引论:我们为您整理了13篇智能控制技术论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
篇1
广东省的电力工业已经步入了大电网、高电压和大机组时代。随着整个电网变得越来越复杂,电网规划中以往那种人为臆断和局部最优的规划方式会给电网运行、发展带来隐患,资金盲目使用的可能性加大。结合目前理论的发展,我们认为电网规划是一个受到多种条件约束的、以电网总效益为最终目标的多目标的系统工程。对于这样一个系统,我们认为适宜以控制论为基础,结合信息论、运筹学和系统工程等理论来研究。
从控制论角度来看,电网是一个巨维数的典型动态大系统,它具有强非线性、时变且参数不确切可知、含大量未建模动态部分的特征。另外,电力网络地域分布广阔,大部分元件具有延迟、磁滞、饱和等复杂的物理特性,对这样的系统实现有效决策控制是极为困难的。另一方面,由于公众对新建高压线路的不满日益增强,线路造价,特别是走廊使用权的费用日益昂贵,以及电力网的不断增大,使得人们对电力网络的决策控制提出了越来越高的要求。正是由于电网具有这样的特征,一些先进的控制论思想和技术被不断地引入到电网中来。下面将阐明综合智能控制技术引入电网规划中的必要性和可行性。
1综合智能控制技术
1.1智能控制的概念
迄今为止,智能控制尚无统一的概念,文献[1]有如下归纳:
a)最早提出智能控制概念当推傅京孙教授,他通过对人-机控制器和机器人方面的研究,将智能控制概括为自动控制和人工智能的结合。他认为在低层次控制中用常规的基本控制器,而在高层次的智能决策,应具有拟人化功能。
b)Saridis在傅京孙工作的基础上,提出了三元结构的智能控制理论体系,他认为仅有二元结合无助于智能控制的有效和成功应用,必须引入运筹学,使其成为三元结合,并提出了其递阶智能控制的理论框架。
c)国内蔡自兴教授在研究了上述理论结构以后,从系统的整体性和目的性出发,于1986年提出了四元结构价格体系,将智能控制概括为控制理论、人工智能、运筹学和系统理论4学科交叉。
总之,智能控制是多学科知识的结合,除了从控制论出发来研究它,还可以从信息论、生物学以及社会科学角度来讨论和研究。
1.2综合智能控制技术
综合智能控制一方面包含了智能控制与传统方法的结合,如模糊变结构控制,自适应模糊控制,自适应神经网络控制,神经网络变结构控制等;另一方面包含了各种智能控制方法之间的交叉综合,如专家模糊控制,模糊神经网络控制,专家神经网络控制等。
2一个国外的电网规划专家系统
目前为止,在电网规划方面较成功的综合智能控制技术系统不是很多,其中比较好的有加拿大魁北克水电公司(Hydro-Quebec)的“直流/交流输电网络设计专家系统”。
在80年代末期,随着人员的退休和长期不用,一些60年代和70年代加拿大电网高速发展时期由工程师们获得的大量有关电力系统规划设计的专门知识逐渐被人遗忘,这引起了加拿大电力部门的关注,魁北克水电公司将专家系统技术看成是表达和保存某些目前在人类专家头脑中的专门经验和知识的潜在方法。他们认为在电力系统规划设计领域里,专门知识的损失非常明显,尤其是在电力系统增长缓慢的时期。这些专门知识来自于各门学科,在多层次的电力系统设计决策过程中起着重要的作用。一些选择决策,如发电类型、发电厂位置、输电类型(交流/直流)、电压等级、输电线路的数量型号和补偿设备的数量型号的选择必须根据一些准则仔细权衡,包括可靠性、稳定性、稳态性能、费用和环境状况的准则等。基于此,魁北克水电公司的专家们开发了一个用于输电网络初步设计的专家系统,该专家系统具有以下特点。
2.1目标和预期效益
主要目的是研究使用专家系统(ES)来模仿人类专家在AC/DC输电网络初步设计中的行为的可能性。系统地确定和表达进行一项合格设计所必须的知识,包括符号和数字数据,以及指导该项设计的原理、规则、准则折衷方法和数学模型。合格的设计基于费用、环境状况、稳定性、可靠性和设计灵敏度或鲁棒性等准则。ES原型还应指导用户通过完成设计所需的各步骤,使用户与知识库交互作用,并提供达到每一中间步骤后相应推理路径的解释。预期的主要效益是:
a)专家知识能够保留和传授给未来的工程师;
b)知识可以用更加具体的形式加以表达,而不是一些不明确的、没有根据的判断;
c)将获得得更一致的结果;
d)与人类专家相比,ES可以检查、比较更多的方案,得到更经济的设计;
e)借助于推理解释功能,ES可以作为未来专家的教学和训练工具;
f)作为一种“咨询”手段或者一个对已有设计进行评价和改进的工具,ES对专家将很有帮助;
g)ES将充当进行各种电力系统设备设计的专家系统家族的先驱,作为一种模型,从中抽取更加一般的设计方法论;
h)ES起到收集常常分散在整个设计机构中的知识的作用。
2.2领域专家和知识工程师的交互作用
知识工程师应当具有电力系统分析和设计领域以及人工智能(AI)领域的经验,已经证明两种知识的混合对于从领域专家处抽取和浓缩专家知识非常有效。专家知识来自于电力系统规划工程师,他们具有多年的规划、设计和调试大型工程项目的经验。
2.3对设计的评价因素一个候选的设计必须满足下述条件:
a)DC系统最小故障恢复特性;
b)容许的无线电和谐波干扰要求;
c)故障后的最小稳定判据;
d)稳定电压和无功电源的极限;
e)甩负荷后的暂态过电压极限;
f)可靠性所要求的最小设备冗余度;
g)必须对输入数据变化不敏感(鲁棒性);
h)必须满足某一最大费用要求;
i)必须适合现有技术。
魁北克水电公司的“直流/交流输电网络网络设计专家系统”已经成功地应用了近十年,并在不断地发展、完善。随着模糊技术和人工神经网络等的迅速发展,综合智能控制技术在电网规划中的应用前景愈来愈广阔。
3电网规划决策系统的分解及协调
电网的建设是资金和技术密集型的工程,线路和设备的经济使用寿命长达数十年之久,所以网络的结构合理与否,对电网的技术性能和经济效益将产生长期的影响。一次规划失误的损失,若干年难以挽回。随着广东省电网的不断发展,如何合理地布局电网已是当前电网乃至整个电力工业发展的重要课题之一。
电网规划需要确定的决策是大量的,而这些决策在时间和空间上是相互影响的。目前,限于各方面条件,无法将其统一在一个模型中考虑。只能将其分解成相对简单的子问题,再通过子问题间的迭代进行协调。按照问题划分,电网规划可分为:负荷预测,网架规划,无功规划,稳定性分析,短路电流分析。
4结束语
电网负担着将电源与用户连接起来的任务。此外为了得到最大的供电可靠性和经济性,它还担负着与邻近地区电力系统联系起来的任务。由于电网设备投资需求大,并且设备寿命长达数十年,从而导致电力系统强烈地受“过去权重”的制约,因此,寻求最佳的电网投资决策以保证整个电力系统的长期优化发展,是电网规划所要达到的目标。
结合本文的论述可以看出,电网这一巨维数的典型动态大系数,具有强非线性、时变且参数不确切可知、含大量未建模动态部分的特征,而我们所要达到的控制效果是一种多目标、滚动优化的动态非量化指标(电网的工程效益),在这个过程中知识的表示和处理占了较大的比重。这样就需要利用综合智能控制技术去有效地组织有关电网规划的大量知识,进行选优运算,得到优化的决策。目前广东省电力工业局联合华南理工大学电力学院共同开展了“电网规划专家决策系统”的有关理论研究工作,并有望在2000年开发一个有效的基于综合智能控制技术的电网规划决策系统,它的使用将对广东省电网的建设起到积极的促进作用。
参考文献
篇2
1智能化技术的主要理论基础分析
在二十世纪五十年代人工智能就已经问世,通过几十年的不断研究与探索,智能化技术也被广泛的运用起来,在人们生活当中、工作当中都被人工智能化产品所占据,它们能够像人类一样有感应,能行动和思索,因其自身拥有高精度、高效率以及高协调性的特点,已经远超传统的控制技术,当前随着计算机的快速发展,能够有效的实现运用人的思维能力去模拟到机器人身上,在运用计算机编程语言技术,普及增加智能化模拟的可实施性,进而实现科技的快速发展。
2在电气工程自动化控制中应用智能化技术的主要意义
2.1能够对自动化控制模型进行简化
在电气工程自动化控制工作中,主要就是通过建立模型来实现的,但是因此模型相对比较复杂繁琐。例如,建立的模型与实际情况出现不符的情况或实际操作中出现与模型不统一的情况,对于这些问题来说一般情况下多以电气工程自身调节能力来进行处理,但在实际操作中,还是会出现一些无法预测和估计的问题,影响着电气工程自动化控制的正常运作。而在电气工程自动化控制中应用智能技术,能够在一定程度上去防止类似突发事件的发生,从而提升电气工程自动化控制工作的准确度。
2.2能够实现电气工程自动化控制的一致
电气工程自动化控制主要是以建立模型来实现的,而应用智能化技术在电气工程自动化控制中,能够避免模型复杂的问题,进而保障其控制工作的顺利完成,利用控制电气工程中的有关设备与数据,让电气工程自动化控制变得更加一致化,不仅能够提升电气工程自动化工作效率,还能改进电气工程自动化的整体服务质量。
2.3对电气工程系统控制水平进行提升
在电气工程系统控制中应用智能化技术,能够有效提升其控制水平,不仅能够控制电气工程自动化程序设备中的相应系统数据,并且还能对电气工程自动化安全隐患进行警戒,在一定的情况下避免自动化控制中出现不必要的问题,提升电气工程系统控制水平,为电气工程领域发展提供有利条件。
3在电气工程自动化控制中智能化技术的主要应用
3.1对电气工程自动化控制中的病因进行合理诊断
对电气工程系统进行病因诊断时,对于传统的诊断形式来说,是相对比较复杂且繁琐的,不仅仅对工作人员有着很高的要求,还无法对其病因进行精准的诊断,导致电气工程自动化控制中会出现一些无法避免数据问题等。而职能化技术则能够利用自身优势,对其病因进行有效的诊断,还能因其问题提出合理的解决策略,不仅能够有效找出病因,还能更好的提升其工作效率,因此电气工程自动化控制中要有效利用智能化技术,在对其设备进行情况的诊断,从而避免相关问题对工作的影响,更好的促进电气工程自动化控制工作有效进行。
3.2对电气工程的设计形式进行优化
在传统的电气工程的设计中,主要是通过工作人员进行反复实验和改良才能够完成,而在工作人员不能全面的考虑到实际情况时,就会出现一些复杂的问题影响正常工作,并且这些问题也不能得到及时的解决,而且在对电气工程进行设计时,对工作人员的要求也是非常高的,不仅要运用良好的设计知识和专业知识,也要拥有一定的综合能力,才能刚好的将该工作完成。而对于智能化技术来说,运用在电气工程自动化中,设计人员可以利用计算机网络或相关软件,对电气工程自动化控制的进行设计,这样不仅仅能够提升设计所用数据的准确性,还能够对设计的样式进行丰富,能够更好的解决数据问题,从而保证电气工程自动化控制工作的良好运作。
3.3实现自动化控制整个电气工程
电气工程控制系统中的环节有很多,所以,智能化技术的应用能够有效对整个电气工程进行自动化控制工作。智能化技术利用模糊控制、神经网络控制以及专家系统控制,来实现对电气工程的自动化控制,利用智能化技术实现对电气工程的全面控制,这样不仅能够保证该工作的顺利完成,还能大大提升其工作质量,增强其整体水平,也能为电气工程领域的发展奠定坚实有利的基础。
4结论
在电气工程自动化控制中应用智能技术,这不仅仅是一个非常大的成就,还是促进智能化技术在其他各个领域当中的良好应用,发挥其作用,更好的让智能化技术为我国经济发展奠定良好基础,并能稳定推动电气工程领域实现长期可持续发展目标。
作者:闫鹏 单位:包头市九原区住房保障和房屋管理服务中心
篇3
一、智能控制的主要方法
智能控制技术的主要方法有模糊控制、基于知识的专家控制、神经网络控制和集成智能控制等,以及常用优化算法有:遗传算法、蚁群算法、免疫算法等。
2.1模糊控制
模糊控制以模糊集合、模糊语言变量、模糊推理为其理论基础,以先验知识和专家经验作为控制规则。其基本思想是用机器模拟人对系统的控制,就是在被控对象的模糊模型的基础上运用模糊控制器近似推理等手段,实现系统控制。在实现模糊控制时主要考虑模糊变量的隶属度函数的确定,以及控制规则的制定二者缺一不可。
2.2专家控制
专家控制是将专家系统的理论技术与控制理论技术相结合,仿效专家的经验,实现对系统控制的一种智能控制。主体由知识库和推理机构组成,通过对知识的获取与组织,按某种策略适时选用恰当的规则进行推理,以实现对控制对象的控制。专家控制可以灵活地选取控制率,灵活性高;可通过调整控制器的参数,适应对象特性及环境的变化,适应性好;通过专家规则,系统可以在非线性、大偏差的情况下可靠地工作,鲁棒性强。
2.3神经网络控制
神经网络模拟人脑神经元的活动,利用神经元之间的联结与权值的分布来表示特定的信息,通过不断修正连接的权值进行自我学习,以逼近理论为依据进行神经网络建模,并以直接自校正控制、间接自校正控制、神经网络预测控制等方式实现智能控制。
1.4学习控制
(1)遗传算法学习控制
智能控制是通过计算机实现对系统的控制,因此控制技术离不开优化技术。快速、高效、全局化的优化算法是实现智能控制的重要手段。遗传算法是模拟自然选择和遗传机制的一种搜索和优化算法,它模拟生物界/生存竞争,优胜劣汰,适者生存的机制,利用复制、交叉、变异等遗传操作来完成寻优。遗传算法作为优化搜索算法,一方面希望在宽广的空间内进行搜索,从而提高求得最优解的概率;另一方面又希望向着解的方向尽快缩小搜索范围,从而提高搜索效率。如何同时提高搜索最优解的概率和效率,是遗传算法的一个主要研究方向。
(2)迭代学习控制
迭代学习控制模仿人类学习的方法、即通过多次的训练,从经验中学会某种技能,来达到有效控制的目的。迭代学习控制能够通过一系列迭代过程实现对二阶非线性动力学系统的跟踪控制。整个控制结构由线性反馈控制器和前馈学习补偿控制器组成,其中线性反馈控制器保证了非线性系统的稳定运行、前馈补偿控制器保证了系统的跟踪控制精度。它在执行重复运动的非线性机器人系统的控制中是相当成功的。
二、智能控制的应用
1.工业过程中的智能控制
生产过程的智能控制主要包括两个方面:局部级和全局级。局部级的智能控制是指将智能引入工艺过程中的某一单元进行控制器设计,例如智能PID控制器、专家控制器、神经元网络控制器等。研究热点是智能PID控制器,因为其在参数的整定和在线自适应调整方面具有明显的优势,且可用于控制一些非线性的复杂对象。全局级的智能控制主要针对整个生产过程的自动化,包括整个操作工艺的控制、过程的故障诊断、规划过程操作处理异常等。
2.机械制造中的智能控制
在现代先进制造系统中,需要依赖那些不够完备和不够精确的数据来解决难以或无法预测的情况,人工智能技术为解决这一难题提供了有效的解决方案。智能控制随之也被广泛地应用于机械制造行业,它利用模糊数学、神经网络的方法对制造过程进行动态环境建模,利用传感器融合技术来进行信息的预处理和综合。可采用专家系统的“Then-If”逆向推理作为反馈机构,修改控制机构或者选择较好的控制模式和参数。利用模糊集合和模糊关系的鲁棒性,将模糊信息集成到闭环控制的外环决策选取机构来选择控制动作。利用神经网络的学习功能和并行处理信息的能力,进行在线的模式识别,处理那些可能是残缺不全的信息。
3.电力电子学研究领域中的智能控制
电力系统中发电机、变压器、电动机等电机电器设备的设计、生产、运行、控制是一个复杂的过程,国内外的电气工作者将人工智能技术引入到电气设备的优化设计、故障诊断及控制中,取得了良好的控制效果。遗传算法是一种先进的优化算法,采用此方法来对电器设备的设计进行优化,可以降低成本,缩短计算时间,提高产品设计的效率和质量。应用于电气设备故障诊断的智能控制技术有:模糊逻辑、专家系统和神经网络。在电力电子学的众多应用领域中,智能控制在电流控制PWM技术中的应用是具有代表性的技术应用方向之一,也是研究的新热点之一。
以上的三个例子只是智能控制在各行各业应用中的一个缩影,它的作用以及影响力将会关系国民生计。并且智能控制技术的发展也是日新月异,我们只有时课关注智能控制技术才能跟上其日益加快的技术更新步伐。
参考文献:
[1]严宇,刘天琪.基于神经网络和模糊理论的电力系统动态安全评估[J].四川大学学报,2004,36(1):106-110.
篇4
众所周知,三相交流异步电动机以其低成本,高可靠性和易维护等优点而在各行业中得到了广泛的应用。但是,它在直接起动时,存在着很大的缺点:首先,它的起动电流高达额定电流的5~7倍,既对电网造成了很大的冲击,又影响了电器控制设备的使用寿命,甚至影响到其它电气设备的正常运行;其次,起动转矩可达正常转矩的2倍,这会对负载产生冲击,增加传动部件的磨擦和额外维护。为此,出现了三相异步电动机降压起动设备。
图1智能电机控制模块结构图
传统的降压起动有以下几种方法:
1)在电动机定子电路中串入电抗器,使一部分电压降在电抗器上;
2)星形—三角形(Y—)转换降压起动,即起动时电机接成星形,起动结束后,通过一个转换器变成三角形接法;
3)补偿器起动(自耦变压器起动)。
传统的起动设备体积庞大,成本高,结构复杂,与负载匹配的电机转矩很难控制,也就是说很难得到合适的起动电流和起动转矩;而且在切换瞬间会产生很高的电流尖峰,由此产生的机械振动会损害电机转子,轴连接器,中间齿轮以及负载设备。
因此,就需要有一种能克服传统起动缺点的起动装置。银河公司开发生产的捷普牌新一代数字式智能电机控制模块,不但完全克服了传统起动的缺点,对各种起动方法做了进一步的改善和提高,而且还增加了很多其他功能,比如:节能运行,过流保护,过热保护,缺相保护等。
这种模块采用数码管显示,按键控制,整个起动过程全部由单片机按照预先设定的程序自动完成,操作极其方便。
用户通过按键调整参数设置,可以按实际情况选择不同的起动方式,能够很方便地控制起动电流,得到与负载相匹配的电机转矩。
2模块结构及电气原理
模块结构如图1所示。从图1可以看出,该模块的主电路与相控电路及单片机共同封装于同一壳体内,同时内置多个电流、电压传感器。用接插件将模块与控制盒连接在一起,实现各种功能的设置和显示。
主电路为6只玻璃钝化方形晶闸管芯片,通过一体化焊接技术,将其贴在DBC(陶瓷覆铜板)上,并与导热铜板焊接在一起。模块使用时,导热铜板与散热片通过导热硅脂紧密接触。这种结构使模块具有很高的绝缘性能和散热性能。
图2是模块电气原理方框图。移相控制电路部分是银河公司自主开发的JP-SSY01数字移相集成电路。该电路为SOP28封装,5V单一电源供电,全数字化处理方式,具有很高的移相精度及对称度。对控制端加0~10V电平信号,即可控制移相角度。
同步变压器输出同步信号给移相电路,其中另一路给单片机,作为单片机采集电压、电流信号的基准。这样,就克服了如果交流电频率变化带来的计算误差,提高了计算精度。
传感器包括电压传感器和电流传感器。两种传感器中均使用了霍尔元件,具有体积小、反应快、线形度高的特点,通过与模块结构的一体化设计,方便地置于模块内部。两种传感器将电压模拟量、电流模拟量传给12位高速A/D转换器,通过A/D转换,将相应的数字量传给单片机,以供单片机进行处理。
显示、控制部分采用串行口与单片机进行通信,这种通信方式大大减少了该部分与模块内部的连线。5个数码管显示,8个按键控制,使显示与控制直观、方便。
3主要功能
智能电机控制模块主要完成电压斜坡起动,限流起动,电压突跳起动,软停车,节能运行,过流、过热、缺相保护等功能。
3.1电压斜坡起动
如图3所示,系统首先给电机加一个电压Us,之后电压线性上升,从Us增加到最大电压Umax,即电网输入电压。Us由用户设定,可供用户选择的电压为80~300V。ts也由用户设定,可以在1~90s选择。在实际使用中,用户根据实际情况,例如电机功率大小、负载大小等,选择合适的参数,达到最佳起动效果。
这种起动方式的特点是起动平稳,可减少起动电流对电网的冲击,同时大大减轻起动力矩对负载带来的机械振动。
3.2限流起动
如图4所示,这种起动方式是由用户设定一电流值Ik,在整个起动过程中,实际电流不超过设定值Ik。Ik由用户根据实际负载大小自己设定。
限流起动可以使大惯性负载以最小电流起动加速,可以通过设置电流上限,以满足在电网容量有限的场合使用。这种起动方式特别适合于恒转矩负载。
3.3电压突跳起动
实际应用中,很多负载具有很大的静摩擦力。在电压斜坡起动方式中,电压是由小到大逐渐上升的。如果直接使用电压斜坡方式起动,在起动开始的一段时间内,因所加电压太小,克服不了负载的静摩擦力,电机不动,这可能会造成电机因发热而损坏的情况。电压突跳功能则解决了这个问题。在电机起动前,模块先输出一电压Ut,且持续一段时间tt,用以克服静摩擦力,待电机转动之后,再按照原设定方式起动,从而比较好地保护了电机,如图5所示。对于不需要该功能的负载,只要将tt设置为0即可。Ut可调整,范围是0~380V,tt可调整,范围是0~10s。
3.4软停车
如图6所示,按下停车键后,模块的输出电压立即下降到Up1,然后逐渐下降,经过时间tp后,下降到Up2,再立即下降到0。Up可调整,范围是100~380V;Up2可调整,范围是0~300V;tp调整的范围是0~90s。
软停车可以大大减少管道传输中液体的冲击。
3.5节能运行
对于大摩擦负载,由于起动电流大,需要功率较大的电动机,而在正常运行时,负载力矩比电动机额定转矩小得多,这就造成电动机轻载运行。对于间歇性负载,持续大电流的工作时间占整个工作周期很小一部分,从而造成轻载时无功损耗?浪费,使运行功率因数大大降低。智能电机控制模块通过检测电压和电流,根据负载大小自动调节输出电压,使电机工作在最佳效率工作区,达到节能目的。
3.6保护功能
共有三种保护功能:过流保护,过热保护,缺相保护。
在起动或者运行过程中如果出现上述三种故障之一,模块会自动断电,控制盒上的数码管会闪烁显示故障原因,待排除故障以后,按复位键即可恢复正常。
在上述保护中,过流保护值可调。
4实验情况及实际应用效果
我们对一只正在使用中的智能电机控制模块进行了实际测量并作了记录。所用负载为18.5kW风机,供电电压实际测量值为390V左右。
为了作一个比较,首先拆掉模块进行直接起动。合上空气开关后,电压立即上升到390V,电流快速上升到150A,持续一段时间,逐渐下降,最后稳定在30A左右。同时,可清楚地听到由于大电流冲击,使风机产生强烈的机械振动而发出的噪声。
然后接上智能电机控制模块,设置为限流方式起动,限流值为90A,打开节能运行。按下“起动”键,可观测到电流上升速度明显变慢,逐渐上升到90A,保持2~3s后,逐渐下降为30A。电压由0V缓慢上升到390V。起动时间为6s。在整个起动过程中,电机起动平稳,听不到机械冲击的噪声。15s后,电压逐渐下降为355V,电流不变,开始稳定运行。
数字式智能电机控制模块现已被广泛应用于各种生产领域和其他场合,实际应用效果如下:
1)降低了电动机起动电流;
2)避免了电动机起动时供电线路瞬间电压跌落,造成电网上用电设备、仪表误动作;
3)防止了起动时由于产生的力矩冲击,而使机械断轴或产生废品;
4)可以较频繁地起动电动机(软起动装置一般允许10次/h,而使电动机不致过热);
5)对泵类负载可以防止水锤效应,防止管道破裂;
6)对某些工艺应用(如染纱机械),可防止由于起动过快而产生染色不匀的质量问题;
7)对某些易碎的容器灌浆生产线,可防止容器破损;
8)适应供电变压器容量较低的场合(如注塑机);
9)可以降低电网适配容量,节省增容费开支;
篇5
随着时展,全球各国都开始注重环境保护,以降低环境问题对人类生存和生产的危害,因此越来越多环保工程应运而生。中国一直将环境污染治理作为基本国策之一,在各行各业发展中都将保护环境作为生产的原则之一。在这个背景下,环境工程成为近年来发展较快的行业。尤其是环保工程常常涉及到燃料脱硫过程,在这个过程中应用电气控制技术,能提升生产效率,并保障生产的安全性和稳定性。将电气控制技术运用到煤炭脱硫生产过程中,能有效避免生产过程中的安全问题,且操作人员能采用远程操作方法来实现脱硫工作,不仅效率得到提升,也避免了有毒物质对人体伤害。
1.2高炉鼓风机
由于中国建筑行业快速发展,对钢材的需求不断提升。而电气控制技术在高炉鼓风机中得到了广泛应用。a)电气控制技术的稳定性和连续性能更好地防止高炉鼓风机出现运行中的故障,降低运行事故发生概率;b)电气控制技术能实现高炉鼓风机整体性能的大幅提升。通过电气控制技术的使用,能有效改进高炉工作,使整体炼钢水平得到提升。同时要对鼓风机低电压跳闸的电气控制技术、二次控制电源的电气控制技术及瞬时断电的电气控制技术进行大力技术改造。
1.3铁路起重设备
在电气控制技术起步阶段,中国的铁路起重机在运行过程中存在很多局限性,且涉及到很多协调工作,无法满足铁路救援工作需求,而在当时经济条件下无法大量引进国外发达国家生产的机械设备,使得起重机控制工作非常困难。随着电气控制技术的发展和应用,中国铁路起重设备逐步向着智能化、高集成度、自动化方向发展,使铁路救援工作更加灵活,成本低廉且便与维修。其中,PLC技术的出现成功解决了铁路起重设备中的问题。PLC是一个以微处理器为核心,数字运算操作的电子系统装置,专为在工业现场应用而设计,它采用可编程序的存储器,用以在其内部存储执行逻辑运算、顺序控制、定时/计数和算术运算等操作指令,并通过数字式或模拟式的输入、输出接口,控制各种类型机械或生产过程。通过PLC技术应用,使中国摆脱了国外技术控制,铁路运输业得到了飞速发展。
2对电气控制技术未来发展趋势的展望
随着科学技术不断发展,以人工智能技术为主的神经网络、遗传算法、模糊逻辑等技术已经在电力系统中应用,相关应用研究也在不断进行。电气控制技术涉及内容比较多,不仅涉及到电气原理、线路、系统设计,也涉及到编程方法及生产机械应用等相关内容。同时电力控制方法也比较多,在很大程度上需要结合电气控制技术。下面就电气控制技术未来发展趋势进行展望。
2.1电气控制技术向着智能化趋势发展
在科学技术发展带动下,中国电气控制技术逐步向着智能化方向发展,以人工智能技术为主要技术核心的各种技术目前已应用到电气控制技术当中,并且与此相关的各种技术也在不断研究和发展中。从当前研究成果可看出,神经网络已成为解决复杂问题的关键技术,通过对神经网络技术使用,可以对各种故障样本进行分析,并找出解决问题的方法,当再次出现故障时,就可以在最短时间内排除故障。通过各种智能技术与电气控制技术的结合,能将两者优势充分发挥、使用,更好地解决电气系统中存在的问题。
2.2电气控制技术向着开放性趋势发展
电气控制技术当前不断创新和发展,其硬件系统不断更新,新电气控制技术不但安全性高、运行稳定,并且具有很强的灵活性和可靠性,能在生产中提供更多发展平台。在信息技术发展带动下,电气控制技术也向着开放性方向发展。网络技术创新为电气控制技术提供了更多沟通和交流方式,使得电气控制设计与网络技术结合,不断呈现多样化趋势。电气控制技术的开放性趋势,也会使电气系统的整体性能和特殊性能得到进一步提升。由此可见,开放性趋势已成为电气控制技术的必然发展趋势。
2.3电气控制技术向着网络化趋势发展
目前电气控制技术的优势是强大的自我诊断和修复功能,使其能精准有效地切除故障以防止事故发生。但为了更进一步提升系统安全性,就要对系统进行网络化改进,增强系统的数据通信功能。电气设施的网络化能加强对故障位置、故障距离、故障性质的分析和确定,使电气设施能得到更加密切的保护,从而提升电气设施可靠性。在电气设施保护技术中,可通过网络将不同母线保护进行高度集成,从回路流量和计算机网络流量中获取电流量信息,进而为故障和母线的隔离打下基础,尽可能降低母线被切除的发生率。采用网络技术能进一步提升电气设施和设备的可靠性,降低电气设备故障发生概率。从这个角度看来,电气控制技术向着网络化发展对电气系统和电气设备都有着深远影响。电气控制技术的网络化,也将会给电气控制设计及发展带来更多新思路,提高电气控制技术的可靠性和稳定性,在一定程度上也会使电气控制装置局部性和整体性的提升成为可能。因此,网络化趋势已经成为电气控制技术发展的必然趋势。
篇6
1.应用先进的温度控制与热计量技术,实现供热节能
以我国供暖现状,采暖能耗指标是同类气候条件下发达国家的3-5倍,而且供暖效果也远远不如,能耗大量浪费的原因中固然有百姓用户节能意识淡薄、收费体制不能刺激节能,但主要的原因还是因为我们设计、施工与运行管理的落后。笔者认为正确的做法是温控与热量并重,相辅相成,甚至温控更加重要。供热单位先提高自身水平,提高室内热舒适度,也就是提高服务质量,再合理地向用户收费,促节能事业发展。
2.户内系统和户外系统相结合,减少能耗
目前有一种趋势:认为讲温控就是要在室内安装温度控制阀,讲计量就是在户内安装热量表,至于户外控制就可以不被重视了。温控与计量是不是只要针对户内系统,户外就可以忽视呢?对于一个户内控制设备完善的系统(安装了温控阀和热量表),如果没有相应的户外控制,很难保证户内设备正常地工作。如果户外水力失调严重,温控阀不能工作在正常工况下,压头大就会频繁地开关甚至产生噪音,压头太小会始终常开而室内温度不足;热量表也可能工作在额定之外的流量下,测量不准确。如果外网不能根据户内工况变化相应调节,如:水泵不能变频、压差不能稳定的情况下,水泵、锅炉或换热器的效率也不能保证。如果户内采取了节能手段,而户外没有配合措施,一方面会引起管网水力热力工况的失调,另一方面室内节省的能量不能体现在热源的节能上,节能这一根本目的就没有实现。所以我们认为好的户内控制一定要与户外控制相结合。
随着先进计量、控制设备不断应用于系统中,分户计量供热系统逐步在我国发展起来。从用能的角度看分户计量供热的技术能够有效利用自由热,提倡用户的行为调节,以减少能耗;另一方面,从用户出发它能够提高室内热环境的舒适性。在散热器上安装温控阀为实现这些目标提供了有效手段。当温控阀被设定在某一值时,它可以通过感温包测量室内温度,实时调节散热器流量以符合设定值。如果热网的运行工况可以最大限度的满足各个用户的需求,那么温控阀控制的散热器供暖房间温度就不会出现过冷过热的情形。但是舒适度因人因时而异,提高用户的舒适程度不仅要求在设计温度18℃时保持室温仅有微小的波动,而且应该尽可能的满足用户希望提高室内温度的要求。
3.温控计量与集中供热系统相适应,提高节能效率
我们采取“拿来主义”来消化学习国外的温控计量技术,包括消化和应用国外的产品,但是外来的产品并不适应我国的现有系统,除了水质问题和管理问题外,还有许技术问题。如:系统末端压差、系统规模大小、设备工作环境等都存在很大的不同,不做任何改变就应用在一起很难得到正常的效果。如有的示范工程,产品应用效果不好,出现一些问题,厂家就提出要彻底地改变中国的供热系统,殊不知,对中国这一巨大规模的供热体系,改变是一个渐进的过程,需要一定的时间,不可能一蹴而就。谁应该去适应谁并不存在一个分明的界限,但是合理的寻求结合点,花最小的投入去获得最大的回报,这个工作非常重要。
4.热计量方法
目前,按户计量热量使用的方法基本有以下3 种:
一是直接测定用户从供暖系统中用热量。该方法需对入户系统的流量及供回水温度进行测量,采用的仪表为热量表。该方法的特点是:原理准确,但价格较贵,安装复杂,并且在小流量时,计量误差较大。目前在法国、瑞典等国应用较多。
二是通过测定用户散热设备的散热量来确定用热量。该方法是利用散热器平均温度与室内温度差值的函数关系来确定散热器的散热量。该方法采用的仪表为热量分配表,常用的有蒸发式和电子式2 种。蒸发式热分配表的特点是价格较低,安装方便,但计量准确性较差;电子式热量分配表的特点是计量较准确、方便,价格比蒸发式热分配表高,并且可在户外读值。
三是通过测定用户的热负荷来确定用热量。该方法是测定室内外温度并对供暖季内的室内外温差累积求和,然后乘以房间常数(如体积热指标等)来确定收费。该方法采用的仪表为测温仪表,但有时将记忆散热器温控阀的设定温度作典型室内温度,而将某一基准温度作室外温度。该方法的特点是:安装容易,价格较低。但由于遵循相同舒适度缴纳相同热费的原则,用户的热费只与设定的或测得的室温有关,而与实际用热量无关,因此,开窗等浪费能源的现象无法约束,不利于节能。目前美国和法国有所使用。
5.实施换热站监控系统应用
换热站监控中心(MCC)是整个监控系统的中枢神经,具有整体协调、远程控制和调度功能。它将采集现场过程的数据,通过通讯网络(WAN)这条连接各换热站与监控中心的桥梁和纽带,对数据进行传输。换热站监控中心(MMC)实现对换热站的监测、控制、管网分析、故障诊断、报警、报表、打印、历史数据处理、趋势显示等功能,并且对各个换热站的设备参数进行远程下载与控制,以确保热网高效经济运行。其中控制中心还具有数据库检索与分析功能,调度中心把各换热站采集来的数据存入历史数据库,数据库除供历史报表打印、数据终端检索外,还要定期或不定期进行数据分析。
我公司换热站监控系统现场采集和显示的数据有:室外温度、换热机组一、二次侧供回水温度、压力,补水流量、软化水箱及污水池的水位,地面液位信号、循环泵、补水泵的运行状态、调节阀开度、温度报警等,以上信号在监控中心都可以实时监视,并且可以对循环泵、补水泵、排污泵、电动调节阀等运行状态进行实时控制。
换热站监控中心可采集现场数据、实现对换热站的监测和控制,管网分析、故障诊断、巡检人员的考勤情况、打印报表、历史数据处理、趋势显示、实时参数、历史数据在网上给授权用户等功能,以及对各换热站设备参数进行远传下载与控制,热网监控中心可实现循环泵、补水泵、排污泵的启停等控制,以确保高效经济运行。
实施换热站监控系统有两个主要特点:一是实施热网监控避免了热量在输送环节中的浪费;二是实施热网监控室温容易控制,控制手段有自动恒温控主动调节控制,避免了温度失调、利用了自由热、实现了经济运行,而传统的集中供热就难以实现这些控制。新型的集中供暖系统采用了温控与热计量技术,就可以提高效率、减少浪费、增加控手段,就可以与新型采暖方式同等竞争,夺回价格优势,争取市场份额。 [科]
【参考文献】
[1]沈秀环.供热管网量调节的节能探讨与应用[J].节能,2009,(07):6-9.
篇7
一、智能建筑研究现状
智能建筑自20世纪80年代初出现在美国,随着信息技术发展,在全世界范围内得到了极大发展。智能建筑相对于其他的普通建筑而言,其特征主要是安全、便捷、高效、舒适。随着建筑智能化系统技术的快速发展,智能建筑工程规模越来越大,智能建筑已逐渐引人关注与研究。根据智能建筑设计标准,其主要结构包括信息系统、设备管理系统以及安全系统,复杂的智能建筑可根据具体需求设计特点的功能模块。
智能建筑是伴随着计算机科学技术兴起的,以计算机技术与信息技术为基础,并与建筑施工技术、控制技术息息相关。该技术的发展对智能建筑具有直接影响。智能建筑发展一般划分如下几个阶段:
(1)第一阶段,开始于20世纪80年底,该时期以单功能系统的研发为主流产品。随着智能控制技术在智能建筑设备的应用,逐步研发出了各种研发产品,其中最具有代表性的是闭路电视监控、火灾自动报警、空调设备监控等系统。该系统结构简单,且可通用、可互换,只需调整控制参数。
(2)第二阶段,开始于20世纪90年代,以多功能系统为代表。随着信息技术、微电子技术的发展,以ASC为代表的微控制器研发成功并得到广泛推广。ASC可根据具体要求进行定制。ASC的通信功能实现了各专用控制器间的信息共享和管理功能,如综合保安系统、建筑设备设备自控系统、有线电视、火灾自动报警与控制系统等。
(3)第三阶段,20世纪90年代末期出现的集成系统。随着互联网的快速兴起,通信协议由专有型逐步转向开放型。
(4)第四阶段,21世纪的集成管理智能化系统、计算及网络系技术,智能控制系统依托互联网,实现了智能建筑的系统化、集成化与独立运行和管理。智能建筑实现了基于虚拟现实与多媒体技术的人机接口和融合处理。
二、智能控制技术在智能建筑中的应用
(1)知识库专家系统和知识工程是智能领域的重大研究成果,专家系统管控着整个系统正常运行,专家系统是在所需控制对象和规律的基础上研发的。该系统,具有丰富的专业知识和经验水平,能解决专业问题。根据一个或多个专家提供的特殊领域知识、经验进行推理,综合模拟专家的决策来解决复杂的问题。引入基于控制专家的专业知识和实践经验的专家控制系统。采用知识表达技术,建立模型知识库,利用逻辑推理法则,制订系统的控制决策。为智能建筑的自动化提供了最优控制决策支持。专家控制系统改变了传统依托数学模型的控制系统设计的局限性,使数学模型与知识模型相融合,知识信息处理技术与控制技术相结合。专家系统现在广泛应用于物业管理、自动缴费业务与智能支持等领域,在社会上评价均很高。
(2)人工神经网络在建筑系统建模、学习、控制、优化等方面取得了很大的成功。目前广泛使用到了语音识别、最优化计算、图像处理等等控制领域。随着智能建筑的自动化功能需求的不断增强,在现代智能建筑物内安装的自动化设备愈来愈多,能耗也越来越大。智能建筑改变了传统的自动化、半自动化的响应速度,且其对设备要求越来越低。智能系统中的建筑学习模式的开放,使智能系统的成本越来越低。尽管建筑神经网络模型存在实时性,但随计算机运行速度的提高与神经网络算法的改进,建筑神经网络控制不断完善。神经网络学习控制将采用大规模集成电路,可完成建筑物监控、保安、照明、娱乐等任务。
(3)随着数据库技术、网络技术的快速发展,数据仓库技术、分布式数据库的不断走向成熟,科学家不断将其引入到了建筑物的智能决策系统当中,能使智能建筑实现智能化决策支持系统。半结构化和非结构化的智能决策帮助了中、高层决策者进行方案决策,为决策者提供详细的信息,帮助决策者明确决策目标和对决策问题全面认识,能提供各种决策方案,并能对其进行优化设计,帮助决策者提高决策能力、决策水平、决策质量和决策效益,从而达到最大经济效益的目的。
三、结论
智能建筑由于其依托互联网技术、计算机技术、信息技术,能够比较自由的设计个性化服务,从而使我们的工作与生活环境得到了极大的改变,随着经济的发展,智能建筑逐步走向个性化、智能化方向发展,而智能建筑的关键技术是智能控制技术,因此,只有促进智能控制技术的发展,才能更好的发展智能建筑。
参考文献:
[1]郭维钧.智能建筑的最新发展[J].施工技术,2007,(04).
[2]李旭.智能建筑浅谈[J].中国科技信息,2005,(07).
篇8
粤中(珠江三角洲地区)地网是广东电网的核心,也是全省最大的负荷中心,该电网与广西、香港等电网互联,除了向珠江三角洲地区提供电力外,还担负着电力交换任务。在粤中地区建设一个强大的500kV电网,对保证广东电网乃至香港电网以及澳门电网的安全运行有着重大意义。广东500kV电网东已延伸至汕头西翼,江门――茂名500kV输变电工程已投入使用。
广东省的电力工业已经步入了大电网、高电压和大机组时代。随着整个电网变得越来越复杂,电网规划中以往那种人为臆断和局部最优的规划方式会给电网运行、发展带来隐患,资金盲目使用的可能性加大。结合目前理论的发展,我们认为电网规划是一个受到多种条件约束的、以电网总效益为最终目标的多目标的系统工程。对于这样一个系统,我们认为适宜以控制论为基础,结合信息论、运筹学和系统工程等理论来研究。
从控制论角度来看,电网是一个巨维数的典型动态大系统,它具有强非线性、时变且参数不确切可知、含大量未建模动态部分的特征。另外,电力网络地域分布广阔,大部分元件具有延迟、磁滞、饱和等复杂的物理特性,对这样的系统实现有效决策控制是极为困难的。另一方面,由于公众对新建高压线路的不满日益增强,线路造价,特别是走廊使用权的费用日益昂贵,以及电力网的不断增大,使得人们对电力网络的决策控制提出了越来越高的要求。正是由于电网具有这样的特征,一些先进的控制论思想和技术被不断地引入到电网中来。下面将阐明综合智能控制技术引入电网规划中的必要性和可行性。
一、综合智能控制技术
1.1智能控制的概念
迄今为止,智能控制尚无统一的概念,文献[1]有如下归纳:
a)最早提出智能控制概念当推傅京孙教授,他通过对人-机控制器和机器人方面的研究,将智能控制概括为自动控制和人工智能的结合。他认为在低层次控制中用常规的基本控制器,而在高层次的智能决策,应具有拟人化功能。
b)Saridis在傅京孙工作的基础上,提出了三元结构的智能控制理论体系,他认为仅有二元结合无助于智能控制的有效和成功应用,必须引入运筹学,使其成为三元结合,并提出了其递阶智能控制的理论框架。
c)国内蔡自兴教授在研究了上述理论结构以后,从系统的整体性和目的性出发,于1986年提出了四元结构价格体系,将智能控制概括为控制理论、人工智能、运筹学和系统理论4学科交叉。
总之,智能控制是多学科知识的结合,除了从控制论出发来研究它,还可以从信息论、生物学以及社会科学角度来讨论和研究。
1.2综合智能控制技术
综合智能控制一方面包含了智能控制与传统方法的结合,如模糊变结构控制,自适应模糊控制,自适应神经网络控制,神经网络变结构控制等;另一方面包含了各种智能控制方法之间的交叉综合,如专家模糊控制,模糊神经网络控制,专家神经网络控制等。
二、一个国外的电网规划专家系统
目前为止,在电网规划方面较成功的综合智能控制技术系统不是很多,其中比较好的有加拿大魁北克水电公司(Hydro-Quebec)的“直流/交流输电网络设计专家系统”。
在80年代末期,随着人员的退休和长期不用,一些60年代和70年代加拿大电网高速发展时期由工程师们获得的大量有关电力系统规划设计的专门知识逐渐被人遗忘,这引起了加拿大电力部门的关注,魁北克水电公司将专家系统技术看成是表达和保存某些目前在人类专家头脑中的专门经验和知识的潜在方法。他们认为在电力系统规划设计领域里,专门知识的损失非常明显,尤其是在电力系统增长缓慢的时期。这些专门知识来自于各门学科,在多层次的电力系统设计决策过程中起着重要的作用。一些选择决策,如发电类型、发电厂位置、输电类型(交流/直流)、电压等级、输电线路的数量型号和补偿设备的数量型号的选择必须根据一些准则仔细权衡,包括可靠性、稳定性、稳态性能、费用和环境状况的准则等。基于此,魁北克水电公司的专家们开发了一个用于输电网络初步设计的专家系统,该专家系统具有以下特点。
2.1目标和预期效益
主要目的是研究使用专家系统(ES)来模仿人类专家在AC/DC输电网络初步设计中的行为的可能性。系统地确定和表达进行一项合格设计所必须的知识,包括符号和数字数据,以及指导该项设计的原理、规则、准则折衷方法和数学模型。合格的设计基于费用、环境状况、稳定性、可靠性和设计灵敏度或鲁棒性等准则。ES原型还应指导用户通过完成设计所需的各步骤,使用户与知识库交互作用,并提供达到每一中间步骤后相应推理路径的解释。预期的主要效益是:
a)专家知识能够保留和传授给未来的工程师;
b)知识可以用更加具体的形式加以表达,而不是一些不明确的、没有根据的判断;
c)将获得更一致的结果;
d)与人类专家相比,ES可以检查、比较更多的方案,得到更经济的设计;
e)借助于推理解释功能,ES可以作为未来专家的教学和训练工具;
f)作为一种“咨询”手段或者一个对已有设计进行评价和改进的工具,ES对专家将很有帮助;
g)ES将充当进行各种电力系统设备设计的专家系统家族的先驱,作为一种模型,从中抽取更加一般的设计方法论;
h)ES起到收集常常分散在整个设计机构中的知识的作用。
2.2领域专家和知识工程师的交互作用
知识工程师应当具有电力系统分析和设计领域以及人工智能(AI)领域的经验,已经证明两种知识的混合对于从领域专家处抽取和浓缩专家知识非常有效。专家知识来自于电力系统规划工程师,他们具有多年的规划、设计和调试大型工程项目的经验。
2.3对设计的评价因素一个候选的设计必须满足下述条件:
a)DC系统最小故障恢复特性;
b)容许的无线电和谐波干扰要求;
c)故障后的最小稳定判据;
d)稳定电压和无功电源的极限;
e)甩负荷后的暂态过电压极限;
f)可靠性所要求的最小设备冗余度;
g)必须对输入数据变化不敏感(鲁棒性);
h)必须满足某一最大费用要求;
i)必须适合现有技术。
魁北克水电公司的“直流/交流输电网络网络设计专家系统”已经成功地应用了近十年,并在不断地发展、完善。随着模糊技术和人工神经网络等的迅速发展,综合智能控制技术在电网规划中的应用前景愈来愈广阔。
三、电网规划决策系统的分解及协调
电网的建设是资金和技术密集型的工程,线路和设备的经济使用寿命长达数十年之久,所以网络的结构合理与否,对电网的技术性能和经济效益将产生长期的影响。一次规划失误的损失,若干年难以挽回。随着广东省电网的不断发展,如何合理地布局电网已是当前电网乃至整个电力工业发展的重要课题之一。
电网规划需要确定的决策是大量的,而这些决策在时间和空间上是相互影响的。目前,限于各方面条件,无法将其统一在一个模型中考虑。只能将其分解成相对简单的子问题,再通过子问题间的迭代进行协调。按照问题划分,电网规划可分为:负荷预测,网架规划,无功规划,稳定性分析,短路电流分析。
四、结束语
电网负担着将电源与用户连接起来的任务。此外为了得到最大的供电可靠性和经济性,它还担负着与邻近地区电力系统联系起来的任务。由于电网设备投资需求大,并且设备寿命长达数十年,从而导致电力系统强烈地受“过去权重”的制约,因此,寻求最佳的电网投资决策以保证整个电力系统的长期优化发展,是电网规划所要达到的目标。
篇9
关键词 智能控制系统;地下商场;灭火系统;运用
【中图分类号】D631.6【文献标识码】A
Intelligent control system used in the underground mall fire extinguishing system
Chen Bing
(Southeast Guizhou State FireDetachment Cengong BrigadeGuizhouCenGong557800)
【Abstract】This paper introduced the general situation of the fire extinguishing system in intelligent control system in underground shopping malls, using basic principle analysis of fire intelligent control system in underground shopping malls in the system, according to the actual situation of underground shopping malls, formulate reasonable underground mall fire control system.
【Key words】Intelligent control system;Underground mall;Fire extinguishing system;Application
大型地下商场一般是人员较为集中的地区,是火灾发生的高危区域。与此同时,地下商场具备一定数量的易燃物质,一旦发生火灾,将对人民群众的生命财产安全造成很大的损失。针对这样的情况,就需要建立一套健全、完善的灭火系统,以便于能够及时、有效的消除可能出现的火灾隐患。随着计算机智能技术的不断快速发展,已经可以将计算机控制技术有效的融合进入地下商场的灭火系统之中去,提升地下商场灭火系统地智能化控制水平。针对这样的情况,本文将结合具体的智能控制系统在地下商场灭火系统中的运用案例,分析出智能控制系统在地下商场灭火系统中的运用基本原理以及其能够发挥的主要功能。通过本文的论述,笔者一方面希望能够起到一个抛砖引玉的作用,另一方面,希望能够给相关的工作人员提供一点参考借鉴的材料。
1. 智能控制系统在地下商场灭火系统中的运用工程概况
地下商场一般都是位于地下,与此同时,为了满足人民群众娱乐休闲的需要,一般地下商场的使用面积都相对较大。以某大型地下商场为例。该商场的总的建筑面积为6012.8平方米,根据我国《大空间智能型主动喷水系统设计规范》的相关规定,对于大型地下商场一类的人员密集型场所,需要设置相应的大空间智能型自动喷水灭火系统。一般情况下,该系统要包括有大流量的消防喷头、进行相应的传感工作的红外探头、进行对水流量大小智能控制的水流指示器、防止消防水流倒流的止流阀、进行信号传输的信号阀、进行排放降压的安全泄压阀、进行对水泵控制的水泵控制箱、进行对火灾情况实时播报的火灾报警器、进行报警的声光报警器等,这些组成部分组成在一起就构成了基本的智能型地下商场灭火系统,可以在火灾发生之后,智能的采取相关的消防控制手段,保护人民群众的生命财产安全不受火灾的威胁。如图1之中展示的大流量喷头以及红外探测设备的截面图。
2. 智能控制系统在地下商场灭火系统中的运用工程原理
智能控制系统在地下商场灭火系统中的运用是建立在对地下商场之中容易产生火灾的区域进行实时监控的基础上实现的。具体的来说,一旦相应的红外探测设备在进行火灾监控的区域发现有火情产生的话,就会立即作出相应的反应(红外探测设备内部具有着相应的传感器设备,该传感器设备是融合了红外传感技术和紫外传感技术为一体的传感器设备,可以有效的对外界的火灾情况进行捕捉),将相应的火灾信号传输给智能控制系统之中的中央处理器部分,并经过中央处理器的分析计算,得出地下商场内部火源出现具体部位,并作出相应的反应,向相应的灭火设备(电磁阀以及水泵)发出相应的控制信号,开启电磁阀之后,通过水泵从蓄水池之中抽出消防用水,相应的水流就会在水泵的作用下输送到大流量的喷头部位,并从喷头部位喷出水流,进而就有很大数量的水流从大流量喷头之中喷射而出,进而有效的发挥出灭火的功效。当货源被有效的遏制住之后,相应的红外探头将会继续传输信号给智能控制系统的中央处理器部分,并通过智能系统的中央处理器部分向相应的灭火设备传输控制信号,大约10s之后将会关闭相应的电磁阀。如果后续的又出现了地下商场的火灾的复燃情况,将会继续重复上述的灭火流程。
3. 智能控制系统在地下商场灭火系统中的运用的基本模式
智能控制系统在地下商场灭火系统中的运用的根本目的在于及时、有效的完成地下商场内部的消防工作,高效的应对在地下商场之中可能出现的火灾危险,从而最大限度上保证人民群众的生命财产安全。与此同时,为了有效的提升灭火系统的使用效果,有效的提升地下商场灭火系统的经济效益和社会效益,就需要尽可能的将智能控制技术和灭火系统有机的融合在一起,提升地下商场灭火系统的灭火效率。截至目前为止,广泛采用的智能控制系统在地下商场灭火系统中的运用基本模式就是采用新一代大容量多回路中文显示报警控制器,并结合利用上文之中介绍到的智能控制系统在地下商场灭火系统中的运用工程原理,有效的提升智能控制系统在地下商场灭火系统中的运用的运用效果,提升地下商场灭火系统的可靠性和稳定性。一般情况下,为了有效的满足地下商场灭火系统作用的发挥,其主要包括以下几种组成部分:
(1)第一部分是上文介绍的火灾自动报警联动系统,为了保证对地下商场的实时监控,在运行的过程之中一般会使用双电源切换的模式,并专门设置相应的灭火系统的自动报警联动装置,并将自动报警系统和地下商场的广播部分连接在一起,以便于随时向人民群众传播相应的注意事项。与此同时,此部分还包括进行传感的声光报警器、感烟探测器等传感器部分,以便于在第一时间发现火灾状况,并设计规划好相应的地下商场的系统消防平面图,以便于发生火灾之后进行及时的布置灭火的计划。
(2)第二部分是智能化的自动灭火系统部分,为了有效的保证消防用水的供应,需要在地下商场设置效应的消防用水蓄水池,并设置好相应的大功率水泵,并安装大流量的喷头和电磁阀部分,并设置好控制水流流量的水流指示器,以便于对进行内部控制的水流进行控制。
(3)第三部分是人工的灭火系统,该部分是相应的工作人员在接受到自动火灾报警信号之后使用的消防栓、水流喷枪、消防按钮等部分,以便于组织相应的消防工作人员进行消防处理;第四部分是除烟系统部分,该部分主要包括排烟机和排烟阀,针对现场的情况进行对排烟阀和烟阀的控制,防止在地下商场之中囤积大量的烟尘,影响到人民群众的生命健康。
(4)第四部分是防火卷帘门部分,该部分主要保证的是发生火灾之后,人民群众可以及时的通过自动控制的卷帘门及时逃生,该部分主要包括卷帘门以及相应的手动启动按钮,以便于充分的保证人民群众的生命安全。
(5)第五部分是地下商场的应急疏散系统,以便于在发生火灾之后及时的将地下商场内部的人民群众疏离开地下商场,保证人民群众的生命安全,该部分主要包括有PLC应急电源切换控制柜以及相应的应急灯,疏散指示灯设置,以便于有效的指引人民群众离开地下商场。
4. 智能控制系统控制下的地下商场灭火系统的主要功能
通过对上文之中智能控制系统在地下商场灭火系统中的运用的基本原理和基本模式的介绍,不难看出,智能控制系统控制下的地下商场灭火系统的应用的主要目的就是高效的发现地下商场内部的火灾隐患,并及时的对收集到的信号进行处理,并给出相应的处理解决方案,在最大程度上保证人民群众的生命财产安全,针对这样的情况,不难看出,智能控制系统控制下的地下商场灭火系统的主要功能将主要集中在以下的几个方面:
(1)第一,是实现地下商场灭火系统的自动报警功能,上文之中已经介绍到,为了有效的防止地下商场火灾的进一步蔓延扩大,最关键的就是及时的发现火灾的发源地,并及时的对火源进行消防处理。在运行的过程之中,相应的红外智能探头将感应到火灾的具体情况,进行自动报警。
(2)第二,实现对地下商场内部灭火系统的各个部分的故障自动报警功能,例如声光报警器的功能就是对地下商场内部的电源的交流故障进行控制。
(3)第三,实现地下商场内部的各个防火部分的联动控制,通过智能化的编程处理,有效的实现消防信号的及时处理。具体的来说,就是将中央处理器得出的处理结论发送给相应的组件,有效的做出相应的消防措施。
(4)第四,实现PLC应急电源切换功能以及消防应急广播功能,一旦发生火灾,PLC应急电源立马照亮,为人民群众的及时疏散提供指示,消防应急广播则是及时向人民群众广播逃生要注意的紧急事项。
(5)第五,要实现地下商场之中的排烟功能,防止火灾产生的烟气危及到人民群众的生命健康安全。具体的来说,就是一旦相应的感应器接收到烟气信号,就以信号形式传输给中央处理器,并通过中央处理器发出指令,关闭相应区域的烟阀,并自动进入排烟状态。
(6)第六,要实现地下商场的自动灭火功能,当大流量喷头所承受的温度超出一定数值之后,就会自动的触发相应的传感器,自动的打开喷头出水进行消防工作。与此同时,也可以通过相应的传感器传输信号给中央处理器进行处理,中央处理器根据地下商场内部的实际情况作出相应的处理措施。
(7)第七,要实现防火卷帘门的自动控制功能,并有效的调节到手动控制和自动控制协调配合,一旦出现火灾,卷帘门要可以通过手工控制,防止出现火灾的时候难以打开卷帘门,威胁到人民群众的生命安全。
5. 结论
综上所述,作为人员密集的场所,地下商场的消防防火工作以及灭火工作是地下商场管理运行的重中之重,也是保证人民群众生命财产安全的基本要求。为了有效的发挥地下商场的消防防火工作以及灭火工作的功效,保护人民群众的生命财产安全,就需要将智能控制技术和地下商场的火灾控制系统有机的融合在一起,通过智能控制系统将指令准确的传输给相应的灭火设备,保证在第一时间内对地下商场的火灾情况进行处理。与此同时,借助于智能控制技术,地下商场还可以合理的组织地下商场内部的人民群众的疏离工作,进而保证人民群众的生命安全。因此,通过智能控制系统在地下商场灭火系统中的运用,就可以有效的提升地下商场灭火系统的灭火效率,保证人民群众的生命财产安全。以上是本人的粗浅之见,但是由于本人的知识水平及文字组织能力有限,因此文中如有不到之处还望不吝赐教。
参考文献
[1]范维澄.翁文国,中国火灾科学基础研究概况[S].2013,火灾科学与消防工程国际学术会议论文集,北京:2013,20~26.
[2]刘子萌,重要公共聚集场所消防安全性评价的方法学研究[S].硕士学位论文,天津:天津理工大学,2013年.
[3]聂磊,某地下公共场所火灾情况下人员疏散危险性评估研究[S].硕士学位论文,合肥:中国科学技术大学,2013年.
篇10
引言
交流电动机自1885年出现后,由于一直没有理想的调速方案,而只被用于恒速拖动领域。近三四十年来,电力电子技术、微电子技术、现代控制理论的发展,为交流调速产品的开发创造了有利条件,使交流调速系统逐步具备了宽调速范围、高稳速精度、快速动态响应和四象限运行等技术性能,完全可与直流调速系统相媲美。由于直流调速系统所固有的缺点,目前,无论是调速领域还是伺服领域,交流驱动系统已逐步占据主导地位并有逐渐取代直流驱动的趋势。直接转矩控制技术是继矢量控制技术之后的一种新型高效的交流变频调速技术,它以结构简单明了、转矩快速响应、鲁棒性好等一系列的优点正受广大学者的青睐。直接转矩控制技术自诞生以来,其理论研究和实验工作已取得了杰出的成绩,然而作为一门新兴的理论和技术,必然存在不成熟和不完善的地方。鉴于此,本文针对直接转矩控制技术的研究现状、存在的问题及未来的发展趋势进行了详细地叙述。
1、直接转矩控制技术概述
直接转矩控制技术(DTC)是继矢量控制后交流调速领域一种新的控制方法,其特点是采用空间电压矢量分析,直接在定子坐标系下计算并控制电机的转矩和磁通,采用定子磁场定向,进行bang一bang控制,产生PWM信号。系统通过保持磁链恒定, 对转矩直接控制。因此,控制性能不受转子参数的影响,控制思想独特,结构简单。
2、直接转矩控制技术研究热点
2.1 对定子磁链的研究
(1)定子磁链的数学模型
在直接转矩控制中,定子磁链的实际值取决于定子电压、电流和转速的检测值以及电机参数。目前,描述定子磁链的数学模型有3种: u – i 模型,i - n模型,u - n模型[1-2]。
u - i模型: 由定子电压与定子电流确定定子磁链。
该模型结构简单,受电机参数影响小。论文参考网。它采用开环积分法估计定子磁链,在电机高速运行时可以估计出定子磁链。所以,当很大时,与之相比可以忽略不计,控制精度较高。但在低速和零速运行时,较小,与之相比不能忽略,如果对的估计误差大,将严重影响系统的控制性能。这时必须考虑的影响,需准确测定出因温度变化和磁通饱和而产生的变化量。
i- n 模型: 以转子磁链为中间变量,由定子电流与转速确定定子磁链。
在该公式中,没有出现定子电阻,因此不受定子电阻变化的影响。但是,i - n模型要利用转子时间常数及定、转子电感值,还要精确地测量出转子电角速度。这些参数的准确性以及速度的测量精度对定子磁链估计的精度程度都会产生较大的影响,另外这些电机参数也随着温度和磁路饱和程度的变化而变化。
u - n模型: 由定子电压和转速来获得定子磁链。这里仅给出改进后的u - n模型。
改进后的u - n 模型综合了u - i模型和i - n模型的优点,并通过修正项d完成了两个模型间平滑的切换,可以作为一个全速域的定子磁链观测模型。
(2)定子磁链的改进方法
针对异步电机DTC系统中采用u – i模型观测定子磁链时纯积分环节造成直流分量积分漂移,引起低速时转矩波动严重,采用一种具有幅值补偿环节的改进积分器算法取代纯积分环节克服积分漂移;针对六区段电压矢量开关表在定子磁链处于区段分界线附近控制性能差,引起低速运行时定子磁链内陷和电流畸变等问题,采用细分优化的十二区段选择电压矢量开关表来代替传统六区段电压矢量开关表。改善了异步电机DTC系统的低速运行性能。
近年来,许多学者为了解决定子电阻对磁链的影响,引入了现代控制理论和智能控制理论,通常采用的方法有: 模糊定子电阻估计、神经网络定子电阻估计、模糊神经网络定子电阻估计、最小二乘法定子电阻估计[3-5]。
另外, 一些学者对定子电阻温度变化对定子磁链估计的影响也进行了研究, 提出了一些控制方案,如定子电阻温度补偿、模型参考自适应在线辨识等。
2. 2 无速度传感器技术
传统的直接转矩控制中,低速运行时,如果选用与转速有关的定子磁链模型来确定磁链,那么就需要知道精确的转速信息;如果对速度的精确控制,需要转速反馈进行闭环控制,同样需要知道转速信息。传统的方法采用速度传感器,这样不仅增加成本,而且使系统的稳定性和可靠性变差。尤其对于实际应用中不允许安装速度传感器的领域,无速度传感器技术显得突出重要。论文参考网。
无速度传感器技术常用的速度辨识方法包括:转差频率法、参考模型自适应法、卡尔曼滤波法、高频信号注入法、基于神经网络的辨识方法等。目前应用较好的方法是参考模型自适应方法及基于神经网络的辨识方法[6-7]。这种自适应闭环速度辨识方案,在一定的速度范围内,估计精度达到了相当高的水平,然而这些方法没有脱离电机的基本模型,在低速运行时受电机参数的影响严重,尤其在零定子频率运行时,由于电动机转速的不可观测性[8],基于模型的辨识方案往往会失效。
鉴于此,不依赖于电动机模型而仅依赖于电动机本身特性的辨识方法应运而生。Zinger等人利用转子槽谐波可以调制出频率与转速成比例的定子磁链原理,应用锁相环技术来提取转速信息[9]。高频信号注入法弥补了零定子频率情况下的速度不可观测性,然而由于感应电动机常见的磁路饱和现象等不完善因素,导致了检测的速度信号中含有低频干扰信号。一旦检测的速度信号直接用于控制,必然导致控制系统动态、稳态性能恶化。如何结合高频信号注入法与模型参考自适应方法来获得整个工作范围内都能适用的速度辨识方案将是无速度传感器技术研究的核心内容。
3、直接转矩控制技术发展展望
在对直接转矩控制技术研究热点进行了较详细的分析与讨论后,针对尚存在的问题,本文结合当前的科技发展情况和实际分析,对直接转矩控制技术的研究方向进行了展望。
(1)针对传统的直接转矩控制方法存在转矩脉动大的问题,我们可以尝试通过设计基于模糊自适应PI调节器的多级模糊控制DTC调速系统来解决。在外环控制方面,为了实现在转速和转矩突变时系统的快速响应,可以采用模糊自适应PI调节器控制器代替传统的PI调节器;在内环控制方面,也可以采用模糊控制器代替传统的磁链两点式、转矩三点式的bang一bang控制,该算法能够克服传统直接转矩控制方法中根据转矩、磁链的大小程度简单的选择电压矢量这一缺点,全面综合考虑了转矩误差的大小程度,可以实现大误差大调节、小误差小调节的智能控制。
(2)针对无速度传感器技术尚存在的不足,我们可以尝试用基于改进型蚁群BP神经网络的速度辨识器来替代传统速度传感器的方法来对其控制。论文参考网。由于蚁群算法是一种较新型的寻优策略,与其它的智能算法相比较,具有良好的收敛速度,且能得到的最优解更接近理论最优解,同时易于与其它方法结合,具有较强的鲁棒性。相信这样能够更准确地辨识出电机转速,达到DTC系统的动、静态性能要求,实现无速度传感器直接转矩控制。
(3)近年来,直接转矩控制的研究取得了很大进展,特别是现代控制理论和智能控制理论的引入,在MATALB和DSP的基础上,为直接转矩的建模和实现控制提供了强有力的工具。现代控制理论和智能控制理论(以模糊控制、人工神经网络为主)等控制方案为提高直接转矩控制的动态性能和鲁棒性奠定了理论基础,并为提高直接转矩控制的性能提供了一种非常好的新思路,如最近研究十分活跃的模糊控制、神经网络控制、模糊神经网络控制、非线性控制、变结构控制等。可见直接转矩控制技术智能化是未来研究方向之一。
参考文献:
[1]巫庆辉,邵诚,徐占国.直接转矩控制技术的研究现状与发展趋势[ J ].信息与控制,2005
[2]王成元,夏加宽,杨俊友等.电机现代控制技术[M ].北京:机械工业出版社,2006.
[3]张春梅,尔桂花.直接转矩控制研究现状与前景[ J ].微特电机,2000
[4]赵伟峰,朱承高.直接转矩控制的发展现状及前景[ J ].电气时代,1999
[5]刘国海,戴先中.直接转矩控制系统的神经网络控制[ J ].电工技术学报,2001
[6] Schauder C. Adap tive speed identification for vector control of induction motors without rotational transducers [ J ]. IEEE Transactions onIndustry Applications, 1992
[7]Cruz P P, Rivas J J. A small neural network structure app licationinspeed estimation of an induction motor using direct torque control [A ]. Proceedingsof the 2001 IEEE 32nd Annual Power Electronics Specialists Conference [C ].USA: IEEE, 2001. 823~827.
[8]Holtz J. Sensorless control of induction motor drives [ J ].Proceedings of the IEEE, 2002, 90 (8) : 1359~1394.
篇11
Construction and exploration on research curriculum intelligent control
Zhu Peiyi, Xu Benlian, Shi Jian
(School of Electrical and Automation Engineering, Changshu Institute of technology, Changshu, Jiangsu 215500, China)
Abstract: The research curriculum is aimed at integrating the teacher's scientific research into a customary knowledge system with hierarchical and different module. The latest intelligent control research achievement is transferred into the teaching resources effectively by adopting enquiry-based, discussion-based, project-based and display-based teaching approaches. The students' practical ability is focused on in the teaching process. Concentrating on "theory, experiment, research project", the curriculum is designed to arouse the students' interest in learning, enhance the connotation of curriculum and improve the students' ability of research problems and innovation consciousness. It lays a solid foundation for subsequent engineering practice.
Key words: research curriculum; intelligent control; teaching research; engineering applications
0 引言
研究性教学就是引导学生在一定的情境中,通过主动发现问题和解决问题而获得知识、形成能力、发展个性的教学方法。它的实质就是让学生在教学过程中体验科学原理的发现和应用科学原理解决实际问题等不同类型的研究过程[1]。早在2005年,在《教育部关于进一步加强高等学校本科教学工作的若干意见》 中明确提出了“积极推动研究性教学,提高大学生的创新能力”的要求[2]。如何在专业课程教学中实施研究性教学,提高本科生的科学研究能力,是高校理工科教学改革面临的重要课题[3-5]。
“智能控制”是我校一门理论性与应用性结合非常强的专业课程,它不仅涉及自动化技术,同时与计算机科学技术、数学等学科门类交叉[6]。作为应用型本科高校,我们将该课程直接面向自动化、电气工程及其自动化、测控技术与仪器、机械制造及自动化等本科生和硕士研究生,在注重理论知识传授的同时,直接面向具体工程应用实例。通过双语研讨式教学方式,以项目应用为纽带,阐述模糊控制、神经网络控制、智能计算在工程中的应用与原理,让学生直接感触理论对应用的支撑,应用需要理论指导这一基本工程逻辑。
1 研究性课程设计理念
“智能控制”研究性课程旨在将教师的科研成果分层次、分块地融入到原有课程知识体系之中,通过采用探究式、讨论式、专题式、成果展示式等多种教学方式,将智能控制研究领域最新的成果有效地转化为教学资源,它不仅可以提高学生学习的兴趣,而且更有利于课程内涵提升。较一般的课程更强调教学的研究性和有效性,是一种强调以学生为主体,注重过程教学的开放式教学方式,教学团队将结合自身及国内外学者在智能控制领域的最新研究成果和教学思想确定课程内容,课程采用先进的知识内容和分析方法,采用英文教材,实行双语教学,动态地补充和更新教学内容。在教学过程中充分展示创新给智能控制带来的无穷生命力,同时创造多机会来培养和激发学生的创新能力,例如实验教学、课程的小论文、学术论坛和综合设计等,提高他们的综合科学素质以及在工程实践中分析、解决实际问题的能力。重视理论教学和实践教学的结合,突出实践性教学的时效性和可观测性,在课程内增加讨论课,增加小设计和小论文,充分激励学生探索和研究的热情,让学生学会科学研究的方法,把能力的培养落在实处。
2 研究性课程理论教学
2.1 课程定位
针对我校本二学生实际和自动化专业对该领域知识的基本要求,本课程的基本定位如下。
⑴ 理论引入与应用感受相并重。为此,在课程安排时,将理论与实验课时安排相等,让更多学生通过相应的实践锻炼来体会人工智能技术的奥妙。
⑵ 科研最新成果及时向教学资源转化。对于“智能控制”的三大知识模块,均有不同程度的研究成果转化成相应的教学资源,如群智能在图像信息处理中的应用、模糊控制在倒立摆控制中的应用等等。
⑶ 教学方法与手段与教学内容同步更新。研究性课程的一个重要特征是教学内容的不断更新,为此,课程组一直致力于研究行之有效的双语教学手段。以调动学生学习兴趣为目标,做好成果展示、课题研讨、自我实现的三段教学新方法。
针对上述课程定位,我们确定了课程建设最终形成的目标:按照研究性双语课程要求与规律进行全面设计与整体建设;自主出版一套符合我校学生实际的英文版“智能控制”教材;通过丰富的实验科研项目,让学生通过自主学习方式体验人工智能技术及其新进展;融合科学与科研团队,实现教师培养与学生培养双赢。
2.2 课程重难点及解决思路
教学内容组织方式上主要采取“三个相结合”,即理论与实际相结合、课堂教学与实验室教学相结合、常规课堂教学与现代教育技术相结合,体现“让学生在系统中学习系统”的教学。智能控制的重点主要围绕模糊控制、神经网络、进化计算三大块展开系统地理论与实践并重双语教学。要求学生重点掌握如下内容。
第一模块主要围绕模糊控制中模糊集合与模糊关系,模糊逻辑与模糊推理及其应用。
第二模块主要围绕基本的神经网络类型结构,监督式与非监督式神经网络的学习算法及其应用。
第三模块主要围绕进化计算中遗传算法,蚁群算法和粒子群算法,讲述这些算法的原理及其应用思想。
该教学思想是通过本课程的学习,不仅掌握三个模块知识,而且还能将三大模块知识合成一个体系或系统,使学生全面掌握“智能控制与系统”这一自动化专业的精髓,既树立“智能”理念,又能培养具有“系统”理念,能将智能控制技术应用在生产过程控制、运动控制等领域,且应用得好。
“智能控制”课程的难点在于模糊推理的方法、模糊控制器的设计、监督式神经网络学习原理、遗传算法原理和蚁群算法原理、各种智能控制器设计及其应用。智能控制多为仿生或拟人控制,其控制机理存在于自然界和生物界。因此,对各种控制机理的介绍要从有趣的生物和自然现象入手,引人入胜地介绍智能控制原理。通过深入浅出、形象比喻、并结合多媒体技术进行讲解。
针对课程的重点和难点问题,首先在备课时对重点和难点内容做到心中有数,在讲授时花较多的时间以较慢的节奏进行重点介绍与讨论,提醒学生把注意力集中在这些问题上,并特别关注学生对问题的理解情况。其次在课堂上进行启发式、研讨式,并布置课外思考题,引导学生把复习重点放在重点和难点内容上,有针对性地建议学生访问与本课程配套使用的智能控制网络课程。同时加强实验课和综合设计环节,对重点和难点内容进行实践,加深对相关内容的理解。要经常了解与收集学生对重点和难点内容的听讲意见,及时进行答疑,必要时在课堂上进行集体解答与讨论。
3 研究性课程实践教学
3.1 实践教学的设计思想
“智能控制”课程实践性教学的主要目的是使学生通过实验,发挥主动性,研究探讨智能控制系统的运行和实现过程,提出思路并积极验证和探索自己的思路,从而更好地理解人工智能,培养学生的理论联系实际能力和创新能力,逐步培养他们发现问题、提出问题、分析问题和解决问题的能力。
实践性教学的设计思想我们归纳为四个体现。
⑴ 理论性:通过基础验证性实验让学生加深对理论的理解。如实验内容包含模糊控制系统的推理。
⑵ 系统性:通过综合设计性实验让学生加深对控制系统的理解。开设的系统实验有:温度控制系统、液位控制系统等。
⑶ 研究性:通过激励式鼓励教师将最新的研究成果引入实践教学中,让学生体验新技术带来的乐趣,如将蚁群算法应用在生物信息图像处理与信息融合领域。
⑷ 工程性:让学生在一个与工业生产实际相符合的环境下完成实践环节,从而增强学生的工程实践能力,如模糊控制技术在机器人避障中的应用。
通过实践性教学的这四个体现,学生不仅有相对扎实的智能控制知识,而且还具备一定的智能控制思想并应用至具体控制对象设计中去。
3.2 实践教学的设计与实验内容安排重点
课程设计与实验是智能控制教学任务的重点与难点,在抓住主要三大知识模块的基础上,经过多年教学经验和将来学生从事工作实际,在课程设计与实验的内容安排上注重以下几点。
⑴ 贴切应用。实践内容的安排绝大多数来自生活或生产中遇到的实际问题,通过建模、方案设计、实验、调试,逐步验证方法的正确性等等,让学生从系统中学会了应用,从应用中找到人工智能应用的强大功能。
⑵ 贴切学生实际。针对本二学生,所关心的重点是如何将理论转化成实际的效果。在实践内容安排上,强调的是目标实现,而不是问题的优化,让绝大多数学生能完成实践任务与目标,从实践中体验知识带头的快乐。
⑶ 一切围绕“问题”。教师在问题中教学,学生在问题中学习,寻找学习与实践的交叉点,通过研讨和分组,让学生根据兴趣自主选择实践项目。
⑷ 丰富与不断更新实践项目。通过将研究成果转化教学资源,不断更新实践教学资源,目标保持至少10个以上实践项目供学生自主选择。
4 研究性课程教学方法与教学手段改革
4.1 教学方法改革
本着因材施教的教学方针,我们积极引入灵活的教学方法,如探究式、讨论式、专题式、成果展示式等教学方法,充分激发了学生求知的潜能和学习的主体作用。结合专业特点,选用国外知名大学英文原版教材和自己编写的智能控制基础教材相结合,进一步丰富课程内容。适当增加讨论课,提倡小设计和小论文,充分激励学生探索和研究的热情,让学生学会科学研究的方法,提高解决问题的能力;实践教学的设计思想始终贯彻理论联系实际、重视实践、激发学生创新热情的指导方针,自行开发与引进实验装置相结合,提供基础性、综合性和创新性的实验内容。为学生创造良好的实验条件,鼓励学生自主开发智能控制系统,独立完成设计、控制与研究,并验证其效果。
4.2 教学手段改革
采用“多媒体投影+黑板”的技术手段加速了课程内容的呈现,提高了课堂讲解的表现力,如:针对该课程内容难度大,信息涵盖量大,知识面广的特点,充分发挥现代教育技术的优越性,课堂授课方法以多媒体课件为主,实现图、文、声、像并茂的视听一体化教学,并与传统教学手段有机组合,让学生共同参与教学的全过程。网络教学平台有效地支持了自主性学习,如:双语课程网站提供了智能控制课程丰富的教辅资源,网络多媒体课件及学术论坛为学生提供交互式学习平台,使学生能够在课堂学习、答疑、自由论坛等各个环节密切配合,有效地支持了学生自主性的学习。同时,利用多媒体课件可以做到教学资源共享,便于教师之间彼此交流教学经验。
5 结束语
智能控制是一门具有较强理论综合性和实践性、学科交叉及应用广泛的专业课程。深度发掘学生的自主学习与创新意识,对自动化等专业智能控制课程研究性教学从课程设计理念、理论教学改革、实践教学改革以及教学方法与教学手段改革等四个方面进行了具体的实践探索,取得了一定效果。通过研究性教学,逐步培养学生的主动学习的意识和创新意识,培养研究精神,鼓励研究热情,引导学生逐渐积累专业知识,解决实际问题,达到培养创新性人才的目的。但是智能控制课程的开设一般都选择在大四上学期,如何有效激起所有同学的学习兴趣,以及分层次、分专业背景的授课方式将是本课程未来所研究的主要内容。
参考文献:
[1] 徐青,张云,应飚.试论研究性大学创新性科研团队的建设[J].中国高
教研究,2009.3:49-50
[2] 张建华.应用型人才培养中数值计算方法课程教学改革与实践[J].大
学教育,2013.8:51-52
[3] 顾沛.把握研究性教学推进课堂教学方法改革[J].中国高等教育,
2009.7:31-33
[4] 赖生建.《计算电磁学》课程研究性教学实践[J].实验科学与技术,
2013.11(6):262-264
[5] 李胜清,康勤书,陈浩.分析化学“四位一体”研究性教学模式的构建
篇12
中图分类号:F407.61 文献标识码:A 文章编号:
引言:
随着控制手段的日益更新和控制技术的不断发展,智能控制技术已经逐渐在控制行业中占据主导地位,相应的大量的智能控制软件也逐渐取代了常规的控制软件,像在生活中经常提到的神经网络,模糊控制等都属于智能控制的范畴。由于智能控制的控制效果很好,很适合应用在电力传动系统中,因此有必要研究适合电力系统的更简便,性能更优异的智能控制系统。同时,要想将智能控制这一理念成功的应用在电力传动系统中就必须充分了解智能控制的原理和应用特点,虽然现在已经有了一些应用实例,但是这并不普及,还有许多缺陷。因此,在电力系统中应用智能控制系统仍然是一个很大的挑战。
电气控制对象的特点和要求
电气控制量与热工控制量相比在控制要求及运行过程中有着很多不同点,电气的主要特点表现为:
1. 电气控制系统相对热机设备而言控制信息采集量小、对象少,操作频率低,但强调快速性、准确性;
2. 电气设备保护自动装置要求可靠性高,动作速度快;同时对抗干扰要求较高。
3. 热力系统控制处理信息量大,系统复杂,以过程控制为主;电气控制系统(ECS)主要以数据采集系统和顺序控制为主,联锁保护较多。
因此,机组的电气系统纳入DCS 控制,要求控制系统具有很高的可靠性。除了能实现正常起停和运行操作外,尤其要求能够实现实时显示异常运行和事故状态下的各种数据和状态,并提供相应的操作指导和应急处理措施,保证电气系统自动控制在最安全合理的工况下工作。
电气自动化控制系统的设计
1. 集中监控方式
这种监控方式优点是运行维护方便,控制站的防护要求不高,系统设计容易。但由于集中式的主要特点是将系统的各个功能集中到一个处理器进行处理,处理器的任务相当繁重,处理速度受到影响。由于电气设备全部进入监控,伴随着监控对象的大量增加随之而来的是主机冗余的下降、电缆数量增加,投资加大,长距离电缆引入的干扰也可能影响系统的可靠性。同时,隔离刀闸的操作闭锁和断路器的联锁采用硬接线,由于隔离刀闸的辅助接点经常不到位,造成设备无法操作。这种接线的二次接线复杂,查线不方便,大大增加了维护量,还存在由于查线或传动过程中由于接线复杂而造成误操作的可能性。
2. 远程监控方式
远程监控方式具有节约大量电缆、节省安装费用、,节约材料、可靠性高、组态灵活等优点。由于各种现场总线(如Lonworks 总线,CAN总线等)的通讯速度不是很高,而电厂电气部分通讯量相对又比较大,所有这种方式适合于小系统监控,而不适应于全厂的电气自动化系统的构建。
3. 现场总线监控方式
目前,对于以太网(Ethernet)、现场总线等计算机网络技术已经普遍应用于变电站综合自动化系统中,且已经积累了丰富的运行经验,智能化电气设备也有了较快的发展,这些都为网络控制系统应用于发电厂电气系统奠定了良好的基础。现场总线监控方式使系统设计更加有针对性,对于不同的间隔可以有不同的功能,这样可以根据间隔的情况进行设计。采用这种监控方式除了具有远程监控方式的全部优点外,还可以减少大量的隔离设备、端子柜、I/0 卡件、模拟量变送器等,而且智能设备就地安装,与监控系统通过通信线连接,可以节省大量控制电缆,节约很多投资和安装维护工作量,从而降低成本。另外,各装置的功能相对独立,装置之间仅通过网络连接,网络组态灵活,使整个系统的可靠性大大提高,任一装置故障仅影响相应的元件,不会导致系统瘫痪。因此现场总线监控方式是今后发电厂计算机监控系统的发展方向。
电力系统中的智能控制
在电力传动系统中应用智能控制理论已经引起了许多学者的研究兴趣,专家表示通过智能系统的合理应用很可能将电力系统的控制水平提升一个台阶。目前所使用的交直流传动系统的控制手段比较成熟,如矢量控制,闭环控制等都有很好的效果。虽然利用PID控制法可以很容易的完成数学建模进行传统的控制,但是可以发现实际的电力传动系统并不是稳定不变的,电机本身的一些参数要随着其工作状态的改变而不断变化,这就为传统的建模控制带来了很大的困难。智能控制便可以很好的解决这一问题,首先智能控制是采取非线性,变结构的模式来进行工作的,它可以很好的克服电力传动系统的变参数问题,从而在很大程度上提高电力传动系统的鲁棒性。另外值得注意的是将智能控制应用到电力传动系统中时要结合传统的控制理念共同作用,如果完全排斥传统控制方法,生搬硬套的直接应用智能控制不但不能发挥其优势反而会引发一系列问题,因此在引入这一控制手段时要注意继承一些传统的控制理念,做到扬长避短。就拿交流电机为例来说,前面已经说到交流电机以往采取矢量控制和闭环控制,因此在将智能控制引入之一系统中时,应该保留一些矢量控制法和PID控制法,可以将智能能控制作为外环控制,将一些传统的控制手段用做内环做辅助控制,这样新旧相结合的方法可以将智能控制的优势充分的发挥出来,提高系统的工作效率。这主要是因为内环的控制可以帮助外环完成采样工作,提高外环采样频率同时通过内环的控制可以减少外环的控制误差。
探讨电气自动化控制系统的发展趋势
OPC(OIJEforProcess Control)技术的出现,IEC61131 的颁布,以及Microsoft 的Windows平台的广泛应用,使得未来的电气技术的结合,计算机日益发挥着不可替代的作用。IEC61131 已成为了一个国际化的标准,正被各大控制系统厂商广泛采纳。Pc 客户机/服务器体系结构、以太网和Internet 技术引发了电气自动化的一次又一次革命。正是市场的需求驱动着自动化和IT 平台的融和,电子商务的普及将加速着这一过程。Internet/Intranet 技术和多媒体技术在自动化领域有着广泛的应用前景。企业的管理层利用标准的浏览器可以存取企业的财务、人事等管理数据,也可以对当前生产过程的动态画面进行监控,在第一时间了解最全面和准确的生产信息。虚拟现实技术和视频处理技术的应用,将对未来的自动化产品,如人机界面和设备维护系统的设计产生直接的影响。相对应的软件结构、通讯能力及易于使用和统一的组态环境变得重要了。软件的重要性在不断提高。这种趋势正从单一的设备转向集成的系统。
参考文献:
[1]戴汝为,杨一平.一类智能控制和决策支持系统的体系结构[A].1995年中国智能自动化学术会议暨智能自动化专业委员会成立大会论文集(上册)[C] ,1995 年.
篇13
1、人工智能应用理论分析
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟,延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质.并生产出一种新的能以人类智能相似的方式作出反应的智能机器 该领域的研究包括机器人、语言识别、图像识别 自然语言处理和专家系统等。自从1956年“人工智能 一词在Dartmouth学会上提出以后,人工智能研究飞速发展,成为以计算机为主.涉及信息论.控制论, 自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学的一门学科。人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂的工作。
当今社会,计算机技术已经渗透到生产生活的方方面面.计算机编程技术的日新月异催生自动化生产,运输 传播的快速发展。人脑是最精密的机器,编程也不过是简单的模仿人脑的收集、分析、交换、处理、回馈.所以模仿模拟人脑的机能将是实现自动化的主要途径。电气自动化控制是增强生产.流通、交换、分配等关键一环.实现自动化,就等于减少了人力资本投入,并提高了运作的效率。
2、人工智能控制器的优势
不同的人工智能控制通常用完全不同的方法去讨论。但Al控制器例如:神经、模糊、模糊神经以及遗传算法都可看成一类非线性函数近似器。这样的分类就能得到较好的总体理解.也有利于控制策略的统一开发。这些Al函数近似器比常规的函数估计器具有更多的优势.这些优势如下:
(1)它们的设计不需要控制对象的模型(在许多场合,很难得到实际控制对象的精确动态方程,实际控制对象的模型在控制器设计时往往有很多不确实性因素,例如:参数变化,非线性时,往往不知道)。
(2)通过适当调整(根据响应时间 下降时间、鲁棒性能等)它们能提高性能。例如模糊逻辑控制器的上升时间比最优PID控制器快1.5倍 ,下降时间快3.5倍, 过冲更小。
(3)它们比古典控制器的调节容易。
(4)在没有必须专家知识时.通过响应数据也能设计它们。
(5)运用语言和响应信息可能设计它们。
总而言之,当采用自适应模糊神经控制器、规则库和隶属函数在模糊化和反模糊化过程中能够自动地实时确定。有很多方法来实现这个过程,但主要的目标是使用系统技术实现稳定的解,并且找到最简单的拓朴结构配置.自学习迅速,收敛快速。
3、人工智能的应用现状
随着人工智能技术的发展,许多高等院校及科研机构就人工智能在电气设备的应用方面展开了研究工作,如将人工智能用于电气产品优化设计,故障预测及诊断、控制与保护等领域。
3.1 优化设计
电气设备的设计是一项复杂的工作 它不仅要应用电路、电磁场、电机电器等学科的知识,还要大量运用设计中的经验性知识。传统的产品设计是采用简单的实验手段和根据经验用手工的方式进行的.因此很难获得最优方案。随着计算机技术的发展,电气产品的设计从手工逐渐转向计算机辅助设计(CAD),大大缩短了产品开发周期。人工智能的引进.使传统的CAD技术如虎添翼.产品设计的效率及质量得到全面提高。用于优化设计的人工智能技术主要有遗传算法和专家系统。遗传算法是一种比较先进的优化算法,非常适合于产品优化设计。因此电气产品人工智能优化设计大部分采用此种方法或其改进方法。
3.2 故障诊断
电气设备的故障与其征兆之间的关系错综复杂,具有不确定性及非线性.用人工智能方法恰好能发挥其优势。已用于电气设备故障诊断的人工智能技术有:模糊逻辑、专家系统、神经网络。
变压器由于在电力系统中的特殊地位而备受关注,有关方面的研究论文较多。目前对变压器进行故障诊断最常用的方法是对变压器油中分解的气体进行分析.从而判断变压器的故障程度。人工智能故障诊断技术在发电机及电动机方面的研究工作也较为活跃。
3.3 智能控制