用户的实际要求,任意修改。

基于这样的操作系统,PCC的应用程序由多任务模块构成,给工程项目应用软件的开发带来很大的便利。因为这样可以方便地按照控制项目中各部分不同的功能要求,如运动控制、数据采集、报警、PID调节运算、通信控制等,分别编制出控制程序模块(任务),这些模块既独立运行,数据间又保持一定的相互关联,这些模块经过分步骤的独立编制和调试之后,可一同下载至PCC的CPU中,在多任务操作系统的调度管理下并行运行,共同实现项目的控制要求。

PCC在工业控制中强大的功能优势,体现了可编程控制器与工业控制计算机及DCS(分布式工业控制系统)技术互相融合的发展潮流,虽然这还是一项较为年轻的技术,但在其越来越多的应用领域中,它正日益显示出不可低估的发展潜力。

五、运动控制卡

运动控制卡是一种基于工业PC机、用于各种运动控制场合(包括位移、速度、加速度等)的上位控制单元。它的出现主要是因为:(1)为了满足新型数控系统的标准化、柔性、开放性等要求;(2)在各种工业设备(如包装机械、印刷机械等)、国防装备(如跟踪定位系统等)、智能医疗装置等设备的自动化控制系统研制和改造中,急需一个运动控制模块的硬件平台;(3)PC机在各种工业现场的广泛应用,也促使配备相应的控制卡以充分发挥PC机的强大功能。

运动控制卡通常采用专业运动控制芯片或高速DSP作为运动控制核心,大多用于控制步进电机或伺服电机。一般地,运动控制卡与PC机构成主从式控制结构:PC机负责人机交互界面的管理和控制系统的实时监控等方面的工作(例如键盘和鼠标的管理、系统状态的显示、运动轨迹规划、控制指令的发送、外部信号的监控等等);控制卡完成运动控制的所有细节(包括脉冲和方向信号的输出、自动升降速的处理、原点和限位等信号的检测等等)。运动控制卡都配有开放的函数库供用户在DOS或Windows系统平台下自行开发、构造所需的控制系统。因而这种结构开放的运动控制卡能够广泛地应用于制造业中设备自动化的各个领域。

篇9

1.2热力学控制变换工艺热力学控制变换工艺流程见图3。粗合成气首先分为两路,一路进入1#低压蒸汽发生器副产低压蒸汽,同时调整水气比至约0.25后,经气气换热器升温进入第一变换炉进行变换反应,出口气体经换热后,进入1#中压蒸汽发生器副产中压蒸汽,降温后与另一路粗合成气汇合后经脱毒槽进入第二变换炉继续变换反应,出第二变换炉变换气依次进入中压蒸汽过热器、2#中压蒸汽发生器、2#低压蒸汽发生器、锅炉给水预热器、脱盐水预热器回收热量。热力学控制变换工艺在粗合成气主路设置非变换旁路跨越第一变换炉,再与另一路经第一变换炉的低含水量变换气混合后进入第二变换炉反应,可稳定调控水气比,且无需补充蒸汽调整水气比,节约能耗效果显著。第一、二变换炉催化剂装填量均为足量,都按照接近反应平衡控制变换深度进行设计,结合粗合成气旁路、主路流量比值控制及第一变换炉之前设置蒸汽发生器,运行负荷变化时不需要调整;且由于反应平衡控制的特点,在不同运行负荷下第一变换炉发生甲烷化反应的风险很小。该流程应注意的是,运行过程特别是开工导气初期,由于操作或调整不当出现水气比过低而容易导致甲烷化超温发生。此时可根据床层温度适当调整第一变换炉水气比,控制床层热点温度不高于380℃,避免甲烷化的发生。在运行末期,可以通过适当减小进入第一变换炉的气量或者适当提高第一变换炉反应器入口的水气比,来维持较高的CO转化率,使装置仍能够稳定运行。此工艺操作过程简单,兼顾了第一、二变换炉反应器的温度控制和水气比要求,既很好地控制了第一变换炉反应器的热点温度,又使第二变换炉反应器入口气体在降温的同时提高了水气比。

2分析比较

两种工艺有相似之处,即均采用了降低原料粗合成气中水气比的方法。究其原因,一方面制甲醇其水气比是过剩的,节能效果显著;另一方面可以降低变换反应的剧烈程度,增强了装置的稳定性和可操作性。不同的是第一变换炉变换反应控温方式的差异,动力学控制变换工艺是减少催化剂装填量,使变换未反应完全即送出第一变换炉,而热力学控制变换工艺是变换反应达到平衡后送出第一变换炉。

2.1技术参数表1是两种工艺的主要技术参数对比,从表1中可知,两种工艺均能满足生产要求。两种工艺经废热锅炉后,降低第一变换炉进口的水气比,因各自控温方式的不同而产生较大差异。且2个变换炉进口温度、床层热点温度呈现出不同的高低分布。动力学控制变换工艺2个炉进口温度均较高,床层热点温度前高后低。热力学控制变换工艺2个炉进口温度均较低,床层热点温度前低后高。比较而言,较低的进口温度有利于催化剂的升温还原操作和使用寿命的延长,也便于换热流程的组建,而且变换工艺的控温关键是第一变换炉,第一变换炉较低的床层热点温度可以更有效避免甲烷化的发生。由于两种工艺变换炉热点温度的差异,换热流程从热量有效利用的角度考虑,中压蒸汽过热器设置位置不同,动力学控制变换工艺中,中压蒸汽过热器直接设置在了第一变换炉出口,而热力学控制变换工艺则设置在了第二变换炉出口。

2.2能耗表2是两种工艺的主要消耗对比。当生产规模一定时,不同变换工艺的能耗主要体现在蒸汽和工艺余热上。由表2可知,两种工艺副产的蒸汽基本相当,低温位工艺余热、冷凝液总量、循环冷却水水量,热力学控制变换工艺略多,此结果是由于热力学控制工艺进入变换系统的总水气比略高于动力学控制工艺。两种工艺均采用了前置废热锅炉,并且后续不补充蒸汽或水,变换深度相当,变换产生的整体热量和冷凝液基本相同,只是热量及冷凝液的分配有所不同,故由表2可看出两方案能耗相当。

2.3投资两种工艺主要设备投资费用见表3。可以看出,变换炉费用因两种工艺催化剂装量的不同存在较大差异;各换热设备因两种工艺换热流程、参与换热工艺气气量、平均传热温差等因素存在明显差异。虽然热力学控制变换工艺多设置一台脱毒槽,但动力学控制变换工艺主要设备投资费用比热力学控制变换工艺多。两种变换工艺中,第一变换炉催化剂设计使用寿命均为2a,第二变换炉催化剂设计寿命为4a,脱毒槽吸附剂设计使用寿命为4a。综合以上几方面的分析比较,两种变换工艺均能满足生产要求,能耗相当,在操作稳定性和主要设备投资方面,热力学控制变换工艺优于动力学控制变换工艺。

篇10

我们知道,天线有很多种,但大体上可分为三大类:“线天线”、“面天线”及“阵列天线”。阵列天线最初用于雷达、声纳以及军事通信中,完成空间滤波和参数估计两大任务。当阵列天线应用到移动通信领域时,通信工程师喜欢用“智能天线”来称谓之。智能天线根据方向图形成(或称为波束形成)的方式又可分为两类:第一类,采用固定形状方向图的智能天线,且不需要参考信号;第二类,采用自适应算法形成方向图的智能天线,需要参考信号。

本文在以下提到的智能天线都是指第二类,即(自适应)智能天线,这也是目前智能天线研究的主流。

二、智能天线的技术现状

在分析研究智能天线技术理论的同时,国内外一些大学、公司和研究所分别建立了试验平台,用实验的方法来验证理论研究的成果,得出相应的结论。

(1)在美国

在智能天线技术方面,美国较其它国家要成熟的多,并已开始投入实用。美国ArrayComm公司将智能天线技术应用于无线本地环路(WLL)系统。ArrayComm方案采用可变阵元配置,有12阵元、8阵元环形自适应阵列可供不同环境选用,现场实验表明在PHS基站采用该技术可以使系统容量提高4倍。

(2)在欧洲

欧洲通信委员会(CEC)在RACE(ResearchintoAdvancedCommunicationinEurope)计划中实施了第一阶段智能天线技术研究,称为TSUNAMI(TheTechnologyinSmartAntennasforUniver-salAdvancedMobileInfrastructure),由德国、英国、丹麦和西班牙合作完成。该项目是在DECT基站上构造智能天线试验模型,于1995年初开始现场试验,天线阵列由8个阵元组成,射频工作频率为1.89GHz,阵元间距可调,阵元分布有直线型、圆环型和平面型三种形式。试验模型用数字波束成形的方法实现智能天线,采用ERA技术有限公司的专用ASIC芯片BDF1108完成波束形成,使用TMS320C40芯片作为中央控制。

(3)在日本

ATR光电通信研究所研制了基于波束空间处理方式的多波束智能天线。天线阵元布局为间距半波长的16阵元平面方阵,射频工作频率是1.545GHz。阵元组件接收信号在模数变换后,进行快速付氏变换(FFT)处理,形成正交波束后,分别采用恒模(CMA)算法或最大比值合并分集算法,数字信号处理部分由10片FPGA完成,整块电路板大小为23.3cm×34.0cm。ATR研究人员提出了智能天线的软件天线的概念。

我国目前有部分单位也正进行相关的研究。信威公司将智能天线应用于TDD(时分双工)方式的WLL系统中,信威公司智能天线采用8阵元环形自适应阵列,射频工作于1785~1805MHz,采用TDD双工方式,收发间隔10ms,接收机灵敏度最大可提高9dB。

三、智能天线的优势

智能天线是第三代移动通信不可缺少的空域信号处理技术,归纳起来,智能天线具有以下几个突出的优点。

(1)具有测向和自适应调零功能,能把主波束对准入射信号并适应实时跟踪信号,同时还能把零响点对准干扰信号。

(2)提高输入信号的信干噪比。显然,采用多天线阵列将截获更多的空间信号,也即是获得阵列增益。

(3)能识别不同入射方向的直射波和反射波,具有较强的抗多径衰落和同信道干扰的能力。能减小普通均衡技术很难处理的快衰落对系统性能的影响。

(4)增强系统抗频率选择性衰落的能力,因为天线阵列本质上具有空间分集的能力。

(5)可以利用智能天线,实时监测电磁环境和用户情况来提高网络的管理能力。

(6)智能天线自适应调节天线增益,从而较好地解决远近效应问题。为移动台的进一步简化提供了条件。越区切换是根据基站接收的移动台功率的电平来判断的。由于阴影效应和多径衰落的影响常常导致错误的越区转接,从而增加了网络管理的负荷和用户的呼损率。在相邻小区应用的智能天线技术,可以实时地测量和记录移动台的位置和速度,为越区切换提供更可靠的依据。

四、智能天线与若干空域处理技术的比较

为了进一步理解智能天线的概念,我们把智能天线和相关的传统空域处理技术加以比较。

(1)智能天线与自适应天线的比较

智能天线与自适应天线并没有本质上的区别,只是由于应用场合不同而具有显著的差异。自适应天线主要应用于雷达系统的干扰抵消,一般地,雷达接收到的干扰信号具有很强的功率电平,并且干扰源数目比天线阵列单元数少或相当。而在无线通信系统中,由于多径传播效应到达天线阵列的干扰数目远大于天线阵列单元数,入射角呈现随机分布,功率电平也有很大的动态变化范围,此时的天线叫智能天线。对自适应天线而言,只需对入射干扰信号进行抵消以获得信干噪比(SINR,SignaltoInterferenceplusNoiseRatio)的最大化。对智能天线而言,由于到达阵列的多径信号的入射角和功率电平均数是随机变化的,所以获得的是统计意义上的信干噪比(SINR)的最大化。

(2)智能天线与空间分集技术的比较

空间分集是无线通信系统中常用的抗多径衰落方案。M单元智能天线也可等效为由M个空间耦合器按优化合并准则构成的空间分集阵列。因此可以认为智能天线是传统分集接收的进一步发展。

但是智能天线与空间分集技术却是有显著的差别的。首先空间分集利用了阵列天线中不同阵元耦合得到的空间信号的弱相关性,也即是不同路径的多径信号的弱相关性。而智能天线则是对所有阵元接收的信号进行加权合并来形成空间滤波。一个根本性的区别:智能天线阵列结构的间距小于一个波长(一般取λ/2),而空间分集阵列的间距可以为数个波长。

(3)智能天线与小区扇区化的比较

小区的扇区化可以认为是一种简化的、固定的预分配智能天线系统。智能天线则是动态地、自适应优化的扇区化技术。现在,我们来讨论一个颇有争议的问题。根据IS-95建议,当采用120°扇区时系统容量将增加3倍。由此是否可以得到结论,扇区化波束越窄系统容量提高越大?考虑到实际的电磁环境,我们认为对这一问题的回答是否定的。这是因为窄波束接收到的信号往往是由许多相关性较强的多径信号构成的。一般情况下,各径信号的时延扩展小于一个chip周期。这时信号波形易于产生畸变从而降低信号的质量达不到增加系统容量的目的。同时如果采用过窄的波束接收信号,一旦该径信号受到严重的衰落,则将直接导致通信的中断。另外,过窄的接收波束在工程上是难以实现的,并将成倍地增加设备的复杂度。

五、智能天线的未来展望

(1)目前还没有一个完整的通信理论能够较全面地将智能天线的所有课题有机地联系起来,故需要建立一套较完整的智能天线理论;另一方面,高效、快速的智能算法也将是智能天线走向实用的关键。

(2)采用高速DSP技术,将原先的射频信号转移到基带进行处理。基带处理过程是数字算法的硬件实现过程。

(3)由于圆形布阵和二维任意布阵比等间隔线阵优越,同时阵列天线的数字合成算法能够用于任意形式阵列天线而形成任意图案的方向图,因而可考虑在CDMA基站中采用二维任意布阵的智能天线。

(4)在移动台中(如手机)采用智能天线技术。

(5)采用智能天线技术来改善移动通信信道中上下链路不能使用同一套权值的问题,以改善上下链路的性能。

篇11

在机械制造业中,数控加工技术已经越来越受到重视。随着计算机技术为主流的现代科技技术发展和市场产品竞争的加剧,传统的机械制造技术很难满足现代产品多样化的发展和日新月异的换代速度。面对多品种小批量生产比重的加大,产品交货质量和成本要求的提高,要求现代的制造技术具有很高的柔性。如何能增强机械制造业对外界因素的适应能力以及产品适应市场的变化能力,就需要我们能利用现代数控技术的灵活性,最大限度的应用于机械制造行业。将机械设备的功能、效率、可靠性和产品质量提高到一个新的水平,从而满足现代市场的竞争需求。

一、技术特点

数控技术是用数字信息对机械加工和运动过程进行控制的技术。它是集传统的机械制造技术、计算机技术、传感检测技术、网络通信技术、光机电技术于一体的现代制造业基础技术,具有高精度、高效率、柔性自动化等特点。

目前是采用计算机控制,预先编程然后利用控制程序实现对设备的控制功能。由于计算机软件的辅助功能替代了早期使用纯硬件电路组成的数控装置,使得输入数据的存储、处理、判断、运算等功能均由现场可编辑的软件来完成,这样极大的增强了机械制造的灵活性,提高设备的工作效率。

二、机械制造中数控技术的应用

2.1工业生产工业机器人和传统的数控系统一样是由控制单元、驱动单元和执行机构组成的。主要运用机器设备的生产线上,或者运用于复杂恶劣的劳动环境下下,完成人类难以完成的工作,很大程度上改善了劳动条件,保证了生产质量和人身安全。

在实际操作中,控制单元是由计算机系统组成,指挥机器人按照写入内核的程序向驱动单元发出指令,完成预想的操作,同时同步检测执行动作,一旦出现错误或发生故障,由传感系统和检测系统反馈到控制单元,发出报警信号和相应的保护动作。而执行机构是由伺服系统和机械构件组成。有动力部分向执行机构提供动力,使执行机构在驱动元件的作用下完成规定操作。

2.2煤矿机械现代采煤机开发速度快、品种多,都是小批量的生产,各种机壳的毛坯制造越来越多地采用焊件,传统机械加工难以实现单件的下料问题,而使用数控气割,代替了过去流行的仿型法,使用龙骨板程序对采煤机叶片、滚筒等下料,从而优化套料的选用方案。使其发挥了切割速度快、质量可靠的优势,一些零件的焊接坡口可直接割出,这样大大提高了生产效率。同时,数控气割机装有自动可调的切缝补偿装置。它允许对构件的实际轮廓进行程序控制,好比数控机床上对铣刀的半径补偿一样。这样可以通过调节切缝的补偿值来精确的控制毛坯件的加工余量。

2.3汽车工业汽车工业近20年来发展尤为迅猛,在快速发展的过程中,汽车零部件的加工技术也在快速发展,数控技术的出现,更加快了复杂零部件快速制造的实现过程。

将高速加工中心和其它高速数控机床组成的高速柔性生产线集“高柔性”与“高效率”于一体,既可满足产品不断更新换代的要求,做到一次投资,长期受益,又有接近于组合机床刚性自动线的生产效率,从而打破汽车生产中有关“经济规模”的传统观念,实现了多品种、中小批量的高效生产。数控加工技术中的快速成形制造技术在复杂的零部件加工制造中可以很轻易方便的实现,不仅如此,数控技术中的虚拟制造技术、柔性制造技术、集成制造技术等等,在汽车制造工业中都得到了广泛深入的应用。21世纪的汽车加工制造业已经离不开数控加工技术的应用了。

2.4机床设备机械设备是机械制造中的重中之重,面对现代机械制造业的需求,具备了控制能力的机床设备是现代机电一体化产品的重要组成部分。计算机数控技术为机械制造业提供了良好的机床控制能力,即把计算机控制装置运用到机床上,也就是用数控技术对机床的加工实施控制,这样的机床就是数控机床。它是以代码实现机床控制的机电一体化产品,它把刀具和工件之间的相对位置、主轴变速、刀具的选择、冷却泵的起停等各种操作和顺序动作数字码记录在控制介质上,从而发出控制指令来控制机床的伺服系统或其他执行元件,使机床自动加工出所需零件。

三、数控技术的发展

从第一台数控机床开发成功到现在已有50多年的历史,由传统的封闭式数控系统发展到现今的开放式PC数控系统。传统的计算机数控系统,由于采用封闭的体系结构,它的通用性、软件移植性、功能扩展和维修都比较困难;开放式体系结构的计算机数控系统的发展,使传统的计算机数控系统的市场正在受到挑战。开放式计算机数控系统,采用软件模块化的体系结构,显示了优良的性能,能适应各种计算机的软件平台,具有统一风格的用户交互环境,操作、维护、更新换代和软件开发都比较方便,具有较高的性能价格比,已成为数控系统发展的方向。

四、结束语

机械制造技术不仅是衡量一个国家科技发展水平的重要标志,也是国际间科技竞争的重点。我国正处于经济发展的关键时期,制造技术是我们的薄弱环节。PC机进入数控领域,极大的促进了数控技术的发展,也为我国在数控生产领域赶超发达国家提供了机遇。跟上发展先进数控制造技术的世界潮流,将其放在战略优先地位,并以足够的力度予以实施,尽快缩小与发达国家的差距,在激烈的市场竞争中立于不败之地。同时,数控加工技术的发展孕育产生大量的数控专业技术人才,进而推动我国现代机械制造业进一步走向繁荣。

参考文献:

马岩.中国木材工业数控化的普及[J].木材工业.2006(02).

篇12

紧急停车系统依据自动化控制和安全联锁在化工生产中的应用十分广泛。假如某设备出现故障需要检验和维修,系统会在第一时间内启动紧急停车系统,设备停止作业后,维修人员既可以开始维修工作。在实际生产必然存在突然停止动力供应的情况,化工生产过程中这种突发事故很多,紧急停车系统可以有效地解决因突然停止动力供应产生的意外损失,在保障生产安全的同时,还能为化工生产的顺利进行提供保障。化工生产中的紧急刹车系统不能与其他设备同时存在,在保持独立设置的同时,既不影响其他设备的正常工作,也不会因为系统突然启动引发的系统问题。最后,化工生产技术人员还应该减少紧急刹车系统运行过程中的冗余设备,为系统的安全运行提供动力保障。因此紧急刹车系统的使用必须坚持故障安全的原则,只有保障系统设备的安全运行才能从根本上发挥紧急刹车系统的作用。

3.安全自动化装置的应用

安全自动化装置是自动化控制及安全联锁在化工安全生产中的应用形式之一。安全自动化装置在化工安全生产中的主要目的有:第一,在实际施工过程中,如果施工人员很难发现安全隐患,安全装置在接受到安全隐患信号后将会自动发出报警动作,实际施工中安全自动化装置发出相应动作的事例有:对有毒气体进行密封隔离、发生火灾时自动启动灭火装置等。第二,安全装置的自动化还能有效处理施工现场工作人员难以解决的困难,减少因施工人员亲自解决施工危害产生的伤亡和经济损失,减少施工过程中各种不必要的意外事故。

篇13

本文所设计的全数字电动执行器,是在湘仪电子电器设备厂的9610R系列的全电子式电动执行器的电机驱动电路基础上所做出的进一步的改进。我们将控制部分用基于80C196单片机的数字控制代替原有的模拟控制,以提高具控制的精度与运行的可靠性。同时,为方便调试,增加了红外遥控的功能和基于CAN总线的通信功能,以适应现代工业控制的需要。

1原全电子式电动执行器的特点

原9610R系列的全电子式电动执行器是以220V交流单向电源作为驱动电源,驱动电机采用单向交流电机,位置反馈采用高性能导电塑料电位器。

伺服放大器的原理如图1所示。

①当UY=0时,

K_=Uo/Ux=-[(R4+R5)/R5]×(R6/R1)

②当Ux=0时,

K+=Uo/UY=[R3/(R2+R3)]×[(R4+R5)/R5]×(1+R6/R1)

根据线性叠加原理,Uo=K+UY+K_UX。

由上可知,由于电阻很难做到完全匹配,所以原9610R电动执行器存在着电机正反转不对称的问题。电机驱动电路如图2所示。

图2中,Uo为从伺服放大器来的电压信号,当Uo>0.7V时,电机正转;当Uo<-0.7V时,电机反转。C1为控制电机制动的电容。

重新设计的全数字电动执行器对电机的驱动电路进行了改进,用±12V的开关量信号的时间长短来控制电机的正反转,并实现了电动执行器的制功与反向截止功能。新的电机驱动电路如图3所示。

图3中,Ukp和Ukn分别为80C196的两个高速输出引脚,T2-1/T2-2、T3-1/T3-2、T4-1/T4-2、T5-1/T5-2、T6-1/T6-2、T7-1/T7-2分别为6个光电隔离器。当Uk为+5V高电平时,T2-1/T2-2导通,从而T*-1/T6-2导通使电机正转;当Uk由高电平到低电平的瞬间,T4-1/T4-2瞬间导通,使得T7-1/T7-2瞬间导通,电机瞬间反转,电容放电结束后电机停止;同理,当Uk为0V低电平时,电机反转。这样便实现了电机正反向控制。

图3新设计的电机驱动电路

系统输出与驱动电路之间完全实现了光电隔离,这样可提高系统的抗干扰能力和可靠性。

2控制系统结构

以80C196KC单片机为核心的全数字电动执行器的控制系统结构如图4所示。图4中,除80C196KC单片机外,还选用了X25043实现掉电保护功能,以MAX7219驱动LED数码管显示阀位的给定值与反馈值以及阀位的状态与控制方式;同时,以改进的4~20mA恒流电路直接将阈位反馈信号转换成4~20mA的信号送至室内模拟二次表显示,以保证其模拟与数字控制的兼容性。利用80C196KC内部的A/D转换口,将阀位反馈与阀位模拟给定信号转换成10位的数字信号,用软件判断阀位故障(堵转,超限),进行故障处理(报警或停机),在控制输出端与故障处理端用MOC3061光电隔离将单片机系统与电机驱动电路隔离开来,达到抗干扰的目的。

选用1838红外遥控接收解码一体化集成芯片,接收来自遥控器的红外遥控信号。CAN控制器采用Philips的SJA1000集成芯片,CAN总线驱动选用82C250集成芯片,在SJA1000与CAN总线驱动82C250之间用6N137快速光隔进行光电隔离处理,与单片机接口实现单片机与上位机的通信功能。

各部分的主要硬件电路介绍如下。

(1)改进的4~20mA恒流电路

整个恒流电路,由1片集成的4通道运放LM324和6个精密电阻、1个可调电阻、1个瓷片电容及1个二极管组成,电路结构非常简单,电路如图5所示。图5中,R1=R2=R3=R4=R5=100kΩ,R6=200Ω,R7为0~100Ω可调电阻。

从图5电路可知:在R2、R3、R4、R5这四个电阻匹配得比较好的情况下,U1-U2=U1,通过调节R7使得R6+R7=250Ω,从而Io=U1/250Ω达到使1~5V电压转换成4~20mA的目的,且不论输出端的负载如何变化,这种关系都不会发生变化,达到恒流的目的。为为使该恒流电路可带的负载尽量大,集成运放LM324的电源最好用+18V电源。

(2)红外遥控接收电路

作为电动执行机构,在工业过程控制应用时,常常会遇到安装位置不便于调试的情况。采用红外遥控调可以说是一个很好的解决方案,可以免去常规调试所需要做的一些工作,比如打开控制盒盖进行调试线路更改等等。红外遥控接收芯片采用红外遥控接收解码一体化集成芯片1838。电路如图6所示。

图6中,电阻和电容组成去耦电路,以抑制电源干扰;除此以外不需要任何外接元件,中心频率为38kHz。但是,由于1838集成芯片的增益高且不可调,没有屏蔽,特别容易受到外界的干扰,因此必须采取屏蔽措施。最好的办法就是利用金属材料做一个屏蔽盒,将1838装入,只留红外接口在外。

我们选用一种通用红外遥控器作为电动执行机构的调试装置。80C196KC单片机首先将遥控器各按键的命令码测出,然后对它们分别赋予我们所需要的调试命令,这样就可使开发周期大大缩短。

图7CAN总线通信接口电路

(3)上下位机通信

CAN(CantrolAreaNetwork)是控制局域网络的简称,最早由德国BOSCH公司推出,用于汽车内部测量与执行部件之间的数据通信。其总线规范已被ISO国际标准组织制定为国际标准,广泛应用在离散控制领域。其信号传输介质为双绞线。通信速率高达1Mbps/40m,直接传输距离最远可达10km/5kbps,挂接设备最多可达110个。

CAN的信号传输采用短帧结构,每一帧的有效字节数为8个,因而传输时间短,受干扰的概率低。当节点严重错误时,具有自动关闭的功能,以切断节点与总线的联系,使总线上的其它节点及其通信不受影响,具有较强的抗干扰能力。CAN总线通信接口电路如图7的示。

80C196KC的AD15端口作为SJA1000的片选信号,故CAN控制器SJA1000所占用的地址为:8000H~80FFH。使用CAN总线收发器PCA82C250目的是进一步提高CAN总线的驱动能力。它的工作模式由RS控制引脚来提供,取决于斜率电阻(200kΩ可调电阻的阻值)。

上位机通过一块华控的公司的HK-CAN30BPCI总线非智能隔离型通信板,可对工业现场具有CAN通信接口的仪表和控制设备进行监控。

(4)掉电保护和抗干扰措施

系统实现现电保护的元件采用Maxim公司的X25043。X25043有三种常用的功能:看门狗定时器、电压监控和E2PROM,组合在单个封装内。X25043对于要求电路板空间尽可能小的该系统来说是非常适用的,电路如图8所示。

X25043的看门狗定时器对微控制器80C196提供了独立的保护系统,可选超时周期有:1.4s、600ms、200ms,也可禁用。当系统故障时,在超出所选的超时周期以后,X25043看门狗将以RESET信号作出反应,使系统复位。利用X25043低VCC检测电路,可以保护系统使之免受低电压情况的影响。当VCC降到最小VCC检测电平时,RESET变为低电平,给系统复位,直到VCC上升到最小VCC检测电平200ms为止。此外,X25043还具有512×8位串行E2PROM,使得本系统无须另外扩展数据存储器RAM。

系统的抗干扰措施包括硬件措施和软件措施。硬件上:①在输入和输出通道采用光电隔离来进行信号传输,电机驱动电路上采用光电隔离器MOC3061,在上下位机通信电路上采用快速光隔6N137;②在每一个集成电路芯片都安置一个0.01μF的陶瓷电容,以消除大部分高频干扰;③模拟地与数字地分开;④在CPU抗干扰措施上,除了配置掉电保护电路外,还配置了人工复位和自动上电复位电路。软件上:①指令冗余,在一些双字节和三字节指令之后插入两条NOP指令,以保证跑飞的程序迅速纳入正确的控制轨道;②利用软件陷阱强行将捕获到的程序引向对程序出错处理的程序;③启用80C196KC内部监视定时器(watchdogtimer);④对A/D输入信号采取软件数字滤波。

3系统的软件设计

本系统程序框图如图9所示。首先,是程序的初始化,包括对硬件和变量的初始化。然后,程序判断全局变量RUN,若RUN=0,表示程序终止运行,则跳转到程序的末尾复位看门狗,随后再跳转到程序的前面,判断RUN标志,循环执行;若RUN≠0,则程序执行主循环,再复位看门狗。这样,通过设定RUN变量来控制程序的执行。

在中断程序程序中只处理基本的操作,如数据的输入和输出等;一些复杂的数据处理,如输入通道的软件滤波等等,都放在主循环里面处理。在主程序里,给每一个断分配一个全局变量作为中断标志,当有中断发生时,对此标志置1。在主循环里,程序依次判断每个标志位,来决定是否要执行相应的子程序,即过程或函数。在主程序中处理完相应的中断服务后,要对对应的中断标志清零。