在线客服

继电保护技术论文实用13篇

引论:我们为您整理了13篇继电保护技术论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

继电保护技术论文

篇1

2、电力系统中继电保护的配置与应用

2.1继电保护装置的任务

继电保护主要利用电力系统中原件发生短路或异常情况时电气量(电流、电压、功率等)的变化来构成继电保护动作。继电保护装置的任务在于:在供电系统运行正常时,安全地。完整地监视各种设备的运行状况,为值班人员提供可靠的运行依据;供电系统发生故障时,自动地、迅速地、并有选择地切除故障部分,保证非故障部分继续运行;当供电系统中出现异常运行工作状况时,它应能及时准确地发出信号或警报,通知值班人员尽快做出处理。

2.2继电保护装置的基本要求

1)选择性:当供电系统中发生故障时,继电保护除。首先断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。

2)灵敏性:保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。

3)速动性:是指保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定眭。

4)可靠性:保护装置如能满足可靠性的要求,反而会成为扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,必须确保保护装置的设计原理、整定训算、安装调试正确无误;同时要求组成保护装置的各元件的质量可靠、运行维护得当、系统简化有效,以提高保护的可靠性。

2.3保护装置的应用

继电保护装置广泛应用于工厂企业高压供电系统、变电站等,用于高压供电系统线路保护、主变保护、电容器保护等。高压供电系统分母线继电保护装置的应用,对于不并列运行的分段母线装设电流速断保护,但仅在断路器合闸的瞬间投入,合闸后自动解除。另外,还应装设过电流保护,对于负荷等级较低的配电所则可不装设保护。变电站继电保护装置的应用包括:

①线路保护:一般采用二段式或三段式电流保护,其中一段为电流速断保护,二段为限时电流速断保护,三段为过电流保护。

②母联保护:需同时装设限时电流速断保护和过电流保护。

③主变保护:主变保护包括主保护和后备保护,主保护一般为重瓦斯保护、差动保护,后备保护为复合电压过流保护、过负荷保护。

④电容器保护:对电容器的保护包括过流保护、零序电压保护、过压保护及失压保护。

随着继电保护技术的飞速发展,微机保护的装置逐渐投入使用,由于生产厂家的不同、开发时间的先后,微机保护呈现丰富多彩、各显神通的局面,但基本原理及要达到的目的基本一致。

3、继电保护装置的维护

值班人员定时对继电保护装置巡视和检查,并做好各仪表的运行记录。在继电保护运行过程中,发现异常现象时,应加强监视并向主管部门报告。建立岗位责任制,做到每个盘柜有值班人员负责。做到人人有岗、每岗有人。值班人员对保护装置的操作,一般只允许接通或断开压板,切换开关及卸装熔丝等工作,工作过程中应严格遵守电业安全工作规定。

做好继电保护装置的清扫工作。清扫工作必须由两人进行,防止误碰运行设备,注意与带电设备保持安全距离,避免人身触电和造成二次回路短路、接地事故。对微机保护的电流、电压采样值每周记录一次,每月对微机保护的打印机进行定期检查并打印。定期对继电保护装置检修及没备查评:

①检查二次设备各元件标志、名称是否齐全;

②检查转换开关、各种按钮、动作是否灵活无卡涉,动作灵活。接点接触有无足够压力和烧伤;

③检查控制室光字牌、红绿指示灯泡是否完好;

④检查各盘柜上表计、继电器及接线端子螺钉有无松动;

⑤检查电压互感器、电流互感器二次引线端子是否完好;

⑥配线是否整齐,固定卡子有无脱落;

⑦检查断路器的操作机构动作是否正常。

根据每年对继电保护装置的定期查评,按情节将设备分为三类:经过运行检验,技术状况良好无缺陷,能保证安全、经济运行的设备为一类设备;设备基本完好、个别零件虽有一般缺陷,但尚能安全运行,不危及人身、设备安全为二类设备。有重大缺陷的设备,危及安全运行,出力降低,“三漏”情况严重的设备为三类。如发现继电保护有缺陷必须及时处理,严禁其存在隐患运行。对有缺陷经处理好的继电保护装置建立设备缺陷台帐,有利于今后对其检修工作。

随着电力系统的告诉发展和计算机通信技术的进步,继电保护技术的发展向计算机化、网络化、—体化、智能化方向发展,这对继电保护工作者提出了新的挑战。只有对继电保护装置进行定期检查和维护,按时巡检其运行状况,及时发现故障并做好处理,保证系统无故障设备正常运行,提高供电可靠性。

参考文献:

[1]王翠平.继电保护装置的维护及试验[J].科苑论坛.

篇2

电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段。

建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有,在大约10年的时间里走过了先进国家半个世纪走过的道路。50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术[1],建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。因而在60年代中我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。

自50年代末,晶体管继电保护已在开始研究。60年代中到80年代中是晶体管继电保护蓬勃发展和广泛采用的时代。其中天津大学与南京电力自动化设备厂合作研究的500kV晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝500kV线路上[2],结束了500kV线路保护完全依靠从国外进口的时代。

在此期间,从70年代中,基于集成运算放大器的集成电路保护已开始研究。到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年代初集成电路保护的研制、生产、应用仍处于主导地位,这是集成电路保护时代。在这方面南京电力自动化研究院研制的集成电路工频变化量方向高频保护起了重要作用[3],天津大学与南京电力自动化设备厂合作研制的集成电路相电压补偿式方向高频保护也在多条220kV和500kV线路上运行。

我国从70年代末即已开始了计算机继电保护的研究[4],高等院校和科研院所起着先导的作用。华中理工大学、东南大学、华北电力学院、西安交通大学、天津大学、上海交通大学、重庆大学和南京电力自动化研究院都相继研制了不同原理、不同型式的微机保护装置。1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用[5],揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,东南大学和华中理工大学研制的发电机失磁保护、发电机保护和发电机?变压器组保护也相继于1989、1994年通过鉴定,投入运行。南京电力自动化研究院研制的微机线路保护装置也于1991年通过鉴定。天津大学与南京电力自动化设备厂合作研制的微机相电压补偿式方向高频保护,西安交通大学与许昌继电器厂合作研制的正序故障分量方向高频保护也相继于1993、1996年通过鉴定。至此,不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。可以说从90年代开始我国继电保护技术已进入了微机保护的时代。

2继电保护的未来发展

继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。

2.1计算机化

随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。原华北电力学院研制的微机线路保护硬件已经历了3个发展阶段:从8位单CPU结构的微机保护问世,不到5年时间就发展到多CPU结构,后又发展到总线不出模块的大模块结构,性能大大提高,得到了广泛应用。华中理工大学研制的微机保护也是从8位CPU,发展到以工控机核心部分为基础的32位微机保护。

南京电力自动化研究院一开始就研制了16位CPU为基础的微机线路保护,已得到大面积推广,目前也在研究32位保护硬件系统。东南大学研制的微机主设备保护的硬件也经过了多次改进和提高。天津大学一开始即研制以16位多CPU为基础的微机线路保护,1988年即开始研究以32位数字信号处理器(DSP)为基础的保护、控制、测量一体化微机装置,目前已与珠海晋电自动化设备公司合作研制成一种功能齐全的32位大模块,一个模块就是一个小型计算机。采用32位微机芯片并非只着眼于精度,因为精度受A/D转换器分辨率的限制,超过16位时在转换速度和成本方面都是难以接受的;更重要的是32位微机芯片具有很高的集成度,很高的工作频率和计算速度,很大的寻址空间,丰富的指令系统和较多的输入输出口。CPU的寄存器、数据总线、地址总线都是32位的,具有存储器管理功能、存储器保护功能和任务转换功能,并将高速缓存(Cache)和浮点数部件都集成在CPU内。

电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。这就要求微机保护装置具有相当于一台PC机的功能。在计算机保护发展初期,曾设想过用一台小型计算机作成继电保护装置。由于当时小型机体积大、成本高、可靠性差,这个设想是不现实的。现在,同微机保护装置大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机,因此,用成套工控机作成继电保护的时机已经成熟,这将是微机保护的发展方向之一。天津大学已研制成用同微机保护装置结构完全相同的一种工控机加以改造作成的继电保护装置。这种装置的优点有:(1)具有486PC机的全部功能,能满足对当前和未来微机保护的各种功能要求。(2)尺寸和结构与目前的微机保护装置相似,工艺精良、防震、防过热、防电磁干扰能力强,可运行于非常恶劣的工作环境,成本可接受。(3)采用STD总线或PC总线,硬件模块化,对于不同的保护可任意选用不同模块,配置灵活、容易扩展。

继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。\

2.2网络化

计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。到目前为止,除了差动保护和纵联保护外,所有继电保护装置都只能反应保护安装处的电气量。继电保护的作用也只限于切除故障元件,缩小事故影响范围。这主要是由于缺乏强有力的数据通信手段。国外早已提出过系统保护的概念,这在当时主要指安全自动装置。因继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。这在当前的技术条件下是完全可能的。

对于一般的非系统保护,实现保护装置的计算机联网也有很大的好处。继电保护装置能够得到的系统故障信息愈多,则对故障性质、故障位置的判断和故障距离的检测愈准确。对自适应保护原理的研究已经过很长的时间,也取得了一定的成果,但要真正实现保护对系统运行方式和故障状态的自适应,必须获得更多的系统运行和故障信息,只有实现保护的计算机网络化,才能做到这一点。

对于某些保护装置实现计算机联网,也能提高保护的可靠性。天津大学1993年针对未来三峡水电站500kV超高压多回路母线提出了一种分布式母线保护的原理[6],初步研制成功了这种装置。其原理是将传统的集中式母线保护分散成若干个(与被保护母线的回路数相同)母线保护单元,分散装设在各回路保护屏上,各保护单元用计算机网络联接起来,每个保护单元只输入本回路的电流量,将其转换成数字量后,通过计算机网络传送给其它所有回路的保护单元,各保护单元根据本回路的电流量和从计算机网络上获得的其它所有回路的电流量,进行母线差动保护的计算,如果计算结果证明是母线内部故障则只跳开本回路断路器,将故障的母线隔离。在母线区外故障时,各保护单元都计算为外部故障均不动作。这种用计算机网络实现的分布式母线保护原理,比传统的集中式母线保护原理有较高的可靠性。因为如果一个保护单元受到干扰或计算错误而误动时,只能错误地跳开本回路,不会造成使母线整个被切除的恶性事故,这对于象三峡电站具有超高压母线的系统枢纽非常重要。

由上述可知,微机保护装置网络化可大大提高保护性能和可靠性,这是微机保护发展的必然趋势。

2.3保护、控制、测量、数据通信一体化

在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化。

目前,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆不但要大量投资,而且使二次回路非常复杂。但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。如果用光纤作为网络的传输介质,还可免除电磁干扰。现在光电流互感器(OTA)和光电压互感器(OTV)已在研究试验阶段,将来必然在电力系统中得到应用。在采用OTA和OTV的情况下,保护装置应放在距OTA和OTV最近的地方,亦即应放在被保护设备附近。OTA和OTV的光信号输入到此一体化装置中并转换成电信号后,一方面用作保护的计算判断;另一方面作为测量量,通过网络送到主控室。从主控室通过网络可将对被保护设备的操作控制命令送到此一体化装置,由此一体化装置执行断路器的操作。1992年天津大学提出了保护、控制、测量、通信一体化问题,并研制了以TMS320C25数字信号处理器(DSP)为基础的一个保护、控制、测量、数据通信一体化装置。

2.4智能化

近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,在继电保护领域应用的研究也已开始[7]。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法则可迎刃而解。例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。其它如遗传算法、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快。天津大学从1996年起进行神经网络式继电保护的研究,已取得初步成果[8]。可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。

3结束语

建国以来,我国电力系统继电保护技术经历了4个时代。随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。国内外继电保护技术发展的趋势为:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化,这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。

作者单位:天津市电力学会(天津300072)

参考文献

1王梅义.高压电网继电保护运行技术.北京:电力工业出版社,1981

2HeJiali,ZhangYuanhui,YangNianci.NewTypePowerLineCarrierRelayingSystemwithDirectionalComparisonforEHVTransmissionLines.IEEETransactionsPAS-103,1984(2)

3沈国荣.工频变化量方向继电器原理的研究.电力系统自动化,1983(1)

4葛耀中.数字计算机在继电保护中的应用.继电器,1978(3)

5杨奇逊.微型机继电保护基础.北京:水利电力出版社,1988

篇3

自50年代末,晶体管继电保护已在开始研究。60年代中到80年代中是晶体管继电保护蓬勃发展和广泛采用的时代。其中天津大学与南京电力自动化设备厂合作研究的500kV晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝500kV线路上[2],结束了500kV线路保护完全依靠从国外进口的时代。

在此期间,从70年代中,基于集成运算放大器的集成电路保护已开始研究。到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年代初集成电路保护的研制、生产、应用仍处于主导地位,这是集成电路保护时代。在这方面南京电力自动化研究院研制的集成电路工频变化量方向高频保护起了重要作用[3],天津大学与南京电力自动化设备厂合作研制的集成电路相电压补偿式方向高频保护也在多条220kV和500kV线路上运行。

我国从70年代末即已开始了计算机继电保护的研究[4],高等院校和科研院所起着先导的作用。华中理工大学、东南大学、华北电力学院、西安交通大学、天津大学、上海交通大学、重庆大学和南京电力自动化研究院都相继研制了不同原理、不同型式的微机保护装置。1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用[5],揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,东南大学和华中理工大学研制的发电机失磁保护、发电机保护和发电机?变压器组保护也相继于1989、1994年通过鉴定,投入运行。南京电力自动化研究院研制的微机线路保护装置也于1991年通过鉴定。天津大学与南京电力自动化设备厂合作研制的微机相电压补偿式方向高频保护,西安交通大学与许昌继电器厂合作研制的正序故障分量方向高频保护也相继于1993、1996年通过鉴定。至此,不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。可以说从90年代开始我国继电保护技术已进入了微机保护的时代。

2继电保护的未来发展

继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。

2.1计算机化

随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。原华北电力学院研制的微机线路保护硬件已经历了3个发展阶段:从8位单CPU结构的微机保护问世,不到5年时间就发展到多CPU结构,后又发展到总线不出模块的大模块结构,性能大大提高,得到了广泛应用。华中理工大学研制的微机保护也是从8位CPU,发展到以工控机核心部分为基础的32位微机保护。

南京电力自动化研究院一开始就研制了16位CPU为基础的微机线路保护,已得到大面积推广,目前也在研究32位保护硬件系统。东南大学研制的微机主设备保护的硬件也经过了多次改进和提高。天津大学一开始即研制以16位多CPU为基础的微机线路保护,1988年即开始研究以32位数字信号处理器(DSP)为基础的保护、控制、测量一体化微机装置,目前已与珠海晋电自动化设备公司合作研制成一种功能齐全的32位大模块,一个模块就是一个小型计算机。采用32位微机芯片并非只着眼于精度,因为精度受A/D转换器分辨率的限制,超过16位时在转换速度和成本方面都是难以接受的;更重要的是32位微机芯片具有很高的集成度,很高的工作频率和计算速度,很大的寻址空间,丰富的指令系统和较多的输入输出口。CPU的寄存器、数据总线、地址总线都是32位的,具有存储器管理功能、存储器保护功能和任务转换功能,并将高速缓存(Cache)和浮点数部件都集成在CPU内。

电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。这就要求微机保护装置具有相当于一台PC机的功能。在计算机保护发展初期,曾设想过用一台小型计算机作成继电保护装置。由于当时小型机体积大、成本高、可靠性差,这个设想是不现实的。现在,同微机保护装置大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机,因此,用成套工控机作成继电保护的时机已经成熟,这将是微机保护的发展方向之一。天津大学已研制成用同微机保护装置结构完全相同的一种工控机加以改造作成的继电保护装置。这种装置的优点有:(1)具有486PC机的全部功能,能满足对当前和未来微机保护的各种功能要求。(2)尺寸和结构与目前的微机保护装置相似,工艺精良、防震、防过热、防电磁干扰能力强,可运行于非常恶劣的工作环境,成本可接受。(3)采用STD总线或PC总线,硬件模块化,对于不同的保护可任意选用不同模块,配置灵活、容易扩展。

继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。\

2.2网络化

计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。到目前为止,除了差动保护和纵联保护外,所有继电保护装置都只能反应保护安装处的电气量。继电保护的作用也只限于切除故障元件,缩小事故影响范围。这主要是由于缺乏强有力的数据通信手段。国外早已提出过系统保护的概念,这在当时主要指安全自动装置。因继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。这在当前的技术条件下是完全可能的。

对于一般的非系统保护,实现保护装置的计算机联网也有很大的好处。继电保护装置能够得到的系统故障信息愈多,则对故障性质、故障位置的判断和故障距离的检测愈准确。对自适应保护原理的研究已经过很长的时间,也取得了一定的成果,但要真正实现保护对系统运行方式和故障状态的自适应,必须获得更多的系统运行和故障信息,只有实现保护的计算机网络化,才能做到这一点。

对于某些保护装置实现计算机联网,也能提高保护的可靠性。天津大学1993年针对未来三峡水电站500kV超高压多回路母线提出了一种分布式母线保护的原理[6],初步研制成功了这种装置。其原理是将传统的集中式母线保护分散成若干个(与被保护母线的回路数相同)母线保护单元,分散装设在各回路保护屏上,各保护单元用计算机网络联接起来,每个保护单元只输入本回路的电流量,将其转换成数字量后,通过计算机网络传送给其它所有回路的保护单元,各保护单元根据本回路的电流量和从计算机网络上获得的其它所有回路的电流量,进行母线差动保护的计算,如果计算结果证明是母线内部故障则只跳开本回路断路器,将故障的母线隔离。在母线区外故障时,各保护单元都计算为外部故障均不动作。这种用计算机网络实现的分布式母线保护原理,比传统的集中式母线保护原理有较高的可靠性。因为如果一个保护单元受到干扰或计算错误而误动时,只能错误地跳开本回路,不会造成使母线整个被切除的恶性事故,这对于象三峡电站具有超高压母线的系统枢纽非常重要。

由上述可知,微机保护装置网络化可大大提高保护性能和可靠性,这是微机保护发展的必然趋势。

2.3保护、控制、测量、数据通信一体化

在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化。

目前,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆不但要大量投资,而且使二次回路非常复杂。但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。如果用光纤作为网络的传输介质,还可免除电磁干扰。现在光电流互感器(OTA)和光电压互感器(OTV)已在研究试验阶段,将来必然在电力系统中得到应用。在采用OTA和OTV的情况下,保护装置应放在距OTA和OTV最近的地方,亦即应放在被保护设备附近。OTA和OTV的光信号输入到此一体化装置中并转换成电信号后,一方面用作保护的计算判断;另一方面作为测量量,通过网络送到主控室。从主控室通过网络可将对被保护设备的操作控制命令送到此一体化装置,由此一体化装置执行断路器的操作。1992年天津大学提出了保护、控制、测量、通信一体化问题,并研制了以TMS320C25数字信号处理器(DSP)为基础的一个保护、控制、测量、数据通信一体化装置。

2.4智能化

近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,在继电保护领域应用的研究也已开始[7]。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法则可迎刃而解。例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。其它如遗传算法、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快。天津大学从1996年起进行神经网络式继电保护的研究,已取得初步成果[8]。可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。

3结束语

建国以来,我国电力系统继电保护技术经历了4个时代。随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。国内外继电保护技术发展的趋势为:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化,这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。

作者单位:天津市电力学会(天津300072)

参考文献

1王梅义.高压电网继电保护运行技术.北京:电力工业出版社,1981

2HeJiali,ZhangYuanhui,YangNianci.NewTypePowerLineCarrierRelayingSystemwithDirectionalComparisonforEHVTransmissionLines.IEEETransactionsPAS-103,1984(2)

3沈国荣.工频变化量方向继电器原理的研究.电力系统自动化,1983(1)

4葛耀中.数字计算机在继电保护中的应用.继电器,1978(3)

5杨奇逊.微型机继电保护基础.北京:水利电力出版社,1988

篇4

建筑文化遗产负载着历史与文化信息,总是以各种形式各种载体体现在现实空间之中。建筑文化遗产不是永存的,随着岁月的变迁和外界环境的变化,建筑文化遗产会慢慢消逝。尤其是当前,随着我国经济社会的快速发展,社会生活的各个方面都在发生急剧变化,特别是城市化进程的加快,使得原有的建筑遗存消失的速度大大加快,如果不能及时加以发掘和保护,则很可能在极短的时间内消逝。而给建筑文化遗产建立档案尤其是数字档案,无疑是保护工作的重要的一个前期环节。随着科技的进步,给建筑文化遗产建立数字档案的手段越来越多,越来越先进。点云作为一种新的测量技术,又被称作“实景复制”,是一种非常适合建筑文化遗产的技术手段。点云技术应用于建筑文化遗产保护有如下优势:首先,非接触的数据获取方式,在不触及文化遗产的条件下进行保护研究,从而减少保护干预中的不必要破坏,提高复原遗产古貌的准确性;其次,扫描速度快,获取数据的外业工作时间大大缩短,提高了工作效率,减少了工作强度,减少了重复测量的次数,节省了人工;第三,三维激光扫描技术获取的数据精度高,减少了传统人工获取数据的偶然性误差;第四,改变了传统的数据采集方式,无需搭建脚手架,直接在地面获取完整数据,提高了工作安全性;第五,数据记录全面翔实,且展示成果多样。由于点云技术在建筑文化遗产保护方面具有上述独特的特性,因此自2000年以来,点云技术逐渐被应用到国内的一些建筑文化遗产的保护研究和实践之中。代表性的有麦积山石窟数字化技术应用研究、颐和园标志建筑———佛香阁精细测绘、中国古建筑精细测绘———晋祠圣母殿精细测绘、中国古建筑精细测绘———山西万荣稷王庙、山西平遥镇国寺天王殿与万佛殿精细测绘、北京先农坛太岁殿古建筑精细测绘、武当山南岩宫两仪殿精细测绘与三维建模技术研究、三维激光扫描测量建模技术研究及在故宫古建筑测绘中的应用(国家测绘局测绘科技进步一等奖)等。另外,长城、敦煌莫高窟、云冈石窟、龙门石窟、乐山大佛、佛光寺、普乐寺、宁波保国寺、开平碉楼等一批国内的历史建筑、石窟、寺庙等建筑文化遗产,都有了点云技术的运用[2~5]。

3点云的精度

作为基础数据,点云的质量直接影响后期处理的成果的精度。点云的精度一般包含了单点测量精度、角度精度、表面模型的精度、标靶的精度、双轴补偿器的精度等。国内学者对于扫描仪的精度指标,已经有了一些探究[6~8]。其中,前三者与数据获取的硬件设备紧密相关;而模型表面精度很大程度上取决于软件的算法。距离精度是指沿着激光发射装置和被测物体的连线的方向上,测量值和真值之间的偏差。点位精度是指垂直于激光发射装置和被测物体的连线的方向上,测量值的与真值之间的偏差。距离精度和点位精度,统称为点云的范围噪音。范围噪音与数据获取的硬件设备的精度直接相关,也与外界环境,比如温度、气压和被测物体本身的反射率相关。并且,由于激光测量的误差始终存在,决定了范围噪音随着硬件技术的提升只能尽可能的减小,不能完全杜绝。图1显示了同一个被测物体(横线代表被测的墙面)的高范围噪音和低范围噪音的数据,其中的小圆点代表了点云数据中的一个点[9]。需要强调的是,范围噪音是一个基于单点测量的精度的概念,它是多次重复测量的单点精度和重复性的度量,不是整体点云的绝对的准确度。这里需要引入一个描述点云的处理结果精度的概念:模型表面精度。所谓模型表面精度,是指利用软件对点云中的大量的散点进行统计分析后,建立表面模型,得到的模型与真值之间的偏差。以图1中的两个数据为例,分别对两个数据进行统计分析建立模型之后,拟合出来的模型平面将非常接近。并且拟合出来的结果与真实墙面之间的偏差要大大小于范围噪音。也就是说,由于模型表面精度是对大量散点统计计算后得出的结果,因此其比范围噪音在数值上更小,也即模型表面精度要优于范围噪音。模型表面精度与点云的质量有关,也与软件中的算法有关。

4点云的数据处理

点云作为基础数据,记录了目标对象的坐标信息、反射率信息和纹理信息。而对点云的处理,主要分为色彩的处理、点状和线状特征的提取和体特征的提取。点云作为客观世界的真实记录,色彩还原是基础的步骤。原始的点云数据一般都是单色或者假彩色。单色是给点云赋予了单一的色彩,而假彩色则是根据一定的规则,比如点云中点的反射率的强弱(返回激光与出射激光之间的能量比值)或是点的高度,有规律的赋予每个点彩色信息。对于建筑文化遗产保护而言,一般需要还原为真彩色的点云数据。通常,采用高分辨率的数码相机记录下真实的色彩和纹理,通过软件,进行纹理映射,将点云还原成真彩色。对于点状和线状特征的提取,一般在现有的点云处理软件都可以实现。点状特征比较容易提取,可直接在点云中捕捉。线状特征可直接通过捕捉关键点生成,也可通过软件中的一些算法实现。比如利用徕卡的基于CAD的CloudWorx插件,可在CAD中打开点云数据,进行切片处理,得到的点云切片可通过软件自带的拟合功能,将直线、圆、弧段等线状特征通过计算自动拟合生成。对于体特征的提取,如果对象是规则的几何体,可通过点、线、平面、柱体、台体、球体等或它们的组合加以实现。而对于建筑文化遗产中的非规则对象,特别是中国古典建筑和雕塑等对象,其表面是复杂曲面,无法通过规则的几何体进行表面建模,就需要专门的软件进行体特征的提取。这类软件主要有Polyworks和Geomagic等。其方法是通过一定的算法,构建对象表面的三角格网,从而形成对象的表面模型。再通过专门的虚拟现实软件,比如3Dmax或Skyline等展示平台,可以将建筑文化遗产数字化的展现。图2显示了点云技术对一座钟亭的数据处理流程和成果形式。

5成果形式

点云在建筑文化遗产保护中的成果形式主要有以下几类[1]:

5.1原始点云

点云数据是实际物体的真实尺寸的复原,是目前最完整、最精细和最快捷的对建筑文化遗产现状进行档案保存的手段。点云数据不但包含了对象物体的空间尺寸信息和反射率信息,还可以精细的保留对象物体的纹理色彩信息;结合其他定位仪器可以将整个对象数据放置在一定的空间坐标系内。通过点云处理软件,我们可以在点云中实现漫游、浏览和对物体尺寸、角度、面积、体积等的量测。彻底替代了传统的用皮尺测量的方法,直接将对象物体移到电脑中,利用点云在电脑中完成传统的数据测绘工作,是完全地将实景复制到了电脑中。

5.2线画图件

作为传统的文化遗产保护尤其是建筑文化遗产的成果之一,是各种的线画图件,包括平面图,立面图和剖面图等。这些图件可以表示建筑物文化内部的结构或构造形式、分层情况,说明建筑物的长、宽、高的尺寸,地面标高,层顶的形式,门窗洞口的位置和形式,外墙装饰的设计形式和各部位的联系、材料及其高度等。利用点云数据,在CAD中使用基于CAD的点云处理插件,可以方便的做出建筑物的平面、立面、剖面图和正射影像图。不但制图速度大大提高,也提高了制图精度,还大大减少了外业人员的工作量。

5.3网络

利用各种点云软件和三维展示平台,扫描的点云可以在互联网上,让远端用户通过互联网有如置身于真实的现场环境之中。的点云不但可以网上浏览,还可以实现基于互联网的量测、标注等。有利于数据共享和现有文物的网上展示。尤其是对于一些不宜长期向公众开放的文物景点,通过网上的彩色点云数据,可以满足公众的网上虚拟浏览的需求。

5.4数字化模型

点云技术比较适用于建筑文化遗产中的古典建筑、古墓葬、石窟、佛像、雕塑等的虚拟再现。扫描获取的数据可以利用专门的点云处理软件进行建模,构建表面格网模型,再通过纹理映射或是导入到其他三维软件中进行纹理贴图,最终得到建筑文化遗产的数字化的模型。

5.5建筑文化遗产的视频资料

结合点云处理软件的空间漫游和电影动画制作功能,在扫描后的点云中设置漫游路径,可以实现有如真实空间中的漫游效果。通过点云处理软件自带的记录功能,可以将漫游过程录制成视频文件,这是虚拟漫游的很好的工具,也有利于作为成果进行保存、宣传和展示。

篇5

雷电是大气放电所产生的气象,可以产生强烈的闪光、霹雳,掉在地上可以摧毁房屋、杀伤人畜、引发火灾等。随着近代高科技的发展,尤其是微电子技术的高速发展,雷电灾害越来越频繁,损失越来越大,原先的避雷针已无法保护建筑物、人和电器设备。80年代以后,雷灾出现新的特点,这主要是因为一些高大建筑的兴起,如高层智能大厦,微波站、天线塔等都会吸引落雷,从而使本身所在建筑及附近建筑遭到破坏。增设的各种架空长导线反倒引雷入室,使避雷装置失去作用。

此外,微电子技术的高度发达,并且广泛应用于各个领域,使得雷害对象出现了变化——从对建筑物本身的损害转移到对室内的电器、电子设备的损害。以至发生人身伤亡事故。随之防雷对象也由强电转移到弱电。雷电产生的电磁感应已成为主要危害。所以,现代建筑防雷设计就必须高度重视雷电问题,加大力度去完善建筑物内部电子设备的安全保护措施。

我国建筑智能系统的研究和开发起点较低,因此我们的智能建筑广泛存在着绝缘强度低,过电压和过电流耐受能力差,对雷电引起的外部侵入造成的电磁干扰敏感等弱点,尤其是抗雷击电涌能力差。如不加以有效防范,无法保证智能化系统及设备的正常运行。所以,目前关于智能建筑的雷击电涌保护可靠性及安全运行问题,已成为人们关注的热点。

1、建筑受雷击的途径

1.1 由附近的对地雷击引起的地电位反击

两个相邻的楼当附近有雷击时,电位的变化是不同的,所以存在着电位差,它的大小决定于雷电大小、接地电阻和楼间距离。如楼间有信号线,则将承受高压冲击,据资料介绍,电缆或建筑物附近100米以内的雷击,能感应5KV和1.25KA的浪涌。

1.2 对建筑物的直接雷击

直接雷的电流通过避雷导体系统流入大地,除了使地电位升高外,当电流快速流过长导体时,因导体的自感而在导体的二端产生电势,一根30米的避雷导线可产生1.5MV电势,使附近的无金属保护的靠墙电缆会出现“闪络”,避雷导线和附近的电缆间还可由电容或电感耦合产生电压,一个距避雷导线1米的10米×10米的回路,当避雷导线的电流为2kA/μs时,峰值电压可达9.5kV。

1.3 由电力线被直接雷击或感应雷击

直接雷击中高压电力线上,通过变压器的电容耦合产生浪涌电压(在高压线上200kA的雷击,可在低压屏产生6kV的浪涌电压),足以引起设备损坏。直接打在高压线上的雷击概率较小,90%的雷电放电发生在云与云之间,电力线会因电磁感应或静电感应产生二次雷击。雷雨云之间的放电,因电磁辐射而在电力线上感应出脉冲,称电磁感应雷;雷雨云的静电荷电场,会在电力线表面感应出电荷,当该雷雨云的电荷与其它雷雨云接闪后,电力线表面的电荷被释放,向二边放电,称静电感应雷。上述两种感应雷,在架空或埋地的导线上产生电流或电压冲击波,沿导线经接口进入设备,即所谓雷电波窜入,对监控系统危害极大。

1.4 雷电电磁脉冲波(LEMP)

雷电放电的dv/dt及di/dt均很高,其电磁辐射很大 。 雷 电 波 的 主 频 为 1k~10kHz, 高 频 为5MHz~10MHz。电磁波可通过建筑物的门、窗和电子设备机箱上的空洞、缝隙,直接作用于设备的元、器件,引起故障。雷电波的主频不高,对大地而言,其穿透深度可达15~50m,埋在地下的通信和电力电缆将受到影响。

2、建筑物防雷设计因素

防雷是一项系统工程。

2.1接闪功能

指实现接闪功能所应具备的条件,包括接闪器的形式(避雷针、避雷带和避雷网)、耐流耐压能力、连续接闪效果、造价以及接闪器与建筑物的美学统一性等。

2.2分流影响

指引下线对分流效果的影响。引下线的粗细和数量直接影响分流效果,引下线多,每根引下线通过的雷电流就小,其感应范围就小。

2.3均衡电位

建筑物的各个部分可以形成一个电势相等的等电位。若建筑物内的结构钢筋与各种金属设置及金属管线都能连接成统一的导电体,建筑物内当然就不会产生不同的电位,这样就可保证建筑物内不会产生反击和危及人身安全的接触电压或跨步电压,对防止雷电电磁脉冲干扰微电子设备也有很大的好处。

2.4屏蔽作用

屏蔽的主要目的是保护建筑物内的通讯设备、电子计算机、精密仪器以及自动化控制系统不受雷电电磁脉冲的危险。应尽量利用钢筋混凝土结构内的钢筋,即建筑物内地板、顶板、墙面、及梁、柱内的钢筋,使其构成一个六面体的网笼,即笼式避雷网,从而实现屏蔽。

2.5接地效果

良好的接地效果也是防雷成功的重要保证之一。每个建筑物都要考虑哪种接地方式的效果最好和最经济。

2.6合理布线

指如何布线才能获得最好的综合效果。现代化的建筑物都离不开照明、动力、电话、电视和计算机等设备的管线,在防雷设计中,必须考虑防雷系统与这些管线的关系。为了保证在防雷装置接闪时这些管线不受影响,设计室内各种管线时,必须与防雷系统统一考虑。

3、现代建筑防雷的新重点

智能建筑的发展使得传统的建筑防雷设计不再能满足建筑本身对雷电安全的需要。雷电防护已经不仅仅是对建筑本体的防护,更侧重于对建筑内人身和电气设备的安全的防护。防雷工作正在从以传统的防直击雷为主向防雷电感应过电压对通迅、安防、自动控制等系统的设备的损害而转变。其中重要的防雷观念变化有:

3.1重视雷电电磁感应作用

以前建筑物防雷以防直击雷为主,侧重机械性破坏和雷电反击;现在则以防感应雷击为主,侧重雷电的电磁感应效应。

3.2建筑物防雷的整体性

建筑物防雷的整体性体现在对建筑物防雷设计和安装时,要对内部防雷装置和外部防雷装置做整体的统一的考虑。建筑物外的整体观念是指对一个院落、一个小区以及附近的环境要做全面的防雷规划,同时还不能违反小区规划的要求例如:所安装的避雷针杆塔是否影响小区的美观,所用的避雷针、避雷带或避雷网是否与建筑物的立面相配以及低矮建筑物能否由高大建筑物或高大烟囱上的避雷装置所保护等等。

4.防雷通信电源的管理

通信电源在防雷方面尤其应该引起重视。

4.1 加强对电源设备的重视

电源设备与通信网中的其他设备(如交换、传输等)有较大的不同,本质上,电源设备是机电设备而非通信设备。正因为如此,在通信业中,它得不到充分的重视,然而,必须看到,通信电源作为整个通信电信网的能量保证,它的作用是整体性和全局性的。虽然它不是通信网主流设备,但它却是通信网中最重要、最关键的设备。

4.2 加强电源管理上的专业化

对通信电源要求通信网上的各级管理层次和建设、维护方面都应该有独立的电源专业管理人员。因为通信电源是一个专业,而且是个包括多种系统和学科的大专业,因此,应该对它作相应的专业管理。

4.3 电源设备购置与维护的具体措施

4.3.1在购置通信电源过程中,除考虑性价比外,要考虑高可靠性、多种自动保护功能、宽电压、良好的均流均衡性能、在线运行模式,要考虑是否严格按照高标准组织生产,另外系统故障率、防雷和电涌措施、交直流配电一体化等都应是分析考虑配置的重点。要选用可靠性高的设备,合理配置备份设备。

4.3.2供电方式要大力推广分散供电,要有备品和备份,使用同一种直流电压的通信设备,采用两个以上的独立供电系统。

4.3.3设备宜采用模块化、热插拔式,便于更换和维修。再一个就是平时应建立起对电源故障的应急措施,保证可靠供电。最后,要提高技术维护水平,大力推广集中维护体制。

综上所述,雷电危害是有目共睹的,但只要措施得当,就可以有效地降低雷害。

篇6

茄子是人们非常喜爱的蔬菜,营养元素含量丰富,是餐桌上的必需品,但在东北地区由于气温较低,种植受季节的影响非常明显,要想满足广大群众的需求,必须大力推广保护地棚室茄子种植技术。现将其栽培技术要点介绍如下。

1保护地棚室

(1)保护地棚室设施。在不适宜植物生长发育的寒冷、高温、多雨季节,人为创造适宜植物生长发育的微环境所采用的定型设施。

(2)日光温室。由采光和保温维护结构组成,以塑料薄膜为透明覆盖材料,东西向延长,在寒冷季节主要依靠获取和蓄积太阳辐射能进行蔬菜生产的单栋温室。

(3)塑料棚。采用塑料薄膜覆盖的拱圆形棚,其骨架常用木、钢材或复合材料建造而成。

(4)育苗设施的规格要求。①育苗温室:矢高2.8~3.5m,跨度6~8m,长度不限。②塑料中棚:矢高1.5~2.0m,跨度4~6m,长度不限。③塑料大棚:矢高2.5~3.0m,跨度6~12m,长度30~60m。

2栽培季节

春秋栽培:年初育苗,3月下旬定植,6月至9月中下旬上市;春夏种植:春季育苗定植,夏季采收;夏秋种植:夏季育苗定植,秋季采收。

3品种选择

选用抗病性强、品质好、商品性好、产量高的优良品种和杂交种,如齐杂茄2号、沈茄系列、黑又亮、黑珊瑚、日本紫长茄。

4育苗

4.1种子处理

用50~55℃热水烫种15min,并不断搅动种子使其受热均匀,待水温降至25~30℃时浸种8h。出水后用黄砂搓洗2~3遍,投洗干净后进行变温处理。白天放在20℃条件下12h,夜间放在0~2℃下12h,连续处理7d即可播种

4.2播种

床土配制为:葱蒜地表土或肥沃大田土4份,腐熟有机草炭土5份,腐熟大粪面1份混匀筛细。分苗移植营养土配制为:葱蒜地表土或肥沃大田土5份,腐熟的草炭土或陈马粪3份,细砂或炉灰2份,1m3营养土加入大粪面25kg、二铵2kg、过磷酸钙3kg,充分混拌后装入营养钵。温室育苗,厢(盘)或床播种,分苗移植到8cm×8cm营养钵内。苗龄80~90d。

4.3苗期管理

播种后白天温度保持在30~35℃,夜间25℃。当有70%苗出土时立即降温,白天25℃,夜间15~17℃。2片真叶时分苗移植到营养钵中。采用嫁接技术育苗的茄子砧木移到(10~12)cm×(10~12)cm营养钵中,接穗移到苗床内株行距6cm×6cm即可。移植缓苗后进行根外追肥,用0.3%磷酸二氢钾或0.3%尿素喷叶。

5定植

在定植前30~35d扣棚烤地。化冻后整地,并施足优质有机肥作底肥。起垄或高畦覆膜。行距50~60cm,株距30~35cm。采用嫁接技术的株行距要加大,应在65cm×(45~50)cm。

6田间管理

定植后缓苗前不通风或通小风。白天温度保持在28~30℃,夜间保持在15~18℃;缓苗后至开花结果期,白天温度为25~28℃,夜间15℃以上。定植7d后浇1次缓苗水。门茄瞪眼时浇1次水,并随水追施发酵好的鸡粪水。门茄采收后浇1次鸡粪水,1次清水,交替进行。门茄开始膨大时进行整枝打叶,摘除门杈以下的腋芽、叶片及病叶。7月上旬(入伏前后)在“四面斗”处10cm长刈头,刀口呈斜面。7d后选健壮枝条苗7~8个。刈头后在垄帮破开,重施1次有机肥。

7病虫害防治

病害主要有茄子黄萎病、茄子褐纹病、茄子绵疫病等,虫害主要有红蜘蛛。采用嫁接技术防治黄萎病效果十分明显,砧木选用“托鲁巴姆”。防治茄子褐纹病,在结果后开始喷洒75%百菌清可湿性粉剂600倍液,或58%甲霜灵锰锌可湿性粉剂500倍液。防治茄子绵疫病,在发病初期用75%百菌清可湿性粉剂500~600倍液,或64%杀毒矾可湿性粉剂500倍液,7~10d喷1次,连喷2~3次。防治红蜘蛛用8%阿维菌素乳油3000倍液,或25%蛾螨灵1000倍液,或5%尼索郎乳油1500倍液喷雾。

8采收

根据生长条件和市场需求及时采收。

参考文献

篇7

1、保护电气接地。保护电气接地的目的是防止由于电力设备设施的绝缘外壳损毁而威胁到居民的人身安全。同时,这种接地方式也可以起到消除静电的作用,防止生产过程中产生的静电荷引起爆炸。为了避免各种电磁感应现象的发生,我们需要对相关设备的线路外皮、屏蔽罩以及金属壳设置屏蔽电气接地。在所有的电气接地措施当中,保护电气接地是应用最为广泛的一种类型。

2、工作电气接地。工作电气接地的目标是确保系统以及相关设备的正常运行,同时保证控制措施的有效性以及测量的准确性。工作电气接地通常分为屏蔽接触、机器接触、信号回路接触等,在防爆装置系统内部还存在着本安接地方式。工作电气接地是整个系统中安全程度最高的一种接地方式。

3、防雷电气接地。防雷电气接地的目标是将雷击产生的电流导人地表以下。建筑物内部的各种电气装置通常用避雷器来防止雷电的袭击。避雷器同时与接地装置和需要保护的设备连接,当发生雷击事件时,避雷器能够将雷电产生的强电流导人内部,使得电流通过引线与接地装置流进地表以下。

二、建筑电气接地安装施工中的常见问题

1、低压进户位置未进行重复接地。低压供电系统的接地形式基本采用的都是TN-C-S系统,根据有关规范的要求,采用该系统的建筑低压进户电源应当在进户位置处进行重复接地。在此有必要介绍一下重复接地的概念,即在中性点直接接地的系统当中,零线再次或是多次与金属导体连接接地装置。然而,有些建筑电气接地安装工程施工中,施工人员常常将重复接地与保护接地的概念搞混,这就造成了在低压电源进户位置处仅仅将PE线与接地装置相连接,却没有进行零线接地,这样一来,导致了系统接地形式由原本的TN-C-S变为TT系统。对于此类工程而言,一旦发生用电设备金属外壳单相接地短路故障时,因为PE线并未按照TT系统的接地电阻要求进行可靠接地,所以会导致设备金属外壳上出现较高的电压,非常容易引起间接电击事故。

2、PE线或是PEN线的连接问题。防电击伤害的常用技术措施是确保电气设备或是导管等能够接近导体的PE线或是PEN线可靠。我国现行的GB50303-2011中明确规定PE或是PEN支线必须单独与PE或是PEN干线相连接,不得采取串联的方式进行连接。通常情况下,可将支线看作是由干线引向某一个特定设备的接地线,一般采用的是可以拆卸的螺栓进行连接,当需要维修或是更换时便会临时性或永久性拆除。如果它们的接地支线相互串联的话,那么极有可能造成一部分电气设备失去电击保护。如,在对某建筑工程进行检查时发现,该工程接地装置引出镀锌扁钢直接焊接在配电箱下的槽钢上,从而使得部分配电箱在维修时极容易出现负荷丢失接地保护的情况。

3、配电箱接地保护导体不符合有关要求。我国现行的GB50303-2011中规定,低压成套配电箱柜、控制柜以及照明配电箱等必须具备安全可靠的电击保护,并且箱、柜内部保护导体的最小截面积应满足该规范6.1.2的要求。但在有些工程中,由于施工人员对规范的了解和掌握不足,致使安装质量无法达到规范要求,主要表现为PE线缩径,一旦PE线缩径会导致电阻值增大、载流量降低,造成过电流保护时间不足,非常容易引起电击事故。

三、建筑电气接地的保护技术

1、安全接地。安全接地是利用那些不带电的金属部分进行接地,但要与接地做好良好的金属连接。例如将建筑物内所有的电气设备和附近的金属构造物用PE线连接起来,N线和PE线不能连接。在当代的智能建筑物中,这种连接非常常见,常用的强电的设备,弱电的设备或非带点导电设备等都是通过这种方式接地的,以便电气设备得到更好的保护。如果绝缘体被损坏,但电流直接接触到人体,就会产生导电,严重的电击会造成人员伤亡甚至更严重的问题。但在中性点接地中,接地短路电流经过人体后再回到大地,在中性点非直接接地的电力系统中,接地电流就直接进入大地,这会对附近电路的电气设备造成影响。

2、防雷接地。根据建筑物防雷设计规范规定,建筑物防雷要求分三类。一类、二类防雷建筑物中,应有防直击雷、防雷电感应、防雷电波侵入的措施。二类防雷建筑物、三类防雷建筑物上,应有防直雷和防雷电波侵入的措施。在考虑一般工作防雷外,还应着重考虑相关智能建筑部分防雷接地,使整个建筑物中的防雷接地形成一个较好的分项工程。智能建筑多属于一级负荷,应按一级防雷建筑的保护措施,接闪器采用针带组合接闪器,避雷带宜采用25cm×4cm镀锌扁铁在屋顶组成10cm×10cm的网格,与屋面所有金属构件做电气连接;与引下线做可靠连接;圈梁钢筋、楼层中钢筋、外墙面上金属构件、金属门窗均应与避雷引下线做可靠连接,这样不仅可以有效防止雷击损坏楼内设备,而且还能防止雷电形成的电磁干扰。

3、交流接地。工作接地主要指的是变压器中性点或中性线(N线接地)必须用铜芯绝缘线。在配电中存在辅助等电位接线端子,等电位接线端子一般均在箱柜内。必须注意,该接线端子不能外露,不能与其他接地系统,如直流接地、屏蔽接地、防静电接地等混接,也不能与PE线连接。在高压系统里,采用中性点接地方式可使接地继电保护准确动作并消除单相电弧接地过电压。中性点接地可以防止零序电压偏移,保持三相电压基本平衡,这对于低压系统很有意义,可以方便使用单相电源。

四、结束语

随着社会的进步及科学技术水平的提升,建筑电气在建筑的施工中越来越被人们重视,在建筑电气的施工中电气接地也是个是个十分重要的问题,为此,必须采取科学合理、行之有效的措施确保接地工程的施工质量。

篇8

一.前言

提高继电保护运行的可靠性的相关措施将会大大提高电网的运行效率并且减少电网运行的风险性。提高继电保护的技术水平和采取先进的继电保护措施将会使继电保护的日常验收、日常的管理以及其他各项相关工作都更加地快捷和高效。提高继电保护运行可靠性的技术和措施有其重要意义。

二.提高继电保护运行可靠性的技术措施

1.要把好继电保护的验收关

交接验收对于一个即将投入运行的发电厂或变电所是一次全面的“体检”,因此这项工作的好坏直接影响其今后的安全运行,继电保护交接更是如此。保护交接验收必须严格遵循如下工序:在继电保护调试完毕后,要严格自检、专业验收,然后提交验收单由工区组织的检修、运行、保护3个班组进行保护整组试验、断路器合跳试验合格。并确认拆动的接线、元件、标志、压板已恢复正常,现场文明卫生清洁干净之后,在验收单上签字。保护定值或二次回路变更时,进行整定值或保护回路与有关注意事项的核对,并在更改簿上记录保护装置变动内容、时间、更改负责人和运行班负责人签名。保护主设备的改造还必须进行试运行或试运行试验,如差动保护更换TA后,应作六角图试验,合格后方可投运。

2.搞好保护动作行为分析

保护动作跳闸后,严禁随即将掉牌信号复归,而是检查动作情况并判明原因,做好记录,在恢复送电前,才将所有掉牌信号全部复归,并尽快恢复电气设备运行,事后做好保护动作分析记录及运行分析记录。内容包括:岗位分析、专业分析及评价、结论等,凡属不正确动作的保护装置,及时组织现场检查和分析处理,找出原因,提出防患措施,避免重复性事故的发生。

3.提高继电运行的微机化和信息化水平

随着电子信息技术的不断发展和创新,微机保护在各个方面的科技含量也大大增加。目前,最新出现的工控机功能、速度以及存储容量等方面都大大优于原来的小型机。并且现在所使用的工控机的体积很小,仅仅类似于微机保护装置大小。所以,用成套的工控机做继电保护在技术上已经有了可操作性。这种情况下,继电保护在运行过程中的不可靠性将会显著降低。计算机网络技术在电力系统中的应用已经彻底颠覆了传统的继电保护运行的方法和状态,由于继电保护装置的作用是很单一的,主要是用来切除故障元件,但是它在保护电力系统的运行上还存在一定欠缺。为了保证每个保护单元都可以共享运行的数据和故障信息,以进一步提高保护的及时性和准确性,就必须将整个电力系统作为一个整体连接起来。要想实现这种连接应该通过计算机和网络技术的帮助,实现微机保护装置的网络和共享化。

4.加强继电保护运行的智能化程度

提高继电保护运行可靠性的一项重要措施是智能化,同时这也是一项重要的技术创新。人工智能化应用的领域已经越来越广泛,行业也不断得到拓展。很多先进的技术和理念也已经开始在电力系统中出现。诸如神经网络、进化规划、遗传算法、模糊逻辑等技术在电力系统中已经得到了应用,在继电保护领域应用的研究也正在进行并不断深化。人工智能技术的引进具有强大的优势。人工智能将会从很大程度上提高继电保护装置的稳定性能,并且还可以对继电保护装置原有的工作隐蔽性以及连续性等不可靠因素进行有效的控制。人工智能的显著优势是可以进行快速处理,并且具有极强的逻辑思维能力。实践表明,人工智能在在线评估中所发挥的作用是重要的,其明显优势是不可忽略的,并且具有一定的主导地位。人工智能在电力系统,尤其是在继电保护工作中的普及和应用将会给继电保护运行的可靠性带来极高的效率。

5.广泛使用性能极其优良的数字控制器件

性能优良的数字控制器件的使用将会大大提高继电保护的质量。CPLD和FPGA等器件在继电保护领域被广泛使用。CPLD是一种复杂可编程序逻辑器件,FPGA是一种现场可编程序门阵列,这两种器件在继电保护中都具有极其强大的优势,因为,CPLD和FPGA作为现代可编程序专用集成电路(ASCI),具有功能高度集成的特点,并且他们还会把多个微机系统的功能集中在同一块芯片上。这一类性能优良的数字控制器件的使用将会给电子系统设计带来极大变革,并且会展示出强大生命力。因为保护系统的高度集成、快速响应以及较高的可靠性的实现都离不开这一类控制器件。同时,这一类器件有效缩短了保护装置的研发周期,从很大程度上保证了继电保护运行的可靠性。

6. 要把好继电保护运行准确操作关

运行人员在学习了保护原理及二次图纸后,应核对并熟悉现场二次回路端子、继电器、信号掉牌及压板情况;严格“两票”的执行,并履行保护安全措施票;每次保护投入、退出,要严格按设备调度范围的划分,征得调度同意。为保证每套保护投入退出的准确性,在变电站运行规程中应编入各套保护的名称、压板、时限、保护所跳断路器及压板使用说明。由于规定明确,执行严格,简化了运行值班人员保护查图时间,避免运行操作出差错。

三、变电站继电保护故障处理的常用方法

1.替换法

用运行良好的或者当前运行正常的相同元件代替怀疑的或认为有故障的元件,来判断它们的好坏,可以快速地缩小故障查找范围。这是处理综合自动化保护装置内部故障最常用的方法,当一些微机保护故障,或者一些内部回路复杂的单元继电器,可以用附近备用或者暂时处于检修的插件、继电器而取代它。

2.短接法

将电路回路的某一段或者某一部分用短接线进行人为短接,借此来判断故障是否存在于短接线范围之内,如果不在,可以同样方法进行排查,不断缩小排查范围,以此来缩小故障范围。此方法主要在电磁锁失灵、电流回路开路、切换继电器不动作时使用,借此判断控制等转换开关的接点是否良好。

3. 直观法

处理一些无法用仪器进行逐点测试,或者某一插件在故障时没有备品进行更换,而又想及时将故障排除的情况下使用。10kV开关拒分或者拒合的故障处理,在操作命令下达后,观察到合闸接触器或者跳闸线圈能够动作,说明电气回路运转正常,故障存在于断路器操作机构内部。

4.逐项拆除法

将并联在一起的二次回路顺序解开,之后再按照线路顺序依次接回,一旦有故障出现,就表明故障存在于哪一路。再在这一回路内用同样的方法查找出更小的分支回路,直至找到电路故障点。此法主要用于排查直流电源,交流电源熔断器投入即熔断等电路故障。

对于直流接线故障,可以先通过拉路法,根据负荷的重要性,分别短时拉开直流屏所供直流负荷各回路,切断时间不得超过3秒钟,当切除某一回路故障消失,则说明故障就在该回路之内,再进一步运用拉路法,确定故障所在的支路。再将接地支路的电源端端分别拆开,直到排查到故障点。

四.结语

近年来,我国的国民经济不断发展,电力系统各在国民经济发展和社会发展中的作用也日益重要。并且伴随着新技术的出现,继电保护技术的发展也出现了崭新的发展前景。同时,我国电力系统的运行与发展也对继电保护的运行可靠性提出了新的更高要求。继电保护是电网安全和稳定运行的必要条件,担负的职责是极其重大的,相关单位应该及时提高继电保护运行可靠性的相关措施和技术,以保证电网的健康运行。

参考文献:

[1]胡安娜 继电保护运行的技术探讨 [期刊论文] 《科学与财富》 -2012年4期

[2]周晓 电力系统继电保护运行的可靠性研究 [期刊论文] 《城市建设理论研究(电子版)》 -2011年33期

[3]张坚俊 浅谈继电保护装置的可靠运行 [期刊论文] 《企业技术开发(下半月)》 -2011年2期

[4]王振平 提高继电保护运行可靠性的技术措施 [期刊论文] 《科技创业家》 -2012年13期

篇9

电力系统、计算机技术、电子技术与通信技术的飞速发展给电力系统继电保护不断注入了新的活力,提出新的要求。现代电力系统是高度数字化、信息化和自动化的超大区域网络结构,电力系统继电保护是对其安全稳定运行至关重要的一门技术[1]。21世纪继电保护的未来发展趋势是计算机化;网络化;保护、控制、测量、数据通信一体化;智能化[2]。以新疆农业大学(以下简称“我校”)为例,在现有教学模式基础上,本文探讨继电保护课程教学中提高学生实践与创新能力的方法,为将学生培养成具有实践能力、创新精神的人才而努力,为该课程的教学改革提供理论支持和智力保证。

一、电力系统继电保护课程的特点

我校“电力系统继电保护原理”课程理论教学36

学时,网络教学6学时,总计42学时,作为电气工程及自动化及农业电气化与自动化的专业必修课,设置在大四上学期初;“微机继电保护”课程共26学时,均为课堂理论教学学时,作为专业选修课安排在“电力系统继电保护原理”结束后的大四上学期末开设,目的是顺应现代电力系统高度数字化的趋势,让学生了解现代数字式继电保护硬软件的知识,内容涉及到原理、保护算法、硬软件设计方法等;“继电保护课程设计”为期一周,与“微机继电保护”同时安排在大四上学期期末,目的是培养学生综合运用所学的基础理论知识分析与解决电力系统中的实际问题的能力[3]。

二、继电保护课程教学存在的问题

为适应现代数字电力系统继电保护技术的新发展,目前我校继电保护的教学内容已加入“微机继电保护”,作为少学时内容与“电力系统继电保护”共同设置在大四上学期,同时开设的其它几门专业课使得学生大四上学期课程较为集中,学习任务量较大。此时学生即将面临毕业设计开题、复习考研或找工作,第一学期过高的学习任务和课程的相对集中对其学习效果有一定影响;在课程教学上,基本停留在传统模式:即利用板书或者多媒体课件形式,将继电保护原理及其实现方法按照教材的章节和顺序进行课堂讲授,这主要存在以下几个问题。

(一)重理论,轻实践,无法提高学生的实践能力与创新精神

对教师而言,继电保护原理单纯靠板书或多媒体课件较难讲透;对学生而言,继电保护内容比较抽象且实践性强,知识描述更需要形象化演示去理解,配合学生自主实践学习才会有好的效果。比如,“零序过电流保护原则上是按照躲开在下级线路出口处相间短路时出现的最大不平衡电流来整定”,若单纯由教师口头讲授原理,学生难以理解; “微机继电保护”课程主要分析现代数字式继电保护软硬件相关知识,内容涉及原理、保护算法、硬软件设计方法等。若单纯讲解微机继电保护算法,使学生难以消化,从而会削弱其学习的积极性。

(二)教学理念不够强,教学内容需要优化

继电保护课程组与“单片机技术”、“数字信号处

理”、“电力系统自动化”、“高低压电气设备”等课程有很多联系,但教学上往往孤立、脱节,缺乏全局梳理,使学生对继电保护完整系统缺乏全面认识。课堂上,教师若能将继电保护教学作为一个整体,以实例联系相关课程内容,紧跟行业发展前沿并且结合实践,教学效果会更好;此外,目前继电保护教科书内容繁多,与其他专业课程也有所重复,需要对课程内容进行整合优化。

(三) 学生自主选择力不强

学生对继电保护内容的兴趣点各有不同,部分学生未来并不从事继电保护工作,或考研方向与此关系不大。目前情况是,继电保护课程组教学课时相对较多,内容较为宽泛,对于上述内容部分学生显得索然无味,学生根据自己情况自主选择的能力不够强。为此,以学生为本,可以在课程形式上稍做一些调整。

三、教学模式的探索及实践

针对继电保护课程教学存在的问题,本文探讨了几种改进模式和方法,且部分已开始具体实施,取得了一定的教学效果。

(一)优化专业培养计划

将原本设置在大四上学期分开教学的“电力系统继电保护原理”和“微机继电保护”两门课整合为一门,设置在大三下学期。“继电保护课程设计”可设置在大四上半学期。这样设置有两方面考虑:内容上,减少学生学习任务量,突出重点,使教学有针对性。比如,可缩减“电力系统继电保护原理”教材中电磁型继电器、断路器等与“高低压电气设备”教材有所重复的内容,减少或者删除“微机继电保护”教材中与“微机原理与应用”、“单片机技术”“数字信号处理”等相关课程的重复内容;时间上,我校电气专业学生于大三至大四暑假期间设置了为期5周的发电厂生产实习,实习前对继电保护内容的理论学习,为生产实习期间学生对继电保护装置、电力系统设备等内容建立感性认识打下基础,从而提高学生的实践与创新能力。

(二)改进教学手段与教学方法

教师可采用多样化的教学手段和方法进行教学。以传统教学手段为辅,以现代化网络媒体、实验教学等方式为主。以提高学生学习的积极性及其实践创新能力为目的,建立学生对电力系统继电保护的整体概念,使学科前沿知识与教材内容相结合,课堂教学与实践教学相结合。

1.网络课程建设。利用学校现有网络平台,上传电子教案、视频,演示动画等资源,并建立一套自测系统,使学生可以主动借助网络课程平台观看和使用这些资源。教案、课件既可以作为学生的预习资源以及弥补疏漏的课后复习资料,也可以作为教师选择的教学资源库;视频资源以声、像集合的形式使学生直观了解继电保护的动作过程及原理;具有交互性的演示动画可以提高学生学习的趣味性,比如,利用FLASH将继电保护动作过程制作成SWF动画,或用Visual C++开发保护动作演示模块[4];自测系统可以使学生在正式考试前自我检测,弥补疏漏的知识点。利用网络交互平台有助于增强课后教师与学生之间的互动性,使教师及时了解学生遇到的问题并展开网上讨论,以提高学生对课程学习的主动性。因此,网络资源的建设需要教师有针对性地选择教学内容,或利用专业软件开发演示模块,并及时更新资源。目前,我校网络课程建设已取得初步成果。

2.实验平台建设。微机保护已成为当前继电保护的主要形式。华北电力大学、湖南大学等高校先后自主开发了微机型线路保护教学仿真实验装置。实验平台建设思路为面向实践平台的建设,使学生能够对本专业内容形成完整的知识链[5]。我校可采用引进设备或者利用现有教师队伍和资源对微机继电保护实验设备进行开发。目前,我校基于TMS320F28335+PC机的继电保护教学实验平台的研制正在进行。

实验平台可作为本专业教学科研平台,不仅方便用于学生实验、课程设计和毕业设计,也可以作为教师的科研平台。该平台能够使学生直观了解微机继电保护硬件结构,并且通过配置不同的软件模块实现不同原理、不同对象的继电保护功能;开设综合性实验和设计性选做实验,有利于提高学生的积极性及实验、设计能力,有助于开阔学生的视野、发挥创新能力。

3.课程设计内容优化,加强毕业论文设计。课程设计是培养学生的实践能力、创新能力和综合能力的重要环节[6],在传统设计内容基础上可以充分利用实验平台,先进行整定计算,后在平台上模拟故障时继电保护动作;建立以任务驱动,由教师引导、学生进行自主探究学习的框架。根据继电保护原理建立主题,比如,电流保护、距离保护、纵差保护等;也可以根据继电保护对象形成“主题”,比如,电力变压器保护、输电线路保护等。

课程设计可以在大三下学期上课期间布置下去,使学生带着问题学习,并结合大三暑假为期五周的“发电厂生产实习”,使课程设计更具针对性、实践性,从而激发学生的创新意识。此外,通过毕业论文的设计强化为工作打下基础。

4.完善评价体系。适应新的教学方法与手段,改进传统课程考核评价方式。继电保护理论课成绩应综合考勤、课堂表现、小组讨论、平时作业、网络自测、综合实验等教学环节进行考评。将平时成绩比例增大,有利于激发学生平时学习的积极性;课程设计可以对每个学生进行公开答辩及严格书面考核;毕业论文(设计)成绩评定标准应以提高学生的实践与创新能力为目的,综合文献综述、论文质量、创新能力、实验态度等因素进行考评。

本文以新疆农业大学电气工程专业、农业电气化专业为例,对继电保护课程的教学模式进行探索与实践,重点激发学生平时学习的主动性,使其能够掌握必要的工程技术、测试方法以及先进设备的研究方法。若能将每个环节都做好做实,师生就能在一整套良好有序的教学体系中受益,从而培养出适应智能电网时代、具有实践能力、创新精神的人才。

参考文献:

[1]何瑞文,陈少华.现代电力系统的继电保护课程教学改革与建设[J].电气电子教学学报,2004,(3).

[2]付乔.继电保护发展现状综述[J].攀枝花学院学报,2006,(2).

[3]李文武,袁兆强.继电保护课程组教学改革的探索[J].中国电力教育,2010,(12).

篇10

Keywords: transmission line distance protection; model; research

中图分类号:TM773 文献标识码:A文章编号:

随着国民经济的不断发展和人民收入水平的提升,对于电力的需求越来越大,在电网的扩大下,用户对于供电可靠性和供电质量的要求也越来越高,对于继电保护也提出比以往更高的要求,特别是现代的大容量、超高压电网对于继电保护的速动性、选择性、可靠性和灵敏性也有了更加严格的要求,用户也要求电力部门提供一种更加经济、安全、高质量和可靠的电能。因此,在中高压电网结构中,必须使用性能完善的保护装置,在这些保护装置中,微机型距离保护就是其中的代表,下面就针对输电线路新型距离保护的研究和应用进行详细的探讨。

1、距离保护的基本原理与实现特征

在运行方式多变、结构复杂的电力系统之中,一般需要使用性能完善的继电保护装置,这样才能对电力系统进行实时控制和检测,距离保护就是其中最为常用的形式。

距离保护反应着保护安装点与故障点之间的阻抗,距离保护能够根据阻抗大小确定动作的时间,其核心元件是阻抗继电器,阻抗继电器能够根据端子上的电压以及电流测量保护到短路点间的阻抗值来确定出故障点的实际方向,同时也可以根据阻抗值的实际大小计算出保护安装处和故障点间的实际距离。距离保护原理图详见表1.

图1距离保护原理图

假设继电保护装置装在线路MN的M侧,安装母线电压为Um,母线到被保护线路的电流是Im,在电流互感器和电压互感器变比是1的情况下,Um和Im就分别是接入继电器的电压和电流,如果线路中出现了短路故障,那么阻抗继电器的阻抗为Zm,

为了保证阻抗继电器的阻抗Zm是母线M侧到故障点之间的线路阻抗,那么,,在接地短路出现故障的情况下,,,就是带有零序电路补偿同名相电流,电流补偿系数K的计算方式为,其中分别是被保护线路的零序阻抗和正序阻抗。

假设阻抗继电器补偿电压的表达方式为:

其中,是整定电阻,整定电阻的整定阻抗角与被保护线路的阻抗角相等,

从图1中可以得知,是点的电压,如果线路的点出现短路故障,当,那么就是线路的正序阻抗。此时为整定阻抗末端电压,在整定阻抗的值确定之后,即可在保护安装处测量出整定阻抗末端电压值。

由于正向短路故障和反向短路故障时,目前的电压相位不会发生变化,因此,当反向短路故障发生短路障碍的情况下,工作电压与正向保护区的相位相同,这时,只要可以检测出工作电压相位的变化情况,就能够检测出线路短路故障的实际方向和阻抗值的大小。

其中,保护安装点与短路故障点距离的关系呈现出一种线性关系,具有时限特性,即距离保护,这种距离保护的应用范围十分广泛。

2、继电保护和微机型距离保护的发展和应用

继电保护技术是在材料科学、电力系统以及制造工艺发展基础上发展而来,最早发展于上世纪50年代,后来,相关专家学者对继电保护算法进行了深入的研究,这就为微机型距离保护的发展奠定了良好的基础。在上世纪80年代,微机型距离保护开始逐渐得到了发展,该种距离保护具有良好的分析、计算以及逻辑判断的能力,有着储存和记忆的功能,能够实现性能复杂的保护。该种保护方式还能够对自身的工作进行全面的自检,具有很高的可靠性。与此同时,微机型距离保护能够对同一硬件进行不同的保护,保护装置的制作也十分简便,除了基本的保护功能以外,微机型距离保护还能够实现时间顺序记录、故障录波、调度计算机通信、故障测距等一系列的功能,这对于事故分析、保护调试以及事故处理均有一定的意义。最近几年,我国的电力系统得到了飞速的发展,与此同时,微机保护也得到了十分广泛的使用,也成为了继电保护的主要使用形式之一。该种保护方式集齐网络通信技术和现代计算机技术于一体,能够对电网中各种设备进行控制和监测,实现了自动管理电网的目的。各类实践也证实,该种保护方式能够在一定程度上提高电网运行的可靠性、经济性和高效性,继而保护电网的供电质量,将现有的设备充分的利用起来,这就能够在一定程度上降低电网企业中人力、物力和财力的浪费,因此,微机型距离保护装置具有广泛的应用市场。目前,微机型距离保护装置也成为国内各个电力设备厂商研制的产品之一。加上人工神经网络的发展,进化规划、神经网络、遗传算法、模糊逻辑等技术已经在电力系统中得到了广泛的应用,相关的研究工作已经转为人工智能研究方式,人工神经网络、专家系统以及模糊控制理论也开始在继电保护装置中应用,这也为继电保护的发展提供了坚实的基础。

3、结语

目前,关于输电线路新型距离保护的研究已经十分的深入,各类技术也已经得到了迅速的发展,但是在实际应用的过程中还存在一些不足之处,相信通过电力部门的努力,新型距离保护将会在下一阶段得到进一步的完善。

参考文献:

[1]黄智勇.输电线路新型距离保护的研究与应用[期刊论文].沈阳工业大学学报,2005,03(12)

篇11

一、状态检修定义

状态检修,也叫预知性维修,顾名思义就是根据设备运行状态的好坏来确定是否对设备进行检修。状态检修是根据设备的状态而进行的预防性作业。状态检修的目标是减少设备停运时间,提高设备可靠性和可用系数,延长设备寿命,降低运行检修费用,改善设备运行性能,提高经济效益。

二、继电保护装置的"状态"识别

1. 重视设备初始状态的全面了解

设备的初始状态如何,对其今后的安全运行有着决定性的影响。设备良好的初始状态是减少设备检修维护工作量的关键,也是状态检修工作的关键环节。因此,实现状态检修首先要做好设备的基础管理工作。需要特别关注的有两个方面的工作,一方面是保证设备在初始时是处于健康的状态,不应在投入运行前具有先天性的不足。另一方面,在设备运行之前,对设备就应有比较清晰的了解,掌握尽可能多的'指纹'信息。包括设备的铭牌数据、型式试验及特殊试验数据、出厂试验数据、各部件的出厂试验数据及交接试验数据和施工记录等信息。

2. 注重设备运行状态数据的统计分析

要实行状态检修, 必须要有能描述设备状态的准确数据。也就是说, 要有大量的有效信息用于分析与决策。设备部件在载荷和环境条件下产生的磨损、腐蚀、应力、蠕变、疲劳和老化等原因,最后失效造成设备损坏而停止运行。这些损坏是逐渐发展的,一般是有一定规律的,在不同状态下,有的是物理量的变化,有的是化学量的变化,有的是电气参数的变化,另外,还有设备的运转时间、启停次数、负荷的变化、越限数据与时间、环境条件等。因此要加强对继电保护装置历史运行状态的数据分析。

3. 应用新的技术对设备进行监测和试验

开展状态检修工作,大量地采用新技术是必然的。在目前在线监测技术还不够成熟得足以满足状态检修需要的情况下,只有在线数据与离线数据相结合,进行多因素地综合分析评价,才有可能得到更准确、可信的结论。此外,还可以充分利用成熟的离线监测装置和技术,如红外热成像技术、变压器绕组变形测试等,对设备进行测试,以便分析设备的状态,保证设备和系统的安全。

三、开展继电保护状态检修应注意的问题

1. 要严格遵循状态检修的原则

实施状态检修应当依据以下原则:一是保证设备的安全运行。在实施设备状态检修的过程中,以保证设备的安全运行为首要原则,加强设备状态的监测和分析,科学、合理地调整检修间隔、检修项目,同时制定相应的管理制度。二是总体规划,分步实施,先行试点,逐步推进。实施设备状态检修是对现行检修管理体制的改革,是一项复杂的系统工程,而我国又尚处于探索阶段,因此,实施设备状态检修既要有长远目标、总体构想,又要扎实稳妥、分步实施,在试点取得一定成功经验的基础上,逐步推广。三是充分运用现有的技术手段,适当配置监测设备。

2. 重视状态检修的技术管理要求

状态检修需要科学的管理来支撑。继电保护装置在电力系统中通常是处于静态的,但在电力系统中,需要了解的恰巧是继电保护装置在电力系统故障时是否能快速准确地动作,即要把握继电保护装置动态的"状态"。因此,根据对继电保护装置静态特性的认识,对其动态特性进行判断显然是不合适的。因此,通过模拟继电保护装置在电力事故和异常情况下感受的参数,使继电保护装置启动和动作,检查继电保护装置应具有的逻辑功能和动作特性,从而了解和把握继电保护装置状况,这种继电保护装置的检验,对于电力系统是很有必要的和必须的。

3. 开展继电保护装置的定期检验

实行状态检验以后, 为了确保继电保护和自动装置的安全运行,要加强定期测试,所有集成、微机和晶体管保护要每半年进行一次定期测试,测试项目包括:微机保护要打印采样报告、定值报告、零漂值,并要对报告进行综合分析,做出结论;晶体管保护要测试电源和逻辑工作点电位,现场发现问题要找出原因, 及时处理。

4. 高素质检修人员的培养

高素质检修人员是状态检修能否取得成功的关键。在传统的检修模式中, 运行人员是不参与检修工作的。状态检修要求运行人员与检修有更多联系, 因为运行人员对设备的状态变化非常了解, 他们直接参与检修决策和检修工作对提高检修效率和质量有积极意义。其优点是可以加强运行部门的责任感; 取消不必要的环节, 节约管理费用; 迅速采取检修措施, 消除设备缺陷。

综上所述,状态检修是根据设备运行状况而适时进行的预知性检修,"应修必修"是状态检修的精髓。状态检修既不是出了问题才检修,也不是想什么时候检修才检修。实行状态检修仍然要贯彻"预防为主"的方针,通过适时检修,提高保护装置运行的安全可靠性,提高继电保护装置的正确动作率。因此,实行"状态检修"的单位一定要把电力设备的"状态"搞清楚,对设备"状态"把握不准时,一定要慎用"状态检修"。

参考文献

[1] 陈维荣, 宋永华, 孙锦鑫. 电力系统设备状态监测的概念及现状[J]. 电网技术,2000(11).

[2] 张国峰, 梁文丽, 李玉龙. 电力系统继电保护技术的未来发展[J]. 中国科技信息,2005(02).

[3] 郭伟. 论继电保护装置的"状态检修"[J]. 水利电力机械, 2007年9月.

[4] 李万宝. 浅议继电保护信息化管理[J]. 大众科技,2004(12).

[5] 李永丽, 李致中, 杨维. 继电保护装置可靠性及其最佳检修周期的研究[J]. 中国电机工程学报,2001年6月.

[6] 陈德树. 继电保护运行状况评价方法的探讨[J]. 电网技术,2000(3).

[7] 李彤. 从状态监测实践探讨状态检修工作的开展[J]. 农村电气化,

2005(2).

[8] 陈三运. 输变电设备的状态检修[M]. 北京:中国电力出版社, 2004年.

[9] 张锋. 关于供电设备状态检修的思考[J]. 中国资源综合利用,2008年第1期.

篇12

一、继电保护技术的理解

继电保护技术是指在正常用电的过程中,能够对电路故障进行及时的警报,并能够有效地防止事故发生的一项技术,其核心是继电保护的装置。继电保护的装置随着现代电力的发展变化也由原先的机电整流式向集成微机处理式过渡。尤其是近三十年以来,将计算机运用技术融入继电保护装置,使得微机继电保护技术得到了长足的发展,也使得保护的性能得到进一步的增强。

继电保护技术的主要特点是:(1)自主化运行率提高,计算机的数据处理技术能够使得继电设备具有很强的记忆功能,加之自动控制等技术的综合运用,使得继电保护能更好地实现故障分量保护,提高运行的正确率;(2)兼容性辅助功能强,继电保护技术在保护装置的制造上采用了比较通用兼容的做法,便于统一标准,并且装置体积小,减少了盘位数量,在此基础上,还可以扩充其它辅助功能;(3)操作性监控管理好,该技术主要表现在一些核心部件不受外在化境的影响,能够产生一定的使用功效。与此同时,该保护技术能够通过计算机信息系统,具有一定的可监控性能,大大降低了成本。

二、继电保护技术的在电力系统中的运用特性

(一)继电保护技术的智能化运用特性增强

现代化的电力管理越来越体现了智能化的控制管理模式,具有一定的人工智能化的特征。这些特征,一方面使得电力系统在管理上减少了不必要的资源浪费;另一方面为其他各项技术的运用提供了广阔的技术空间。正是在这样的技术背景下,继电保护技术出现了一定的人工智能化,使得保护装置在设计上更具有合理性和科学性。

这些智能化的信息特征使得继电保护技术在发展的过程中逐渐地进入了自动化的发展进程。目前,在我国主要大城市供电公司的继电保护设备中已采用了模拟人工神经网络(ANN)来进行对用电的保护。因此,进一步推进了继电保护技术智能化的发展前景。据现有的资料介绍,在输电过程中出现的短路现象一般有几十种,如果出现这样的情况用人工进行排除,至少需要12小时以上。但若是采用上述的神经网络继电保护方法,可通过采集的数据样本对发生故障进行检测,从而能在半小时之内得出故障出现的原因,大大缩短了维修时间。这些人工智能方法通过计算机辅助体统的帮助运用,可使得电力运输效率大大加强。

(二)继电保护技术的网络化更新发展显著

继电技术的运用离不开计算机网络的支持。这种网络化的技术,不仅给继电技术提供了可操作检查的直观空间范围,也给其发展更新提供了更为广泛的动力支持和保障。这也正是继电技术开放性发展的必然要求。继电保护的主要功能在于保护电力系统的安全稳定,而这种保护离不开计算机网络的数据模拟生成系统,需要依据计算机通过数据采集和分析来检测故障存在的原因,进而发出警报。

这些网络化的发展,一方面,能够通过数据的的采集和模拟生成,综合分析可能出现的各种故障;另一方面,在显示故障的同时,能够准确地反映出故障的缘由、位置的情况,便于工作人员能够采取有效的解决策略。例如,现在的各种环保节能发电厂就是采用了该种装置,通过总调度室计算机监控,不仅能够知晓现有线路的运行前那个框,还能够对各条线路出现的短路等现象作出判断,以便维护人员能够进行及时正常地维修。

(三)继电保护技术的自适应性发展迅猛

继电保护技术的自适应性也是值得关注的方面。我们知道自适应控制技术在继电保护中的应用具有如下的作用:(1)使得继电保护更具有一种适应性,能够适应多种故障的检测;(2)有效延长保护时间,能够使得电气设备产生更长的使用寿命;(3)能够提高经济效率,即这种保护能够针对用电过程中出现的问题进行排除,不仅减少了人工操作的麻烦,还能够节省成本。

当前电力系统在发展过程中出现的各种问题,除了需要一定的人工操作之外,采用继电保护技术的自适应性技术,一方面,能够真正发挥继电保护的“保护”功能,使得人们的生产生活得以顺利地开展,满足人们的发展需要;另一方面,能够使得这种适应性能面对各种形势的变化发展,最大限度地提高电力设备的使用寿命,以减少故障的发生。这种适应性应该离不开计算机网络环境的支持。因此,就更具有广泛的适应性能。

三、继电保护技术的发展前景

(一)电子数据主动化的特性显著

随着计算机数据自动化的发展,继电保护技术的现代化发展也必然得到充分的体现,即电子数据主动化性能必将得到显现。

(二)继电保护功能将进一步拓宽

在计算机辅助设计功能的帮助下,继电技术的功能性必将得到进一步的增强,可根据故障的显性进行适当的控制运用。

(三)继电保护技术的运用方便灵活

在该项技术的指引下,使得电力线路维护调试也更方便。在运行过程中,操作者可根据电流值,可进行适当调整。

综上所述,继电保护技术在电力系统网络化的发展趋势中,定会综合各种学科的发展,必将步入更为广阔的发展空间,由数字时代跨入信息化时代,增强电力发展的安全性。

参考文献

[1]葛耀中.新型继电保护与故障测距原理与技术[M].西安交通大学出版社,1996.

篇13

一、开发电力系统继电保护中级工教学培训包的必要性及其目标

把学历教育与国家职业资格证书认证体系衔接起来;加强学历教育与职业资格认证的结合,使学生在取得学历证书的同时获得相应的资格证书,即“双证书制”。从2003年起,我校在完成学历教育的同时,开展了多项工种的职业技能鉴定培训与考试,即进行“双证书制”教学。电力系统继电保护是各类高等院校有关电力专业的一门专业必修课,也是电力行业的一项主要技术工种。近年来,随着我校“双证书制”教学的深入,参加继电保护中级工职业技能鉴定考试的学生占毕业生人数的比例逐年快速增长。为更好地落实“双证书制”教学方案,提高学生的学习效率,保证教学质量,必须开发出一套电力系统继电保护中级工教学培训包,使其以职业能力培养和职业资格评定为核心,将《国家职业技能鉴定大纲(继电保护)》中对继电保护中级工应熟悉、掌握和具备的理论知识和专业技能按模块分布在学历教育的各个教学环节,使教师在每个教学过程中心中有数,重点突出;学生在学习过程中目标明确,学以致用。在保证学历教育教学质量的同时,提高学生职业技能考核的通过率,即提高学生的职业技能,保证人才的培养质量,满足用人单位的需求。

二、开发电力系统继电保护中级工教学培训包的途径

1、开发电力系统继电保护中级工教学培训包需解决的主要问题

(1)将用人单位对继电保护中级工理论知识及实践技能的需求与《国家职业技能鉴定大纲(继电保护)》有机结合起来,构建继电保护中级工教学培训包的总体框架,创建培训包的各个教学培训模块及其任务书。

(2)将构建的继电保护中级工教学培训包与学校的学历教育有机结合起来,探索各个教学培训模块任务书的实施方式和方法。

2、开发继电保护中级工教学培训包的流程

(1)原始数据采集环节。即采集继电保护中级工岗位的工作性质和特点、应具备的有关理论知识及专业技能等。

(2)分类统计、构建总体方案环节。分类统计、构建总体方案环节主要是对采集的原始数据和信息进行分类统计、分析整理,结合《国家职业技能鉴定大纲(继电保护)),构建出电力系统继电保护中级工教学培训包的总体框架,编写总体方案,制定各个教学培训模块。

(3)构建各个模块任务书环节。本环节的任务是根据电力系统继电保护中级工教学培训包总体方案,将各个教学培训模块与学历教育的各个教学环节有机结合起来,拟定各教学培训模块的任务书。明确各个教学培训模块的目标、内容、培训时间及相关课程、实施的方式、方法和实施效果的检测等内容,然后咨询有关专家,对构建的总体框架及拟定的各模块任务书进行论证,确立电力系统继电保护中级工教学培训包的总体方案及详细的各模块培训任务书。

(4)确定学生,实施教学培训环节。本环节根据已创建的卑力系统继电保护中级工教学培训包各模块任务书,按照优、良、中、及格的学习成绩选取学生,并实施教学培训。

(5)考评、完善环节。主要是通过河南省电力系统职业技能鉴定考试,对选取培训的学生进行继电保护中级工技能鉴定考核,并对其考核成绩进行统计、分析、评价。

三、电力系统继电保护中级工教学培训包实施效果与开发体会

利用电力系统继电保护中级工教学培训包实施教学培训的学生,在通过我校学历教育各项考试获取毕业证书的同时,参加河南省电力系统的继电保护中级工技能鉴定考试,全部合格并获继电保护中级工证书。 转贴于

通过对继电保护中级工教学培训包的开发,笔者有如下几点体会。