在线客服

刚架结构设计论文实用13篇

引论:我们为您整理了13篇刚架结构设计论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

刚架结构设计论文

篇1

单层轻型门式刚架结构是指以轻型焊接H形钢(等截面或变截面)、热轧H形钢(等截面)或冷弯薄壁型钢等构成的实腹式门式刚架或格构式门式刚架作为主要承重骨架,用冷弯薄壁型钢(槽形、Z形等)做檩条、墙梁;以压型金属板(压型钢板、压型铝板)做屋面、墙面;采用聚苯乙烯泡沫塑料、硬质聚氨酯泡沫塑料、岩棉、矿棉、玻璃棉等作为保温隔热材料并适当设置支撑的一种轻型房屋结构体系。

在目前的工程实践中,门式刚架的梁、柱多采用焊接H形变截面构件,单跨刚架的梁柱节点采用刚接,多跨者大多刚接和铰接并用;柱脚可与基础刚接或铰接;围护结构多采用压型钢板;保温隔热材料多采用玻璃棉。

1单层轻型门式刚架结构的特点和设计中的注意事项

1.1单层轻型门式刚架结构相对于钢筋混凝土结构具有以下特点:

(1)质量轻

围护结构采用压型金属板、玻璃棉及冷弯薄壁型钢等材料组成,屋面、墙面的质量都很轻。根据国内工程实例统计,单层轻型门式刚架房屋承重结构的用钢量一般为10~30kg/m2,在相同跨度和荷载情况下自重仅约为钢筋混凝土结构的1/20~1/30。由于结构质量轻,相应地基础可以做得较小,地基处理费用也较低。同时在相同地震烈度下结构的地震反应小。但当风荷载较大或房屋较高时,风荷载可能成为单层轻型门式刚架结构的控制荷载。

(2)工业化程度高,施工周期短

门式刚架结构的主要构件和配件多为工厂制作,质量易于保证,工地安装方便;除基础施工外,基本没有湿作业;构件之间的连接多采用高强度螺栓连接,安装迅速。

(3)综合经济效益高

门式刚架结构通常采用计算机辅助设计,设计周期短;原材料种类单一;构件采用先进自动化设备制造;运输方便等。所以门式刚架结构的工程周期短,资金回报快,投资效益相对较高。

(4)柱网布置比较灵活

传统钢筋混凝土结构形式由于受屋面板、墙板尺寸的限制,柱距多为6米,当采用12米柱距时,需设置托架及墙架柱。而门式刚架结构的围护体系采用金属压型板,所以柱网布置不受模数限制,柱距大小主要根据使用要求和用钢量最省的原则来确定。

1.2设计中的注意事项

(1)由于门式刚架结构构件的抗弯刚度、抗扭刚度较小,结构的整体刚度较弱,因此设计时应考虑运输和安装过程中要采取的必要措施,防止构件发生弯曲和扭转变形。

(2)要重视支撑体系和隅撑的布置,重视屋面板、墙面板与构件的连接构造,使其能参与结构的整体工作。

(3)组成构件的杆件较薄,设计中应考虑对制作、安装、运输的要求。

(4)设计中应充分考虑锈蚀对结构构件截面削弱的影响。

(5)门式刚架的梁柱多采用变截面杆件,梁柱腹板在设计时考虑利用屈曲后的强度,所以塑性设计不再适用。

(6)设计中对轻型化带来的后果必须注意和正确处理,比如风力可使轻型屋面的荷载反向等。

2结构形式和结构布置

2.1结构形式

门式刚架的结构形式按跨度可分为单跨、双跨和多跨,按屋面坡脊数可分为单脊单坡、单脊双坡、多脊多坡。屋面坡度宜取1/20~1/8。单脊双坡多跨刚架,用于无桥式吊车的房屋时,当刚架柱不是特别高且风荷载也不是很大时,依据“材料集中使用的原则”,中柱宜采用两端铰接的摇摆柱方案。门式刚架的柱脚多按铰接设计,当用于工业厂房且有桥式吊车时,宜将柱脚设计成刚接。门式刚架上可设置起重量不大于3t的悬挂吊车和起重量不大于20t的轻、中级工作制的单梁或双梁桥式吊车。

2.2结构布置

2.2.1刚架的建筑尺寸和布置。

门式刚架的跨度宜为9~36m,当柱宽度不等时,其外侧应对齐。高度应根据使用要求的室内净高确定,宜取4.5~9m。门式刚架的合理间距应综合考虑刚架跨度、荷载条件及使用要求等因素,一般宜取6m、7.5m、9m。纵向温度区段小于300m,横向温度区段小于150m(当有计算依据时,温度区段可适当放大)。

2.2.2檩条和墙梁的布置

檩条间距的确定应综合考虑天窗、通风屋脊、采光带、屋面材料、檩条规格等因素按计算确定,一般应等间距布置,但在屋脊处应沿屋脊两侧各布置一道,在天沟附近布置一道。侧墙墙梁的布置应考虑门窗、挑檐、雨蓬等构件的设置和围护材料的要求确定。

2.2.3支撑和刚性系杆的布置

(1)在每个温度区段或分期建设的区段中,应分别设置能独立构成空间稳定结构的支撑体系。

(2)在设置柱间支撑的开间,应同时设置屋盖横向支撑,以构成几何不变体系。

(3)端部支撑宜设在温度区段端部的第一或第二个开间。柱间支撑的间距应根据房屋纵向受力情况及安装条件确定,一般取30~45m,有吊车时不宜大于60m。

(4)当房屋高度较大时,柱间支撑应分层设置;当房屋宽度大于60m时,内柱列宜适当设置支撑。

(5)当端部支撑设在端部第二个开间时,在第一个开间的相应位置应设置刚性系杆。

(6)在刚架的转折处(边柱柱顶、屋脊及多跨刚架的中柱柱顶)应沿房屋全长设置刚性系杆。

(7)由支撑斜杆等组成的水平桁架,其直腹杆宜按刚性系杆考虑。

(8)刚性系杆可由檩条兼做,此时檩条应满足压弯构件的承载力和刚度要求,当不满足时可在刚架斜梁间设置钢管、H型钢或其他截面形式的杆件。

(9)当房屋内设有不小于5t的吊车时,柱间支撑宜用型钢;当房屋中不允许设置柱间支撑时,应设置纵向刚架。

3刚架设计

3.1荷载及荷载组合

3.1.1永久荷载

永久荷载包括结构构件的自重和悬挂在结构上的非结构构件的重力荷载,如屋面、檩条、支撑、吊顶、墙面构件和刚架自重等。

3.1.2可变荷载

可变荷载包括屋面活荷载(设计屋面板和檩条时应考虑施工和检修集中荷载,其标准值为1KN)、屋面雪荷载和积灰荷载、吊车荷载、地震作用、风荷载等。

3.1.3荷载组合

荷载组合一般应遵从《建筑结构荷载设计规范》GB50009-2002的规定,针对门式刚架的特点,《门式刚架轻型房屋钢结构技术规程》CECS102:98给出下列组合原则:

(1)屋面均布活荷载不与雪荷载同时考虑,应取两者中较大值。

(2)积灰荷载应与雪荷载或屋面均布活荷载中的较大值同时考虑。

(3)施工或检修集中荷载不与屋面材料或檩条自重以外的其他荷载同时考虑。

(4)多台吊车的组合应符合《建筑结构荷载设计规范》的规定。

(5)当需要考虑地震作用时,风荷载不与地震作用同时考虑。

3.2刚架内力和侧移计算

3.2.1内力计算

对于变截面门式刚架,应采用弹性分析方法确定各种内力,只有当刚架的梁柱全部为等截面时才允许采用塑性分析方法。变截面门式刚架的内力通常采用杆系单元的有限元法(直接刚度法)编制程序上机计算。地震作用的效应可采用底部剪力法分析确定。

根据不同荷载组合下的内力分析结果,找出控制截面的内力组合,控制截面的位置一般在柱底、柱顶、柱牛腿连接处及梁端、梁跨中等截面。控制截面的内力组合主要有:

(1)最大轴压力Nmax和同时出现的M及V的较大值。

(2)最大弯矩Mmax和同时出现的N及V的较大值。

(3)最小轴压力Nmin和相应的M及V,出现在永久荷载和风荷载共同作用下,当柱脚铰接时M=0。

3.2.2侧移计算

变截面门式刚架的柱顶侧移应采用弹性分析方法确定,计算时荷载取标准值,不考虑荷载分项系数。如果最后验算时刚架的侧移刚度不满足要求,需采用下列措施之一进行调整:放大柱或(和)梁的截面尺寸,改铰接柱脚为刚接柱脚;把多跨框架中的个别摇摆柱改为上端和梁刚接。

3.3刚架柱和梁的设计

(1)梁柱板件的宽厚比限值和腹板屈曲后的强度利用。(主要包括梁柱板件的宽厚比限值验算、腹板屈曲后强度利用验算、腹板的有效宽度验算等内容)

(2)刚架梁柱构件的强度验算。

(3)梁腹板加劲肋的配置。(梁腹板应在中柱连接处、较大固定集中荷载作用处和翼缘转折处设置横向加劲肋)

(4)变截面柱在刚架平面内的计算长度确定。

(5)变截面柱在刚架平面内的整体稳定计算。

(6)变截面柱在刚架平面外的整体稳定计算。

(7)斜梁和隅撑的强度和稳定性计算。

(8)节点设计。(包括斜梁与柱的连接及斜梁拼接、柱脚设计、牛腿设计、摇摆柱与斜梁的连接构造等内容)

4辅属结构构件设计

4.1压型钢板设计

(1)压型钢板材料的选择可根据建筑功能、使用条件、使用年限和结构形式等因素考虑,钢板基板的材料有Q215钢和Q235钢,工程中多用Q235-A钢。

(2)压型钢板的截面形式较多,根据波高的不同,一般分为低波板、中波板和高波板。波高越高,截面的抗弯刚度就越大,承受的荷载也就越大。

(3)压型钢板的强度和挠度可取单槽口的有效截面按受弯构件计算。计算内容包括压型钢板腹板的剪应力计算、支座处腹板的局部受压承载力计算、挠度限值验算等。

(4)压型钢板尚应满足其他相关构造规定。

4.2檩条设计

(1)檩条的截面形式可分为实腹式和格构式两种。当檩条跨度不大于9m时,应优先选用实腹式檩条。

(2)檩条属于双向受弯构件,在进行内力分析时应沿截面两个形心主轴方向计算弯矩。

(3)檩条应进行强度计算、整体稳定计算、变形计算。

(4)檩条尚应满足其他相关构造规定。

4.3墙梁、支撑设计

(1)墙梁一般采用冷弯卷边槽钢,有时也可采用卷边Z形钢。

(2)墙梁在其自重、墙体材料和水平风荷载作用下,也是双向受弯构件。

(3)墙梁应尽量等间距设置,在墙面的上沿、下沿及窗框的上沿、下沿处应设置一道墙梁。为减少竖向荷载作用下墙梁的竖向挠度,可在墙梁上设置拉条,并在最上层墙梁处设斜拉条将拉力传至刚架柱。

(4)墙梁可根据柱距的大小做成跨越一个柱距的简支梁或两个柱距的连续梁。

(5)门式刚架结构中的交叉支撑和柔性系杆可按拉杆设计,非交叉支撑中的受压杆件及刚性系杆按压杆设计。

(6)刚架斜梁上横向水平支撑的内力,根据纵向风荷载按支承于柱顶的水平桁架计算,并计入支撑对斜梁起减少计算长度作用而承受的力,对于交叉支撑可不计入压杆的受力。

(7)刚架柱间支撑的内力,应根据该柱列所受纵向风荷载按支承于柱脚的竖向悬臂桁架计算,并计入支撑对柱起减少计算长度而应承受的力,对于交叉支撑可不计压杆的受力。当同一柱列设有多道柱间支撑时,纵向力在支撑间可平均分配。

5小结

综上所述,轻型门式刚架结构设计应遵守以下原则:

篇2

圆管柱的工地拼接,采用全熔透坡口对接焊缝,焊缝质量等级为一级。根据《多、高层民用建筑钢结构节点构造详图》规定,下段圆管柱成品应在现场拼接节点位置设置内衬垫管,并在钢管的四个方向上设置安装耳板。待上段钢柱吊装就位后,用安装螺栓将耳板链接,使待拼接的上、下两段圆管柱对接固定后,进行现场焊接作业。焊接部位上下各100mm范围的区域内,不得涂刷防腐油漆。

3梁、柱连接节点

梁、柱的连接节点构造应与连接类别的受力特征假定相符,根据强柱弱梁的原理,通常采用柱贯通的形式。梁、柱的连接构造主要有以下几种形式:全焊接节点、栓焊混合节点及全螺栓连接节点。全焊接节点的缺点在于焊接工作量过大,并且在同一节点处焊缝数量过多的话,宜造成节点区焊接应力过大,甚至变形,影响其他钢构件的连接。全螺栓连接节点,螺栓的数量可通过梁柱连接节点产生的内力来计算螺栓的数量。采用此方法,首先应先确定梁柱连接节点所产生的内力,包括弯矩、剪力、轴力,再根据内力来计算节点区螺栓的数量。全螺栓连接往往需要大量的连接螺栓,因此大量的螺栓孔洞会对母材强度产生削弱。并且对螺栓孔位的精度要求较高,孔位稍有偏差既可能影响多个构件的连接。本工程采用栓焊混合节点,梁翼缘与柱采用剖口全熔透焊,主要承担节点弯矩;梁腹板与柱采用高强螺栓连接,主要承担节点剪力及轴力。栓焊混合节点的优点是既减少了工地焊接的工作量,又避免了由螺栓承担弯矩的弊端,因此被广泛采用。

4梁、梁连接节点

主、次梁的连接主要有两种连接方式,即刚接和铰接。当采用铰接连接时,次梁可视为简支梁,设计时主要考虑次梁腹板所承受的剪力,并根据螺栓等强连接的模型计算所需螺栓数量。常见的梁梁铰接节点如下图1、图2所示。图2所示的连接节点,螺栓孔对主梁易产生偏心距使主梁局部承受扭矩,且外伸的连接板在构件的运输过程中易损坏、变形。因此建议将梁梁连接的铰接节点采用图1的节点形式。

篇3

工程设计是复杂并且艰巨的任务,作为设计人员应该做到:对工作认真,有强烈的责任心和精益求精的工作态度;熟悉操作与规范,了解规范的真正含义;在实际工作中的灵活运用,从而保证工程施工的安全性。而钢筋混凝土框架的结构作为一种广泛运用的结构形式,具有明确的传力、灵活的结构布置、整体性与抗震性等集聚一身的优点。已被广泛的运用在各种多层的工业与民用的建筑中。随着计算机不断的发展,框架结构也由人工的转为计算机来进行计算,凭着对高科技的依赖性,计算精度逐渐提高,设计人员工作的强度却在逐渐的降低,但框架结构的设计依然存在一些实际性或者理念性的重要问题,需要引起设计人员的重视,保证设计的质量得到提高。

一、设计构造时出现的问题

(一)对框架结构而言,柱是保证竖向承载和结构抗侧力工作的重要构件,其重要性远大于梁,在框架柱相对完整的情况下框架梁即使呈酥碎状态也不会引起恶性倒塌,要做到强柱弱梁,让框架的塑性铰首先出现在框架梁上,框架节点核心区的设计就尤为重要,在《建筑抗震设计规范》中(GB50011―2010第6.3.10中有明确的规定“一、二以及三级框架的节点核心区配箍的特征值分别不能<0.08、0.10、0.12,并且由体积配箍率不能<0.4%、0.5%、0.6%”。这样的规定常常被设计人员忽略,尤其在柱的轴压力比不大的时候,要求常常不得到满足。这样的规定能保证节点核心区的延性构造,应当严格遵守。

(二)底层的框架柱的箍筋加密区的范围应该满足《建筑抗震设计的规范》(GB50011―2011)中有明确的规定了:“净柱身高的1/3不能超过底层下端的身高”这是设计中的重点说明。

(三)框架梁纵向的配筋率应当注意遵守《建筑抗震设计规范》(GB50011―2010)6.3.3中有明确的规定:梁端箍筋的最大间距、最小直径以及加密长度的都必须使用表6.3.3中的数据,当纵向的钢筋配筋率>2%的时候,箍筋的最小直径应该增加2mm。这个问题在目前的设计中常常被设计人员忽略,造成梁端的延性不足。

(四)梁柱节点处框架梁上部纵筋伸入节点的锚固长度应满足《混凝土结构设计规范》(GB50010―2010)中9.3.4规定:“梁上部纵向钢筋也可采用90°弯折锚固的方式,此时梁上部纵向钢筋应伸至柱外侧纵向钢筋内边并向节点内弯折,其包含弯狐在内的水平投影长度不应小于0.4Lab,弯折钢筋在弯折平面内包含弯弧段的投影长度不应小于15d”。当截面的尺寸小于400×400mm的时候应注意上部纵筋直径的选择,否则这一项的要求极不容易得到保障。

二、结构抗震的等级

在工程的设计中,大部分的房屋建筑按其《建筑防震设计规范》的分类属于丙类的建筑,例如住宅以及办公楼等的一般建筑,其抗震的等级可以根据结构的类型和房屋的高度来按照《抗震规范》的6.1.2来确定。而电讯、能源和医疗、交通等类型的建筑物以及大型商场和体育馆等公共建筑,首先,根据《建筑抗震设防分标准》(DB50223―95)来确定哪些是哪一类的建筑。乙丙类的建筑按照本地区抗震的设防烈度进行计算。一般的情况下,当抗震的设防烈度在6~8度的时候,乙类建筑应符合本地区设防的烈度提高一度,应根据《抗震规范》表中6.1.2来进行抗震等级的确定。如:位于8度地震区的乙类建筑,应当按照9度由《抗震规范》确定抗震等级提高一级。当8度的建筑高度超过表6.1.2的范围时,应当进行针对性的研究后再采取措施,但在一般情况下,设计人员会错当成丙类建筑来进行设计,使其建筑的扛着能力下降,必须对设计计算做出修改。

三、框架计算简图的合理性

在没有地下室的钢筋混凝土多层框架房屋的情况下,独立基础应该埋置较深,为了减小计算高度和底层侧位的左移,应在标准以下的某个适当的位置设置基础拉梁。如果按三层的设计来进行计算,首层层高为3.6m,这样的简图是不合理的,假定房屋嵌固在基础拉梁的顶面,这样的底层的配筋就应该由基础拉梁顶面的截面进行控制,而实际上房屋底层的配筋是基础顶面出的截图所控制的。所以在计算时,应将基础层1输入,层高实际为3.2m。

四、基础拉梁的设计以及计算应符合实际的情况

(一)基础拉梁的设计:

多层框架的房屋单独的柱基埋置较深,或者柱基承受重力荷的能力差别较大,或着在受力层范围之类,根据抗震的要求,应该沿主轴看、两个不同方向设置基础拉梁。基础拉梁的设计应该要大一些,梁的高度应在柱中心距的1/10~1/15,截面的宽度应取梁高1/2~1/3.这样可以使底柱弯曲的距离平衡,减少底层的位移。

(二)基础拉梁的计算应符合实际情况:

用TAT或者SATWE等电算程序进行框架整体的计算时,在基础拉梁层无楼板的情况下,楼板厚度应取零,并且定义弹性节点,采用总刚分析的方法进行分析以及计算。虽然楼板厚度取零,也定义为弹性节点,但未使用总刚分析,程序的分析会自动按照地面假定来进行计算,与实际的情况不符合。

五、框架梁、柱箍筋的间距处理

《抗震规范》第6.3.3条以及6.3.8条对不同抗震等级的框架梁,柱箍筋加密区的最小值以及最大值都做出了明确的决定。根据规定,工程在习惯上取梁、柱箍筋加密区的最大间距是100mm,非加密区的为200mm。从电算程序信息中得知内定梁、柱箍筋加密区的间距是100mm,并以此条件算出加密区箍筋的面积,再由设计人员根据箍筋的直径与数量。但在程序的内定条件下,框架梁跨中的部位有次或者有较大的集中荷载作用却用来支配两肢箍筋的情况下,非加密区的间距采用200ram会导致非加密区的配箍不足,为此建议改成间距为200mm,这样不但可以保证非加密区的抗剪承载力,还能增加梁端箍筋加密区的抗剪能力。

六、结构周期折减数数值的问题

框架结构因为充墙的原因,使结构的实际的刚度大于计算的刚度,计算是周期大于实际的周期。得出了地震剪力偏小,使结构不安全。因此对结构的周期进行折减是必要的。当采用砖砌体作为填充时,周期折减系数一般取0.6~0.7,当砖砌填充墙较少的情况下或使用轻质空心砌块的时候,周期折减系数应该在0.7~0.8,当采取全部用轻质空心砌块的时候,周期折减系数可取0.9。

七、结构方面需要注意的问题

(一)当雨篷梁、楼梯平台梁的过梁支撑在框架上的时候容易形成短柱,所以应把短柱全长的箍筋进行加密。

(二)当纵向受拉筋的框架梁端的配筋率大于2%的时候,按照规定应该使其直径增加2mm。

总结:

本文主要讲述了钢筋混凝土框架结构设计中存在的基本问题,设计框架结构,设计人应首先判断实际工程中结构方案的可行性,以及可能碰到的所有问题,提前采取预防措施给予解决,并对计算的结果进行认真的分析、判断,等处准确无误的答案后方可用于实际工程的建设中去。

参考文献:

[1] 刘双庆.钢筋混凝土结构设计常见问题解析[J].四川建材,2009,35(4):124,126.

[2] 杨新.浅谈钢筋混凝土高层结构设计常见问题[J].中华民居,2011,(6):46-47.

篇4

一.前言

轻型钢门式钢架结构在建筑结构设计中是普遍存在的,因为这种结构设计具有很强的优势,是其他一些建筑结构设计所无法比拟的。为了更大范围的发挥这种结构设计的优势,确保这种钢结构设计的质量,我们就需要对该种钢结构设计的要点进行分析,克服在轻型钢门式结构设计中存在的问题,掌握其设计要点,使轻型钢门式结构设计得到更大的发展。

二.轻钢门式刚架结构相关概述

1.轻钢门式刚架结构形式

轻钢门式刚架的结构形式多样,主要有以下几种:单跨、双跨、多跨刚架以及带挑檐的刚架等。

2.轻钢门式刚架结构典型优势

(一)自重轻

轻钢框架结构重量比很高,墙厚较薄,因此可以使房屋的跨度达到很大,钢材可根据不同用途合理分配截面尺寸的高宽比,使用面积较其他结构要提高很多。轻钢结构与混凝土结构相比,自重约为后者的一半 。在工程设计中可以根据实际情况达到个性化的要求 。

(二)结构稳定性好,抗震性能突出

轻钢框架结构稳定性良好 ,钢梁、钢柱组成柔性框架,可充分发挥钢材强度高、延性好 、塑性变形能力强的特点,以吸收部分地震能量,房屋的抗拉伸、扭曲 、震动的能力得以强化,而且适合建造在各种地质条件的地基上,提高了结构的安全可靠性 。

(三)施工速度快

一般情况下,轻钢框架结构建筑的施工由于设计标准化 、定型化,构件加工制作工业化 ,另外加上现场安装施工的过程中不受气候影响 ,简单快捷 ,时间相对钢混结构住宅缩短 工 时1/3~1/2,加快了资金周转,大大提高了投资回报速度 。

三.轻钢门式刚架设计

1. 刚架的间距

刚架的架间距与刚架的跨度、屋面荷载及檩条形式等因素有关,刚架跨度较小时,选用较大的刚架间距,增加檩条的用钢量是不经济的,但是,如果对间距进行稍微的变动,不仅既经济,同时对于也不至于对结构的质量产生太大的影响。

2.刚架横梁的截面高度与其跨度之比

对格构式刚架横梁,截面高度宜采用跨度1/l5-1/25;对实腹式刚架横梁,截面高度宜采用跨度的1/30~1/45:轻型刚架采用比值的下限。

3.柱脚的假定

按柱脚与基础的连接形式,可分为刚接和铰接两种。经计算比较,与基础刚接的刚架比铰接的刚架可节省钢材l0%—15%,并且在提高结构承载力和减小刚架侧向位移方面,比铰接刚架有利。但刚接刚架的基础造价高,对地基条件的要求也比较高,如果把柱基做得符合刚接要求,对于轻型刚架并不一定经济,所以一般采用铰接柱脚。

四.轻钢门式钢架节点的设计

1.柱脚

刚架柱脚与基础的连接形式分理论铰接、工程铰接和刚接3种,分别示于图1。而图1所示的连接形式也难以抵抗柱脚的转动,柱脚实测应力值比计算值小,柱顶实测应力值偏大。铰接柱脚是门式刚架设计中常用的假定条件,柱脚具有部分的嵌固性,不会对刚架的受力产生不利的影响。在屋面的恒截和风载的作用下,理论铰接的柱顶位移过大,上述试验实测值为7.04cm,工程铰接可以改善这种情况。实测值为5.26cm,刚接的情况最好为2.94cm。

图1钢架柱脚形式

因墙体材料不同和柱脚连接的形式各异,对柱顶侧移的限值没有明确规定。为防止产生能够影响结构强度和稳定性的变位,将柱顶水平位移限制在1/150柱高以内比较合适。

2.角隅和屋脊节点

为保证节点连接的刚性和便于布置连接螺栓,常在角隅和屋脊处加腋。加腋高度一般为横梁截面高度为1/2,由横梁截面斜切而成。带加腋的门式刚架可以减少横梁的弯矩,从而可减小其截面的尺寸,当然也相应加大了柱子的弯矩,因为横梁的总长度通常大于柱子的长度,这样节约下来的钢材可以补偿加腋所用的费用。

在屋脊处的加腋不仅有利于节点构造,而且有助于减少刚架的垂直挠度,但由于屋脊附近的弯矩变化比较平缓,故对提高刚架的承载力并不起直接作用。

3.柱顶腹板的加劲肋

柱顶腹板常设置加劲肋,以提高角隅处板域的抗剪强度,如图3所示。同时由于图2柱顶腹板加劲形式柱翼缘板的厚度一般小于横梁端板的厚度,为防止柱翼缘板在受拉螺栓的作用下产生挠曲变形,在柱翼缘受拉螺栓附近设置加劲板(图2a)。图2c采用对角线受拉加劲肋与短加劲板相结合的形式,使加劲肋在结构上更有效,并且可克服采用其他形式加劲肋可能碰到的穿螺栓的困难。

图2 柱顶腹板加劲形式

4.檐口构件

刚架之间角隅处的檐口构件,应设计得比较刚强。檐口构件包括角隅处垂直支撑、墙梁和檩条等。它对柱顶提供“定位约束”,并把纵向风力传递给支撑系统,同时为角隅处受压内翼缘提供侧向约束。

为角隅处设置的垂直支撑,将檐口构件与受压内票缘直接而可靠地连接起来,防止侧间挠曲。如果是弧形内翼缘,支撑应设置于弧的中点或靠近中点处。在直梁和直柱的情况下,应设置于它们的交点,或沿角隅处柱内翼缘垂直布置。虽然在角隅处弯矩下降比较快,在距角隅很近的距离内受压内翼缘的弯曲应力已,不太大,但还应在附近设置侧向支撑点,一般在内翼缘的转折处,或曲线加腋的弧形端点。

在钢架角隅处测向支撑曲线加腋的角隅中,b2/Rt的关系应小于2,以减小曲线翼缘的法向分力向腹板集中的程度,此处b为翼缘的宽度,t为翼缘的厚度,R为益线加腋的益率半径。通常可用加强的墙梁和檀条,利用角撑为受压内翼缘提供侧面支撑。

五.结束语

轻型钢门式结构设计对于建筑工程钢结构设计来说具有十分重要的作用,对于钢结构设计的发展也是具有重大意义的,因此我们应该加强对于轻型钢门式结构设计的探讨。

参考文献:

[1]赵希平 某轻钢门式钢架厂房火灾后的恢复第三届全国现代结构工程学术研讨会论文集2003-07-01中国会议

[2]叶飞; 李其成; 沈小璞 带有长悬臂雨篷超大跨度门式钢架结构的有限元分析安徽建筑工业学院学报(自然科学版)2011-12-15期刊

篇5

0 前言

近几年,门式刚架房屋在工业建筑中得到广泛利用,这种房屋结构简单、施工方便、经济适用,适用范围包括工业厂房、库房、值班室、车库等建筑,主要形式见图1。结合近几年的工程设计,谈一下门式刚架房屋设计应注意的几个问题。

1 适用范围及结构形式

《门式刚架轻型房屋钢结构技术规程》(CECS102:2002)(简称门式刚架规程) 第1.0.2条指出门式刚架结构适用于主要承重结构为单跨或多跨实腹门式刚架、具有轻型屋盖和轻型外墙、无桥式吊车或有起重量不大于20t的A1~A5工作级别的桥式吊车或3t悬挂式起重机的单层房屋钢结构设计。

门式刚架的跨度宜采用9~36m,高度一般为4.5~9m,当有桥式吊车时高度不宜大于12m。

实际工程设计时,由于工艺专业要求或其他条件要求,门式刚架房屋的高度可能超过规范限制,或吊车起重量超过20t,此时已经超过门式刚架规程的应用范围,应按照单层钢结构厂房设计。

在门式刚架轻型房屋钢结构体系中,屋盖宜采用压型钢板屋面板和冷弯薄壁型钢檩条,主刚架可采用变截面实腹刚架。主刚架斜梁下翼缘和刚架柱内翼缘出平面的稳定性,由与檩条或墙梁相连接的隅撑来保证。

2 材料选用

2.1 规范规定材料选用,及基本设计规定

门式刚架的主要承重构件应采用Q235B、C、D碳素结构钢或Q345B、C、D低合金高强度钢。

在抗震区,钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85;钢材应有明显的屈服台阶,且伸长率不应小于20%,钢材应有良好的焊接性和合格的冲击韧性。

由于单层门式刚架轻型房屋钢结构的自重比较小,设计经验表明,当抗震设防烈度为7度时,一般不需做抗震验算,当为8度及以上时,横向刚架和纵向框架均需做抗震验算。

对轻型房屋钢结构,当由地震作用效应组合控制设计时,尚应针对轻型钢结构的特点采取相应的抗震构造措施。例如,构件之间的连接应尽量采用螺栓连接;斜梁下翼缘与刚架柱的连接处宜加腋以提高该处的承载力,该处附近翼缘受压区的宽厚比宜适当减小;柱脚的抗剪、抗拔承载力宜适当提高,柱脚底板宜设抗剪键,并采取提高锚栓抗拔力的相应构造措施;支撑的连接应按支撑屈服承载力的1.2倍设计等。

2.2 经济性比较

进行工程设计时,在满足受力要求的前提下,还应进行结构经济性比较,保证结构设计安全可靠,经济适用。比如:在同样设计条件下,一榀刚架(高度为13.28m,跨度为66m),在满足受力条件下,采用Q235B钢材时,单榀刚架的重量为12.39t,采用Q345B钢材时,单榀刚架的重量为10.52t;按江西地区的报价,Q235B钢材的造价为5000元/t,Q345B钢材的造价为5550元/t;这样,采用Q235B钢材时,单榀刚架造价为6.2万元;采用Q345B钢材时,单榀刚架造价为5.84万元,经过综合比较材料选用,采用Q345B钢材比较合理。

通过以上比较可以看出,设计人员不仅要有扎实的专业基础,还应对主要建筑材料的价格有一定的了解,通过优化结构方案,可为业主节省一定投资。

3 风荷载计算

3.1 规范选用

轻型房屋钢结构的风荷载,是以《建筑结构荷载规范》(GB50009-2001)(2006年版)(以下简称荷载规范)为基础确定的,当柱脚为铰接且刚架的1/h小于2.3和柱脚刚接且1/h小于3.0时,采用荷载规范规定的风荷载体型系数进行刚架设计偏于安全;而在其他情况下,按门式刚架规程计算偏于安全站。设计时,应注意区分以上情况,避免一律采用门式刚架规程设计,影响结构安全。

3.2 参数选用

参考国外规范,按门式刚架规程计算风荷载时,基本风压值应乘以综合调整系数1.05。

设计刚架时,风荷载体型系数应分别按四种受力模型取值,既端区封闭式、端区部分封闭式、中间区封闭式和中间区部分封闭式,在不同位置及是否封闭状态下,刚架体型系数取值是不同的。许多设计者往往仅取中间封闭区计算,而忽略其他位置的刚架验算,这种做法是不对的,有时端区受力可能更大。此外,房屋布置天窗或有高低跨时,体形系数应严格按规范取值,不得混淆取值。檩条设计也有同样的问题。

4 支撑布置

门式刚架房屋应设柱间支撑及屋面支撑,支撑可采用钢管、角钢、槽钢、圆钢等截面形式,支撑布置除应满足门式刚架规程第4.5节要求以外,还应注意以下问题:

4.1 带吊车结构

刚架跨度大于18m且设有起重量≥16t的吊车时,宜在刚架端节间增设纵向支撑。当吊车起重量为20t时,宜在牛腿顶标高处沿纵向刚架柱外侧之间设型钢水平系杆。

4.2 无法设柱间支撑结构

对于无法设置柱间支撑的低矮门式刚架房屋(如车库),宜在纵向刚架之间设置刚接型钢梁,保证纵向稳定。

4.3 增设分配梁

当山墙抗风柱位置不在屋面横向支撑节点附近时,应在支撑交叉点处增设分配梁。

4.4 柱脚锚栓

计算设柱间支撑的柱脚锚栓上拔力时应记录柱间支撑产生的最大竖向分力材料选用,这是门式刚架规程第7.2.19强条规定,但设计人员往往容易忽视。对于设吊车或者其他水平荷载较大的房屋,柱间支撑产生的上拔力较大,如果不计入,可能会造成锚栓被拔起的严重后果。

5 保温隔热

屋面和墙面的保温隔热构造均应根据热工计算确定。屋面保温隔热可采用下列方法之一:

1.在压型钢板下设带铝箔防潮层的玻璃纤维毡或矿棉毡卷材;若防潮层未用纤维增强,尚应在底部设置钢丝网或玻璃纤维织物等具有抗拉能力的材料,以承托隔热材料的自重;

2. 金属复合夹芯板;

3. 在双层压型钢板中间填充保温材料。

外墙保温隔热可采用下列方法之一:

1. 采用与屋面相同的保温隔热做法;

2. 外侧采用压型钢板,内侧采用预制板,纸石膏板或其他纤维板,中间填充保温材料;

3. 采用多孔砖等砌体。

6 结语

还有其他问题,如刚架在施工中应及时安装支撑,严格执行规定的安装顺序;柱脚底板下面的每根锚栓,应设置调整螺母,校准后进行二次灌浆;底板的连接、柱与牛腿的连接、梁端板的连接、吊车梁及支承局部悬挂荷载的吊架,不得采用单面焊等,不再一一例举,希望以上问题能对读者今后的设计起到有益作用。

参考文献

[1]CECS 102:2002 门式刚架轻型房屋钢结构技术规程

篇6

Abstract:Frame instability has two modes, respectively, lateral instability and no lateral instability. Correct understanding of lateral displacement and lateral instability, is the application of member effective length method conditions. At present domestic to frame instability mode comparison across studies, put forward a variety of relevant frame stability concept, especially in the lateral shift problems. This article briefly summarizes the stability of rigid frames in sideway questions related concepts, the lateral displacement and lateral displacement were compared systematically. The full text of the understanding of rigid frame instability have a very good help.

Key words:Frame stability; Lateral instability; Strong support frame; Sway frames

1引言

目前在刚架稳定设计中,国内外应用比较广泛的方法就是构件计算长度法。就是先将作用有荷载的刚架按一阶弹性分析的方法确定内力,再利用按照弹性理论得到的刚架柱的计算长度系数,把柱转化为具有如此计算长度的压弯构件作弯矩作用平面内的稳定计算[3]。显然,在刚架稳定设计中,确定构件的计算长度非常重要,在规范中对有侧移失稳和无侧移失稳采用不同的计算公式,得出的计算长度系数相差很大,那么如何确定刚架失稳是无侧移失稳还是有侧移失稳就显得首当其冲了。本文介绍刚架失稳问题中有关侧移问题的概念解析,清晰明了的阐述刚架侧移问题。

2有侧移失稳和无侧移失稳

2.1 基本概念

刚架稳定分析中一个很重要的问题就是确定刚架的失稳模态,这对于计算刚架的稳定承载力是很重要的。同一个结构在相同的荷载作用下发生不同形式的失稳,其稳定承载力存在巨大差异[1]。

设计工作所用的单层刚架柱计算长度,是以荷载集中于柱顶的对称单跨等截面框架为依据的[2]。我们以单层单跨刚架为例说明刚架的失稳形式。

图1 刚架的失稳形式

图1 (a)所示单跨对称刚架,受两相同的柱顶集中荷载,可能发生图1 (b)所示的对称性变形失稳,也可能发生图1 (c)所示的非对称性失稳。发生对称性失稳时,变形大致呈左右对称形状,刚架节点无侧移但有转角,通常称之为无侧移失稳;发生非对称性失稳时,变形大致呈左右反对称形式,刚架同层节点向同一个方向发生相等侧移并有转角,这种失稳形式称为有侧移失稳。

3有侧移失稳和无侧移失稳的判断

3.1 判断失稳模式的框架分类

目前国内在判断刚架失稳形式时,都是将框架分为无支撑的纯框架和有支撑框架,其中有支撑框架根据抗侧移刚度的大小分为强支撑框架和弱支撑框架[4]。在文献[4]中,框架的定义如下:

纯框架:依靠构件和节点连接的抗弯能力,抵抗侧向荷载的框架。

强支撑框架:在支撑框架中,支撑结构(支撑桁架、剪力墙、电梯井等)抗侧移刚度较大,可将该框架视为无侧移的框架。

弱支撑框架:在支撑框架中,支撑结构抗侧移刚度较弱,不能将该框架视为无侧移的框架。

这样的定义比较模糊,而且没有和刚架稳定联系起来。而在文献[5],[6]中对这种分类给出了直接与稳定相关的定义。其中分类的前提是当内力采用线性弹性分析,采用计算长度法计算框架柱的稳定性时,才采用上述分类。即

(1) 强支撑框架:当框架―支撑结构体系中,支撑的抗侧刚度足够大,使得框架以无侧移的模式失稳时,这个框架称为强支撑框架。

(2) 弱支撑框架是支撑架的抗侧刚度不足以使框架发生无侧移失稳的框架。

(3) 纯框架是未设置任何支撑的框架结构,它的整体失稳是有侧移失稳[6]。

3.2 强支撑框架和弱支撑框架的判断

文献[4](钢结构设计规范)中5.3.3给出了设计中判断强支撑框架和弱支撑框架的判断公式。内容总结下来就是,当支撑结构的侧移刚度 满足公式

(1)

式中 , ――第i层层间所有框架柱用无侧移框架和有侧移框架柱计算长度系数算得的轴压杆稳定承载力之和,则为强支撑框架。框架柱的计算长度系数 按规范中的无侧移框架柱的计算长度系数确定。

当支撑结构的侧移刚度 不满足公式(1)的要求时,为弱支撑框架,框架柱的轴压杆稳定系数 按公式(2)计算。

(2)

式中 , ――分别是框架柱用文献[4]的附录中无侧移框架柱和有侧移框架柱计算长度系数算得的轴心压杆的稳定系数。

上述的判断方法是在实际应用中的简化方法,当考虑到实际结构的支撑体系(剪切型支撑、弯曲型支撑、弯剪型支撑)不同时,强支撑框架的判定准则会产生变化。文献[5],[6]对双重抗侧力体系的框架进行了全面的分析,也给出了更全面的强弱支撑框架的判断准则。

3.3 有侧移失稳的本质

结构(构件)失稳表示其不再能承受附加的水平力或竖向力,代表了其水平抗侧刚度或竖向抗压刚度的丧失(刚度=0)[10]。轴心压杆受压失稳的本质是压力使受压构件的弯曲刚度减小,直至消失的过程[2]。这是稳定分析中一个很重要的概念。那么对于框架有侧移失稳,就是表明框架的抗侧刚度消失。

框架每一层的抗侧刚度可以从结构的线性分析直接得到。例如 是第 层的总剪力, 为这一层的层间位移,得到的层抗侧刚度为

是什么使这个框架层从抗侧刚度 变为等于0?显然是竖向荷载,竖向荷载就像是一种负刚度的因素,抵消了框架的正刚度[6]。怎么得到框架竖向荷载的负刚度呢?

我们从最简单的结构受力情况说起。

图2 竖向荷载的负刚度

如图2(a)所示杆件没有抗侧刚度,作用了压力P之后,因为竖向荷载是负刚度,杆件很快就会垮掉(几何可变)。必须给以侧向支撑才能保持稳定(图2(b))[10]。侧向支撑的刚度 时才能使杆件稳定。反过来可以推论:P的负刚度为 。侧移失稳时

即负刚度+抗侧刚度=0.

对于悬臂柱,临界荷载为 ,当作用的竖向荷载 时,抗侧刚度 ,记 为P的等效负刚度,要求 得到 。参照 的形式可以假定:

得到 ,此时。

再对如图2(c)的柱上下端均为弹性转动约束的情况,可以推导出 式中 在1.0~1.216之间变化,绝大多数在1.1~1.16之间变化,偏安全可以取 [10]。

应用到多层多跨框架中,文献[6]给出了说明。根据规范查表得到框架柱的计算长度系数,求得各柱子的临界荷载 之后,从而得到竖向荷载的等效负刚度,即

(3)

因此框架有侧移失稳时

(4)

式中, 即层间抗侧刚度, 是第 层的总剪力, 为这一层的层间位移,通过线性分析可以得到。 是这一层的第 个柱的轴力; ,这个系数变化非常小,从工程实际的角度来看,取1.1的情况下,得到的临界荷载最大值误差为10%,如果换算到计算长度系数,则最大的误差只是5%[6]。

这样得到的公式(4)有非常重要的实际应用价值,在帮助我们理解框架爱有侧移失稳本质的基础上,能解决框架中各柱子轴力分布不均时的临界荷载及计算长度,也能分析框架各层的稳定性。

4有侧移框架和无侧移框架

文献[3]中在4.1节中提到:按规定,对于有支撑的刚架,当其抗侧移的刚度大于或等于同类无支撑刚架抗侧移刚度的5倍时,方认为支撑系统有效,否则仍按无支撑刚架计算其稳定性。但又在4.9节中抛弃了这种说法,采用了文献[4]的规定。这里面涉及到一个概念性的问题,就是有侧移框架和无侧移框架到底指的是什么?它们与框架有侧移失稳和无侧移失稳有什么区别和联系?

4.1 有侧移框架和无侧移框架的概念解析

《钢结构设计规范》(GBJ17-88) [7] 第5.2.2条最末尾有这样一个注释:无侧移框架系指框架中设有支撑架、剪力墙、电梯井等支撑结构,且其抗侧移刚度等于和大于框架本身抗侧移刚度的5倍者。有侧移结构系指框架中未设上述支撑者,或支撑结构的抗侧移刚度小于框架本身抗侧移刚度的5倍者。

这样的概念让人困惑。因为稍有结构常识的人都清楚的知道,所有的结构及框架-支撑结构中的框架在水平风力或地震力作用下,都会产生侧移。那么文献[7]中的分类又是什么意思呢,或者具有什么用途呢?

实际上,文献[7]中的准则是对国外规范误解的结果。5倍关系最早由欧洲钢结构协会于1977年提出,提出5倍关系的最早本意是对支撑部分和框架部分分担水平力的比例进行界定,当支撑抗侧刚度大于纯框架抗侧刚度的5倍时,框架分担的水平力可以忽略不计,框架因不承担水平力而无侧移,并不是框架发生无侧移失稳[8]。

那么,对于有侧移框架和无侧移框架的定义,其实是针对双重抗侧力结构体系中的框架,根据其水平力的分担比例来划分的。

(1) 在双重抗侧力结构中,框架承受的总水平力小于等于总剪力的20%,则可以以足够的精确度假设所有的水平力都由支撑架(剪力墙)承受,框架本身不承受水平力,从而这个框架可以看作无侧移框架。

(2) 不满足上述规定的框架―支撑结构体系中的框架,是有侧移框架。

这样的区分,在没有计算机的时代,可以带来计算上的简化,在计算机时代,实用上已经没有必要。但是仍然可以根据这个分类,对结构的受力特性有一个初步的总体上的了解:有侧移框架是要承担水平力的,而无侧移框架依靠其他刚度更大的子结构来承担水平力[6]。

4.2 两种框架分类的区别

有侧移框架和无侧移框架的区分,不涉及到框架的稳定性计算,只是通过了解建筑物各子结构在承受水平力上的相对比例,对框架进行一个分类。在框架分担的水平力小到一定程度时可以进行简化的力学分析。

强支撑框架和弱支撑框架的区分是用于判断双重抗侧力结构中框架部分的失稳模式的。根据框架结构是发生有侧移失稳还是无侧移失稳,或者介于两者之间,选择和计算对应的框架柱的计算长度及承载力。

5结语

本文从整体上对刚架稳定中侧移问题进行了阐述,据此可以更好地学习刚架稳定内容,理解钢结构稳定性设计的有关规定,更准确地选择钢结构稳定计算的图表或公式。

参考文献:

[1] 郭耀杰.钢结构稳定设计[M].武汉:武汉大学出版社,2003.

[2] 陈绍蕃,顾强.钢结构上册:钢结构基础(第二版)[M].北京:中国建筑工业出版社,2007.

[3] 陈骥.钢结构稳定理论与设计(第三版)[M].北京:科学出版社,2006.

[4] 钢结构设计规范(GB50017-2003)[S].北京,2003.

[5] 童根树.钢结构平面内稳定[M].北京:中国建筑工业出版社,2005.

[6] 童根树.钢结构设计方法[M].北京:中国建筑工业出版社,2007.

[7] 钢结构设计规范(GBJ17-88)[S].北京,1989.

[8] 季渊.多高层框架-支撑结构的弹塑性稳定分析及其支撑研究[D].浙江大学博士学位论文,2003.

篇7

引言

随着国家经济的快速发展,钢结构在建筑领域起到了举足轻重的作用,扮演着越来越重要的角色,无论在工业还是民用建筑中,钢结构以其突出的特点迅速地占领着越来越广的市场。其特点有:其整体刚度和抗震性能好、施工速度快、自重轻、承载力高,在大跨度及超高层建筑中代替了钢筋混凝土结构,但也存在着防火性能差、易腐蚀等缺点,在设计中根据其特点扬长避短才能更好地发挥钢结构的作用。

一、钢结构厂房空间结构解析

为了使本论文的钢结构厂房分析设计更具有针对性和信服力,这里以实际的炼钢厂房钢结构厂房为具体研究对象进行分析讨论。由于钢铁工业是国民经济的支柱产业,炼钢厂就成了一个重要的生产场所,属于抗震规范中的乙类设防建筑。由于工艺布置的特殊性和生产设备的需要,炼钢厂主厂房往往具有质量、刚度分布严重不均匀的特点。又基于建设周期及抗震性能等的综合考虑,这类厂房大都采用全钢结构建造。本文中以某设计生产能力为50吨的转炉炼钢厂为研究对象。

由于工艺要求的复杂性,该厂房由炉渣跨、加料跨、炉子跨、钢水接收跨、连铸浇铸跨、连铸出坯跨共六跨组成,核心设备布置在炉子跨中部的塔楼内。该转炉炼钢厂房主要由塔楼、散状料上料系统、柱子系统、屋盖系统和吊车梁系统几大部分组成,各部分的结构大都是由型钢和钢板焊接或螺栓连接而成。

二、轻钢结构单层厂房设计的要点

2.1结构体系

1) 门式刚架分为单跨、双跨、多跨以及带挑檐的和带毗屋等多种形式。多跨刚架中柱与刚架梁的连接可采用铰接。

2) 轻型钢结构工业厂房结构体系中,屋面常采用有檩体系,檩条间距为1. 5 m,屋面板为压型钢板或夹芯板,檩条采用冷弯C 型钢或高频焊接薄壁H 型钢; 外墙采用有墙梁体系,墙梁间距为1.5 m ~ 2.1 m,墙面板为压型钢板或夹芯板,墙梁采用冷弯C 型钢或高频焊接薄壁H 型钢。主刚架梁下翼缘和主刚架柱内侧翼缘平面外的稳定性,可通过在刚架梁下翼缘和檩条间或刚架柱内侧翼缘和墙梁之间设置的隅撑来保证。主刚架之间的水平支撑可采用张紧的圆钢或角钢。

3) 根据跨度、高度和荷载不同,门式刚架的梁柱可采用变截面或等截面实腹焊接工字钢或成品H 型钢截面。单层厂房中当设有桥式起重机时,柱截面宜采用等截面构件。

4) 轻钢结构工业厂房刚架柱基础,刚架柱柱脚与钢筋混凝土基础的连接可按铰接或刚接,当厂房内设有桥式起重机时按刚接连接,其他情况按铰接连接。

焊接实腹式工型截面门式刚架承重结构由刚架和基础两部分组成。门式刚架承重结构体系的刚架、檩条( 或墙梁) 以及压型钢板间通过可靠的连接和支撑相互依托,体系受力更趋向于空间化。

2.2 结构布置

1) 屋面结构平面布置

单层厂房轻刚结构房屋伸缩缝的设置: 当房屋纵向长度不小于300 m,横向长度不小于150 m 时需要设置温度伸缩缝。温度伸缩缝的做法有两种: 檩条连接处的螺栓孔采用椭圆孔或设置双排柱,使结构有足够的伸缩空间; 吊车梁与柱的连接处宜采用椭圆孔。

屋面檩条的布置,应考虑天窗、通风屋脊、采光带等因素的影响,屋面压型钢板厚度和檩条间距应按计算确定。

2)墙面墙梁布置

单层厂房轻刚结构房屋墙面墙梁的布置,应根据门窗的位置、大小确定墙梁的位置,另外设有挑檐、雨篷时还应增设墙梁等构件,墙梁的规格尺寸应由计算确定,同时还应考虑墙面板的规格,考虑到厂房的美观,一般墙面梁设在主刚架柱的外侧。

3) 支撑布置

横向水平支撑和竖向柱间支撑可提高刚架的整体刚度,并能承担和传递水平力,防止杆件产生过大的振动,避免压杆的侧向失稳,可保证结构安装时的稳定。

当设有温度伸缩缝时,在每个温度伸缩单元应分别同时设置横向水平支撑和竖向柱间支撑以形成几何不变、稳定的空间结构体系。

横向水平支撑一般设置在温度伸缩单元两端第一开间刚架梁上翼缘,在水平支撑交叉的节点处应设置刚性系杆。横向水平支撑的间距不大于45 m。横向水平支撑既可以采用十字交叉圆钢,又可以采用双角钢作支撑。

当温度伸缩单元长度不超过90 m 时,在温度伸缩单元两端第一开间的上柱处设置上柱柱间支撑,在温度伸缩单元中间的柱开间内分别设置上下柱柱间支撑。上柱柱间支撑为单片角钢,连接在柱腹板的中间,下柱柱间支撑为双片角钢,连接在下柱两侧翼缘。值得注意的是在温度伸缩单元的端部不设下柱柱间支撑。

在刚架转折处应沿房屋全长设置刚性系杆。

三、轻钢结构厂房钢构件的设计

3.1 主要承重构件( 刚架) 内力计算方法

刚架的内力计算方法分弹性分析和塑性分析方法,变截面门式刚架通常采用弹性分析方法,等截面门式刚架通常采用塑性分析方法,同时还应满足现行《钢结构设计规范》的相关要求。

3.2 门式刚架位移( 侧移) 计算

当屋面坡度不大于1 ∶ 5 时,柱顶在水平力H 作用下的位移( 侧移) u,可按下列公式计算:

柱脚铰接刚架:

柱脚刚接刚架:

其中,h,L 分别为刚接柱高度和刚架跨度; Ic,Ib分别为柱和横梁的平均惯性矩; H 为刚架柱顶等效水平力; ζt为刚架柱与刚架梁的线刚度比。

3.3 构件强度计算

工型截面受弯构件在剪力、弯矩共同作用时,强度按下式进行计算:

当截面为双轴对称时:

其中,Mf为两翼缘所承担的弯矩; Me为构件有效截面所承担的弯矩,Me = We f,We为构件有效截面最大受压纤维的截面模量;Af为构件翼缘的截面面积; Vd为腹板抗剪承载力设计值,Vd =hw tw fv '。

3.4 构件稳定计算

轴心受压构件( 工型截面) 局部稳定计算:

受压翼缘:

腹板:

其中,b 为受压翼缘自由外伸宽度; t 为受压翼缘的厚度; fy为钢材屈服强度; hw为腹板的计算高度; tw为腹板的厚度。

3.5刚架柱基础的设计

3.5.1基础形式

门式刚架轻型房屋钢结构常用的基础形式有:

1) 钢筋混凝土独立基础,一般用于地基承载力比较大,土质比较均匀的情况。

2) 柱下条形基础多用于加固工程中,在处理新旧建筑物基础时,可以避免对旧建筑物基础造成不利的影响。

3) 桩基础一般用于深基础,地基回填土较多、持力层较深的情况。

3.5.2 基础的设计

1) 轻钢结构厂房门式刚架柱基础通过钢板与钢筋混凝土基础之间连接采用铰接或刚接柱脚。

2) 柱脚锚栓应采用Q235 钢或Q345 钢制作。锚栓的锚固长度应符合GB 50007-2002 建筑地基基础设计规范的规定,为抵抗上拔力锚栓端部设置弯钩或锚板,锚栓的直径不小于24 mm,且应采用双螺母或采取防止螺帽松动的有效措施; 柱脚锚栓按下柱柱间支撑传递的纵向风荷载和吊车刹车力或纵向地震作用的上拔力计算。刚架柱底部的水平力由柱脚底板与钢筋混凝土基础顶面之间的摩擦力来承担,若还不满足须设置槽钢或角钢抗剪键。计算柱脚锚栓的受拉承载力时,应采用螺纹处的有效截面面积。

结束语

轻钢结构具有自重轻、工厂化和商品化程度高、施工周期短、节能环保等明显的优点。轻钢结构门式刚架设计在单层工业厂房中越来越得到人们的青睐,但它毕竟还是一个新生事物,需要我们设计人员在工程设计中不断的探索、改进、回访中积累经验,进而解决在工程设计中遇到的新技术、新问题。新技术、新材料的应用给设计人员提供了锻炼的机会,带来了新的挑战,只要对不断出现的新技术、新材料、新问题勇于探索、勇于创新,就能攻克难关,从而使新技术、新材料得到广泛应用,我们的设计水平也会有较大的提高。

参考文献

[1]魏明钟.钢结构设计新规范应用讲评[M].北京:中国建筑工业出版社,2001.

篇8

1柱脚的制作安装

1.1预埋地脚螺栓与砼短柱边距离过近。在刚架吊装时,经常不可避免的会人为产生一些侧向外力,而将柱顶部砼拉碎或拉崩。在预埋螺栓时,钢柱侧边螺栓不能过于靠边,应与柱边留有足够的距离。同时,砼短柱要保证达到设计强度后,方可组织刚架的吊装工作。

1.2往往容易遗忘抗剪槽的留设和抗剪件的设置。柱脚锚栓按承受拉力设计,计算时不考虑锚栓承受水平力。若未设置抗剪件,所有由侧向风荷载、水平地震荷载、吊车水平荷载等产生的柱底剪力,几乎都有柱脚锚栓承担,从而破坏柱脚锚栓。

1.3柱脚底板与砼柱间空隙过小,使得灌浆料难以填入或填实。一般二次灌料空隙为50mm。

1.4有些工程地脚螺栓位置不准确,为了方便刚架吊装就位,在现场对底板进行二次打孔,任意切割,造成柱脚底板开孔过大,使得柱脚固定不牢,锚栓最小边(端)距亦不能满足规范要求。

2梁、柱连接与安装

2.1多跨门式刚架中柱按摇摆柱设计,而实际工程却把中柱与斜梁焊死,致使实际构造与设计计算简图不符,造成工程事故。所以,安装要严格按照设计图纸施作;

2.2翼缘板与加厚或加宽连接板对接焊缝时,未按要求做成倾斜度的过渡。对接焊缝连接处,若焊件的宽度或厚度不同,且在同一侧相差4mm以上者,应分别在宽度或厚度方向从一侧或两侧做成坡度不大于1:2.5(1:4)的斜角。

2.3端板连接面制作粗燥,切割不平整,或与梁柱翼缘板焊接时控制不当,使端板翘曲变形,造成端板间接触面不吻合,连接螺栓不得力,从而满足不了该节点抗弯受拉、抗剪等结构性能。

2.4刚架梁柱拼接时,把翼缘板和腹板的拼接接头放在同一截面上,造成工程隐患。拼接接头时,翼缘板和腹板的接头一定要按规定错开。

2.5刚架梁柱构件受集中荷载处未设置对应的加劲肋,容易造成结构构件局部受压失稳。

2.6连接高强螺栓不符合《钢结构用扭剪型高强度螺栓连接的技术条件》或《钢结构用高强度大六角头螺栓、大六角头螺母、垫圈型式尺寸与技术条件》的相关规定。高强螺栓拧紧分初拧、终拧,对大型节点还应增加复拧。拧紧应在同一天完成,切勿遗忘终拧。一定要在结构安装完成后,对所有的连接螺栓应逐一检查,以防漏拧或松动。

2.7有些工程中高强螺栓连接面未按设计图纸要求进行处理,使得抗滑移系数不能满足该节点处抗剪要求。必须按照设计要求的连接面抗滑移系数去处理。

2.8有的工程缺乏有针对性的吊装方案,吊装刚架时,未采用临时措施保证刚架的侧向稳定,造成刚架安装倒塌事故。应先安装靠近山墙的有柱间支撑的两榀刚架,而后安装其他刚架。头两榀刚架安装完毕后,应在两榀刚架间将水平系杆,檩条及柱间支撑,屋面水平支撑,隅撑全部装好,安装完成后应利用柱间支撑及屋面水平支撑调整构件的垂直度及水平度,待调整正确后方可锁定支撑,而后安装其他刚架。

3檩条、支撑等构件的制作安装

3.1为了安装方便,随意增大、加长檩条或檩托板的螺栓孔径。檩条不仅仅是支撑屋面板或悬挂墙面板的构件,而且也是刚架梁柱隅撑设置的支撑体,设置一定数量的隅撑可减少刚架平面外的计算长度,有效的保证了刚架的平面外整体稳定性。若檩条或檩托板孔径过大过长,隅撑就失去了应有的作用。3.2隅撑角钢与钢梁的腹板直接连接,当刚架受侧向力时,使腹板在该处局部受到侧向水平力作用,容易导致钢梁局部侧向失稳。

3.3有的工程所用檩条仅用电镀,造成工程尚未完工,檩条早已生锈。檩条宜采用热镀锌带钢压制而成的檩条,且保证一定的镀锌量。

3.4因墙面开设门洞,擅自将柱间垂直支撑一端或两端移位。同一区隔的柱间支撑、屋面水平支撑与刚架形成纵向稳定体系,若随意移动其位置将会破坏其稳定体系。

3.5有些单位为了节省钢材和人工,将檩条和墙梁用钢板支托的侧向加劲肋取消,这将影响檩条的抗扭刚度和墙梁受力的可靠性。故施工单位不得任意取消设计图纸的一些做法。

3.6有的单位擅自增加屋面荷载,原设计未考虑吊顶或设备管道等悬挂荷载,而施工中却任意增加吊顶等悬挂荷载,从而导致钢梁挠度过大或坍塌。任何单位均不得擅自增加设计范围以外的荷载。

3.7屋面板未按要求设置,将固定式改为浮动式,使檩条侧向失稳。往往设计檩条时,会考虑屋面压型钢板与冷弯型钢檩条牢固连接,能可靠的阻止檩条侧向失稳并起到整体蒙皮作用。

3.8刚性系杆、风拉杆的连接板设置位置高低不一,使得水平支撑体系不在同一平面上,从而影响刚架的整体稳定性。刚性系杆与风拉杆构成水平支撑体系,其设置高度在同一坡度方向应保持一致。

目前,我国钢结构住宅产业已进入一个新的发展阶段,有关规范和标准已经出台,国内钢材产量充足,有了一批钢结构住宅试点与示范的建设经验和科技成果,钢结构住宅的发展已具备了较好的物质和技术基础。当然,在钢结构住宅发展方面,还有一些技术问题有待解决。钢结构住宅的推广还需要做大量的工作,完善不同类型结构设计规范和施工技术标准,研制新型的轻质保温墙体材料以及与住宅部品的配套问题,同时还要广泛宣传开发轻钢住宅的益处,让更多的开发商、设计师和用户认识了解钢结构住宅的优点。

篇9

1.建筑设计与结构设计的概念

1.1建筑设计的概念

建筑设计指的是建筑工程在建造之前,建筑设计师充分按照工程任务,把可能在工程施工过程中或者使用过程中出现的问题作好通盘的设想,并拟定好解决问题的方案。建筑设计的主要内容包括:初步方案、初步设计、搜集资料、技术设计施工图、技术设计施工详图等。随着科学技术的不断发展,建筑设计中越来越深入广泛的利用各种科学技术的成果。

1.2结构设计的概念

结构设计指的是建筑工程的结构设计,主要包括建筑工程的基础设计和上部结构设计。建筑工程的上部结构设计的主要内容和步骤包括:(1)根据建筑工程设计来确定建筑物的结构体系和结构的主要材料;(2)建筑物的结构平面布置;(3)初步筛选建筑材料的类型和强度等级,并根据以往经验初步确定建筑物构件的截面尺寸;(4)建筑物的结构内力分析、各种荷载作用分析、结构荷载计算;(5)建筑物结构荷载效应组合;(6)建筑物构件的截面设计。

2.现代建筑设计与结构设计存在的问题

2.1现代建筑结构设计中的扭转和共振问题

在现代建筑工程的结构设计中要求建筑三心要尽量汇于一个中心点,建筑三心指的是建筑物的结构重心、刚度中心和几何形心。现代建筑结构设计中的扭转问题主要是指在建筑物的结构设计过程中没有做到三心汇于一点,在建筑物的水平荷载作用下建筑结构出现了扭转振动效应。所以,为了避免建筑工程因水平荷载作用而出现的扭转破坏,就必须在对建筑物的结构设计时尽量选择合理的平面布局和结构形式,让建筑物的三心尽量汇于一点。还有现代建筑结构设计中出现的共振问题,如果发生地震,而建筑场地的特征周期与建筑物的自振周期又很接近,那么建筑物和建筑场地就有可能发生共振。所以,在设计建筑工程方案时,必须要针对预估建筑场地的特征周期,选择合适建筑结构体系和结构类型,并通过调整建筑物结构的层数,扩大建筑场地特征周期与建筑物的自振周期之间的差别,从而避免共振问题的发生。

2.2现代建筑结构的水平侧向位移问题

现代建筑工程设计的水平侧向位移即便能够满足建筑工程结构规程的要求,也不能代表该建筑结构设计是合理的,因为这其中还要充分考虑到地震力的大小和周期等因素。在对建筑工程进行抗震结构设计时,建筑物的结构刚度和地震力的大小有着直接的关系。当建筑物结构刚度小,而建筑工程的结构设计并不合理,但由于地震力比较小,所以结构位移也比较小,位移也就控制在规范允许的范围内,但是这并不是合理的结构设计。因为地震力小、结构周期长是很不安全的,并且位移的曲线变化应该具有连续性,除了沿着竖向发生刚度突变之外,不能够有其他明显的折点或者拐点。在一般情况下位移曲线有三种类型:(1)剪力墙结构的建筑工程发生的位移曲线应该是弯曲型;(2)框架结构的建筑工程发生的位移曲线应该是剪切型;(3)框一筒结构和框一剪结构的建筑工程发生的位移曲线应该是弯剪型。

3.建筑设计与结构设计的关系

3.1建筑设计与结构设计的相互配合

在建筑工程的建设过程中,无论是公共建筑、工业建筑还是民用建筑大致可以分为分为两类:(1)拥有完善的使用功能,优美的建筑造型,通过专业化的施工工艺和制造技术与先进的结构体系有机地结合,创造出经济适用的、新颖的、技术先进的建筑物;(2)主要追求新奇的艺术效果为主,没有合理的建筑结构方案,创造出奇特的建筑物。在现代建筑物中主要实施和提倡第一类建筑。以具体的工厂厂房设计来谈结构设计和建筑设计相互配合。工厂厂房的设备较大,车间要求十分宽敞,防火要求比较高,并且不改隔墙。以往的设计大都采用的是排架结构,厂房的墙体为240砖墙,厂房的屋盖为薄腹梁钢筋混凝土大板结构,这样的厂房才能满足使用要求。但这种排架结构的设计不足之处施工周期长、跨度受限制、不经济。

根据结构设计必须要考虑到厂房施工方便和经济合理的条件,在现代的工厂设计中可以采用门式刚架轻型房屋钢结构,在标离1米以下的地方为砖砌体,而墙体则用压型彩钢板,屋盖也一样。这样的设计不但能克服上述厂房结构形式的不足,而且还满足了厂房的使用要求。比如在对棉花加工厂这类厂房进行结构设计时,要充分满足厂房的生产工艺要求,在厂房的功能布局上要充分考虑运输活动和生产活动的方便,要为工厂创造良好的工作环境,这是这类厂房的设计原则。所以,在满足基本要求的前提下,施工最方便、最经济、施工周期最短的设计方案必然成为首选方案。对于公共建筑来说,建筑的设计不能离开具体的设计对象。一个优秀的建筑必然是结构设计和建筑设计之间密切配合的结果,同时还要分清配合的侧重点。一个好的建筑设计能够将建筑物完善的使用功能和优美的建筑造型与结构设计充分地结合在一起。

3.2建筑设计与结构设计之间的密切联系

在建筑设计过程中,有少数的建筑设计师把结构总是放在第二位,并一直强调结构必须服从建筑,这种观念不但忽略了最基本的力学规律,还分割了科学的完整性。这种最大满足使用功能和片面地追求建筑艺术与建筑技术结合的要求,往往会给建筑工程的质量带来严重的隐患。在建筑设计过程中,任何一个建筑设计方案都会对建筑具体的结构设计产生一定的影响,并且建筑结构设计的技术水平也制约着建筑设计得层次。所以,在建筑工程的设计过程中,建筑设计师必须要具备一定的结构方面的基础,并且能够与结构设计相互协调,适当的结合,让二者互相统一,从而创作出优秀的、完美的建筑设计作品。

有的建筑设计师在设计中过分强调创作的标新立异、新颖、美观,从而不能与结构设计有效的结合。而建筑物本身承受着巨大的地震力、自重荷载与活载、扭矩力、水平风力等,要是建筑设计师不按照建筑的结构受力特征和基本的结构技术原理进行竖向设计和平面设计,也不征询结构设计师的意见,这样就会导致结构设计师不能合理的选择结构体系,从而出现建筑结构不稳定问题发生。比如可以讲建筑物的截面设计成为三角形,这样建筑物的抗侧能力和抗弯矩力就会小很多。还有些建筑设计师经常忽视结构力学的基本规律。比如:对于需要抗震设防的地方,建筑的高层电梯设置在建筑物的一侧,不能与建筑物的刚度中心相互重合,电梯筒就会受到很大的刚度,从而造成结构偏正,产生扭转。

结束语:

从建筑结构效益的角度来看,片面追求建筑物的艺术表现,忽视结构原理,设计出来的建筑作品往往只能作为雕塑作品或者是虚假的造型。只有符合正确的结构逻辑的建筑,充分发挥结构本身造型特点,充分融合结构设计构思和建筑设计构思去实践个性的建筑,才能算得上是成功的建筑作品。同时,建筑设计师要不断提高自身的艺术修养,勇于创新,充分利用结构设计原理来完善建筑设计。而建筑结构设计师也要充分了解建筑设计师的意图,促进结构设计和建筑设计的有机融合和密切配合,从而设计出更高水平的建筑作品。

参考文献:

[1]霍小董.综论建筑设计与结构设计的关系问题[U].四川建材,2007

[2]王立新,王立轩.浅谈建筑设计与结构之间的关系[J].中华民居,2010,(12):31-31.

篇10

1.转运站的梁柱截面设计

煤码头转运站的梁柱截面设计要考虑到其受力的承载度,结合通过分析受力,总结下梁柱截面设计要注意的一些事项。

(1)主要依据转运站层高较高、柱间距较大、荷载较大的特点,通常在梁柱截面设计上要采用钢结构框架作为承重结构,通过设置人字形支撑或十字交叉来抵抗水平荷载,这样才能配合转运站的楼面和外墙的结构设计,提高转运站的承载能力。

(2)转运站梁柱截面荷载极为复杂,除设备荷载外,也会受到部分工艺的限制,特别是局部需承上部7条输煤皮带张力,输煤皮带进出使皮带走向与转运站存在较大夹角,底层只能采取抽柱处理造成不规则柱网,并且限制了梁柱间支撑的设置,致使结构较为复杂。

(3)同时煤码头处的风力很大,在受力分析和结构计算时发现结构扭矩和上部位移过大,也给转运站梁柱截面增加了一定的荷载量。如果梁柱采用普通钢结构,其受力能力将会降低,若要保证满足规范要求,则钢柱断面增大较多,这样会使梁柱使用的钢材材料过度,会给转运站的工程量加大,同时还会造成巨大的财力和物力的浪费。经济实惠也是转运站梁柱界面设计的关键。

2.转运站荷载分析及组合

煤码头转运站主要承载的重量包括设备的子重量和工作荷载量,其中工作的荷载量是转运站受力的重点。这种荷载量主要体现在转运站设备的水平拉力的承受能力上,对结构效应的影响力很大。从运煤皮带机设备来看,通常皮带机在工作时的水平拉力主要分为两种,一种是正常工作时的稳定拉力,另一种是障停车后满载启动的瞬间拉力,其中瞬间拉力远远大于皮带机工作时的稳定拉力。根据转运站受力特点进行荷载组合的如下分析:2.1 皮带机本身具有可变荷载

皮带机设备本身是在工作状态是受水平拉力(V1)的,这一拉力属于皮带机设备的可变荷载。如果皮带机出现事故会产生瞬间拉力(V2),这种事故几率较低,可以把这种瞬间拉力称之为偶然荷载,V2受到的地震作用效应可以不予考虑。

2.2 转运机设备结构不同荷载量不同

转运站设备的水平荷载同设备的连接位置和设备工作的时间不同有关系,如转运站连接了多条输送线路,其水平荷载量会根据位置的平面及竖向不同而不同;当不同输送线路的工作运作的时间不同的时候,也会使设备的水平荷载量产生不同的效果,不同组合的荷载对转运站设备结构的设计也会产生不同效应。

2.3 转运机设备特性影响荷载量大小

当转运机的设备相同,当皮带机的机头和机尾处于工作状态时,其对转运机的设备会产生一定的拉、压荷载,如果皮带机停止工作时,其荷载量也会相应的消失。为此,对荷载分析主要看转运机设备同时段运作时产生的荷载量,要根据设备的特性而定。

2.4 荷载设计要保持在基本风压以下

转运站设备中具有基本风压,这种风压通常要大于设备工作风速。为此,在转运站设备设计上就要考虑要在基本风压下的风荷载,在布置荷载上可以利用满载停车时的荷载为基础,因为这种情况下的荷载几乎可以近乎于无动力和冲击系数,便于计算设计更为精确。

2.5 转运站检修区只考虑人行荷载

转运站设备要经过定期的检查和维修,在维修期也会有一定的荷载量,除了一些荷载量是巡视工作人员随带工具产生的,其他的就是发生在设备未安装或停机状态的荷载量。所以,对于设备安装的荷载就可以不用可虑设备自重及工作时的荷载,设备检修及维护荷载不应与设备工作时的荷载进行组合,只是考虑到人行荷载即可。

2.6 转运站活荷载跟地震作用有关

转运站活荷载主要体现在设备正常工作状态下的水平拉力和埋件上的设备活荷载,计算无地震作用时,1.0是转运站活荷载的组合值系数,等效均布荷载代表着楼面检修荷载;计算地震作用时,0.5是转运站活荷载的组合值系数,悬挂吊重在计算地震作用时的组合值系数应取0。

3.振动荷载的分析与控制

在煤码头转运站结构设计上也要考虑对振动荷载的分析,如振动筛、破碎机、皮带机等设备需置于转运站楼层上,处于工作状态时就会给转运站带来不同的交变荷载。如果一旦这种振动效应较大,则会对转运站结构带来影响,还会影响到建筑的安全。为此,抗振设计也是煤码头转运站结构设计的关键。

转运站的结构振动主要跟震源、结构类型、阻尼等有关,对于担水平及垂直运输设备荷载的转运站,具有很大的结构阻尼,其振动的效应较大,这种荷载仅仅和静力荷载一样,不会给转运站结构带来危害,但是转运站设有振动较大的振动筛、破碎机设备,在工作状态下将产生较大的交变荷载,则会对转运站结构产生一定的影响。

4.转运站结构设计水平及抗侧力结构体系的构建

煤码头转运站在煤炭运输上具有重要作用,根据实际需求,其结构设计上层数更高,柱间距较大、荷载较大,所以加强高层转运站结构安全性是设计的关键,主要注重水平及竖向抗侧力结构体系的构建。

在转运站结构设计前,要对结构的振动反应进行准确的估计,要采取抗震构造措施做以细致处理。对转运站的楼面开孔应满足工艺要求,把设备吊装孔尽量错开布置设备安装孔,楼层的布置上要竟可能的减少平面凸角尺寸,合理调整楼层布局。

对钢结构转运站,当设备产生的水平荷载较大时,尽可能对称布置抗侧力结构。如果是承担设备水平荷载的钢结构转运站楼层,就可设置水平传力系统,加强转运站的支持能力,可以浇钢筋混凝土楼面或设置楼面水平桁架支撑等。

煤码头为煤炭的运输提供了更多的便捷,还缓解了西南和南部内陆城市能源紧张问题。通过以上对煤码头转运站设计的重点分析,可见荷载分析是设计转运站的关键,也是保证转运站安全的关键。

参考文献:

[1]夏文远.某煤粉输送转运站结构改造加固设计[J],《江苏建材》,2009. (03):17-18.[2]陈义红,莫宏武,胡崇华.力系转换在罗泾煤码头T1转运站改造中的应用[J],《中国西部科技》,2007;(20):22-23.

[3]姜袁,王乾峰.影响混凝土构件可靠度的因素及相关性分析[A],湖北省机械工程学会青年分会2006年年会暨第2届机械学院院长会议论文集(上)[C],2006.8-9.[4] 张永胜,李雁英.预应力混凝土深受弯构件的裂缝实验研究[A],第16届全国结构工程学术会议论文集(第Ⅱ册)[C],2007. 57-58.

篇11

Key words: steel structure housing;structure;lateral force resisting performance;industrialization development

中图分类号:TU391 文献标识码:A 文章编号:1006-4311(2012)34-0130-02

0 引言

钢结构住宅以其“环保、节能、工业化”和“绿色建筑”等特征成为了二十一世纪住宅建筑业的主导方向之一。我国对钢结构住宅技术的应用和发展也提出了更明确的要求,为此,建立系统的理论研究和发展规划对钢结构住宅体系产业化的迅猛发展起着至关重要的作用。

1 国内外钢结构住宅研究现状

现代钢结构房屋建筑体系诞生于20世纪初,在一些发达国家的发展己有上百年的历史,工业化生产和预制装配程度较高。世界各国逐步形成自己独特的钢结构住宅体系I1]。自1960年以来,美国就开始发展冷成型钢结构建筑[2]。20世纪80年代,1984年TarpyTS对螺栓连接的冷成型构件墙体的抗剪性能进行了研究[3]。1982年wolfeR.w对有石膏板填充的冷成型钢构件墙的极限承载力进行了研究[4]。1999年GadE.F研究了冷成型钢结构住宅中单片墙体以及整体结构在地震荷载下的性能[5]。而我国的钢结构住宅发展较晚,与发达国家相比,国内建筑钢结构行业仍是一个朝阳产业,新材料、新技术、新结构体系、新应用领域不断出现。要加快建设钢结构行业的发展,对现有建筑钢结构设计规范的更新、完善或补充,以及对新的结构体系和新的应用领域的建筑钢结构设计规范的编制工作显得非常紧急。

2 钢结构住宅的技术性分析

2.1 钢结构住宅主体结构体系比较 钢结构住宅技术体系并不是简单的用钢材替代混凝土和砌体作为支承结构,而是以钢结构为主体结构,另外还包括围护结构、钢结构防火、钢结构防腐及建筑设备的一个综合技术体系。钢结构住宅主体结构体系一般有以下形式:①纯钢框架体系;②冷弯C型钢龙骨体系及热轧型钢龙骨体系;③钢框架支撑体系;④钢框架-剪力墙系;⑤钢框架-混凝土组合结构体系;⑥错列桁架体系。上述各类结构形式综合比较如表1所示。

在这几种结构体系中,前两种结构体系主要用于低层钢结构住宅,其他可适用于多高层钢结构住宅。而且从表中可以看出钢结构住宅的共同缺点为抗侧力性能比较差。为进一步推进钢结构住宅结构体系在国内建筑的应用,对于该结构体系尚需进行深入的研究。

2.2 提高钢结构住宅的抗侧力性能方法 轻钢结构住宅的结构体系与传统砖混结构或混凝土结构住宅体系有很大的不同,它主要由轻钢结构体系、楼面结构体系和围护结构体系等组成。而轻钢龙骨体系是一种新型的结构形式相对于其它结构形式的轻钢结构住宅,轻钢龙骨体系的研究和应用更不成熟、不完善,更需要加强研究力度。关于低层轻钢龙骨住宅的试验和理论研究主要集中研究复合墙体的抗侧力性能的研究,2008年武汉理工大学高景辉对轻钢龙骨墙体的破坏模式做了分析,得出自攻螺栓连接破坏时一种主要因素,通过有限元参数分析发现,影响轻钢龙骨复合墙体抗剪性能的最关键因素是自攻螺栓的数量,其次是墙体的尺寸、支撑。2010年浙江工业大学郎晟颉在静力分析的基础上研究了复合墙体的滞回性能与抗震性能,得出了随着墙板厚度的增加,墙体抗侧承载力随着墙板材料不同有不同程度的提高,导轨与墙板的间距对墙体抗侧性能影响最大。同年武汉理工大学张翠萍对三种不同支撑的轻钢龙骨墙体:轻钢龙骨刚架体系、轻钢龙骨刚架支撑体系、轻钢龙骨刚架端支撑体系,进行了抗侧力性能分析,得出带支撑的墙体的抗侧极限承载力能满足带蒙皮的组合墙体的抗侧力性能的研究。

3 钢结构住宅的产业化发展

钢结构住宅有着重量轻、抗震性能好、施工周期短、工业化程度高、环保效果好等特点,作为未来住宅的发展方向,人们正在逐渐关注它、接受它。目前的问题是,我国建筑钢材消费严重偏低,且绝对量相差非常之大。如何加大建筑业中各类钢结构建筑的使用比例,大力推进建筑钢结构产业的快速发展,提高建筑用钢在国家总钢材产量中的份额,将是摆在在我们面前的重要课题。由于市场经济尚不完善,建筑钢结构产业的发展过于迅猛,长期以来自发形成的我国建筑钢结构产业链配置存在较严重的问题,而改变这种现状更加需要推进技术创新和成套技术集成体系的应用,使科技转化为实际生产力,促进住宅产业化的发展。如果我们能实现钢结构住宅的产业化生产,住宅建设及相关产业的劳动生产率将大大提高,其具有的广泛的社会、经济效益会更加明显地展现在社会经济的各领域,并被市场认可和接受。而进行产业化发展的关键是影响钢结构住宅经济性的主要因素,如施工技术及施工组织设计的选择;钢材的选用;结构体系设计,围护及其它配套体系的发展及产品更新;钢结构的防火、防腐处理;原材料价格,尤其是钢材价格的上下波动;部品部件的产业化、社会化水平、标准化生产;部品部件的设计、制造、安装等等。针对影响钢结构住宅成本的主要因素,从成本控制的角度对供应链管理、产业化、标准化、企业管理等理论,通过加强钢结构住宅领域的供应链管理,部品部件的生产社会化,住宅区的产业化运作,及公司管理理念的创新、提高管理水平,国家政策等一系列措施,寻求钢结构住宅的成本控制的对策,增强钢结构住宅与传统混凝土住宅的竞争优势,从而改善钢结构住宅面临的建造成本较高、市场份额小、

社会对钢结构住宅的认识程度不够等现状,吸引更多的社会主体参与到钢结构住宅建设领域中,来促进钢结构住宅的基本建设、应用与推广。

参考文献:

[1]周涛.钢结构住宅技术体系及其建筑设计研究以多层、小高层住宅为例[D].北京建筑工程学院,硕士论文,2004.

[2]Yuwei.wen.Cold—formedsteeldesign[M].Newyork: Wiley,1985.

篇12

一、钢结构中空间网架结构的应用现状

近年来,国内大型钢结构工程建设项目越来越多,各种形式的空间结构已向超大跨度结构发展,其中空间网架结构应用的非常广泛。例如天津体育中心,双层球面网壳,焊接球节点;国家大剧院外部围护结构为钢结构网壳,深圳机场候机大厅,济南长途汽车总站客运楼,天津自然博物馆……一些已建或正在建的钢结构工程,以其创新的理念、新颖的造型和独特的结构形式成为了标志性建筑。

二、空间网架结构的结构形式

(一)刚性结构体系

1.网架

网架结构是目前空间结构中发展最快,应用最为广泛的结构形式,按其结构组成划分为交叉桁架系、四角锥体系和三角锥体系三大类。特点是空间刚度大,整体性好,有良好的抗震性能,而且构造简单、施工方便,杆件规格统一(上、下弦杆等长,腹杆等长)。

2.网壳

网壳结构的应用比较广泛,曲面形状多样,有柱面网壳、球面网壳以及其他各类复杂曲面及其组合。网壳结构是主要优点是它的灵活性能够适应建筑设计的创造性,但由于网壳结构主要承受的是压力,那么它就存在稳定问题。当跨度超过一定值后,材料的强度不能充分利用,不经济。

(二)柔性结构体系

1.悬索结构

悬索结构是由高强拉索组成的张力结构,国内较早建成的是天津大学体育馆。按其组成方法和受力特点可分为单层悬索结构,双层悬索结构和索网结构。讨论悬索结构关键问题是结构在风与地震作用下的动力反应。

2.膜结构

膜结构可分为充气式膜结构和张力式膜结构两种。膜结构具有自重轻、造型美观、富有时代气息、能源消耗少、施工速度快、经济效益明显、使用安全可靠、以及使用范围广等优点,主要应用于大型体育设施,娱乐中心,超级商场等。但是,我国目前膜结构还没有广泛使用,主要原因是:国产膜材性能差,进口膜材价格高;膜结构的计算机辅助设计系统的开发滞后;缺乏相应的设计施工规程。

3.张拉整体结构

张拉结构是由一组不连续的受压构件与一套连续的受拉单元组成的自支承、自平衡的空间网格结构。这种结构体系的刚度由受拉索和受压单元之间的平衡预应力提供,在施加预应力之前,结构几乎没有刚度,并且初预应力的值对结构的外形和结构刚度的大小起着决定性作用。

(三)杂交结构体系

杂交结构既可以是刚性结构体系间的组合,也可以是柔性结构体系与刚性结构体系的组合。如斜拉网架,悬挂网架,拱支网架,弦支结构等。杂交结构可以发挥不同类型结构的优点,如:由于拱的作用,整体网壳被划分成若干小的区段,使得网壳的整体稳定性转化为局部区段的稳定性问题,部分杆件或区段的局部失稳不会波及整个结构。所以,杂交结构可以更经济,更合理地跨越大空间。

(四)折叠结构

折叠结构是一种用时展开,不用时收起的结构,类似于雨伞、遮阳伞。可分为附加支撑折叠结构和自稳定折叠结构。这种结构在各个领域都有应用,如:生活中中施工棚、集市大棚、临时住宅等;军事上的战地指挥、战地救护等;航空上:太阳帆、可展式天线等。它的主要特点是造型新颖、质量轻、携带方便、便于保管和运输且可重复使用,在各个领域有广泛的应用前景。

(五)开合结构

在很短时间内移动开合部分或全部屋盖,是的建筑物在屋顶开启和关闭的两种状态下都可以使用。开合时间大概是20~25min,开合方式有水平移动、水平旋转、空间移动及其组合。开合结构与体育事业的发展密切相关:在比较恶劣的环境条件下保护观众和运动员,实现了能在预定时间内进行预定比赛的目的,例如为2008年北京奥运会兴建的国家体育场“鸟巢”, 平面形式为椭圆形,长轴340m短轴292m。屋盖中间有一个146m×76m的开口,这部分将设计成开合屋盖。结构形式为空间刚架绕着内环旋转而成。

(六)玻璃结构

玻璃结构的材料:浮法玻璃、钢化玻璃及淬火玻璃。点式玻璃幕墙是一种新型的玻璃结构,省去了支撑框架,代以拉索、桁架及钢爪,玻璃的通透性大大增强,结构的抗风和抗震性能也好于普通的玻璃幕墙。

三、空间网架结构的优缺点

空间网架结构在体育建筑,机场建筑,车站建筑,宾馆、会堂及展览馆,工业厂房及小品建筑上都有广泛的应用。各类结构形式有其各自的优缺点,它们共同的主要优点是受力合理,可以跨越较大的跨度,结构组成灵活,有规律,计算机辅助设计比较成熟,加工制作机械化程度高。缺点是节点用钢量较大,加工费较高,单层网壳属缺陷敏感性结构,计算分析较为复杂。

四、总结

空间网架结构以其明显的优势,在我国各个领域快速发展起来。这就要求我们要熟练掌握这些结构的设计与应用。在结构设计当中,结构选型是概念设计当中至关重要的一步,选择正确的结构形式可以有效地降低建筑的造价、提升结构的可靠性,改善建筑的使用体验。文中所提到的基本包含目前钢结构中一般空间网架结构的结构形式,对于较为复杂的大跨度建筑以及地质条件极端恶劣的施工地区,还需单独针对现实情况进行讨论,选择非常规的结构形式来满足建筑的功能需求和安全性要求。

参考文献:

[1] 钢结构设计手册编写组.钢结构设计手册(第三版)[M].北京:中国建筑工业出版社,2003

[2] 沈祖炎,陈杨骥.网架与网壳[M].上海:同济大学出版社,1997

[3] 高立人(译).空间网格结构[M].北京:中国建筑工业出版社,2004

[4] 杨庆山.张拉索――膜结构分析与设计[M].北京:科学出版社,2004

[5] 张其林.索和膜结构[M].上海:同济大学出版社,2002

[6] 沈世钊.悬索结构设计[M]. 北京:中国建筑工业出版社,1997

篇13

摘要:

针对行业的发展和当前钢结构建筑市场对钢结构人才的需求,分析了一般本科院校钢结构教学中存在的问题,对课程、课程设计、毕业设计和第二课堂的内容进行了全面分析与研究,构建并实施与理论教学密切配合的实践教学,将实践能力、创新精神和工程素质的培养寓于教育教学全过程,形成了第一课堂和第二课堂的互动效应。

关键词:钢结构;第一课堂;第二课堂;教学改革

中图分类号:TU391-4 文献标志码:A 文章编号:

1005-2909(2012)01-0066-03

近年来由于国家技术政策的扶持,建筑技术不断进步,建筑用钢量日益增长,钢结构在土木建筑领域的应用日益广泛,使钢结构课程在土木工程专业中的重要性不断增强,对钢结构课程的教学及人才培养也提出了更高的要求。

一、钢结构行业现状和人才需求

2005年中国的钢材产量达到37 117万t(现已达6亿t以上),已跃居世界首位。钢结构具有工业化程度高、施工周期短、造型优美、可回收循环利用、综合性能优越等诸多优点,因此,其在建筑行业中的作用日趋重要。随着钢结构经济指标的不断优化,中国钢结构应用政策在建国60年来发生了很大变化,20世纪50年代“节约用钢”,80年代“合理用钢”,90年代“提倡用钢”,2000年中国建筑金属结构协会建筑钢结构会议发出了《关于推行钢结构住宅的倡议书》。政府的支持使钢结构得到了快速发展,推广应用面进一步扩大,上海、浙江、江苏地区钢结构加工量约占全国钢结构加工量的1/3以上[1]。

随着钢结构的快速发展,出现了与行业发展不适应的人才短缺问题,企业亟需大批钢结构设计和施工的专门人才。目前国内钢结构作为一个专业研究方向仅在研究生层次有所涉及,本科层次人才培养近两年来刚刚在浙江树人大学[2]和内蒙古科技大学等少数几所高校中起步,绝大多数本科院校还没有从以钢结构设计应用为主的钢筋混凝土结构领域转到钢结构领域。

二、钢结构人才培养现状

据统计,在大多数一般本科院校钢结构只是土建类专业的一门课程,学生在4年学习中,接触到的有关钢结构课程少则50~60学时,最多不超过100学时。这些课程主要讲授钢结构的基本计算原理,实践性环节仅仅是一周的课程设计,

中间没有安排任何实践性教学环节,因此,学生在学习过程中没有机会接触到实际的钢结构建筑物,也不知道如何进行钢结构制作。学生如果没有很好的空间想像能力则很难把图纸所表达的意义和实际的建筑产品对应起来,因而也不能把自己的设计思想在设计图纸上表达清楚。

虽然各个学校都安排了学生的生产实习,但根据各校生产实习的基本情况来看,在生产实习中学生还是以混凝土结构的工程为主,几乎就没有接触到钢结构工程。

从学生的毕业设计选题来看,绝大部分学生都选择了混凝土结构的毕业设计题目,仅有少数学生选择了钢结构的设计,这就让有志于从事钢结构建筑的学生失去了上岗之前最后的锻炼机会。学生得不到良好的系统性和整体性训练,工程整体观模糊,不符合钢结构产业一体化综合发展的市场需要。因此,土木工程专业学生毕业后即使在钢结构领域从业,也远不能胜任岗位工作。

一方面是钢结构专业技术人员严重缺乏,企业求贤若渴,另一方面是相对不景气的就业市场,高校应该看到和抓住这个良好的契机,对钢结构课程教学进行改革,培养出具有良好钢结构专业素质、为企业所欢迎的合格人才。

三、教学改革探索与实践

首先,充分运用现代教育技术手段,建设以纸质教材为核心,以电子教案、多媒体辅助课件、网络课程等BB电子教育平台为支持的立体化教学资源库。课堂上集中突出基本概念、基本理论和主要技术要点的讲解和讨论,在有限的课内学时中加大知识传授容量,用启发学生思考的模式代替被动接受教学内容的模式。课堂外,学生可以在任何时间、任何地点,通过网络进行自主学习、交流讨论,实现教学模式拓展。

其次,积极探索课程和设计内容的改革与融合,以便形成课程、课程设计、毕业设计的紧密衔接,以培养和提高学生的综合素质和整体工程意识。具体措施体现为以下三点。

第一,将钢结构课程与钢结构课程设计相结合。

钢结构课程的目标是在学习理论力学、材料力学、结构力学等课程的基础上,学习和掌握有关钢材的力学特性、钢构件、连接和钢结构体系的分析计算与设计的基本概念、基本原理和基本方法。课程设计是将课程基本理念转化为课程实践活动的“桥梁”。在课程教学期间,将课程设计计算部分作为课程大作业提前布置[3],有利于课程设计任务的分解,有利于学生的“学”和教师的“教”,学生可以带着问题去思考、学习,明确设计任务和设计思想,注重课程学习与课程设计的有机结合。

第二,将钢结构课程设计与钢结构毕业设计相结合。

钢结构课程设计是钢结构课程的实践教学环节,通过课程设计,可加深学生对基本构件构造及连接的理解,使学生能够熟练掌握钢结构基本构件的设计计算原理和方法,熟悉钢结构的设计过程,了解钢结构的构造要求,培养和提高学生的综合设计能力。在原有传统屋架设计与现代轻型门式刚架厂房设计相结合的基础上,可进一步拓展课程设计内容,实施双向选择,学生可以自主选题,也可以分工合作共同完成一个较大的设计题目。学院亦积极为学生搭建最全面的灵活的学习平台,培养其创新精神和团队意识。

但由于时间的限制,课程设计的广度和深度还比较欠缺,系统训练还不够,因此,在毕业设计教学环节尽可能安排一些有关钢结构研究和设计选题供学生选择,进一步拓展,打破设计题目单一的状况,使部分学生通过毕业设计阶段的学习获得更全面、更扎实的钢结构知识和应用技能。毕业设计阶段共安排16周时间,其中安排1周时间,结合指导教师的专业特点,引导学生关注钢结构的发展现状,促使其检索科学论文或进行调研。学生在毕业设计期间带着问题思考,最终以文献综述或开题报告的形式提交。毕业实习安排1周时间,由指导教师带队,在钢结构工地、钢构件加工厂实习,亦可聘请设计和施工单位的专家来校开展专题讲座。其余14周,指导教师按计划布置工作,每周都要辅导学生,密切关注

设计中的每一个环节和整个进度,既不包办代替,也不放任自流。教师还要注意调动学生的积极性,充分发挥其主动性、创造性。

第三,课程、结构设计竞赛与大学生创新项目的“三结合”,培养创新精神和实践能力。

针对钢结构课程的特点,遵循工程类课程的学习规律,首先建立学生对钢结构的感性认识,通过结构设计竞赛与大学生创新项目,将课程教学的结构设计内容、综合方案、计算、制作、试验等有机结合,激发学生学习兴趣,提高教学效果,以培养和提高学生的综合素质和整体工程意识,形成第一课堂(课程、课程设计、毕业设计)和第二课堂(结构设计竞赛与大学生创新项目)的互动效应,如图1所示。

四、结语

在培养方案中教学总学时未增加的前提下,钢结构课程改革的教学效果已初见成效。

以BB电子教育平台支持的立体化教学资源库包括通知、申报与检查、课程简介、课程规划、师资队伍、课程教学录像、教学大纲、授课教案、课程课件、参考资料、作业及习题集、教研活动、课程设计与毕业设计、结构竞赛与SRT、小组交流、讨论板、外部链接、同行评价和测试区。注册用户503个、参与用户457个,讨论板发帖1 368个、测试区在线测试题9套。通过多媒体教学(BB系统),引入工程实例、部分动画和模型,增强学生感性认识和理性思考,效果比较理想,再结合富有成效的传统教学方法,教学效果显著。学院钢结构网络课程荣获第七届浙江省高校教师教学软件评比三等奖,钢结构课程被评为浙江省高等学校精品课程。

在课程教学期间,将课程设计计算部分作为课程大作业提前布置,使学生明确设计任务和设计思想,注重课程学习与课程设计的有机结合,基本解决了课程设计教学量大与学生精力投人不足之间的矛盾,有利于师生的交流与沟通,课程设计质量明显提高。在此基础上,结合就业和毕业设计,进一步拓展,使部分学生通过毕业设计阶段的学习获得更全面、更扎实的钢结构知识和应用技能,培养工程能力。从用人单位反馈的信息来看,做过钢结构毕业设计的学生,普遍得到好评,已成为技术骨干。

课程、结构设计竞赛与大学生创新项目的“三结合”已建立,嘉兴学院“江南钢构杯”结构设计竞赛已成功举办了六届,大赛展示了学生的创新能力,提升了学生的实践动手能力,体现了团队合作精神。从2005年开始,作为教学实践检验,每年组织学生参加“浙江省大学生结构设计竞赛”均获奖项。此外,近年来土木工程专业学生已完成钢结构校内SRT项目10项、浙江省大学生科技创新项目2项,在研浙江省大学生科技创新项目3项。

参考文献:

[1] 陈禄如.我国钢结构行业发展的现状、趋势和存在的问题[J].建筑,2008(4):57-59.

[2] 邢丽,姚谏,陈新民,金小群.校企合作培养钢结构应用型人才的探索[J].中国大学教学,2010(9):23-24.

[3] 孙德发,李刚,刘俊英.关于提高钢结构课程设计教学质量的教改实践[J].嘉兴学院学报,2008(5):139-141.

Research and practices of teaching reform of steel structure course

SUN De-fa, LIU Jun-ying, NIU Zhi-rong, LI Gang

(Institute of Structural Engineering, Jiaxing University, Jiaxing 314001, Zhejiang province, P. R. China)