自动化控制论文实用13篇

引论:我们为您整理了13篇自动化控制论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

自动化控制论文

篇1

基于电气自动化的复杂性,其操作过程应精细且注重细节。一旦操作失误,将导致系统故障甚至造成安全事故。因此,人工智能技术应用的核心技术在于程序化问题,将复杂化的程序通过智能手段转化为简便化。通过系统日常资料的分析,对设备故障采取积极的应对措施。在具体应用过程中,人工智能技术主要表现为以下几个方面。

(一)智能化设计分析

人工智能技术关系到电力工程以及电路的设计。在传统的设计模式下,工作人员的工作量大,需要大量的试验验证,并且对不合理部分进行改进。因此常出现考虑不周全的问题,处理问题的效率较低,对于难度较大的问题,传统的处理方案无法解决。这使得智能化设计成为必然。现阶段,电力企业逐步实现了智能化设计,全面考察了问题的难度,提高了处理问题的能力和效率。但同时,智能设计对于操作人员提出了更高的要求,要求其掌握专业知识和智能系统操作技巧,并且操作人员还应具有与时俱进的精神,对智能系统进行适当的改良设计。利用人工智能设计,可有效提高数据分析的准确性,将复杂问题简单化。

(二)PLC技术应用

随着电力企业规模的扩大,电力生产对于技术具有更高的要求,基于此的PLC技术成为企业生产和建设的重要目标。PLC技术是一种常见的人工智能技术,目前主要应用于工业、电力企业,具有良好的效果。其是在继电控制装置基础上发展起来的智能技术,该系统的主要作用在于优化了系统工艺流程,从而根据企业需求对运营现状进行调整,确保其运营的协调性。PLC技术以自动控制系统为主,手动控制技术为辅。对于提高电力系统生产实践具有重要作用。在电力生产中,PLC人工智能化技术的使用还实现了自动化目标切换,继电器逐渐代替了实物元件,不但提高而来管控效率,还确保了系统的运行安全。

(三)智能诊断和CAD技术应用

智能诊断系统的出现是电气运行复杂化的结果。该诊断系统要求操作人员具有较多的实践经验,改善了传统模式的手工设计方案,充分体现了信息时代的优势。科技的发展也使得CAD技术逐渐实现了智能化,缩短了产品设计实践。智能化技术优化了CAD技术,对产品设计质量的提高具有积极作用。目前,在电力系统中,遗传算法是人工智能技术的重要表现之一,通过科学的计算方法,提高了数据统计和计算的精确度。基于遗传算法的重要作用,应得到企业的重视。在电力系统运行过程中,如何区分故障和征兆是一个难题,智能化技术通过专家系统和神经网络系统可快速有效的分析出系统故障和安全隐患,并提供一定的解决办法,确保了电力系统的运行问题。

(四)神经网络技术应用

神经网络系统是智能技术的重要体现之一,其作用在于分析和处理系统故障。可对系统故障进行准确定位,并且减少了定位时间。同时,还可完成对非初始速度及负载转矩的有效管控。神经系统设计具有多样性,具有反向学习功能。利用神经网络系统的两个子系统,可实现对机电参数转子速度和电子流的评判和管控。目前,智能神经网络系统主要应用于分析模式和信号处理上。由于其包含非线性函数估算装置,因此对于电气自动化控制具有积极作用。其主要优势在于无需对控制对象建立数学模型,因此工作效率高,噪音小。

篇2

计算机远动控制技术的应用主要是通过遥测、遥信、遥控以及遥调等功能实现的,计算机远动控制技术是电力系统自动化技术中的核心技术,其在电力系统运行中发挥着重要的作用,尤其是在电力系统中的数据采集、通信传输以及信道编译码等环节中占据着重要的地位。其中,计算机远动控制技术的工作原理如图1所示。2.1远动控制技术中的数据采集技术远动控制技术中的数据采集技术主要有A/D技术和变送器技术等,其处理的信号多数为0~5V的TTL电平信号,而在电力系统自动化技术中,多数采用大功率参数,为了实现采用远动控制技术处理电力系统中的信号,只有通过变送器将大功率参数转变为TTL电平信号,从而达到遥信信息的编码和遥测信息的采集任务。其中在电力系统中,其遥信信息需要经过采集遥信对象的状态,将采集到的描述遥信对象状态的二进制位编进具体的遥信码中这2个途径进行传送,然后再通过数字多路开关将电力系统各路的遥信状态输出到接口电路中,最后通过接口电路将遥信信息送入到CPU系统中进行处理,从而实现遥信信息编码。2.2信道编译码技术分析在计算机远动控制技术中的信道编译码技术主要有编码、译码以及信息传输协议(规约)等。在电力系统自动化控制中,想要实现采用远动控制技术进行信息采集,则必须通过通信信道传输到调控中心才能使用。因此在电力系统自动化控制中,为了进一步保证传送的信息具有非常好的抗干扰能力,必须要对信息进行信道编译码,其中数字传输系统模型如图2所示。在上述电力系统自动化系统中,通过采用远动控制进行数字传输中,其干扰是不可避免的,而通过信道编译码能够有效克服通道中的干扰,其中,信道编译码的方法主要采用线性分组码中的循环码进行编译码。2.3循环式数据传送规约远动控制技术在变电站、电厂以及调度中心的数据通信应用中,首先需要在信道编译码前,预先设定通信方式和数据格式,也就是通信信息传输协议(规约),以保证电力系统中数据通信的可行性。另外,在电力系统远动控制技术中,其数据传输主要是以帧结构的形式进行传输的,其中重要的遥测信息主要安排在A帧,次要遥测信息安排在B帧,一般遥测信息安排在C帧。通过采用帧格式进行包装后,电力系统中的数据就能够有效按照规约进行传送,从而实现信道全部编译工作,实现对电力系统的全方位监控。

3电力系统自动化技术的发展及建议

对于电力系统自动化的发展方向,应从以下几点出发:(1)兼顾提高经济效益和改善自动化服务水平,我们追求的自动化技术应向着更优化、更具实效性、更加智能化、区域覆盖更广的方向前进。(2)加强电力自动化系统的设备稳定性,有效保障其安全运行,尽量减少大面积停电,建立一系列行之有效的处理机制,将停电损失降到最低。(3)开拓电力系统自动化的数字化之路,使数据更加全面,数字更加精准,力求节省更多时间和人力。(4)随着科技的不断进步,各种先进设备相继出现,对电力企业的工作人员提出了更高的要求,加强电力企业人员的技能培训和技术队伍建设,注重对新技术高素质人才的引进和吸收,培养全面发展的技术人才,鼓励员工以先进的理论知识和丰富的实践武装自身,投入更多精力到电力自动化的发展中去,推进电力自动化的发展进程。(5)在全球能源危机的严峻形势下,正是挑战电气自动化进程的关键时期,要以可持续的发展观,改善传统的管理模式,从整体化逐步转变为分布式、集约化的运营模式,实现能源利用的最大化、功耗的最小化、资金节约化。

篇3

(一)自动化控制在化工安全生产中的应用

自动控制实际上就是依据规定指令或者程序自动进行化工生产的一种新技术,依据运行过程中的自动化程度可以合理的分为全自动化控制和半自动化控制两大类。这种新的控制技术可以合理的运用到机械制造、生产控制过程以及管理过程控制等多方面。我国运用这种自动控制技术,在化工生产过程中已经发展了几十年,主要包括创新和引进两种开发方式。在发展的过程主要经历了三个阶段,主要有手工操作、机械控制以及自动控制。自动控制技术从简单的生产系统逐渐发展成为复杂的生产系统[2]。目前,在国内大部分化工企业中,分散控制系统(DCS)、逻辑控制器(PLC)以及现场总线控制系统(FCS)应用的相对比较广泛。其中逻辑控制器和分散控制系统是比较常见的。逻辑控制器是一种可以进行存储的设备,一般来说是一类编程,可以适当作为内部存储程序,执行逻辑、执行定时、执行顺序控制以及执行计算和算数的过程是基本主要功能。主要控制形式为模拟输入、输出方式或者数字输出、输入方式。逻辑控制器的主要特点有:一是具有很大性价比,功能比较强;二是维修过程比较方便和简单;三是具有一定的抗干扰性和可靠性。主要适用于中小规模连续生产控制过程中以及间歇性生产的控制过程。一般来说,具有比较大规模的化工生产控制过程主要使用的是分散控制系统。主要特点就是可以适当的融合通讯、计算机、自动控制,从而很好的实现自动监控、自动生产、自动管理、自动操作以及分散控制,相比较于逻辑控制器来说,具有更加强大的功能,但是也具有很大的设备成本。分散控制系统的主要形式结构特点为多层分散、分散、自治合作以及危险分散,比较适合使用在化肥、石油以及大型空分制氧的生产过程中[3]。以上的运行系统应该保持与生产过程一致,从而全面实现自动控制,以便于可以科学、有效地进行设备的智能化、微型化、开放化、数字化的自动管理,这种现场总线控制系统逐渐成为未来化工企业生产与管理的主要发展方向[4]。

(二)安全联锁在化工安全生产中的应用

安全联锁实际上是属于一种安全技术,可以阻止排除安全隐患之前接触存在危险区域的行为,或者在出现接触危险区域的时候可以自动排除安全隐患。现阶段,在化工安全生产过程中比较常用的就是紧急停车系统,可以让设备在瞬间就能够停止运行,从而保证不会发生一定的安全事故,为了有效地增加系统的安全性,一般把紧急停车系统有机结合PLC系统、FCS系统、DCS系统,可以在系统出现压力、温度或者液位超过规定范围或者毒害气体超过标准的时候进行及时的报警,适当启动安全联锁作用。

篇4

不同智能控制系统具有不同的优缺点,复合智能系统就是将各种不同种类的控制系统进行综合使用,这样可以在克服各个控制系统缺点的同时,实现各个系统优点的综合。目前常用的复合系统主要是有模糊滑模控制、模糊专家控制以及神经网络模糊控制。模糊专家系统。该系统是种特殊的专家系统,即在知识获取、表示、处理的整个环节中都加入了模糊技术。该系统的特点就是,即使初始信息获取的不够完整或者准确,但该系统还是可以较为有效的人类专家思维模拟,在既有的不完整的信息下提出最优化的解决方案。模糊专家系统是模拟人类有关专家进行有关问题解决的思路,因此是一种较容易开发应用的复合系统。神经网络模糊系统。该系统起源于上世纪九十年代的日本,它有效的利用了神经网络和模糊网络各自的优点,即可实现任意函数映射,具有良好的学习性,可处理残缺、粗糙、模糊的信息。神经网络模糊系统是两种系统的有效结合,它在实现模糊逻辑利用少量信息进行知识表达的同时,也可通过联想进行有关知识的应用,这使得该控制方法实现了表达和学习能力的综合提升。模糊滑模控制。滑模控制最大的优点就是不受系统不确定性的影响,鲁棒性较佳;其缺点主要体现在未建模动态及补偿干扰的高控制增益,此外在高频转换时易产生一定的抖振。综合模糊系统以后的模糊滑模控制就很好的克服了这些问题,它将二者不依赖性及鲁棒性好的优点进行了一定的结合,因而可以有效实现控制对象的转换。该控制方法具有很好的应用前途。

3智能控制在火电厂热工自动化的应用

3.1对单元机组负荷的控制

非线性、不确定、时变以及耦合等是单元机组负荷控制的难题所在,对此,可以设计出建立在机跟炉与炉跟机上的具有自适应性的两种神经元模拟负荷控制系统。试验发现该系统下各权系数学习收敛明显提速,且效果自适应性及控制性均较理想。此外,结合神经元控制与模糊逻辑算法并将其应用在单元机组负荷控制上,此时控制系统的自适应性、抗干扰性、鲁棒性都有显著的增强,系统的响应速度也明显提升。

3.2对过热汽温的控制

过热汽温对于锅炉的正常运行有着极为重要的意义。改变减温水是实施锅炉过热汽温控制的常用方法,大惯性、时滞性,以及动态特性的随便是该系统主要面对的问题。随着智能控制技术的发展,人们逐渐将神经网络控制技术引入到过热汽温系统中来,这使得系统的运行状况、控制质量及适应性都有了明显的提升。神经网络控制下的过热汽系统鲁棒性较优,即使在调峰机组变工时也可以实行很好的运行和控制,因此有效的克服了原先过热汽温控制的时滞及不稳定问题。

3.3对锅炉燃烧过程的控制

锅炉燃烧易受到煤种煤质、变量耦合、时滞等多种因素的干扰,且其燃烧率很难实行颈椎的测区。将专家控制应用到锅炉燃烧过程的控制中以后,通过专家系统逐次的判断、分析和推理,可实现前进式的系统,具体包括对紧急事故、工况判断子集、送风调节子集、执行机构诊断子集、煤厚调节子集等多内容的判断。此外,将模糊控制融入锅炉燃烧系统以后能够有效解决原系统不确定性问题,并同时提升系统的鲁棒性与控制质量。

3.4对中储式制粉系统的控制

磨负荷信号较难测量、数学建型复杂以及被控参数耦合,是中储式制粉系统主要的问题所在,此时就可以利用模糊语言规则克服其延迟与非线性的问题,具体内容包括,将操作人员的经验以数据的形式存入计算机并进行计算,然后通过预测和分级进行两种模糊控制。此外,将神经元解耦及模糊控制融入到磨煤机控制系统中,这样以来,球磨机制粉时滞以及耦合的问题就得到了很好的解决。

3.5对给水加药的控制

给水加药工作主要涉及的是氨与联胺的加入,前者可以使给水与高凝结水处于较高的碱性,避免酸性水腐蚀高低压给水设备;而后者是通过联胺的化学作用控制水内氧和二氧化碳的含量,从而避免相关设备出现腐蚀、生垢等问题。实际生产中加药量的大小易受到水处理工况、蒸发量等因素的影响,因此很难对其实现有效的控制。在给水加药系统中使用模糊控制系统,这样以来,专家有关经验的信息就会融入到控制系统中,从而使系统控制的质量得到大大的提升。在变频器输出频率的控制中使用模糊控制,能够有效的进行加药泵机的转速调整,这种融入模糊控制的给水加药系统能够避免人工加药引起的各种不良后果,从而提高了给水加药的工作质量。此外,模糊控制下的假药系统具有较好的鲁棒性,其动态响应也比较快速,因此具有很好的使用经济性。

篇5

(3)确保运行时各种数据处理和信息收集的准确性,同时提出相应的应急措施,确保电气系统可以在最好的状态下运行。设备一旦出现故障,人可以马上进行连锁控制,非常人性化。

2电气自动化控制系统的设计原则

(1)优化供配电的设计,促进电能的合理利用。设计时首先考虑的是设计的适应性,满足工程的动力、供应、控制和安全等要求制定,以满足建筑运行的要求,同时可以使它的运行处于一种安全的环境中。

(2)提高设备运行效率,力求简单、经济、使用以及维修方便。在整个的设计过程中,安全和满足工程的运行时整个设计的基本前提,在该前提下,一方面要注意不断的扩大工程的效益,另一方面也要注意不断的降低工程的成本,这就要求工作人员不仅仅应该使控制系统简单经济,而且还要使得系统的使用、维护方便、成本低,不宜盲目的追求自动化和高指标。

(3)合理调整负荷,提高设备利用率。在设计的过程中,要尽可能的提高系统的质量,使它的的负荷量在一个合理的范围内,当在一个特殊的用电环境中,可以合理的选取节能方法,提高店的利用率。

3电气自动化控制系统发展的现状

我国的电气自动化技术和国外发达国家相比差距仍然很大。到现在为止DCS系统的应用在自动化控制系统中仍然有着重要的不可取代的地位。

(1)电气自动化工程的分散控制系统,它是由过程控制和过程监控来组成的计算机系统,该系统的基本思想是集中操作、分级管理、配置灵活和组态方便四大方面,在生产、生活中的应用非常的广泛。但是该系统缺点明显,如可靠性能低,维修困难;生产厂家之间缺乏统一的标准,维修互换性低;价格昂贵等。

(2)WindowsNT和IE是电气自动化控制系统的标准语言规范。第一点是,在电气自动化领域,具有灵活性和易集成化等优点的人机界面操作,已成为一种主流的发展方向。第二点是,对于电气自动化控制系统的维护难度减小。

(3)监控的集中化。其缺点是处理速度缓慢,成本费用大,可靠性能低、设备很难扩容操作、故障查找难度大等。

(4)信息的集成化。在存储和读取信息时,需要使用规定的浏览器才可以访问到信息,并且信息技术会在电气自动化设施、系统和机器中进行横向扩展比较。

4电气自动化控制系统的发展趋势

随着我国经济的不断发展,科技的不断进步,伴随而来的是电气自动化控制系统技术方面的竞争,不但竞争愈演愈烈。同时,此系统对节约有效资源,降低成本费用,甚至改变我国工业的发展都有着积极意义。所以,我们必须根据自身的发展情况,来对自动化控制系统进行相应的规划,积极的发挥自己的有力的条件,实现我国的自主研发,只有这样才有可能在有限的时间内抢占先机。

(1)软件地位大大提升。随着信息技术的发展,网络技术以及计算机发展与应用的广阔前景,尤其是OPC技术、IEC61131标准和Win-dows平台的发展与广泛应用,计算机在电气自动化控制系统融合方面的作用,已无可替代。

(2)电气自动化控制系统统一化、信息化。为了独立开发系统,更为了方便达到客户要求,使得电气设备、计算机监管体系和企业工程管理体系之间数据信息能够及时的传递和畅通的交流,那么需要对电气自动化控制系统进行统一化的管理。此外,信息化是电气自动化控制系统的另一发展趋势,即实现设备与网络技术结合,实现网络自动化和管控一体化。也就是说信息技术不仅渗透在管理层面上,同时在应用信息技术的基础上迅猛发展。

(3)科技的不断发展是电气自动化行业的关键,由于电气自动化是结合了多门学科的一项技术工程,在它的组成原件方面科技的含量比较高,由于在自动化的关键技术是大部分的企业都没有属于自己的知识产权,造成同行业的企业以较低的价格和各种的渠道来加大自己的竞争力,所以,技术的不断发展的选择是整个自动化行业的突破点,也是关于电气行业长远发展的关键所在。只有在不断的科技发展中,电气自动化制系统不断突破,才能在全球化市场竞争中,立于不败之地。

篇6

尽管PLC系统能够很好地与工业生产相融合,并在工业生产中发挥出强大的作用,有着很强的稳定性。但是如果受到特定条件的限制和影响,极有可能产生极其强烈的电磁波干扰,影响到程序的运算,使系统产生错误的操作指令,最终致使PLC的运转出现偏差。想要使得PLC控制系统变得更加可靠,应该从多个角度、多个方面、多个环节强化控制,才能够使其抗干扰能力得到系统性的提高。

2.1信号传输中断

首先机械设备发生故障会影响到信号的传输,出现中断现象,从而使得自动控制系统不能够接收到正确的指令,整个系统的运转出现停滞,自动控制系统发挥不出作用,无法对数据进行程序运算,难以执行系统发出的指令;其次如果触点没能够保证与接线严密的接触,这就会使得数据的传输出现中断,无法顺利到达数据库,这样一来数据就失去价值,不能够通过收集整理,来为决策提供科学的数据参考,同时也无法形成相关的数据统计;最后在信号传输出现中断的情况下,会导致机械出现触点抖动的现象,尽管相关的防御系统已经十分的完善,但是还是会受到系统扫描周期的限制,使得指令在计数累加的情况下出现偏差。还有各个阀门不能够正常的开闭,使系统运转处于混乱状态,最终导致系统呈现出极大的不稳定性。

2.2PLC在干扰下无法正常执行指令

当PLC受到干扰,指令传输就会出现故障,最终使得指令不能够得到标准执行;当控制变频器在启动的过程中出现故障,附带的电机无法正常运行;PLC无法对数字信号进行专业的处理,控制负载不能够得到妥善的解决。这些都是故障存在的原因,只有将这些问题有效的解决,系统才能够变得更加安全可靠。当PLC系统需要在高强度电磁干扰下正常运转和工作时,只能通过多线路分开供电的方式将动力电源与控制电源分离,如果条件允许,还可以利用具备屏蔽和隔离功能的变压器来完成供电,在线路构思时,应该在功率设置时就留有一定的余地,并运用稳压电源进行外接供电。

3从设计方案探究PLC控制系统可靠性

在信息技术快速发展的当今社会中,人们为了使得生活更加轻松,开始了对自动化的极力追逐,通过人们不懈努力,PLC系统已经从功能上实现了阶段性的优化,不仅能够将数字指令储存起来,使得整个控制流程集成化、模式化,还通过增添模拟量处理等附加功能实现运动以及过程的多方面控制。

3.1完善PLC报警系统

在对报警系统进行设计时,通过加入设计性的故障,以此来测试报警系统,当故障出现时,会通过文字的提示了解到发生的故障类型,故障的具置会显示在工艺流程图的指示灯上,为了避免指示灯故障影响到对机械运转状况正常的了解,还设置了专门的故障测试系统,当这一系统运行时,全部故障指示灯都会被点亮。为了将过去隐藏着的问题干净彻底的清除,应该加大人力、物力的投入力度,将相关的关键线路和重点环节进行仔细的核查。将指示灯分布在控制柜上,根据指示灯判断机械的运转是否正常。在这种情况下,要进行明确的界限划分,将指示灯在相对应的位置分布,当故障发生时能够对相关岗位上的主管人员起到及时的警示作用,方便责任人进行及时的应对,保证机械正常运转。

3.2强化PLC信号传输强度

确定相关的开关能够正常的闭合,保证变压器的稳定性,避免出现短路影响到信号传输,除此之外还能够避免接触不良的出现。加强PLC系统中分析系统的建设,使得信号在传输之后能够在数额方面得到体现,同时也能够在时长中得到体现,将各项指标的平均水平展示在主界面,通过模块建设使得分析功能更加多样化,不仅能够进行流向分析,还能够实现时段分析。

篇7

一、控制设备稳定性的重要意义

随着电气自动化程度、智能化程度、复杂度的不断提高,控制设备稳定性技术逐渐成为了各大企业竞争中获取市场份额的得力工具。但由于电气自动化控制设备常需要长时间运行,及经受各种不利自然条件考验,电气自动化控制设备必须具有高度的可靠性才能够保证生产运作的稳定性。

因此,我们需要不断加强电气自动化控制设备的稳定性,提高设备正常运行率,才能推动电气自动化的全面进步和发展。减少在实际操作之中诸多故障的发生,更好地保证产品安全、人身安全以及经济效益。

二、影响控制设备的稳定性因素

电气自动化控制设备的快速发展对我国工业领域系统的正常运行有着不容小觑的影响,其稳定性是一切器械正常运行的基础。但散热、气候、电磁波、机械作用力、人为因素都容易导致控制设备出现不稳定现象。除此外,控制设备的元器件质量不符合要求也是都是导致控制设备稳定性指标偏低。只有对控制设备实行科学及时的保养及维护才能够进一步有效地提高电气自动化控制设备运行中的可靠性、可靠性使其运行更系统、更准确、更快捷。

三、提高控制设备的稳定性措施

影响电气自动化控制设备的稳定性因素是复杂多样的,若想要提高控制设备的稳定性,就必须根据控制设备的特点,采用适当的有效措施,将一切有可能导致控制设备稳定性指标偏低的原因扼杀于摇篮中。

3.1采用相应方案措施加强稳定性

(1)要提高设备使用寿命,在应该在控制设备设计阶段,谨慎分析产品的设计参数保证产品性能及使用条件,按照设计要求对设备正确安装使用,并在运行之后对设备作出定期的检查,确保设备的稳定性;

(2)按实际情况,根据产量合理地来设定产品的结构形式以及产品类型。生产方式类型、批量的不同对生产经济性也有不同的影响和差异,故应由产量的大小决定生产批量的规模;

(3)在保证产品稳定性的前提下,运用价值工程理念,以最经济的方式进行设计零部件产品的生产和维护,控制生产成本同时降低产品的维护使用费用;

(4)在满足产品技术要求的条件之下,采用最经济合理的原材料和元器件,以降低产品的生产成本,维护公司利益。

金辉公司在二三期建设中,在设计阶段就根据公司实际情况统一变频器和某些低压元器件的使用牌子,这大大方便了以后的维护,并且降低了维护所需备件的费用。

3.2正确选择与使用元器件

在选择与使用电气自动化控制设备中的零部件、元器件上,我们应当尽量使用由正规厂家生产的通用零部件或着产品。并避免修配和选配的情况发生,尽量地减少装配工人的体力消耗,加强自动流水生产。

对同类元器件在品种、型号和制造厂商等参数进行比较并根据电路性能的要求和工作环境的条件优先选用质量稳定、可靠性高的标准元器件,最大限度地压缩元器件的品种规格和减少生产厂家。

3.3控制设备散热防护的作用

影响电子设备稳定性因素里,温度是尤为关键。当控制设备产生散热不良的现象,轻则影响控制设备的稳定性重则损坏控制设备,导致生产停机。影响控制设备散热的一个原因是环境温度过高,当控制设备长期在此异常的环境温度下工作时,就容易出现失效问题,我司的一台在线测厚仪曾出现环境温度过高影响而测量的一个问题,当时的情况是,该测厚仪安装在纵拉区域,纵拉区域在生产时由于加热温度特别高,约为50-60oC,测厚仪通信控制板卡的适宜工作温度为20-40oC,运行时间一长导致工控机无法和测厚仪连接,无法读取现场数据,后来在该测厚仪机柜内加装了冷却空调,降低了控制设备的环境温度,该测厚仪通信就一直能正常工作了;影响控制设备散热的另一个原因是控制设备自身产生的热量散热不良而积聚,此类问题很好解决,在设计时需注意有足够的空间供其散热,必要时加装散热风扇或散热器,这都对控制设备散热有良好作用,从而提高控制设备的稳定性。

3.4电子设备的气候防护

气候条件对电子设备影响是很大的,特别是在低温高湿条件下,空气湿度达到饱和时,电子设备容易受到潮湿空气的侵蚀,使机内元器件、印制电路板上产色和凝露现象,极容易造成绝缘材料表面电导率增加,及零部件电气短路、漏电等等情况的发生。甚至会导致覆盖层起泡至脱落,失去其保护功能。

篇8

果茶场也是省城第一座以品茶、园艺、垂钓为主题的农业观光园。这里空气清新,景色怡人。春有草莓、樱桃、“明前”茶;夏有枇杷、苹果、葡萄、桃、李、杨梅、无花果与瓜类;秋有板栗、柿、枣、梨、猕猴桃;冬有柑桔、橙类等。一年四季。百果飘香,是个名副其实的“百果园”。

该厂第二期工程将于2003年完成,面积将扩至1000多亩。年生产优质果茶苗木将达到1000万株,优质果茶产品产量也将成倍增加,更多的农业高新技术将落户该场。果茶苗木和产品的生产、检测、采后处理、加工和多种农业观光设施将全部完善和配置。届时,一个全新的高科技生态农业示范、观光园将会展现在你的面前。

百果园是农业高科技的结晶,而滴灌系统是其中的重中之重。百果园现建成的620亩果园,全部由从以色列引进的先进滴喷灌系统控制,该园地势起伏较大,最高处海拔达86.60m,最低处64.72m,传统灌水方式很难进行,而先进的滴灌系统由于对地形的适应能力强,而且特别适应山地丘陵地区,所以滴灌正好大施其能,由低处水库中取水,经过过滤加压,然后由遍布全园的各种管道把带有肥料、除虫剂的水准确地送到每片需水地园中,保证果树的正常需水。不过其系统自动化程度不高,全园仅能使用微机控制电磁阀的开启,不能精确实现作物的轮灌、对灌水时间和灌水量还不能实现有效的控制,有望进一步提高。

2滴灌系统

滴灌就是滴水灌溉技术,它是利用低压管道系统,使滴灌水成点滴地、缓慢地、均匀而又定量地浸润作物根系最发达的区域,使作物主要根系活动区的土壤始终保持在最优含水状态。滴灌不同于传统的地面灌溉湿润全面积土壤,因此滴灌有节约灌溉用水量、促进作物生长和提高产量的作用,是一种很有发展前途的局部灌水技术。

百果园主要种植柑桔、葡萄、水蜜桃、茶等低矮果树,如果采用其它灌水方法,不仅浪费水资源,而且很难保证满足果树的需水量,而滴灌具有省水节能、省工省地省肥、操作简单,易于实现自动化、对土壤地形适应性强、保护和保持生态环境等优点,所以滴灌成为了百果园地首选。

2.1百果园滴灌系统的组成

百果园滴灌系统主要由水源、首部枢纽、输配水管网和尾部设备灌水器以及流量、压力控制部件和测量仪表等组成,如图所示。全园滴灌系统组成示意图:

1.水源2.水泵3.供水管4.蓄水池5.逆止阀6.施肥开关7.灌水总开关8.压力表

9.主过滤器10.水表11.支管12.微喷头13.滴头14.毛管(滴灌带、渗灌管)

15.滴灌支管16.尾部开关(电磁阀)17.冲洗阀18.肥料罐19.肥量调节阀20.施肥器21.干管

2.1.1水源

江河、湖泊、水库、井、渠、泉等水质符合微灌要求的均可作为水源,百果园采用从园中的水库中取水。

2.1.2首部枢纽

百果园的首部枢纽包括泵组、动力机、肥料罐、过滤设备、控制阀、进排气阀、压力表、流量计等。其作用是从水库中取水增压并将其处理成符合微灌要求的水流送到系统中去。百果园中采用五级加压式离心泵,在水库中取水,现取现用,计划建一水塔蓄水。

2.1.3输配水管网

输配水管网的作用是将首部枢纽处理过的水按照要求输送分配到每个灌水单元和灌水器。包括干、支管和毛管三级管道,毛管是微灌系统末级管道,其上安装或连接灌水器。微灌系统中直径小于或等于63毫米的管道常用聚乙烯(PE)管材,大于63毫米的常用聚氯乙烯(PVC)管材。百果园中干、支管采用PVC管和UPVC管,毛管采用PE管。

2.1.4尾部设备

尾部设备是微灌系统的关键部件,包括微管和与之相联的灌水器(小微管、滴头、微喷头、滴灌带、渗灌头、渗灌管等)插杆等。灌水器将微灌系统上游所来的压力水消能后将水成滴状、雾状等施于所需灌溉的作物根部或叶面。

2.2百果园滴灌灌溉系统

灌溉系统的第一期工程是由以色列的普拉斯托公司负责承建,全园采用先进的滴、喷灌相结合的微灌节水技术,是我国南方发展节水农业的典范,其具体情况见下:

2.2.1设计原则

滴灌灌溉系统设计除了满足节水、节能、省力等之外,通常应遵循以下主要原则:

①必须满足果园果树生长对水分的要求;

②灌溉系统设计应结合耕作实际,便于操作;

③应使所选择的灌水方法既能满足作物的灌溉要求,又不因灌溉而造成病害、虫害的发生;

④在尽可能的情况下,灌溉系统设计时应考虑施肥及喷药装置;

⑤在尽可能的情况下,应使灌溉系统在满足灌溉要求的同时,工程建设的综合造价最小。

2.2.2设计步骤

2.2.2.1资料的收集在系统设计时,必须掌握以下资料:

①地形资料:根据实际情况测绘大比例尺地形图,其中包括果园的平面布置、道路、水源位置、高差等。

②土壤资料:主要是土壤理化性质、地下水埋藏深度和土层厚度等。土壤理化性质主要包括土壤类别、干容重、含盐情况、土壤田间持水率等。

③气象资料:区域年均降雨量及季节分布、平均气温、极端气温(包括最高、最低气温)、最大冻土层深度、无霜期、蒸腾蒸发资料等。

④水源资料:水源属性(个人或集体)、种类、水源位置、水质、含沙情况、水位、供水能力、利用和配套情况等。若水源为机井时,还应调查机井的静水位和动水位,当地下水水位较浅时,一定要调查清楚地下水位及其周年变化规律。若水源为渠水时,应调查清楚水源的含泥沙种类、含沙量、水位、供水时间、可能的配水时间等。同时,还应特别注意水源的保证率问题,不论是只用于果园的水源还是与周围大田混用的水源,都应考虑这个问题。

⑤百果园作物种植资料:其中包括作物的种类、种植密度(其中最主要的是行距和株距)等。

⑥百果园的环境资料:包括百果园周围的地形、交通和供电等。

2.2.2.2灌水方法的选择灌水方法选择适当与否,除了影响工程投资外,还直接影响着灌溉系统的效益发挥和灌溉保证率。因此,应根据作物种类、作物的种植制度、种植季节、水源情况、果园设施情况、工程区社会经济情况等,合理地选择相对投资较省、灌溉保证率较高且有利于果园果树生长的灌水方法。百果园灌溉系统的灌水方法采用以滴灌为主,滴喷灌相结合的方式。

2.2.2.3滴灌系统布置,百果园滴灌系统的管道分干管、支管和毛管等三级,布置时干、支、毛三级管道要求尽量相互垂直,以使管道长度和水头损失最小。通常情况下,园内一般出水毛管平行于种植方向,支管垂直于种植方向。

2.2.2.4滴灌灌溉制度的拟定

①灌水定额:是指作为滴灌系统设计的单位面积上的一次灌水量,如果用灌水深度表示,可用式(4-8)计算,即

H——计划湿润层深度(米),一般蔬菜0.20-0.30米深根蔬菜或果树0.3-1.0米;

p——土壤湿润比,70%-90%。

②设计灌水周期:滴灌设计灌水周期是指按一定的灌水定额灌水后,在作物适宜土壤含水率的条件下,保障作物正常生长的可能延续时间T,用式(4-9)计算,即

③一次灌水延续时间:一次灌水延续时间是指把设计灌水定额水量,在不产生径流的条件下,均匀分布于果园田间所用的灌水时间,用式(4-10)计算,即

i.轮灌区数目的确定:(a)对于固定式滴灌系统,轮灌区数目可按式(4-11)计算:(b)对于移动式滴灌系统,则有:

ii.一条毛管的控制灌溉面积:(a)对于固定式滴灌系统,毛管固定在一个位置上灌水,控制面积为

f=SeL(4-13)

式中f——每条毛管控制的灌溉面积(平方米)

L——毛管长度(米),移动式滴灌系统中为出流毛管长度。

(b)对于移动式滴灌系统,一条毛管控制的灌溉面积为

2.2.2.5滴灌系统控制灌溉面积大小的计算在灌溉水源能够得到充分保证的条件下,滴灌面积的大小取决于管道的输水能力。对于水源流量不能满足整个区域需要时,滴灌面积为

2.2.2.6管网水力计算滴灌系统各级管道布置好以后,即可从最末端或最不利毛管位置开始,逐级推算各级管道的水头损失(包括沿程水头损失和局部水头损失)。在设计中,同一条支管上的第一条毛管最前端出水孔处水头与最末一条毛管最末端出水孔处水头之间的差值,不超过滴头设计工作压力的20%,流量差值不超过10%;对于采用压力补偿式滴水器时,仅要求区域内滴头流量差值不超过10%,并据此确定支、毛管的最大设计长度;在滴灌中,由于管网中水流压力通常小于0.3兆帕,所以多选用PVC塑料管道。管道中水流在运动过程中的压力损失通常包括沿程阻力损失和局部阻力损失。工程设计中塑料管道的沿程阻力损失常选用式(4-16)、(4-17)计算,局部阻力损失常用式(4-18)计算。①沿程阻力损失hf

当管道有多个出水口时,管道的沿程阻力应考虑多口出流对沿程阻力的折减问题,多口出流折减系数k,对应计算公式

②局部阻力hj

工程设计中为了计算方便,局部阻力损失也常按沿程阻力损失hf的10%估算。

2.2.2.7管道系统设计包括各级管道的管材与管径的选择、各级固定管道的纵剖面设计、管道系统的结构设计。

①管材的选择:可用于灌溉的管道种类很多,应该根据滴灌区的具体情况,如地质、地形、气候、运输、供应以及使用环境和工作压力等条件,结合各种管材的特性及适用条件进行选择。一般情况下,对于地理固定管道,可选用钢筋混凝土管、钢丝网水泥管、石棉水泥管、铸铁管和硬塑料管。钢管易锈蚀和腐蚀,最好不要选用。随着材料工业的发展,地埋管道多选用塑料管。选用塑料管时一定要注意,不同材质的塑料管在几何尺寸相同的情况下可承受的工作压力相差甚远,特别是在使用低密度聚乙烯管(PE管)时,一定要注意管壁的厚度是否达到了能承受系统所要求压力的厚度,若没有达到,千万不能使用,否则将会埋下隐患,造成运行时管道发生爆破,甚至导致整个管道系统瘫痪。用于滴灌地埋管道的塑料管,最好选用硬聚氯乙烯管(UPVC管)。对于口径150毫米以上的地埋管道,硬聚氯乙烯管在性能价格比上的优势下降,应通过技术经济分析选择合适的管材。塑料管经常暴露在阳光下使用,易老化,缩短使用寿命。因此,地面移动管最好不采用塑料管。

②管径的选择:当轮灌编组和轮灌顺序确定之后,各级管道在每一轮灌组所通过的流量即可知道。通常选用同一级管道在各轮灌组中可能通过的最大流量,作为本级管道的设计流量,依据这个设计流量来确定管道的管径。若某一级管道,其最大流量通过的时间占管道总过水时间的比例甚小,也可选取一个出现次数较多的次大流量,作为管道的设计流量来确定管径。同一级管道的不同管段通过的最大流量不同时,可分段确定设计流量。(a)支管管径的确定:支管是指直接安装竖管和滴头的那一级管道。支管管径的选择主要依据灌溉均匀的原则。管径选得越大,支管运行时的水头损失就越小,同一支管上各滴头的实际工作压力和灌水量就越接近,灌溉均匀度就越接近设计状况。但这样增大了支管的投资,对移动支管来说还增加了拆装、搬移的劳动强度。管径选得小,支管投资减少,移动作业的劳动强度降低,但由于运行时支管内水头损失增大,同一支管上各滴头的实际工作压力和灌水量差别增大,结果造成果园各处受水量不一致,影响滴灌质量。为了保证同一支管上各滴头实际出水量的相对偏差不大于20%,国家标准GBJ85-85规定:同一支管上任意两个滴头之间的工作压力差应在滴头设计工作压力的20%以内。显然,支管若在平坦的地面上铺设,其首末两端滴头间的工作压力差应最大。若支管铺设在地形起伏的地面上,则其最大的工作压力差并不见得发生在首末滴头之间。考虑地形高差Z的影响时上述规定可表示为

许的水头损失即为从式(4-20)

可以看出:逆坡铺设支管时,允许的hw的值小,即选用的支管管径应大些;顺坡铺设支管时,因Z的值本身为负值,其允许的hw的值可以比0.2hp大些,也就是说因支管顺坡铺设时,因地形坡降弥补了支管内的部分水力坡降,选用的支管管径可适当的小些。当一条支管选用同管径的管子时,从支管首端到朱端,由于沿程出流,支管内的流速水头逐次减小,抵消了局部水头损失,所以计算支管内水头损失时,可直接用沿程水头损失来代替其总水头损失,即h''''f=hw,式(4-20)可改写为

滴头选定后,满头的设计工作压力可从滴头性能表中查得。两滴头进水口高程差(实际上就是两滴头所在地的地面高差)可以从系统平面布置图中查取。则h''''f即可求出。利用公式h''''f=FfLQm/db,在其他参数已知的情况下反求管径d,d就是该支管可选用的最小管径的计算值。因管材的管径已标准化、系列化。因此,还需按管材的标准管径将计算出的管径规范取整。对滴灌系统的支管,考虑到运行与管理的方便,最大的管径一般不超过100毫米,并且应尽量使各支管取相同的管径,至少也需在一个作业区中统一。对于固定管道式滴灌系统,地理支管的管径可以不同,但规格不宜太多,同一条支管一般最多变径两次。(b)支管以上各级管道管径的确定:一般情况下,这些管道的管径是在满足下一级管道流量和压力的前提下按费用最小的原则选择的。管道的费用常用年费用来表示。随着管径的增大,管道的投资造价(常用折旧费表示)将随之增高,而管道的年运行费随之降低。因此,客观上必定有一种管径,会使上述两种费用之和为最低,这种管径就是我们要选择的管径,称之为经济管径。经济管径中对应的流速称为经济流速。图4-7就是用最小年费用法计算经济管径的原理示意图。用这种方法确定管径概念清楚,但计算相当繁琐,往往需要分别计算出多种管径的年投资和年运行费,比较后再确定。随着科学技术的进步,计算机技术的飞速发展,许多优化设计方法,如微分法、动态规划法等已在管道灌溉管网的设计中得到应用,具体方法可参阅有关书籍。对于规模不太大的滴灌工程,也可用式(4-22)、式(4-23)的经验公式估算管道的直径:

应该指出的是,由于管道系统年工作小时数少,而所占投资比例又大。因此,一般在灌溉系统压力能得到满足的情况下,选用尽可能小的管径是经济的,但管中流速应控制在2.5~3米/秒以下。

③管道纵剖面设计:管道纵剖面设计应在系统平面市置图绘制后进行,设计的主要内容是确定各级固定管道在平面上的位置及各种管道附件的位置。管道的纵剖面应力求平顺,减少折点,有起伏时应避免产生负压。

ⅰ埋深及坡度:地埋管的埋深指管径距地面的垂直距离,埋深应根据当地的气候条件、地面荷载和机耕要求确定。一般管道在公路下埋深应为0.7~1.2米;在农村机耕道下埋深为0.5~0.9米。地埋管的坡度主要视地形条件而定,同时也应考虑地基好坏及管径大小。一般在地形条件许可的情况下,管径小、基础稳定性好的管道坡度可陡一点;反之应缓些。总的来说,管道坡度不得超过1:1,通常控制在1:1.5~1:3以下。

ⅱ管道连接及附件:地埋管道的连接多采用承插或黏接的形式,转向处用弯头,分水处用三通或四通接头,管径改变处采用异径接头,管道末端用堵头。为方便施工和安装,同类管件应考虑其规格尽量统一。

为了按计划进行输水、配水、管道系统上应装置必要的控制阀。白果园中为了实现灌水的有效控制,设置了30多个电子阀.而且各级管道的首端还设了进水阀或水分阀;当管道过长或压力变化过大时,设置节制阀。为保证管道的安全运行,还安装一些附设装置。自压系统的进水口和各类水泵吸水管的底端应分别设置拦污棚和滤网,管道起伏的高处应设排气装置,自压系统进水阀后的干管上设高度高出水源水面高程的通气管,管道起伏的低处及管道末端设泄水装置,管道可能发生最大水锤压力处设置安全阀。

2.3评价

从整体上来看,XX白果园的滴灌系统是建设的比较完善的一套滴水灌溉系统,设计施工都符合现代滴灌的要求,是一套先进的现代化滴水灌溉系统,而且产生了很好的经济效果。不过当时考虑到经济条件的限制,其毛管采用了单行直线布置,灌水均匀度不高,鉴于对多种毛管布置形式的比较分析,笔者认为百果园应改进为双行毛管平行布置;而且其控制系统自动化程度不高,全园仅能使用微机控制电磁阀的开启,不能精确实现作物的轮灌、对灌水时间和灌水量都不能实现有效的控制,故需进一步对其控制系统加以设计改进。正在建设的二期工程应该吸收一期工程中的好的经验,改进一期工程中的不足,特别是应该实现灌水的全自动控制。

3灌溉自动化控制系统

灌溉中的滴灌系统,能很方便实现自动化控制,灌水的自动化控制能有效的实现节水灌溉,也是农业实现现代化的要求。对微灌的自动化控制,根据控制系统运行的方式不同,一般可分为手动控制、半自动控制和全自动控制三类:

①手动控制系统

系统的所有操作均由人工完成,如水泵、阀门的开启、关闭,灌溉时间的长短,何时灌溉等等。这类系统的优点是成本较低,控制部分技术含量不高,便于使用和维护,很适合在我国广大农村推广。不足之处是使用的方便性较差,不适宜控制大面积的灌溉。

②全自动控制系统

系统不要人直接参与,通过预先编制好的控制程序和根据反映作物需水的某些参数可以长时间地自动启闭水泵和自动按一定的轮灌顺序进行灌溉。人的作用只是调整控制程序和检修控制设备。这种系统中,除灌水器、管道、管件及水泵、电机外,还包括中央控制器、自动阀、传感器(土壤水分传感器、温度传感器、压力传感器、水位传感器和雨量传感器等)及电线等。

③半自动控制系统

系统中在灌溉区域没有安装传感器,灌水时间、灌水量和灌溉周期等均是根据预先编制的程序,而不是根据作物和土壤水分及气象资料的反馈信息来控制的。这类系统的自动化程度不等,有的一部分实行自动控制,有的是几部分进行自动控制。

为了对先进的滴灌自动化控制系统有具体认识和了解,下面我们将对滴灌的自动化控制作详细介绍:

3.1滴灌首部控制枢纽

滴灌自动化系统的基本控制方法有:时间控制、水量控制和反馈控制三种。时间控制系统是按预定好的时间放水或关水;水量控制系统是按照设计的配水量放水或关水;反馈控制系统是根据灌区内湿度感受器的反应,然后将信号传送到首部控制枢纽部分来关水或放水。滴灌系统更便于完全实现自动化,这在地多人少、劳力紧张的边远地区,沙漠地带的防护林区,铁路路基沿线,经济力量雄厚的城郊蔬菜种植区显得特别重要。目前,国外发达国家在滴灌区普遍使用了计算机管理系统,并通过专用的滴灌系统软件来控制和检测作物生长、土壤状况和气象趋势,取得了良好的效果。大大提高了现代化的土壤水分、作物生长测定技术的可能性和实用性,具有农艺上的综合性,为人们充分利用现代化仪器设备在滴灌系统中应用提供了巨大的潜力。滴灌系统软件根据作物对水分的需求和土壤墒情制定出合理的灌溉计划和作物管理计划。

3.2作物生产管理计划制定

控制软件系统应能提供一套科学的管理系统,它通过提高作物产量和品质以及减少用水量来提高水分利用效率,能给农民及有关用户提供一套针对灌溉方案制定作物生产管理的先进、完善的管理系统,用户能够使用它获得他们的每一块农田的土壤水分状况图,方便的数据资料存取能够得到每一块农田的准确土壤水分含量,还能够确定准确的日水分利用量,能够给每块农田制定出合理的灌溉管理决策,能够根据每一块农田各自的灌水量需求对不同农田进行灌溉优先排序,以便制定优化灌溉计划使农场或用户获得整体最高产量。

控制软件系统应能允许灌溉管理者根据作物水分需求和作物对灌溉的反应制定合理的灌溉计划,作为一个完整的灌溉计划和作物生产管理软件包,它能够对灌溉决策的制定和作物管理进行数据资料存储、运算处理、显示输出。土壤水分数据资料主要由中子探测仪、石膏电阻块和张力计测定获得。天气数据资料由自动气象站获得,作物生长资料如籽粒大小(直径)、株高和叶片硝酸盐含量等可直接田间测定,根据相应的作物响应,作物生长资料结合土壤水分资料能够制定出合理的灌溉计划,通过实际调查能够提高作物产量、品质和水分利用效率的管理技术能够详细地验证作物生长、土壤水分和气候之间的关系,因此能很好地解决一些灌溉管理和作物生长问题,其中包括过量灌溉导致的灌溉水排渗问题、肥料向根部以下淋溶损失问题以及为了达到高产稳产目标的籽粒重和穗粒数或结果率的控制管理问题。

3.3滴灌系统灌溉计划制定

滴灌系统灌溉计划一般是指确定何时进行灌溉及应该的灌溉量,灌溉计划的应用可消除代价巨大的不可预测的农业灾害,如在作物生长临界期由于土壤类型和作物自身生长能力,不同的农田具有不同的土壤水分亏缺量和日水分利用量,因此不同的农田需要不同的灌溉计划。农民通过土壤水分测定技术利用软件处理和显示不同层次土壤水分特征,能加深对发生于土壤内的各种过程的理解,以便进行更精细的灌溉计划和灌溉管理决策的制定,以确保土壤水分总是保持作物生长所需的最佳含水量。

当土壤水分和被作物利用的水分的准确数量被测定后,通过软件可以计算下一次滴灌的日期和准确的灌水量,它将考虑当前每天水分利用状况、天气变化和历史资料来帮助管理者制定以后的灌水计划。它把农田从最干到最湿分为不同等级。了解需要灌溉补充的水量有助于协调不同用户之间和同一用户内部的水分供给,充分了解雨后何时开始灌溉能使农民最大限度地利用自然降水,而把灌水过多和灌水不及造成地危险减到最小。

3.4土壤水分时间图和深度图的应用

3.4.1时间图时间显示某一指定土壤容积含水量、根区土壤含水量或作物响应随时间的变化。时间图的基本显示:直线表示根区土壤含水量的饱和点和需灌溉补充点;供给的和有效的灌溉和降雨情况;箭头指示预测的灌溉日期;关于水分饱和点、需灌溉补充点、当前和过去的土壤水分测定值及计划安排的灌水日期和灌水量的总结表;作物生长及其对灌溉管理技术措施的响应;该软件所做的时间图可进行大小调整,通过调整纵坐标轴上的最大值和最小值及横坐标上的日期范围能够把图形中用户想要的区域或作物生长期内的某特定阶段的图形放大。图形能够进行叠加来同时比较不同地点的田块或不同年份的数据。当季和前季的作物的生长,土壤水分和天气资料的叠加图形比较灌溉管理达到高度的协调一致。用户可以选择任何关键数据来建立相互作用关系图。

3.4.2深度图深度图显示土壤容积含水量沿土壤剖面随深度的变化而变化的情况,通过该软件和现代化仪器结合能够迅速直接测定和分析土壤水的剖面分布情况。根区吸收水分模式可以在深度图中看到,对深度图分析能使农民确定每一种农作物包括块根作物在土壤剖面中被研究的土壤体积范围和土壤剖面的每一深度层的作物利用的水分数量、土壤紧实度、土壤质地变化、高石灰岩含量、地下水位和盐分等问题能够通过对根部活动的仔细分析而发现。深度图也可以用来确定渗入和排出土壤剖面的水分的运动状况及深度和数量,从中能够给定灌溉饱和点和需灌溉补充点的准确设计值。灌溉或降水后从土壤的根区排出的水分数量能够通过深度图准确测定,根据可以调节灌溉所用时间以避免水分从土壤剖面排出而损失,控制土壤剖面排出水的数量将防止地下水水位地升高和土壤养分的淋溶损失,同时也将降低灌水及滴灌水及抽水的成本。深度图是一个非常有用的工具,能够解决在不同类型土壤中灌溉水的水平和垂直运动的关键问题,通过分别绘制灌溉前和灌溉后距滴管不同距离的各个点的土壤水分含量图可比较灌溉水的运动状况,用户能够利用研究所得的结果来减少水分和肥料排渗,同时确保作物根系能够一直得到适量的水分。

3.5软件的程序特点

3.5.1程序结构滴管软件的数据存储于一个树状结构,这使得制定灌溉方案是查询数据资料非常方便。管理人员可能负责管理几个农场或几块农田,每个农场或农田可能有许多检测点,每一个检测点都有一套不同时间收集的实际测定的读数记录。输入的数据经过计算机软件处理,能显示有关每一单个田块的详细资料,还能够向农民分别显示每一年的作物种植的详细资料。能够显示农场的每个监测田块或某一年份的每一监测点的情况,指明灌溉饱和点和需灌溉补充点,当前作物日水分使用情况,土壤水分平衡和预测出的三次灌溉的日期,土壤水分含量和作物日用水量的测定值,对未来作物在整个生长季节的长期的用水量作出估算。显示某一具体的时期的每一深度层的土壤水分含量的读数记录和根区的总水分含量,同时显示土壤水分需要量,中子仪测定并估算的日水分使用量。利用滴灌软件可进行数据资料综合分析,从中总结重要的信息形成报告,以帮助制定每日的管理决策方案。同时也可以编辑出前几个生长季的作物生长、水分管理。土壤等数据资料,并进行综合分析,为以后的灌溉方案制定提出更合理更完善的评价标准。该软件程序的所以结构层次能为所选择的农场、监测点和某一日期建立报告。报告分为五种:深度图、时间图、记录读数报告。监测点报告和灌溉计划报告。用户可以根据自己的需要已及自己微机系统对程序进行修改编译,选择公制和英制计量单位进行数据资料综合分析,将田间测定得到的数据读数记录自动粘贴到没一个具体的农场栏、监测点栏和日期栏。每一个监测点的测定日期,时间及估计的水分日利用量能够在粘贴之前输入。

3.5.2数据输入在读数记录屏幕中可以人工录入和显示田间实际收集的数据,如土壤水分张力计的读数、作物籽粒大小。有关作物的数据可以测定得到,作物生长参数与土壤水分含量相关联可以确定作物生长期的水分需求量。气候数据资料可以人工输入或由气象站自动装载。天气数据参数的个数没有限制,它可以与任一个作物生长测定值和任一水平的土壤水分含量相关联制作相互作用关系图。从气象数据资料中可以得到蒸发损失的总水分量的数据并且把它与测定的日水分使用量相比较来调整该地区的作物灌溉计划。

3.5.3软件的数据处理利用滴管软件可以计算使土壤剖面达到灌溉饱和点所需的准确时间数。同时计算自从播种或其他生长时期(如发芽、开花等)以来的天数,使土壤水分能够与过去多年的作物生长资料数据参数同步分析,以确定作物水分利用效率。使用作物累积日水分方程。能够很好地评估作物总产量,尤其是对于玉米、小麦和棉花。可以通过作物-水分方程和气象资料估算理论产量。通过速率方程,计算作物生长速率。计算作物当前日水分利用量占整个生长季日水分利用量地比例。同时也可计算不同水分含量地土壤水分变化速率,这些速率地变化表明土壤紧实问题和土壤干旱地程度。滴灌软件可以分析某一作物在生长季内日水分利用状况地资料。结合现代先进地土壤水分测定仪器使用,该软件能够指导我们最有效地利用有限的水资源获得最大农业效益。例如能够确定每次灌溉的准确时间和灌水量。同时减小过量灌溉和水分不足对产量的影响。建立各种不同作物之间水分利用及水分利用效率的差异;建立如不同品种、土壤紧实情况、不同的耕作史等不同条件下水分利用及水分利用效率的差异;建立现代耕作技术和传统耕作技术条件下的水分利用效率的关系。确定灌溉和降水的利用效率,用以观察分析根系吸收水分模式。有助于合理管理地下水和盐化问题,能够减少土壤养分的淋溶损失问题。建立土壤水分含量、作物长势及天气状况的数据库以使作物产量和质量获得持续稳定的提高,使高效农业可持续发展。

3.6灌溉自动化控制系统

要实现灌水的自动化,必须有自动灌溉控制器,该装置由土壤湿度传感器、控制器和电磁阀组成,能够按土壤墒情和作物需水特性实施自动灌溉(沟灌、喷灌、滴灌、渗灌),达到高产、高效、和节水的目的。适用于庭院花圃、苗圃、果园、菜地和农地。随着经济发展,庭院花圃、苗圃水分的自动灌溉倍受欢迎。它能省水省事,使花木生长更好。一亩庭院花圃、苗圃地投资1.0-1.5万元,可以建立自动灌溉控制系统。自动灌溉控制系统可以实现科学灌溉,节能、省水,使菜地和农地产量和质量明显提高。智能化,精准化灌溉技术是伴随着计算机应用技术、传感器制造技术、塑料工业技术的提高而逐步实现的

自动化计算机灌溉控制系统大约在80年代初由雨鸟公司、摩托罗拉等几家公司开发、研制成功,并投入使用。由于技术复杂、应用难度大,价格高昂,这种控制设备最早应用于高尔夫球场灌溉系统的控制上。90年代,计算机工业的硬件、软件飞速发展,使得灌溉系统中央计算机系统操作难度越来越小,功能越来越丰富,价格也逐渐降了下来。这种系统在园林绿化上用得也越来越多了起来,雨鸟公司针对不同用途,研制、开发出了中央计算机控制系统:Maxicom

智能化灌溉中央计算机控制系统具有如下功能:

①动采集各种气象数据,计算并记录蒸发蒸腾量ET;

②根据前一天的ET值自动编制当天灌溉程序并实施灌溉;

③可由连接的土壤湿度传感器、风速传感器、雨量传感器等干涉程序,启动、关闭、暂停灌溉系统;

④连接流量传感器可自动监测、记录、警示由于输水管断裂引起的漏水及电磁阀故障;最大限度利用管网输水能力;

⑤运行程序而不起动灌溉系统(干运行),测试程序合理性,不合理时预先修改;

⑥自动记录、显示、储存各灌溉站的运行时间;自动记录、显示、储存传感器反馈数据,以积累资料,修改程序,修改系统等。

⑦频繁灌溉功能:可将设计好的灌水延续时间分成若干时段,以便提供足够的土壤入渗时间,减少坡地或粘性土地地面径流损失。

⑧一套中央计算机系统可控制无数台田间控制系统(称为卫星站),一套中央计算机控制系统可控制小到一个公园,大到上百个公园,甚至全城的所有灌溉系统。

⑨储存数百套灌溉程序;一台田间控制器(卫星站)可使4个轮灌区独立灌溉或同时灌溉。

⑩手动干涉灌溉系统:可在阀门上手动启、闭系统,可在田间卫星站上手动控制系统,也可在计算机上手动启、闭任何一站,任何一个电磁阀。可控制灌溉系统以外的其它设备,如:道路或公共场所灯光,大门、喷泉、水泵等

自动化中央计算机控制系统主要由中央计算机,集群控制器(CCU),田间控制器(卫星站),电磁阀构成。中央计算机可装置在任何一个地方。比如:一套中央计算机系统控制50个公园的灌溉系统。中央计算机可安装在市园林局认为合适的位置。CCU安装在各个公园内。中央计算机与CCU之间的通讯,可采用有线连接(近距离),无线连接,电话线连接或移动通讯方法连接。一台CCU最多可连接28个田间控制器。CCU与田间控制器之间同样可选上述数种通讯方式。由中央计算机到终端电磁阀的工作过程为:中央计算机编程,并将程序下达到CCU。CCU将各轮灌区灌溉控制程序再发到相关田间控制器。田间控制器依中央计算机制作的程序启闭各轮灌区电磁阀。如下图所示:

中央计算机上的初始程序由控制人员编制,之后,计算机每日自动收集由气象站采集的气象数据,计算ET值,并不断对原有程序自动修改。如遇传感器传来异常信息(如降雨,过分干燥,系统漏水...),自动中断或暂停程序,待异常情况排除后,继续恢复程序运行。

如果将智能泵站连接到中央计算机控制系统上,则效果会更好。这样从水泵到电磁阀之间复杂的系统将由一个高度智能化的系统管理起来,可做到最大限度地节水、节能,最大限度地保护系统设备运行,避免灌溉系统常发生的下列几种问题:

①过量灌溉或灌水不足,浪费水资源或不能满足植物需水;

②管网破裂,漏失水;

③系统运行压力不合理;

④水泵运行效率低下;

⑤地形起伏不平时或土壤入渗率低产生地面径流,浪费宝贵的水资源;

⑥降雨时,灌溉系统照常灌溉;

⑦管理、维护成本高。

3.7百果园灌溉的自动化控制设计

百果园一期工程灌水基本实现了半自动化控制,可以使用电脑控制各电磁阀的开启。我们可在其基础上加以改进与提高,使其实现灌水的全自动化,具体见下:

3.7.1控制原理

自动化控制采用电子技术对田间土壤温湿度、空气温湿度等技术参数进行采集,输入计算机,按最优方案,控制各个阀门的开启及水泵的运行状态,科学有效地控制灌水时间、灌水量、灌水均匀度,为项目区作物提供一个良好的地、水、肥、气、热条件,促使其高产、稳产。同时进行控制软件及优化灌溉制度的研究,最终形成灌溉专家决策系统。另外,通过变频器控制改变电机转速,调节管道压力,为管道、滴灌等其他灌溉工程的自动化提供依据。具体包括以下几个方面:

①田间土壤含水量、盐分、地温、空气温度、湿度、降水、风速、管道压力等参数的自动化采集

②自动化控制设计安装

③监控软件设计

④变频系统设计,通过改变水压力,为微喷、滴灌等工程的自动化提供依据

⑤系统运行管理模式评价,包括系统评价、灌水指标、灌溉制度等

3.7.2控制系统的组成

欲实现真正意义上的全自动控制,需要控制田间参数及对象很多,例如土壤湿度、盐分、空气温度、相对湿度、降水量、风速、管道压力、阀门开启、水泵电机旋转等,都要送入控制器。考虑到要控制的对象较多,又要满足良好的人机界面要求,可以采用工业控制计算机作为整个控制系统的核心,来协调各部分的工作。

系统的组成如下图所示,整个系统的工作主要工控机和变频器两部分来控制,其中变频器主要用于控制水泵电机的旋转,工控机主要用来采集田间土壤及气象指标,按照设定的程序,控制各地块中电磁阀的开启,并通过变频器控制电机的运行状态,协调整个系统的工作。

3.7.3监控软件监控软件是工控机能够完成控制功能的重要基础,监控软件设计的好坏直接关系到整个系统的质量和可靠性。根据项目要求及滴灌的特点,笔者建议百果园采用雨鸟公司的“Maxicom”中央控制系统,该软件只需用户输入各地块种植作物种类及种植日期,系统便会自动计算当前作物所处生育期,确定出各自要求的土壤状况及气象信号,控制水泵电机的运行状态及阀门的开启,自动完成整个灌水过程,完全不需要人工干预,实现全自动控制。

该控制软件在此所完成的主要功能及特点如下:

①自动采集田间数据:系统根据软件中所预先设定的时间,自动地采集土壤湿度、温度风速、雨量等参数,进行相应的处理后,实时显示在屏幕上。

②作物生育期的判断:当管理人员输入各地块所种植的作物及种植日期后,系统便根据计算机时钟自动计算出各种作物已种植的天数,判断出作物所处的生育期,自动查找资料库中所存的原始资料,确定出当前作物最适宜的土壤含水量及灌水定额。

③滴灌的全自动控制:系统采集田间及气象数据后,将当前各地块土壤含水量与作物适宜含水量相比较,若土壤实际含水量小于作物要求下限值,便自动开启该地块的第一个电磁阀。进行灌溉。达到所需灌水定额后,自动关闭第一个电磁阀,同时开启下一个电磁阀,直到完成整个地块的灌溉任务。灌溉过程中,若出现温度过低、风速过大以及降雨过程等天气时,系统会自动暂停当前的灌溉任务,并保存当前状态。当气象条件满足时,继续进行未完成的任务。

④形式多样的控制方式:全自动控制外,系统还允许管理人员采用半自动、手动等控制方式。全自动方式只需运行人员输入各地块的作物信息,系统便会根据作物、土壤、气象等条件自动完成灌溉的全过程,无需人工干预。所谓半自动方式,是指系统允许用户根据实际情况控制开停机。用户可人为启动某个阀门,或某个地块,甚至是所有地块均轮灌一次。当然这些操作全部都是通过键盘或鼠标来完成的,而且在工控机屏幕上均有明显的提示。所谓手动方式是指人工去开启各个电磁阀,笔者建议百果园选用美国雨鸟公司生产的电磁阀:手动、电动两用阀门,既可手动,又可电动,使用非常方便。当手动打开某个电磁阀时,喷头出水,主干管道压力开始下降,系统会自动通过变频器升高水泵电机转速,维持管道压力的恒定,直到完成灌溉任务。

⑤丰富的办公自动化功能:系统在运行过程中,可自动生成各种定时、日、月、年报表,并通过打印机打印出来。其内容包括各种气象及土壤参数,可从各报表中得到土壤湿度变化曲线、日最高风速、月平均气温、全年总降水量等原始资料,为用户研究当地的气象及土壤变化情况提供翔实的依据。

⑥良好的可维持性:可维护性是衡量软件质量好坏的重要指标之一,在编写本系统时我们也充分考虑了这一点,例如用户在种植一类新作物时,可能系统的资料库中并没有该作物,便无法确定其适宜土壤含水量和灌水定额。此时,用户可按自定义按钮,通过鼠标各键盘输出这些参数,系统便会根据用户所定义的数值运行。另外,用户还可很方便地修改灌水定额、管道压力等参数,满足实际情况的需要。

⑥友好的人机界面:系统中大部分界面均为示意图形,实时显示各传感器送来的数值及系统当前的运行状态,一目了然。需要用户操作的部分全部为中文界面,工作人员无需学习便可完成所有操作。另外,在任一界面下,用户都可以通过按帮助按钮得到相应的提示,指导用户完成相应的功能。

3.7.4效果

百果园通过增加自动化控制系统后,灌水时间、灌水量和灌溉周期等完全根据果树某些需水参数自动启闭水泵和自动灌溉,人的作用仅仅是调整控制程序和检修控制设备。既提高了水的有效利用率,又节省了人力,同时也提高了果树的产量,可以产生良好的经济效果。

3.8第二期工程的设想

正在建设第二期工程计划今年完工,第二期工程的滴灌系统我建议基本上参照第一期工程建设,也采用滴喷灌相结合的方式,其水源计划应采用水塔蓄水,用以缓解枯水期水库少水的矛盾,该可以区采用先进的电脑全自动控制方式,实行精确灌水,管道布置采用固定式(干管、支管)和移动式(毛管)的有机结合。二期工程应该吸收一期工程中的好的经验,改进一期工程中毛管布置形式的不足,还特别是应该增加灌水的全自动控制部分,实现灌水的全自动化,精确控制作物的有效灌水。

4存在的问题及建议

通过对滴灌系统的学习与认识,笔者系统的学习了滴灌这种先进的果园节水灌溉方法,在实践的基础上深化了理论,并对滴灌和滴灌系统有一些不成熟的认识与建议。

4.1滴灌的优缺点

4.1.1百果园滴灌的优点

4.1.1.1水的有效利用率高,在滴灌条件下,灌溉水湿润部分土壤表面,可有效减少土壤水分的无效蒸发。同时,由于滴灌仅湿润作物根部附近土壤,其他区域土壤水分含量较低,因此,可防止杂草的生长。滴灌系统不产生地面径流,且易掌握精确的施水深度,节水效果达50%-90%。

4.1.1.2环境湿度低,滴灌灌水后,土壤根系通透条件良好,通过注入水中的肥料,可以提供足够的水分和养分,使土壤水分处于能满足作物要求的稳定和较低吸力状态,灌水区域地面蒸发量也小,这样可以有效控制保护地内的湿度,使果园中作物的病虫害的发生频率大大降低,也降低了农药的施用量。

4.1.1.3提高作物产品品质,由于滴灌能够及时适量供水、供肥,它可以在提高农作物产量的同时,提高和改善农产品的品质,使果园的农产品商品率大大提高,经济效益高。

4.1.1.4滴灌对地形和土壤的适应能力较强,由于滴头能够在较大的工作压力范围内工作,且滴头的出流均匀,所以滴灌适宜于地形有起伏的地块和不同种类的土壤。同时,滴灌还可减少中耕除草,也不会造成地面土壤板结。

4.1.2百果园滴灌的缺点

4.1.2.1滴灌的滴头很容易堵塞和磨损,产生灌水的不均,严重影响节水效果。

4.1.2.2滴灌的各管道的压力有所差异,会产生局部压力过高而使管道容易损坏,滴头的压力不均甚至会产生雾化,损坏滴头,浪费水资源。

4.1.2.3滴灌一般仅润湿作物根系区土体的一部分,所以作物根系的发展可能限制在围绕每一滴头的湿润区,这样容易产生作物根系的腐烂,进而引起作物倒伏。

4.1.2.4滴灌的管道布置要充分利用当地地势与地形,在原则的基础上加以灵活运用,如干管的布置、毛管的布置,取水方式等。

4.2滴灌的建议

4.2.1百果园应加强灌水的自动化控制,保证各种果树的精准灌水,实现精确的节水灌溉

4.2.2滴灌的水量应该有保证,应该建一水塔蓄水,确保枯水期各种果树的需水要求

4.2.3滴灌的毛管布置应采用单行带环形状态管布置和双行平行布置相结合,确保果树灌水均匀度。

4.2.4滴灌技术的应用应该和其他节水灌溉技术相结合,互相补给,更好的发挥优势。

篇9

2现场控制系统fcs的出现以及在楼宇自控中的应用

上个世纪七八十年代,伴随着计算机可靠性提高,价格大幅下降,出现了由多个计算机递阶构成的集中、分散相结合的分布式控制系统(distributedcontrolsystem,简称dcs)。dcs是利用计算机技术对生产过程进行集中监视、操作、管理和分散控制的一种综合控制系统。它的测量变送仪表一般是模拟仪表,因此它属于一种模拟数字混合控制系统,这种系统较以前的各种控制系统有了较大的进步。dcs在工业自动化控制领域获得了广泛的应用,也开始应用到楼宇自动化控制领域。但是dcs存在如下一些缺点:

(1)安装费用高。采用一台仪表、一对传输线的接线方式,导致接线庞杂、工程周期长、安装费用高、维护困难;

(2)可靠性差。模拟信号传输精度低,而且抗干扰性差;

(3)系统封闭。各厂家的产品自成系统,系统封闭、不开放,难以实现产品的互换与互操作以及组成更大范围的网络系统。

上个世纪90年代以来,随着控制技术、计算机技术、通信技术的发展,出现了基于现场总线的控制系统(fcs),fcs克服了dcs的缺点,它是一种全数字化的、全分散的、全开放、可互操作和开放式互连的新一代控制系统。目前,现场总线技术已经成为自动化技术中的一个热点,备受国内外自动化设备制造商与用户的关注。fcs极大地简化了传统控制系统繁琐且技术含量较低的布线工作量,使其系统检测和控制单元的分布更趋合理。与传统的dcs(分布式控制系统)相比,fcs具有可靠性高、可维护性好、成本低、实时性好、实现了控制管理一体化的结构体系等优点。现场总线的出现,为工业自动化带来了一场深层次的革命,从而开创了工业自动控制的新纪元,被誉为自动化领域的计算机局域网。鉴于fcs的许多优点,控制专家们纷纷预言“fcs将取代dcs成为2l世纪控制系统的主流。”现在,fcs已经被应用到楼宇自动化控制领域。

2.1应用于楼字自动化领域的几种现场总线

由于诱人的市场商机和不同的应用领域的存在,世界一些大公司或公司联盟纷纷提出自己的现场总线协议标准。据不完全统计,目前国际上有40种宣称为开放型的现场总线标准。这些协议根据国际标准化组织(iso)的计算机网络开放式互连系统的osi参考模型来制定的。大多数现场总线只是用其中的一、二和七层协议。于是现场总线呈现杂乱纷呈的局面。在这些现场总线中不乏优异的现场总线,如can、modbus、profibus、lonworks、bacnet、devicenet等等。其中lonworks、bacnet、can、eib等现场总线在楼宇自动化领域获得了、较广泛的应用。尽管基于现场总线的fcs克服了dcs的许多缺点,但还是有一些不如人意的地方,最明显的缺点:多种现场总线并存而互不兼容,导致fcs的可互操作性只能在同一种现场总线系统中实现。后面将对fcs的缺点做进一步说明。

(1)lonworks

美国echelon公司1991年推出了lon(local0penationnetworks)技术,又称lonworks技术。它得到了众多计算机厂家、系统集成商、仪器仪表以及软件公司的大力支持,已经在楼宇自动化、工业自动化、电力系统供配、消防监控、停车场管理等领域获得广泛应用。具体地说lonworks具有以下优点:

①网络结构灵活、组网方便。它支持多种网络拓扑形式,包括总线型、星型、树型、自由拓扑型等,这样可适应复杂的现场环境,方便现场布线;

②支持多种传输介质。包括双绞线、同轴电缆、电力线、光纤、无线射频等;两种传输速率:78bps和1.25mbps,最大传输距离由网络拓扑形式和传输介质决定,一般可从500m到2700m。可接人的节点最多为32385个;

③完善的珏发工具。提供完善的系统开发环境,采用开放的neuronc语言,它是ansic语言的扩展;

④无主的网络系统。lonworks网络中各节点的地位相同,网络管理可设在任一节点处,并可安装多个网络管理器;

⑤开发lonworks网络节点的时间较短,也易于维护。lonworks采用的lontalk协议固化在echelon公司的neuron芯片中,这样可以节省开发lonworks网络节点的时间,也方便维护。

同其它现场总线一样,lonworks也有自身的缺点。首先,lonworks的实时性、处理大量数据的能力有些欠缺;其次,由于lonworks依赖于echelon公司的neuron芯片,所以它的完全开放性也受到一些质疑。尽管lonworks存在一些不足,但是lonworks的fcs还在楼宇自动化领域获得了广泛的应用。世界上有2万多家oem厂商生产lonworks相关产品,其中种类已达3500多种。目前世界上已安装有500多万个lonworks节点,lont~k协议也被接纳为欧洲centc247、centc205的一部分。自1996年以来,lonworks也开始在国内获得大量的应用。在建设部的支持下,国内一些研究所和企业开始陆续开发出基于lonworks的楼宇自动化控制系统,并在一些新建智能大厦和建设部智能化小区试点工程中得到应用。

(2)bacnet

bacnet是作为世界上第一个楼宇自动控制网络的数据通信协议。它代表了智能建筑发展的主流趋势。bacnet不是软件或硬件,也不是固件,严格地说,bacnet并不是现场总线,而是一种网络协议,即通信规则。为不同商家产品的系统之间进行信息交流提供平台和支持。bacnet详细阐述了系统组成单元相互分享数据实现的途径、使用的通信介质、可以使用的功能以及信息如何翻译的全部规则。bacnet采用了etherent、arcnet、ms/tp、ptp、lontalk五种网络技术进行通信。可根据系统通信是和通信速度选择不同的网络技术。相对其它现场总线,bacnet标准最大的优点是可以与etherent、lonworks等网络进行无缝集成。不过bacnet主要为解决不同厂家的楼宇自控系统相互间的通讯问题设计,并不太适用于智能传感器、执行器等末端设备。bacnet标准已在全球得到了广泛的应用,全球生产和经营楼宇设备和楼宇自控设备的主要厂商均支持bacnet标准。bacnet在不到10年的时间内就从一个行业学会标准迅速成为楼宇自控领域中唯一的iso标准。虽然我国是wto和iso成员国,但是bacnet在我国建筑领域中的应用范围还是相对较小,而且在工程中采用的bacnet产品和技术也基本上全部是从国外引进的,还没有真正意义上的国产化bacnet相关产品。

(3)can

can总线最初是德国bosch公司为汽车监控控制系统设计提出的,现在它已经成为一种国际标准,在电力、石化、空调、建筑等行业均有应用。can具有以下优点:

①采用8字节的短帧传送,故传输时间短、抗干扰性强:

②具有多种错误校验方式,形成强大的差错控制能力。而且在严重错误的情况下,节点会自动离线,避免影响总线上其它节点;

③采用无损坏的仲裁技术;

4can芯片不但价格低而且供应商多。

can缺点是:can总线上最多可挂接110个节点,这不完全能满足整个智能建筑的需要。不过可以通过利用中继器进行扩展,相对其它一些现场总线,can总线技术比较简单,can相关产品的开发费用也远远低于其它现场总线技术产品的开发费用。因此,很早国内就有一些企业推出了基于can总线的楼宇自控的相关产品。如狮岛、索龙集团开发出了$2000楼宇自控系统。

(4)eib

eib是欧洲安装总线(europeaninstallationbus)的缩写。它在1990年被提出,经过十多年的发展,成为欧洲最有影响的建筑智能化现场总线标准,在欧洲得到了进300家厂商的支持。1999年eib被引进中国的智能化建筑领域,并在上海同济大学建立了eib认证技术培训中心。在短短的几年里,国内的会展中心、博物馆、办公大楼、别墅等场所的灯光、窗帘、空调等控制和安防系统方面获得了广泛应用,如厦门国际会展中心、大连国贸中心、浙江人民大会堂等。国内的eib项目基本上被abb公司和simens公司所垄断。

3以太网开始进入楼宇自控领域

以太网发展至今已有20年历程,作为局域网组网的主要技术,以其简单、价廉、高带宽、维护方便以及不断发展等优点一直在局域网领域中牢牢占据着统治地位。近年来,以太网技术获得了快速地发展。交换型和全双功以太网的出现,克服了传统以太网的共享公共传输媒体和半双功传输的弱点,实现了站点独占传输媒体并同时收发数据,也减少了网络上的数据碰撞。以太网的标准不断更新和扩展,目前的以太网不仅在物理层(包括拓扑结构、传输速率、传输媒体),并且在数据链路层与原来的传统以太网标准有了很大的进步,以太网标准系列已扩展成20余个。现在已太网不但由局域网向着接入网和城域网领域发展,同时开始进入工业控制和楼宇自控领域。新的ieee802.3af标准开始对以太网供电作出了规定,它消除了以太网技术进入现场控制领域的一个严重障碍。目前,3com、华为、dlink等公司开始提供符合ieee802.3af标准的交换机产品。另外,一些现场总线的协会或组织也开始提出基于其现场总线的开放式以太网标准,即工业以太网标准,如odva(开放devicenet供货商协会)和ci(contolnet国际组织)的ethernet/ip标准、ff(现场总线基金会)的hse(hig}lspeedethemet,高速以太网)、profibus国际组织的profinet。支持这些工业以太网标准的交换机、网卡等产品也开始出现,如moxa公司的eds-508系列工业以太网交换机(支持ethernet/ip)、北京航天华辉自动化技术有限公司的anybus-sio/100m(支持ethemet/ip和modbus/tcp)等。美国vdc(venturedevelopmentcorp.)调查报告指出,ethemet在工业控制领域中的应用将越来越广泛,市场占有率将从2000年的ll%增加到2005年的23%。

伴随着以太网技术在工业控制领域的成功应用,以太网技术也必将越来越多地渗透到楼宇自控领域。目前,以太网多用于基于现场总线的楼宇自控网络集成到智能建筑中的信息网(如图l所示),在一些新开发的楼宇自控系统中,以太网直接进入了控制层,如北京楼宇自动化中心开发的基于以太网的enc-2001ip智能建筑测控系统。enc-200lip控制系统的结构如图2所示。一般的空调、照明等系统通过enc参量控制模块集成到以太网上;带有rs232或rs485接口的系统通过网关转换模块集成到以太网上;ip电话以及ip摄像机直接连接到以太网上。

在楼宇自控网络中采用基于现场总线的fcs的优点是:

①可靠性、实时性好。现场总线为工业控制设计

图1楼宇自控网络集成到信息网的,有屏蔽、接地与防爆等措施,同时其实时性也比采用csma/cd的以太网的时实性好;

②用户的投资成本低。现在,开放的现场总线技术已经比较成熟,有很多公司提供的相关产品可供选择。其缺点是:实现现场总线无缝接人以太网复杂,当多种现场总线共存在一个系统中时,集成起来更复杂,系统的扩展性差。

在楼宇自控网络中采用以太网的优点是:实现了从管理层(信息网)到现场设备控制层(控制网)的“一网到底”,即实现人们期望的通信协议的兼容和统一;这样系统扩展起来也比较方便;与智能建筑中其它系统(信息网通信自动化系统和办公自动化系统)集成起来更加容易。其缺点是:首先,目前开发基于以太网的控制系统产品的难度较大,开发费用和成本相对还是较高,用户可以选择的厂商也很有限,垄断利润较高,研发成本还没有被消化,这些都导致产品价格过高。其次,以太网的实时性、可靠性等方面还有待进一步完善。

4结束语

就目前而言,不管是应用在楼宇自控网络中的基于现场总线的fcs还是以太网,都有其优点和缺点。随着时间的推移和技术的进步,它们也必将会被进一步完善。据统计,我国目前有从事楼宇自动化业务的企业3000家以上,产品供应商约3000家。另外,随着我国绍济的快速发展和人们生活水平的不断提高,建筑和社区的数字化建设正在兴起,fcs和以太网都必将在楼宇自控领域中获得更广泛的应用,在今后相当长的时间内,两者在竞争的同时也将继续并存。

参考文献

1郭维均.俞洪.《智能建筑基础》中国计量出版社.2001:6

2陈秋良.自动控制技术.《现场总线控制系统综述》2001;20

3李光辉.缪希仁.现场总线技术及在低压电器领域中的应用.电工技术杂志,2002

4郝晓弘.马向华.现场总线控制系统一新一代控制系统.《工业控制计算机》2001;14

5阳宪惠.《现场总线技术及其应用》清华大学出版社,1999

6张振昭.许锦标.万频.《楼宇智能化技术》北京机械工业出版社。1999

篇10

电气控制和自动化专业具有较强的理论性,专业知识的抽象性很高。中职学生知识基础较为薄弱,因此要系统地掌握专业知识较为困难。那么,就可以考虑调整教学方法。鉴于中职学校是适应社会的需要培养专业适用性人才,中职学校可以与企业建立起合作关系,也为学生建立良好的实习环境,并为将来的就业打下良好的基础。二年级的学生以专业技术的学习为主,可以进人到企业中一边实际操作一边学习,将理论知识恰当地应用于实际工作中,在加深对理论知识的更深层次理解的同时,实际操作中还可以对于理论知识中的不足予以补充。学校与企业的合作促进了教师教学与学生之间的互动关系,使得学生的专业技术能力有所提高,同时企业也可以对于前来实习的学生的综合能力给予评价,以优先选择更为适合企业发展的人才。

3尊重学生的个性特点,组织电气控制和自动化专业技能竞赛

每一名学生都有自己的个性,在专业技能上亦是如此。比如,在可编程控制器和微处理器技术的教学中,学生需要掌握的基本技能就是能够熟练地操作计算机,掌握微电子控制技术。在课堂教学中,采用互动教学方法,就是要将学生的兴趣爱好融人到技术知识教学中,在引导学生兴趣的同时,使学生能够主动地配合教师,以形成师生之间的有效互动。为了培养学生对知识的探索精神,并挖掘学生的潜在能力,可以组织专业知识竞赛,并以设计发明活动的形式展开。学生以高涨的学习热情,将自己所掌握的专业知识充分地运用于技术小发明中,不断地思考,深人地探索,试图以推陈出新的方式获得胜利。而技能竞赛活动的展开,是建立“在就业为导向”的基础上的,也是为了社会培养高技能的人才。

4互动教学法实施

将互动教学法应用于“PLC控制系统安装及调试”的课程教学中。这个课程所涉及到内容包括PLC控制系统的安装、调试以及维护。考虑到电气控制和自动化专业的学生毕业后要从事的工作性质,在教学中要将教学模式建立在学生的职业生涯中。对于工作任务的调配,首先是接受控制任务,对于被控制的对象予以分析,经过分配系统的输人(输出)处理之后,将系统的二次接线图绘制出来,然后就进人到控制程序的编写、系统的接线安装和调试以及验收环节。在实施互动教学中,每一个教学情境都是建立在具体的工作任务基础上的。通过师生之间采取各种形式的互动,使得学生能够自主地参与到课堂教学中,包括以教师为主导的教学准备工作以及演示工作,都是围绕着学生的兴趣爱好而展开的。学生在课堂情境的感染力下,就会去模仿,并以自己的方式练习。在整个的互动教学中,所强调的不仅是工作任务完成结果,更为强调完成任务的过程。特别是学生模仿教师演示,教师要负责指导工作,以使学生能够按照计划完成操作,并达到预期的效果。

篇11

我国自动控制系统的新突破还表现在分散型控制系统的优势上。分散型控制系统实际上是一个微处理器网络系统,它通过运用系统内部的软件、硬件以及控制语言,从而实现对系统内部各部分的控制。自动控制系统的实现并应用是将人工智能与控制理论完美结合的结果。

2.对我国自动控制技术的简要分析

自动化装置的应用越来越广泛,这跟我国自动化控制技术的发展有直接的关系。相对于原有的工艺流程来说,可编程控制系统的出现,使现代化的工艺流程越来越简洁与安全。以挤出吹塑成型机为例,该中机械是目前国内最大的一种生产容器和空中制品的吹塑成型设备,其可以生产出大小各异的各种容器制品。现代生产的挤出吹塑成型机都具备高精度热电偶模块和模拟量输入输出扩展模块,既可以满足内部温度,又可以控制其挤出压力以及型坯厚度,并且成品具有精度重复性好的优点,尤其是采用高速硬件解析技术和专用共享数据区的模拟量扩展模块,还可以极大的提高熔料塑化速度、挤出速度以及开合模速度,既缩短了成品成型周期又保证了成品质量。不但如此,化工行业内普遍存在对化学反应炉的温度的控制现象,原有的控制过程都是通过手工操作来完成,车间温度高,生产环境恶劣不说,且很难掌握温度的平衡。自动化控制系统应用到化工产业中之后,这样的现象得以改善,从整个工艺流程来看,炉内温度基本恒温,控制在士0.5℃范围内绝非难事。

3.我国自动化控制系统应用过程中存在的问题

(1)首先表现在热电偶温度检测布线环节上,在化工行业中,较常使用的温度检测元件是热电偶和热电阻,且检测的过程中,使用的也无非是控制器机柜、安全栅机柜、端子柜和现场热电偶原件。自动化控制系统的每一个环节均应仔细把握,因为即使使用的重要元件没有问题,只是小小的配线被忽视,也会影响的所测数值的精确度。以DCS系统为例,在热电偶温度测量中,DCS系统中的温度问题值得关注。如果直接接受热电偶元件传送的毫伏信号,数据经由数据采集器,经过冷端补偿之后,会进入端子柜,但在数据采集器与端子柜之间如果使用的是普通信号线的话,那么,两者之间必须具有相同的温度,不能具有温差,否则就很难得到精确的数值。而实际情况是,控制柜内的电子元件具有散热功能,端子柜中的元件没有这一功能,所以很难形成相同的温度,也就存在着不同的电势,所以数值不精确是必然的。只有在数据采集器和端子柜之间采用补偿导线连接才能解决这一难题。

(2)其次是冲程泵出口流量测量表的选用上,也是我们需要关注的问题。众多的化工装置中,完成对某些原料的微量测量的是单头冲程泵和双头冲程泵。在冲程泵的出口处设置流量测量仪来监测配料的瞬时流量。冲程泵依靠柱塞通过往复运动来输送配料,在使用单头冲程泵的时候,要特别关注测量仪表类型的选择,因为仪表类型选择不对,对配料的流量的准确监控就无法实现。另外的典型例子,在橡胶装置中,在碱液冲程泵中,使用质量流量计要远胜于使用转子流量计,因为在使用转子流量计时,得到的数值只是在最大值与最小值之间晃动,很难得到真正意义上的精确值,而质量流量计得采用解决了这一难题。

(3)再次需要探讨的问题是关于压差计量仪表使用过程中的温压补偿问题。计量仪表的使用在化工行业来说是极为普遍的,压差计量仪表是计量仪表中的一种,对其使用的过程中,要关注温压补偿问题。在实际的工业流程中,很难实现被测介质的温度与压力皆保持不变,这往往会在一定程度上影响了被测介质的密度,从而影响到测量的精确度。

(4)最后所要论述的是检测套管,笔者认为,搅拌设备在使用的过程中,要特别关注搅拌设备内部温度检测套管的安装问题。温度参数至关重要,搅拌设备内部温度的测量时通过热电偶和热电阻来实现的。被搅拌的介质在搅拌的过程中会形成一定的涡流,这种涡流存在一定的动力,作用于检测套管壁,会使检测套管形成微弱的晃动,时间长久,随着疲劳应力的加大,套管根部会形成断裂,严重的还会造成生产事故。

4.结束语

总之,我国的化工产业正处于转型期,新型科技的不断引进,化工自动控制系统的应用前景更加广泛。要关注化工自动控制系统在应用中的诸多问题,并加强对于此领域的研究开发,只有真正做到合理应用化工自动控制系统,确保设备控制系统稳定,对仪器仪表操作得当,控制设备选型合理等才能做到自动控制装置实现长期稳定的生产,才能提高设备的使用寿命。

参考文献:

篇12

前言:一般情况下,电气自动化可以依照预先设定的程序或者计划进行操作、控制、监视等一系列的必要功能,而且其相关设备还能在无人或者少人的状态下自动运行。由于在电气自动化设备的工作环境中,操作和管理无需更多人员,甚至不需要任何人员即可工作,所以电气自动化控制设备的稳定性已经成为生产者与使用者之间的关键问题。在经济全球化冲击下,各国经济之间的竞争日益激烈,只有提高电气自动化控制设备的稳定性才能促进我国经济的发展,才能提升电气自动化控制设备的市场竞争力,即探讨电气自动化控制设备的稳定性是当前的主要任务。

1 电气自动化控制设备稳定性简介

电气自动化控制设备稳定性,指的是在相应环境条件下,或者是在规定时间的范围之内,可以完成,或者是可以完成某一特定任务的能力。然而,要想完成某种特定任务能力的大小及其完成质量的高低,在很大程度上决定着电气自动化控制设备稳定性的高低。通常来讲,电气自动化控制设备稳定性的高低最容易在相对恶劣的环境条件中表现出来。目前,在全球范围内,对电气自动化控制设备稳定性的使用范围界定还比较宽松,不管是较大的系统,还是小的设备和单元,都需要采用稳定性来加以衡量,在实际的衡量中最好采用概率来描述。

2 电气自动化控制设备稳定性现状

关于电气自动化的控制设备稳定性的现状分析,主要是要考虑工作环境多样化的情况下,从而形成的操作维护不当现象。众所周知,不同行业具有不同的工作环境,甚至有的工作环境极其恶劣,实际运行中,电气自动化控制设备必须面对各种各样的工作环境,以便消除环境因素对电气自动化控制设备造成的不良影响。经实践证明,引起这些不良影响的环境因素主要有气候因索、机械作用力因素,电磁干扰因素等。

2.1 气候因素

对气候因素进行分析,主要体现在湿度、电气自动化控制设备的稳定性措施探究文/王宏友电气自动化控制设备的稳定性体现于特定时间和环境下能达到规定功能的能力,特别是在不利环境中,电气自动化控制设备的稳定性对于控制和把握设备运行过程中的细节问题至关重要。摘要气压、温度、大气污染、厌恶等方面,此类不利的环境因素会对电气自动化控制设备的性能带来严重干扰,进而损坏电气自动化的设备结构、运动的灵活性,及其温升过高等重要环节,更严重的情况下,也会导致电气自动化设备完全毁坏而无法正常工作。

2.2 机械作用力因素

对机械作用力因素进行分析,具体表现为,在不同运载的工具中,电气自动化控制设备可能会受到不同种类的机械作用力,比如:冲击、震荡、离心加速力等方面。在这些机械作用的严重影响下,电气自动化控制设备的元器件容易受到损坏,参数易发生变化,甚至会出现元器件发生变形和断裂情况,以及电气自动化设备的金属件也会因疲劳而受到严重损坏。

2.3 电磁干扰因素

对电磁干扰因素进行分析,这方面的因素尽管属于一种看不见、摸不着的因素,但是它对电气自动化控制设备所造成的不良影响不可忽视。通常来讲,电气自动化控制设备的工作运行中,同时充斥着各种各样的电磁波,这些电磁波会不同程度地增大设备的输出噪声,由此导致电气自动化控制设备的运行失去稳定性,甚至会形成安全事故。

3 电气自动化控制设备稳定性的作用

3.1 稳定性能够衡量设备质量

产品要实现其自身价值,产品质量是硬道理,同时也是一个企业生存的生命线,而要确保产品质量的要素,主要体现在产品的特性上,涉及其性能、稳定性、实用性、安全性等。可见,稳定性在确保产品质量的过程中起着不可估量的主导作用,即稳定性越高,电气自动化控制设备发生的故障次数就越少,维修费用也越低,同时也大大提高了安全性能。一句话,稳定性是产品质量的精髓所在,也是每一个企业家必须寻求的最高目标。

3.2 稳定性能够提高设备市场竞争力

当今社会,国家经济的发展速度非常快,用房对产品质量的要求也在不断提高,现代人不但要求性能比较优的产品,同时更加重视产品的稳定性能,特别是电气类产品。在市场竞争非常激烈的今天,优者则胜,劣者就会被淘汰,只有提高产品质量的稳定性,才能赢得现代化市场经济发展的主动权,才能获得公众认可和青睐。因此,在电气自动化控制设备自动化程度、复杂度的不断提高下,稳定性技术能够提高设备的市场竞争力。

4 提高电气自动化控制设备稳定性的措施

4.1合理地制定设计方案

首先要认识和把握产品的自身特点、实际应用环境、应用条件,需要依据这三种影响因素的综合情况,对设计方案进行确定。值得注意的是,在此过程中,由于各个厂家所生产的产品都不尽相同,他们之间会存在许多差异,所以在同一个项目当中,最好统一使用同一种常见的产品,以便最大程度地保证各个设备之间的良好协调性。

4.2 选择合适的零部件

在满足设计合理的条件下,必须选择合适的零部件,这就要考虑相关电路的实际性能,最好选择专业常见的零部件,只有这样,才能有所保证,不论是在产品质量上,还是在后期维护上,都能有效地保障电气自动化控制设备的稳定性。此外,选择零部件的时候,还需要高度重视零部件的使用参数。

4.3 强化控制设备的散热防护

在各种电气设备的运行过程中,温度是一个极其危险的因素,由于温度变化容易大大降低电气设备的精度和稳定性,同时温度变化过大也会发生严重事故。究其原因,这主要由于电气自动化设备在运行当中不断向外散发热量造成的,如果散发的热量不能及时排出,就会积累在较小空间内,从而使设备周边环境温度不断升高,结果不堪设想。因此,在进行电气自动化控制系统的设计时,要关注散热问题,合理地确认散热方式,从最大程度上避免设备本身

4.4电子设备的气候防护

气候条件对电子设备影响是很大的,特别是在低温高湿条件下,空气湿度达到饱和时,电子设备容易受到潮湿空气的侵蚀,使机内元器件、印制电路板上产色和凝露现象,极容易造成绝缘材料表面电导率增加,及零部件电气短路、漏电等等情况的发生。甚至会导致覆盖层起泡至脱落,失去其保护功能。针对于这种情况,一般采用密封、浸渍、灌封等等措施进行维护,而我司就在控制电房安装了工业除湿机,使控制电房的湿度保持在安全值以内,提高了控制设备的稳定性。遭受破坏。

5 结束语

综上所述,深入探讨电气自动化控制设备的稳定性,不但要有一定的理论基础,也要具备充足的实践经验,这样才能全面把握电气自动化控制设备的稳定性。与此同时,研究电气自动化控制设备的过程中,很有必要注意研究方法,坚决杜绝盲目操作的不良现象。因此,需要科学地结合国内外电气自动化控制设备的实际情况,不断学习新技术,根据最新的稳定性试验方法制定更加合理的控制措施。

参考文献

篇13

电气自动化控制技术是建立在电子信息和自动化技术之上的,以电气控制系统为核心,以电动机为主要传输动力,具有自动检测、信息控制等多项功能,利用自动化技术可使各项电气设备自主控制完成电力生产任务。将其应用于电力系统中,可有效解决其复杂结构带来的一系列问题,降低工作难度,减少人工劳动量,进而维护系统稳定运行,提高生产效率。然而在实际应用时,还有一些不足之处应引起重视,促进该技术在未来有更好的发展。

1 电气自动化技术的功能及其在电力系统中的应用

1.1 功能

首先是自动控制功能,即对电力设备的自动控制,是自动化技术的一个重要体现。多采用分散式控制方式,实现对整个操作系统的控制,运行中若有设备出现异常,自动控制系统会及时发现, 并将故障电路切除,以免有电流经过,使得故障进一步扩大。而电力系统结构庞大,线路复杂,要想准确切断电路,还需依靠分散控制来完成,所以说自动控制功能是维护系统整体稳定的一个重要保障。

其次是保护功能,受内部运行或外部环境影响,电力设备难免会出现各种故障,进而影响到系统安全。而电气自动化控制技术则能够保护设备运行安全,如输入电压不稳定时,自动控制系统会控制设备自动将高电压转换为低电压,保护设备内部的元件和导线不被损坏,将可能会出现的风险降至最低,尽可能地保护设备安全。电力设备运行时的承受能力有限,一旦电流过大,必将受损,所以说自动化控制技术的应用,可提高设备的使用寿命。

此外是监督功能,主要是监督不稳定电流,因为电流不稳定时,对设备危害较大,自动化控制系统则能对其加以监督。此时显示器上的指针会有所偏移,且信号灯闪烁,提示工作人员对线路进行检查。进而控制不稳定电流,避免故障发生。

1.2 应用

首先是电气产品的设计,为生产出高质量的产品,设计者必须具备极强的专业知识,并了解当前需要解决的关键问题,以及产品的用途和工作环境。以往多以经验为主,缺少科学性,而且工作量较大,精确度低。而现代化产品则要利用高科技和现代化工具,如计算机等。另外,控制理论也越来越成熟,尤其是专家系统、遗传算法等的应用,为产品提供了质量保障。

其次是设备故障的诊断,现代化电气设备功能增多,智能化程度越来越高,故障也变得更加复杂,具有非线性的特点,检测处理难度加大。传统的方法显然已不适用,而当前则逐渐形成了一套设计理论,以此对故障进行检测。这是一大创新,在智能化产品故障检测中较为适用,效率很高。当然还可以结合模糊逻辑系统等使用,进一步提升检测效率。

2 新型电气自动化控制技术的应用分析

2.1 案例

某电力企业为提高生产效率,降低故障发生频率,于2003年引进了DCS系统。随着用电需求的增长,电力系统变得更加复杂多变,DCS系统的应用可控制输入输出设备,从而采集系统的有关信息,并进行分析处理,然后对功率计电压等加以适当调整。该系统以控制系统为基础,具有分散控制、分级管理、集中操作等功能,在电力生产中一度发挥着重要作用。但随着电网事业的改革,这种系统的弊端日益显现,信息处理量有限,抗干扰能力较差,接线复杂,成本昂贵,且反应太慢,往往不能很好地处理瞬态电信号。为此,企业于2007年开始引进并应用电气监控管理系统(Electric Control System),简称ESC系统,这是对计算机、信号处理、现场总线等技术的综合应用,可对电力系统的自动化装置进行有效的测量控制,并保护其安全。

2.2 ESC系统

该系统包括以下3层:(1)间隔层:由多个智能元件构成,如直流接地选线装置、常用电压保护装置、自动准同期控制装置等,可完成系统的专业化功能。多是通过嵌入式软硬件技术开发的,由CPU、现场总线等设备;(2)通信管理层:主要由通信网络和相应的管理装置组成,利用以太网和现场总线将DSC系统、各项智能设备及其他子系统相连,实现其网络通信工作;(3)站控层:包括各种专业软件、通讯接口、服务器和监控设备,且软件都具有数据采集、故障诊断的功能。

2.3 特点和功能

ECS 系统采用通信管理层和站控层组态一体化的设计, 可保证组态调试的一次性完成, 进行调试时可以更加方便, 并且符合人的操作习惯。 并且从整体出发综合考虑系统的通信功能,保证站控层、通信层、间隔层的通信速度,并开设与 DCS、 MIS、 SIS 的通讯接口。并且 ECS 与 DCS 互相通信是不受限制, 还可以节省大量的通信缆线和变送器。 ECS 采用先进可靠地自动化电气装置, 完全可以不受通讯功能限制并可以独立运行, 保证了系统的安全性和可靠程度。

ECS 系统的间隔层采用保护测控装置, 抗干扰能力强,适用于复杂环境。且系统还采用了冗余容错技术, 包括双现场总线网络、 站控层设备冗余等多种措施,保证了系统稳定。系统保护测控装置局采用高性能的 DSP 并 IJ 微处理器,硬件系统采用多 CPU 智能化结构,大大提高了数据的处理速度。

3 结束语

电气自动化控制技术在电力系统中起着重要作用,可保护系统安全稳定,提高工作效率。在今后,将进一步朝着智能化方向发展,有很多事项需注意,对于其中存在的问题,应及时解决。

参考文献:

[1]蒋志荣.电气自动化控制技术的研究[J].黑龙江科技信息,2014(01):109-110.

免责声明以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。

你好,需要期刊咨询服务吗?在线咨询
了解我们
获奖信息
挂牌上市
版权说明
杂志之家服务支持
在线客服
工作时间 8:00-24:00
期刊咨询服务
服务流程
网站特色
常见问题
经营许可
出版物经营许可证
企业营业执照
客服服务
期刊咨询
订阅咨询
投诉留言
其它
公文范文
期刊知识
发表咨询 加急见刊 文秘咨询 期刊订阅 返回首页