引论:我们为您整理了13篇地基施工论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
篇1
由于沙表层较软,模板直接支设在没垫层的沙上会发生不均匀的沉降现象,所以,要采取在底层模板下方垫设木板、钢管下方垫设木板、绑扫地杆和加密钢管等措施。基础模板采用的是竹胶板。在基础施工前,应事先制作模板,模板加工应符合以下要求:①在制作基础模板时,模板内断面的尺寸不得小于设计断面的尺寸,并且光面为模板内侧。②由于立柱较高,所以,存在模板连接(接茬)。在连接模板时,接茬部位要严密,不得出现错位和缝隙,防止发生跑浆或基础侧面出现棱台的情况。③模板接茬不能处于同一截面上,应错开连接,并且在支模时,不能将模板接茬布置在立柱外露部分,影响立柱的美观度。④制作模板时,应采用厚度不小于18mm的板材,模板合缝应严密,不得漏浆。模板连接肋木的尺寸为50mm×50mm。一般情况下,肋木之间的距离为300~400mm。
3基础混凝土施工
3.1浇筑平台搭设由于沙丘基础开挖时造成的基坑较大,给混凝土下料带来了较大的麻烦,所以,必须在基础与基坑边之间搭设1个浇筑平台,便于铁塔基础模板的固定,同时,还可将其作为混凝土浇筑时的下料平台。浇筑平台采用钢管搭设,并且其应与铁塔基础模板支立、钢筋绑扎同步进行。浇筑平台的搭设要求:立杆间距1.5m,大横杆间距1.2m,操作层小横杆间距1m;必须设斜撑、剪刀撑;必须牢固、可靠,能够满足人员、运料小车的安全使用要求。
3.2混凝土下料利用装载机将搅拌好的混凝土在短时间内运送浇筑平台前,通过溜槽和串筒将混凝土流入模板内。3.4.3混凝土养护因为施工地气候炎热,基础浇筑后3h内必须浇水养护。另外,由于流动沙丘地段的蒸发量大、风大,所以,要同时做好保湿工作,在现场采用棉被覆盖浇水的养护方式。3.5沉降观测因为这是第一次进行流动沙丘段的基础施工工作,虽然岩土工程勘测报告显示地基承载力足够,但是,为了积累施工经验和设计经验,在每个地基基础浇筑后设置了沉降观测点,并确定了观测时间,经过两个月的观测,基础未发生不均匀沉降或超过10mm的沉降。
篇2
1.2岩土本身问题
影响建筑工程的主要的问题有岩石参数、地质的形态及界面的划分情况等,因此在进行勘测时要记录土体中的不明物体,并且要将这些物体的埋藏位置及分布情况进行详细记录。要准确判断出岩石的地质构造和软弱结构,在这当中岩石的实际参数是至关重要的,必须要设计难以试验的岩石的参数。
1.3勘测人员问题
勘测人员自身的问题是影响勘测准确性的重要原因。所以,必须要对勘测技术人员加强培训,增加他们知识的深度和广度,并且要增加勘测人员之间的技术交流。同时,从勘测人员自身来讲,需要详细整理原始资料,并对其进行分析加工,使自身的勘测能力得到提高。作为工程建设的基础工作,岩石勘测能够保证其他工程的顺利进行,因此,必须要对岩石勘测加以重视。
2地基施工与处理的作用
建筑工程地基处理是合理科学的利用人工置换、夯实、挤密、排水、加筋等措施和方法,来改善建筑工程地基条件,以利于工程的顺利实施,主要表现在以下四个方面:(1)对地基压缩性能的提高。利用有效的方法来增大建筑施工地地基的压缩模量,以减少地基土的沉降,还能够减小因为塑性流动而造成剪切变形的风险。(2)加强地基的抗剪强度。地基抗剪强度的大小直接影响着建筑工程地基的稳定性,因此,为了减缓地基土的压力,减小因为地基剪切引起的破坏,必须采取有效合理的措施来加大地基的抗剪能力。(3)对地基的透水性进行改善。地下水对建筑工程的施工有很大影响,必须选择科学合理的方法来降低地下水对地基的不利影响,保证地基土的不透水性。(4)增强地基的抗震能力。地震能够让地基中松散、饱和的粉细沙液化,因此,对于这类问题必须采取合理的措施来防止其发生,提高地基土的抗震性能。
3地基施工处理的常用技术
3.1夯实法
夯实法是运用起重机等大型机械设施将大吨位夯锤提升到距离地面10m-30m的高度上,然后让夯锤自己降落到地基上,反复进行这一步骤,逐渐减小施工地基的地基土密度,以提高地基的稳固性。利用这种方法,可以让地基表面的比内部更加坚硬,能够增加地基表面的承载力。当地基土是碎砂石、石土、粉土和具有较低饱和度的粘性土时可以用这方法对地基进行处理。利用这种方法能够增加原来地基土的强度,减少由于地基土的压缩性造成的对建筑工程的不利影响,从而进一步提高地基土的抗震性能和抗液化能力。
3.2置换垫层法
置换垫层法首先将地基土中的软弱土层挖掉,然后将高强度、低压缩性和高耐腐蚀性的灰土、砂石等分层次换填,并将这些材料夯实,用作建筑工程地基的垫层。当地基的土层不均匀时可以采用此种方法,利用这种方法可以使淤泥土质、季节性冻土、膨胀土等地基条件得到改善。在此方法中用到的砂垫层要选择砂或者粗砂,对不同砂的配比必须按照设计要求进行。对砂垫层进行施工时,要将其均匀摊铺,杜绝砂垫层中出现集中载荷现象。
3.3挤压桩法
当施工场地的地基是位于地下水位以上的黄土、杂填土和素土时可以采用挤压桩法。该种方法是在施工时,首先要进行桩孔的布置,布置桩孔时要严格遵照施工设计方案进行,将素土等材料加入到桩孔中,打实孔内材料,保证桩孔的布置要严格遵照施工设计的要求。挤压桩法包括土挤密桩法和灰土挤密桩法两种方法,前一种方法有利于地基土湿陷性的消除,后一种方法有利于地基土的防渗水性和承载能力的增强。
3.4砂石桩法
进行建筑施工时对地基承载力的要求比较高时可以采用砂石桩法。这种处理地基的方法能够在最大程度上增加地基的抗剪能力和密实度,让地基土变的更加密实、均匀。当施工场地是软土地基时,首先应该置换原地基土,然后运用砂石桩法,以增强软土地基的稳固性。当施工场地是饱和性质的流塑地基时,首先在施工前要进行预压处理,然后采用砂石桩法,保证地基获得预期处理的最佳效果。当施工现场的地基土是砂土、粉土和杂填土时,使用砂石桩法可以大大降低地基的压缩性,增加地基土的承载性能,使液化地基的条件得到改进。当施工现场的地基土是饱和性质的粘土时,采用砂石桩法对其进行置换处理,能够得到控制变形的目标,最终的复合地基是由粘土地基和砂石桩构成的,用来提高地基的承载能力。
篇3
二、软弱地基施工组织技术分析
1.表层处理方法这种方法一般被用在地基表面相当软弱的情况下。主要是借助排水、敷设与材料增添等办法来提升地表的强度,避免地基局部出现剪切变形的情况,确保施工组织机械能正常运作;还可确保填土荷载在地基上均匀分布。表层排水法:对于那些土质不错但是因为含水量太多而变成软弱地基的情况,填土前应该对地表面进行开挖沟槽,排除地表水,减少地基表层土的含水量,以确保施工组织机械能顺利通行。为了将开挖出的沟槽运用在盲沟的施工组织中,应当回填一些透水性好的砂砾碎石。砂垫层法:这种方法常用于软土层不太厚,排水性能好,砂砾资源充足,工程工期不紧张的情况中。一般当砂垫层厚12—24cm时,应当结合提升排水面理论,利用软弱地基在构造物荷载下能有效加速排水固结凝结的作用,来强化软土层的强度,实现稳定要求。在选择砂砾垫层施工组织材料时,应当控制好洁净中、粗砂,确保5%以下的含泥量,还应注意选择那些粒径在5cm之内的天然级配砂砾。为了确保显著的排水效果,应当在施工组织时做好洒水压实工作,施工组织前要检查好砂砾表层,表层湿润时则可采取施工组织处理。敷垫材料法:对于地基土层不均匀,可能发生局部不均匀沉降和侧向变位,可利用所敷垫材料的抗剪和拉抗力来增强施工组织机械的通行能力。均匀地支承填土荷载、减少地基局部沉降和侧向变位,提高了地基的支承能力。添加剂法:当表层为粘性土时,在其内渗入添加剂,以改善地基的压缩性能和强度特性,确保施工组织机械的正常行驶,也提高了固结的效果。工程上常用生石灰、水泥及熟石灰作为添加材料。石灰类添加材料通过现场拌和或厂拌,能产生团粒效果,降低土壤含水量,被固结的土也会发生化学性固结,确保土体的稳定。
2.粉喷桩加固法粉喷桩主要适合用在深层地基加固中。这是以水泥、石灰等材料作为固化剂的主剂,用搅拌机械将软土和固化剂强制搅拌,通过固化剂与软土发生的物理化学反应,将软土硬结成强度较高的优质地基。这种方法就是使用粉体状固化剂来搅拌处理软基,常用在淤泥及粉土等粘性土的加固中。水泥搅拌桩法此法以石灰、水泥等材料为固化剂,通过深层搅拌机械的作用,将软土与粉体或浆液桩的固化剂在地基深处进行强制搅拌,经过一系列的物理化学反应,形成强度高、稳定性好的复合地基。水泥搅拌桩法常用于对粉土、松散砂土等地基的加固,其优点表现在施工组织过程中对路堤的干扰较小,非常适合扩建工程施工组织。在施工组织之前,首先要保证场地平整,如果有低洼下陷的区域要用粘土填平,同时需要清除场地内的一切杂物,如砂垫层和生活垃圾等。竖向排水同结法将垂直的排水柱设置在粘性土地基中,缩短了排水距离,促进了地基排水固结,增加了抗剪强度。垂直排水柱所用的材料分为砂井和纸板排水两种。根据砂井的施工组织方法不同砂井排水法可分为水射式、螺旋钻式、打入式、振动式及袋装式等。此法很少单独使用,多与加载法或缓速填土法并用,对层厚大,均质的粘土地质最为有效;对泥炭质地基效果稍差。
篇4
1.2地基发生沉降带来的影响
在地基发生沉降时,其压应力较大,在这种情况下,地基中土壤缝隙处的水分则会被挤压出去,地基会发生不同程度的沉降,从而导致建筑物出现裂缝或是倾斜,影响建筑物的使用安全,严重时还会威胁人们的生命和财产安全。
1.3土坡失稳对高层建筑的影响
高层建筑基地中,当土体内部受到自身结构、土质、降水或是外部力量影响时会导致土坡失稳现象发生,土坡某一层面上会产生滑动位移,从而导致土坡失去平衡性,使高层建筑物的安全性受到较大的影响。
2高层建筑工程地基施工技术的要点
2.1地基施工技术的选用
目前我国地基施工技术种类较多,而且具有较广泛的适用范围,但在具体应用过程中,需要根据具体的施工情况来选择适宜的地基施工技术。对于所选择的地基施工技术,在具体施工时,技术人员还要做好技术交底工作。对于高层建筑地基施工中所采用的施工技术,不仅需要与施工的具体需求相符合,而且还要确保有效的实现对成本费用的控制,考虑到对环境的保护和能源的节约。
2.2地基施工技术的设计
当高层建筑地基施工技术确定后,则需要根据实际情况来对施工程序进行设计,确保其具有较好的操作性,能够有效的满足施工具体条件的要求。同时还要选择适宜的施工设备和材料,制定科学合理的施工方案,确保地基施工的顺利进行。
2.3加强地基施工前的准备工作
在地基施工前,需要充分的结合现场和土质等因素来制定科学合理的施工方案,对地基的基本情况进行实地检查,根据制定的方案来对人工地基和天然地基的使用情况进行明确,做好地质勘察工作。同时施工人员还要对施工技术的特点和施工顺序进行明确,对于部分高层建筑对地基质量具有较高要求时,还需要在地基施工前做好检验和试验工作,施工完成后,还要进行严格的检验,确保地基的质量能够得到有效的保证。
3高层建筑地基施工技术
3.1科学设计施工方案
设计基坑支护结构,应该从系统性的角度出发去思考问题。在设计的过程中,需要综合考虑各方面的因素和可能涉及到的问题。例如:地质与水文条件、工程造价与工期、施工选用的机械设备和施工工艺等。将工程施工可能涉及到的各方面问题综合考虑进来,进行全面分析和科学管理,选用合理的设计方案。所以,在设计基坑支护结构的过程中,必须要从实际需求出发,综合分析和考虑各方面问题,进行整体性、综合性考虑。
3.2合理控制工程标高
土方开挖前,做好现场轴线、标高的测量工作。施工设计过程中,要根据施工规范并结合现场实际情况进行放坡和实施防护,比如在场地较为狭窄的地区,可以选用钢支撑的形式,在有地下水沉降的地区,可以选用集水坑实施抽水措施。在控制标高的过程中,如果视野允许可以用全站仪控制开挖标高,在浇筑砼垫层的时候用水准仪抄平。水平控制桩在基坑边缘设置,使用之前要进行复测,以保证精度。同时,还应充分利用有监控专家系统、智能控制系统、可视化监测软件等工具加强对建筑基坑及周边环境的监测,为工程建设提供信息化支持。
3.3明确施工工序
在施工之前,要合理设计和管理施工工序,施工工序分为以下几个部分:第一、全面了解基底情况,对支护、变形、排水、管线、堆砌物等进行了解和管理;第二、实施材料准备。确保符合施工要求的材料按时到达,以供给顺利施工;第三、在挖土过程中,设置一定坡道,重视坡道的防滑,在展开挖土过程中,将周边的杂物、垃圾等进行清理;第四、施工过程中的运输材料,采取垂直运输形式,严格按照施工要求和规范进行,并留有员工施工通道;第五、桩基检测,实施变形检测,按照相关规范,落实检测工作。
3.4科学组织施工过程
地基施工对专业性要求较高,而且施工工序较为复杂,所以需要对施工工序进行合理组,确保施工的安全、有序进行。在地基施工过程中,主要需要进行土方开挖、做好支撑、降水及基础工程等几个方面的施工工作,在对降水方式选择时,需要确保降水水位要控制在基底以下一至二米的距离。在进行支撑施工时,需要根据具体的放坡系数及基坑的深度来进行具体的论证,确保支持结构的稳定性,以及施工的安全。
3.5基坑回填以及细节处理
在地基施工过程中,当基础施工和地下室施工完成后,都需要进行回填工作。在基坑回填施工时,需要选择正确的回填方式,从而有效的确保工程的质量。在对基坑回填时,需要两侧同步进行,因为只对一侧进行回填时,则会导致另一侧受到过大的压力,对施工的质量和安全性带来较大的影响。在回填施工时,需要确保回填土要满足回填的要求。在高层建筑地基施工中,其回填土多以粉土和粉质粘土为主,同时还要控制好回填土自身的含水量、杂质和土质等,确保回填能够与工程的具体要求相符,确保地基的质量。另外在回填施工时,对于回填的方案、次数、厚度及使用的回填机械等都需要满足施工的方案标准,确保回填的质量。
篇5
1.2软土地基处理问题
在建筑工程施工之前,针对不同的软土地基,我们可以采取相应的措施对其进行处理,从而为建筑工程提供一个较好的地基环境。具体来讲,第一,对于一些古河道、暗沟和暗塘,我们可以采取短桩、基础加深或者换土垫层的方式进行处理。第二,对于那些地基表层不均匀的地基,我们可以把地基表面的一些软土层挖出,换土进行夯实。而对于那些厚层的软土地基,我们可以使用堆载预压的方式进行处理。第三,如果建筑物对地基沉降的要求比较严格,我们可以运用桩基的方法对软土地基进行处理,这样就大大减少了软土地基的沉降幅度。
1.3软土地基施工技术问题
(1)挖土和围护工作
第一,挖土工作。在对软土地基进行挖土工作的时候,要需要注意两点。首先,在挖土时,一方面要避免扰动软土地基中的持力土层,并依照相关规定做好基槽、基坑中的放坡和边坡支护工作,防止挖土过程中出现塌土状况。其次,在挖土之后,还要由施工、勘察、设计、监理单位等对于基槽、基坑进行检查,是否符合相关标准和规定,一旦发现问题,要及时采取补救措施进行解决。第二,围护工作。对于一些比较深的基坑,按照相关要求,我们还需要使用预制桩、板桩以及钻孔灌注桩等对其进行围护,从而抵制软土层受到挤压时所产生的一些推力。
(2)增设垫层工作
目前,很多建筑工程中对于软土地基的处理都是使用换土垫层的方法。根据使用材料的不同,换土垫层又包括碎石垫层、灰上垫层、煤渣垫层以及砂石垫层等多种类型。虽然换土垫层的材料各不相同,但是,它们在软土地基的施工中所发挥的作用都是类似的,即使用垫层不仅可以提高地基的承载能力,减少软土地基对建筑工程的破坏,而且在减少软土地基的沉降量和加快软土层中的排水固结方面发挥着重要作用。由此可见,增设垫层是一种比较有效的软土地基施工技术。
(3)加强施工管理
第一,施工进度方面。在软土地基的施工过程中,由于其特殊性,我们需要对施工进度进行严格控制。比如,在施工过程中,严格按照施工要求来实施,混凝土的浇筑构件要均匀掌握,每天施工的高度最好不宜超过1.5m等。第二,施工设备和人员管理方面。施工现场的一切机械设备,必须经常检查、维护和保养。如果夜间施工,现场要有足够的照明,以保证施工人员安全和施工质量。由于软土地基施工的要求比较高,施工人员必须按照相关规定持证上岗,禁止无证人员操作。第三,施工监测方面。在施工过程中,还要做好现场监测工作。比如,每天必须在工地巡视检查质量、安全,如发现问题及时向班组工人提出整改,并复查整改情况。坚持定期和不定期相结合的安全检查制度,建立登记、整改制度,在查出的隐患没有排除前必须有可靠的防护措施,如有危及人身安全的情况,应立即下令停止作业,以人身安全为第一要务,待整改完成并经验收合格后方能恢复施工。第四,基坑监测方面。受基坑挖土等施工的影响,基坑周围的地层会发生不同程度的变形,基坑周围密布有建筑物、各种地下管线以及公共道路等市政设施,尤其是工程处在软弱复杂的地层时,因基坑挖土和地下结构施工而引起的地层变形,会对周围环境(建筑物、地下管线等)产生不利影响。因此在进行基坑支护结构监测的同时,还必须对周围的环境进行监测,做到信息化施工,发现问题,及时处理。
篇6
(二)推行绿色施工,节能减排促环保施工企业要在保证工程质量和施工安全基础上,开展绿色施工。绿色施工的概念较为宽泛,其包括了施工管理及具体施工的各个环节和施工材料等。推行绿色施工,就要科学的规划整个施工过程,包括设计、管理、检查等各个环节,具体来说:首先,要最大限度的减少施工对于周围环境造成的破坏,如减少粉尘、处理污水等;其次,要最大限度节约能源,如节能、节材、节水等,将节能减排进行到底;其次,使用清洁能源和可再生建材,从根本上大幅度减少市政工程对不可再生能源的消耗;最后,严格检查材料和设备的质量,提高施工效率,既要保证工作效率高,还要保证施工能耗少。此外,施工前,要仔细设备和材料,禁止高污染设备和材料进场。施工结束后,要及时处理施工造成的环境破坏,如降低扬尘、处理废弃物等,尽量保持市政工程施工现场环境的不受影响。
(三)使用低碳化施工技术,提升施工技术水平市政工程多为工程量较大,工期较长的施工工程,因为要保证施工技术的低碳化,进而保证施工过程的低碳化。企业应认识到低碳施工对企业发展、环境保护的重要意义。低碳施工技术对施工人员的要求较高,施工企业要加大对低碳施工技术培训方面的投资,加强相应的施工管理,促进低碳技术的合理应用。在施工工程过程中,要注意施工各环节的处理,如利用水净化设备,循环利用水资源;施工破坏自然环境后,要选择适当时机,运行生态修复技术还原生态环境或创造新的生态环境;鉴于施工排放大量二氧化碳,应建立动态监测机制,设立检测点,并使用二氧化碳动态检测仪,随时检测碳排放量,以控制施工过程的碳排放量。
篇7
城市依江而建,市区的江河沿岸常常是人口集中和经济比较发达的地带。因此,城市堤防对城市的生存和发展起着至关重要的作用。随着现代化建设的推进,城市多功能、高品位的建设目标和可持续发展的总体要求,即城市堤防不但要具有防洪功能,还要具有景观环境功能,必要时还具有交通、商业等多种功能,走可持续发展之路,实现堤防与自然、堤防与城市相和谐。目前丹东市及丹东附属的县级市的堤防建设已经开始逐渐融入城市堤防建设的新思路。
2城市堤防设计中需考虑的几个问题
通过参与设计丹东市凤城市南大河综合治理工程,其工程重要任务是根据凤城市经济发展的新形势,通过本工程的建设进一步完善凤城市南大河的防洪体系,提高城市的防洪标准,充分利用南大河水体两侧自然的景观形态,建设以独特、唯美的景观展现城市滨水生态景观独居特色的魅力,将南大河滨水生态景观打造成为环境健康舒适、景观优美自然、文化内涵深厚、地域特征鲜明多功能的城市生态滨水廊道。目的是满足防洪要求,兼顾景观,提高流域整体防洪能力,美化该地区人民的生活环境,保护人民群众的生命财产的安全,并改善流域的生态环境。根据工程建设的主要任务,结合当地的实际情况应注意以下几个方面的问题:
2.1堤防工程建设必须和城市自然条件、社会环境、经济发展等因素相和谐。堤防建设首先必须服从流域防洪规划,堤岸线的布置应保证排洪的需要;同时应与城市总体规划协调,服从城市总体规划所赋予堤防的功能任务。
2.2重视堤防工程对城市景观的影响,可考虑与城市景观设施建设相结合。城市堤防在洪涝期是保护城市的工程设施,在非洪水期应该是人们休闲、娱乐、亲水的场所。凤城市南大河滨水生态的建设与远近闻名的凤凰山相结合,不但是当地城市居民休闲游玩的好去处,更是观光者在此接触自然、感受城市美景,与自然、城市和谐相处的好地方。因此,应充分注意南大河两岸的生态环境和景观建设,遵循人与自然和谐相处、保持自然、回归自然的原则,使城市堤防工程成为凤城市又一道亮丽的风景线。
2.3合理的堤线布置。防洪堤堤线布置直接关系到整个工程的合理性和建成后所发挥的功用,尤其对工程投资大小影响重大。堤线布置应根据防洪规划,地形、地势、地貌和地质条件,结合现有及拟建筑物的位置、型式、施工条件和河流历史演变,充分估计下伏层地质状况,经过技术和经济比评后综合分析确定。
2.4与城市基础设施规划相结合。以往在进行城市规划中,城建部门负责市区的排水、道路规划,水利部门负责河道防洪规划,人为地将城市排水、道路规划与城市防洪规划截然分开。两个部分相互衔接的地方经常会出现许多漏洞,相互间不能很好的结合。城市防洪规划与城市基础设施规划二者需全面考虑,统筹安排。堤防建设中应结合考虑城市排水工程、污水处理工程、道路与城市防洪工程。
3凤城市南大河堤防设计实例
3.1本次工程的主要任务。本次凤城市南大河治理工程主要任务是通过本次工程的修建,使之与南大河上下游已修建防洪堤衔接,完善凤城市城区段南大河的防洪体系,提高防洪能力。对南大河左右岸加固堤防、修建一级阶梯挡土墙和穿堤建筑物进行统筹安排,使之满足防洪、排涝、护槽固滩的要求,提高流域整体防洪能力,保护人民群众的生命财产的安全,并改善流域的生态环境。同时结合凤城市城东新区的总体规划,结合南大河左右岸场地及周围自然景观,进行合理的景观序列组织,建设南大河滨河公园;充分利用地域自然景观资源和文化景观资源,形成协调的滨水景观结构体系。南大河滨河公园的建成可以充分发挥其社会效益、生态效益和经济效益,促进凤城市建立地区性的生态系统。该城市河流景观将有力地推动凤城市城市健康的发展。
3.2防洪标准及规模。本次工程修建南大河左岸保护凤城市凤凰城街道,右岸保护凤山街道。凤凰城街道总人口11.21万人,其中非农业人口9.54万人,凤山街道总人口4.89万人。按照现行国家标准《防洪标准》GB50201-94规定:当城市非农业人口≤20万人时,城市的重要性为一般城镇,城市等级为Ⅳ等,防洪标准为50~20年。本次修建南大河左岸共有企业11家,其中凤城市老窖厂为国家中二型企业,还包括凤城市织布厂、辽东仪表厂、丝绸厂、凤化集团等,共有学校2座,分别为城东小学及市农机学校,医院1座为凤城市骨科医院,凤山路及凤华路穿越该区,又根据凤城市城东新区规划图,左岸防洪区分15个区域进行规划,主要有行政办公区、CBD商贸区、文化服务区等,占地面积约3.67km2。右岸共有企业3家,分别有亦佛实业有限公司、申科公司、蓄电池厂,凤上铁路位于右岸堤后,与之平行。按照现行国家标准《防洪标准》GB50201-94规定:当工矿企业为中型时,工矿企业等级为Ⅲ级,防洪标准为50~20年。又根据“爱河流域规划报告”,凤城市按照城市总体发展规划,城区防洪标准为50年一遇。凤城市城市防洪标准为50年。同时本次工程设计确定防洪标准既按照城市发展需要也应考虑与上下游已建堤防衔接的原则进行选取。从上述保护对象的论述可以看出,右岸防洪区保护对象较少,且较左岸重要程度低,上游已建成堤防已经达到30年一遇洪水标准,按照上下游衔接的原则,右岸防洪区防洪标准按30年一遇设计;左岸防洪区根据凤城市城东新区规划,保护对象较重要,防洪标准按50年一遇设计。综上选定,本次工程设计左岸防洪区防洪标准50年,右岸防洪区防洪标准30年。穿堤建筑物主要以排雨水为主,根据《城市防洪工程设计规范》(GB/T50505-2012)规定,本次设计穿堤建筑物雨水重现期均选用5年。本次工程治理河道中心线长度约3.5km。两岸共需修建土质堤防长6580m,其中新建堤防2361m,加高培厚堤防2749m,需要修整堤防1470m。共修建一级混凝土重力式挡墙护岸6919m。二级阶梯挡土墙护岸6919m,修建三级阶梯挡土墙护岸6919m。
3.3堤线布置。本次水利工程设计堤线及一级阶梯挡土墙岸肩线应根据水利工程相关要求遵循自然的原则,岸肩线布置在主河槽与滩地交界处,不破坏原有主河槽的河道宽度进行布置。堤防与一级阶梯挡土墙之间的空间应根据景观设计要求布置二级阶梯和三级阶梯挡土墙岸肩线,根据场地的竖向高程,可以考虑形成水体、广场、道路、绿地几个层次。
3.4堤型设计。根据目前常用的护砌材料结合本次工程的具体情况拟定直墙式护岸采用格宾石笼、混凝土重力式挡墙及混凝土悬臂式挡墙三种形式进行比较。最终防洪堤设计采用重力式混凝土防洪墙,并结合城市景观的要求,在重力式防洪墙上修建两层阶梯用于景观绿化设计。这样既可以防止河流冲刷,也可减少堤防占用河道,同时便于景观层次间设计。
4结论
城市堤防工程是城市总体建设的重要组成部分,城市堤防工程建设要充分考虑城市建设的要求,城市建设工程布置必须服从城市总体建设规划和城市防洪规划,二者需全面考虑,统筹安排。
作者:顾晓琳 单位:丹东市水利勘测设计研究院
参考文献:
[1]防洪标准(,GB50210-94).
[2]水利水电工程等级划分及洪水标准,(SL252-2000).
[3]堤防工程设计规范,(GB50286-2013).
篇8
当前,很多市政工程延续着传统的施工管理理念,往往是“先污染后治理”或“先节约后浪费”。这种管理模式对发展低碳经济是十分不利的。为此,要求市政工程相关单位普及低碳意识,在思想上重视低碳经济发展模式,并将其落实到施工各领域。市政工程建设之初,要对施工企业、施工业主、施工人员等进行低碳施工培训,使每个相关人员都了解低碳施工,并努力践行低碳经济的基本要求。在施工管理中,要深化认识低碳施工的概念,彻底摒弃过分追求经济利益的粗放式管理模式,在施工管理各环节贯彻低碳经济理念。作为施工企业,要将低碳施工、绿色施工、文明施工作为企业文化的重要组成部门,积极进行宣传和引导,使每个施工人员在思维、观念上重视低碳理念,从而促进低碳施工理念彻底落实。
(二)推行绿色施工,节能减排促环保施工企业
要在保证工程质量和施工安全基础上,开展绿色施工。绿色施工的概念较为宽泛,其包括了施工管理及具体施工的各个环节和施工材料等。推行绿色施工,就要科学的规划整个施工过程,包括设计、管理、检查等各个环节,具体来说:首先,要最大限度的减少施工对于周围环境造成的破坏,如减少粉尘、处理污水等;其次,要最大限度节约能源,如节能、节材、节水等,将节能减排进行到底;其次,使用清洁能源和可再生建材,从根本上大幅度减少市政工程对不可再生能源的消耗;最后,严格检查材料和设备的质量,提高施工效率,既要保证工作效率高,还要保证施工能耗少。此外,施工前,要仔细设备和材料,禁止高污染设备和材料进场。施工结束后,要及时处理施工造成的环境破坏,如降低扬尘、处理废弃物等,尽量保持市政工程施工现场环境的不受影响。
(三)使用低碳化施工技术,提升施工技术水平
市政工程多为工程量较大,工期较长的施工工程,因为要保证施工技术的低碳化,进而保证施工过程的低碳化。企业应认识到低碳施工对企业发展、环境保护的重要意义。低碳施工技术对施工人员的要求较高,施工企业要加大对低碳施工技术培训方面的投资,加强相应的施工管理,促进低碳技术的合理应用。在施工工程过程中,要注意施工各环节的处理,如利用水净化设备,循环利用水资源;施工破坏自然环境后,要选择适当时机,运行生态修复技术还原生态环境或创造新的生态环境;鉴于施工排放大量二氧化碳,应建立动态监测机制,设立检测点,并使用二氧化碳动态检测仪,随时检测碳排放量,以控制施工过程的碳排放量。
篇9
2、施工设计交底。由施工组织设计编制单位(或编制人)向施工工地进行交底。将施工设计的求全部内容进行交底,使施工人员对建筑概况、施工部署、施工方法与措施、施工进度与质量要求等方面,有一个较全面的了解,以便于在施工中充分发挥各方面的积极性。
3、分部、分项工程施工技术交底。这是一项工程施工前,由工地技术负责人向施工员(工长)、或施工员向施工班组进行交底。通过交底,使直接生产操作者能抓住关键,顺利施工。
分项(分部)工程施工技术交底,是基层施工单位一项重要的技术活动。但笔者通过查看一些基层单位的技术交底记录,发现并不是所有单位对此项工作都能予以足够的重视。有些单位仅仅把技术交底作为“技术资料需要”的一部分,为“归档”而写(或补写)交底,其内容往往只是简单地抄写施工规范或工艺标准上的条文与要求,只是游戏形式而已。
为了使技术交底能真正成为指导施工、预防事故、保证质量、提高技术素质的技术性文件,结合工作实践,现对技术交底的内容和做法,提供以下参考意见:
一、技术交底应包括的内容
1、工程概况与特点。
2、图纸及规范的主要要求:包括主要部位尺寸、标高、材料规格及使用要求、配合比要求等。
3、施工方法:包括工序搭接关系,垂直运输方法、主要机械的使用及操作要点。
4、对施工进度的要求。
5、质量标准、要求与保证质量措施。
6、可能发生的技术总量及处理方法。
7、节约、成品保护要求与措施。
8、安全、消防等要求与措施。
二、技术交底方法
技术交底应以书面形式交底为主,召开班前会口头为辅。以重要部位或较复杂部位,应另附翻样图纸,必要时结合实际操作进行交待。最后,填写技术交底记录表(单),由交底人及被交底人签字,并存档一份。
注意事项
1、因为工地的各项技术活动,均是以执行和实现施工组织设计的各项要求为目的,因此,技术交底也应以施工组织设计为主导内容。
2、对技术交底要有针对性,即要根据各方面的特点,有要点,有预见性,有预防措施。
篇10
根据上海城市2050远景总体规划,最终规划轨道交通线路总长562Km,共21条轨道交通线,其中地铁11铁,轻轨10条。绝大多数成放射状,而明珠线二期(M4)与明珠线一期(M3)西部线路相结成环,是轨道交通系统中唯一的城市环线。它是联系其他线路的纽带,其主要功能是将其他轨道线路联系起来,使整个上海轨道交通网成为一个有机的整体。对于现阶段来说,地铁4号线首先要与已建的1号线、2号线、明珠一期线西部线路接轨,形成“申”字形轨道交通网络的基本骨架。本文将主要介绍地铁4号线工程建设过程中的设计及施工不同于以往的一些新的技术特点,以供交流。
2地铁4号线工程概况
2.1线路规模和走向
地铁4号线工程线路全长22.032KM,其中高架线1.25KM,其余均为地下线。共设17座车站,其中地下一层半站2座,地下二层站10座,地下三层站5座,平均间距为1.238KM。设停车场1座。M4工程线路走向为:M3宝山路站——溧阳路——临平路——长阳路——杨树浦路——浦东大道——张杨路——浦电路——蓝村路——浦东南路——南浦大桥——南路——鲁班路——大木桥路——东安路——天钥桥路——上体场路——宜山路——M3虹桥路站。如图1所示。
图1上海轨道交通地铁4号线工程线路示意图
2.2建设工期及工程筹划
本工程建设年限为2000年初~2004年底,2004年底建成试通车,2005年完成运行设备调试,建设总共期为5年。各工程项目建设进度如表1所示,盾构的工程筹划如图2所示。
表1地铁4号线工程项目建设进度表
2.3工程地质与水文地质条件
沿线地铁车站一般埋深10~20m,基坑内土性以第①层填土、第②1层褐黄色粉质粘土、第②3层灰色砂质粉土、第③层灰色淤泥质粘土、第④层灰色淤泥质粘土为主。沿线区间隧道埋深一般在14~21m,隧道主要穿越第④层灰色淤泥质粘土以及第⑤1层灰色粘土为主。
浅部土层中潜水埋深浅,一般离地面0.3~1.5m,年平均地下水位离地面05~0.7m;第②3、③2、⑤2层地下水具有微承压水特征;⑦1、⑦2层中的地下水,为承压含水层,承压水头离地面埋深5.0~18.0m。
3设计新特点
地铁4号线工程作为上海地铁规划中最重要的环线,城市平面投影完全落在内环线以内的中心城区,与已建、在建、将建地铁线有众多的交叉换乘,是上海地铁交通实现辐射功能的中枢,其是一个庞大的系统工程,涉及建筑、结构、机电、车辆、通信、信号、环控等多个方面。
3.1线路设计特点
1)成环,包括共环与独立成环。在初期运营时(2005-2015年),地铁4号线与已建好的明珠一期成环共营,远期(2030年以后)再考虑独立成环,中期阶段(2015-2030)考虑两者共存。由于前者17个车站全为地下,后者9个车站全为高架车站,针对不同时期的运营要求,既要考虑与明珠一期的设施与界限的兼容性,又要考虑今后的升级,这就意味着,地铁4号线的线路设计,是一个承前启后的设计,需要从建筑、结构、机电、信号、通信等多个方面考虑不同阶段的要求,关系是相当复杂的;
2)障碍条件多,线路设计限制多。上海属于典型的软土地区,又是中国工业化、城市近代化最早的城市,也是近十年来中国发展最快、城市基本建设投入最大的城市之一,地下新老构筑物众多,且存在很多不明障碍物,地面高层建筑、交通市政设施繁多,因地质条件差,大多地面建筑、构筑物都采用桩基(包括近年建造的多层和小高层),加之地铁4号线正好全部建在繁华的中心城区的地下,线路选择的一个基本原则是逢桩就让,遇到不可克服的障碍物也要让,这就决定了要最终选定一个符合功能要求的、满足车辆运行的、经济合理的路线是多么不容易的事情。
3)小半径区间多。产生小半径区间,一种原因是成环本身就决定的,因为从虹桥路站转到宝山路站的环转向近270度,由于某些转角偏大,甚至形成了曲线车站,如上体场车站;另一种原因,就是由于许多障碍物的限制导致的,比如从宜山路站、上体场站到蒲汇塘停车场方向去的线路,在不到1公里范围内其连续穿过明珠一期高架及内环高架的数个桥墩之间,由此产生了许多小半径区间及缓和曲线,半径最小的才150米,大的不过300米。过小的半径对盾构施工及车辆运行的要求都较高。
4)桥隧结合。正是由于前述地下线路与高架线路成环的特点,形成标高上的过渡,导致线路“上天入地”,在地铁4号线工程的两个端头,形成桥梁、隧道过渡(中间还有暗埋与光栅坡段)的线路特点。
5)局部线路上下变位重叠。在地铁4号线工程的浦东南路站-南浦大桥站区间及南浦大桥-南路站区间,由于南浦大桥站周围存在密集的桥墩桥基(长桩),使得线路接近南浦大桥站时,水平方向空间不足,不得已改变线形,在近南浦大桥两端头井的二百多米范围内,两区间线路垂直重叠,用垂直空间换水平空间,形成地铁4号线一大特色。由于这个原因,其会形成南浦大桥站的上下重叠的侧式站台,并导致区间盾构施工的诸多难度。
6)局部线路“八”字形
地铁4号线工程停车场选址于中山西路以西蒲汇塘以北处,其出入线以“八”字形分别在上海体育场站和宜山路站与正线接轨,见图3。出入场线右线接轨于宜山路站南端上、下行正线,然后线路以R=250m曲线跨下行正线后,穿过中山西路,在中山西路南侧设盾构工作井。此后线路采用明挖法,线路以R=150m的曲线接入车场。出入场左线接轨于上海体育场站西端下行正线出入场左线,随后以R=300m曲线下穿凯花公寓桩基,下穿中山西路,最后线路再以R=300m曲线折向出入场右线,与出入场右线并行接入车场。
3.2多种站型
地铁4号线的线路设计特点,从一定程度上决定了车站对站台的选择。多数车站为岛式站台车站,而象临平路车站,则为岛侧式站台车站,而由于前述的原因,在南浦大桥车站形成了上下重叠式侧式站台车站。从车站层数来说,由于标高的变化、地下开发及处理与其他地铁线路的关系等原因,形成以二层车站为主,兼有一层半(如溧阳路车站)及三层(如上体场车站,浦东南路车站)车站。
3.3换乘点多,换乘方式多样
地铁4号线线路的走向及其功能决定了其势必与规划路网中的诸多地铁、轻轨交通线相衔接,形成较多换乘点,17个车站中有11个车站与其他线路形成换乘,而在宝山路及虹桥路接轨段,实现与明珠一期的共线换乘。本工程以既定的规划路网为依据,因地制宜采取了多种换乘形式,如表2所示:
3.4根据地铁现状及规划,解决连接设计
正是由于地铁4号线的环状、与其他线路多个相交的特点,需要解决其与已有线路、在建的及规划线路的连接问题。1)对于已有线路,地铁4号线在1好线上体馆车站处与上体馆车站实现T型换乘连接,前者的站台层穿过后者的站层下方,形成新老一体化结构。设计上采用了托换桩梁的方法对老车站结构的荷载托换,通过设后浇带的形式解决新老结构变形协调的问题,通过冰冻矿山法对穿越段进行穿越设计,形成了地铁4号线设计问题中最难的结构设计问题;在2好线东方路站,地铁4号线的张杨路站与2好线实现平行换乘,并利用东方路站的老地下连续墙结构作为围护及支撑受力结构,对既有线路的影响也是非常之大的,形成地铁4号线工程设计中又一突出的结构问题。2)对于在建线路,如地铁4号线与M8线在南路站十字相交,由于两线具有同步实施的条件,则在此站采取了统一设计的方法,圆满解决二者的连接。3)对于规划线路,主要采取预留连接措施的办法。如对于宜山路车站,由于其与R4线相交,R4线盾构将在宜山路车站建成后,在车站底板下穿过,为方便以后盾构的成功穿越,在穿越处地下墙下部11.8米深度范围,采用玻璃钢纤维(GFRP)代替钢筋并采用低标号砼(C10)的设计方案;又如东安路车站,由于其与规划中的M7线相交换乘,因此在设计东安站时就预先考虑了十字换乘而在换乘段采用三层结构,以方面今后新老线路的顺利连接。
3.5考虑适当开发
土地与地下空间资源都是宝贵的不可再生资源。地铁4号线设计根据上海市的发展阶段与水平,适当地考虑了地下空间开发及与周边的联合开发。如在浦东南路站、南路站、张杨路站都有数千平方米的地下空间开发量,而在临平路站,则考虑了与周边房地产联合开发设计的可能性。对于土地开发,由于停车场需要占用大量的土地,如果象老的地铁线路一样,辟出专门土地只用于停车场之用,则非常浪费,因此,地铁4号线工程停车场考虑了相当量的物业开发,拟在地面一层建造停车场,停车场上部通过巨型框架结构及大厚板转换层进行物业开发及景观设计,等于再造了相当于停车场用地的土地面积,必将获得巨大的社会经济效益。这方面的尝试与经验,完全可以用作对以前单纯停车场的物业改造。
3.6土建结构及设备方面不拘一格
1)围护设计:采用多种围护结构,有地下连续墙(800与600),SMW墙;多种接头形式(预制接头桩,锁口管柔性接头,十字钢板刚性接头);并对封堵墙加以灵活应用,一般说来,封堵墙在翻交过程中应用较广,而在张杨路车站中,其被用来切割大基坑为小基坑,通过4堵封堵墙将长条形深基坑分成5块,大大降低了基坑施工的风险;
2)用时空效应指导挖土、支撑设计。由于上海的土层基本上属于第四纪海积相软土,土的蠕变效应明显,因此设计将时空效应引入为设计参数,对规范基坑施工及减少环境影响,起到很好作用;
3)永久结构采用双墙与单墙形式。一般说来,上海由于地下水位高,多采用双墙车站形式。近年,由于地下连续墙施工水平的提高,为地下连续墙作为永久结构提供了技术上的保证,因此在地铁4号线的某些车站(大木桥路、东安路及天钥桥路)采用了单墙结构,效果也不错;
4)连续的结构变化:由于地铁4号线的线路特点,对某些车站、区间都出现了从地下暗埋到地面甚至高架的连续的结构变化。对于车站,如宜山路车站,车站长度达600多米,包括暗埋、明挖基坑、光栅爬坡及高架桥梁等连续结构变化段;对于区间:如宜山路-虹桥接轨站的下行线,中漕井到葡萄糖厂到停车场的出入场线等,出现盾构区段、明挖爬坡及高架桥梁等连续结构变化段。这些对接头过渡部分的设计有较高要求。
5)设备上的突破。采用西门子的前推平开式车辆,使地铁4号线的车站的限界设计与以往平开式车辆有所区别;对于车站结构,考虑到乘客安全、分区环控及节能要求,还采用屏蔽门设计。
4施工新特点
4.1从顺作法到逆作法、框架逆作法及盖挖逆作法
地铁4号线工程的绝大多数车站均采用顺作法施工,局部翻交段采用了逆作法,而只有东安路车站采用了全逆作法施工。采用顺作法的代价是占用道路,牺牲城市交通效率,在象上海这样繁忙的大都市,实在是不得已而为之。而通过东安路逆作法的实践,发现期费用及工工期并未增长,而对周边环境保护相当有利,邻近2.5米处有一2层、天然地基的线性加速器房要保护,施工最大差异沉降不到1/1000,满足特级保护要求。费用未见增长,是因为施工水平的进步及小型挖机的合理高效利用,环境保护好得益于逆作法化深大基坑为浅小基坑的作用,而对于高温天气,顶板以下的砼施工及养护的环境也是相当有利的。当然,全盖逆作法,有一个材料运输面狭窄的问题。而在浦东南路-南浦大桥区间的过江风井,采用框架逆作法,将可克服这个缺点。对于上海,因为采用封交或翻交的方法,代价是较大的,而市政府将严格控制地铁施工对道路的影响与占用,这就极有可能将逆作法、框架逆作法甚至盖挖逆作法大量推到地铁建设的前台。
4.2盾构技术的新进展
上海1,2号线所采用的FCB盾构仍然在地铁4号线工程中应用,还是采用通缝拼装。但是,地铁4号线工程也从日本三菱公司进口了4台新的盾构,采用1200*300mm的薄管片,错缝拼装,整体刚度较通缝拼装要高。从投入使用的效果来看,防水效果好,工作效率高,纵横沉降小,对周边环境影响不大。应当作为上海今后盾构应用的一个方向。也有遇到盾构覆土相当浅的情况(只有盾构直径的一半),对此采用压重的方法,取得较好的效果。此外,在用9号盾构开挖浦东南路-南浦大桥上行区间时,采用机械式履带运土代替轨道运土,管片与土方分道,效率大幅度提高,最高每天推进21环,有着很好的应用前景。
4.3临近施工及构(建)筑物保护
对于车站,由于上海房屋密集,车站围护距民房过近,有的接近零距离。简单施工不可避免会对民房的结构安全和正常使用带来影响。在采用树根桩等隔离保护,并充分发挥时空效应,取得了较好效果。对于区间,一般上、下行线距离都较近,为了避免二区间同时施工的影响,同向推进时,采用一先一后方式,如浦东大道-张杨路区间,采用6号、7号盾构同向推进,间隔200环以上,可以保证效果;若采用掉头盾构,则基本无影响;有相当极端的情况,如杨树浦路站-浦东大道站区间与相连的大连路隧道同时施工,区间最近距离仅十几米,由于二者均采用较先进的新盾构,相互干扰相对减小,过于临近并未产生不良影响;鲁班路-南路区间与卢浦大桥浦西段桥桩距离同样很近,区间施工时,卢浦大桥的桥墩钻孔桩也在施工,由于区间采用新的12号盾构施工并加强监测与协调,二者并未产生不利影响;南浦大桥两端头区间采用重叠盾构施工,采用先下后上,一先一后的方式,进展顺利。在构(建)筑物保护方面,针对保护对象的特点,因物制宜,也积累了可贵的工程经验。以宜山路站的明珠一期保护和南浦大桥两端重叠隧道后行施工对对先行隧道保护为例进行说明。
1)宜山路站施工对明珠一期高架的保护
地铁4号线宜山路车站的西侧是正在运营的明珠一期高架线路和宜山路车站,已投入使用近三年。待建车站的地下墙外边线至高架线路承台最小距离4.5m,至车站承台最小距离3.8m,至车站建筑外边线2.7m。明珠一期工程基础采用PHC桩,桩径为0.6m,桩长为45m(与地下墙深度接近),分为三节,第一二节接头均在基坑深度范围内,必须采取严格的保护措施对明珠一期高架进行保护。为此采取一系列措施:
(1)在地下墙施工方面,采用900mm高的预制、移动式高导墙防止槽段坍方,严格控制新鲜泥浆比重为1.08以提高槽壁的稳定性,间隔施工SMW帷幕,隔断地墙施工对土体的扰动;
(2)在地基加固方面:在车站基坑内根据车站的深度及与高架的关系,采用多种加固形式,在南、北端头井及穿越段采用满堂旋喷加固,在标准段采用深层搅拌桩加固,而在暗埋段则采用双液注浆法施工;
(3)基坑开挖方面:在标准段采用“两明一暗半逆作法”施工,并采用了被刘建肮院士称为“创举”的装配牛腿式钢支撑。严格按时空效应原则组织基坑开挖,作到单元开挖,单元整体支撑。
(4)施工监测方面:宜山路车站采用了自动化监测技术和预报系统,能系统、连续、全面、及时地采集数据,同时监测数据在经软件处理后进入数据库,并由专门编制的工程管理软件进行智能化全过程预测分析和动态反馈分析,实现工程施工监测的自动化。图5为宜山路站现场监测布置示意图。
图4宜山路车站施工对一期高架车站影响自动化监测点分布图(22轴横断面)
通过上述一系列措施,明珠一期高架在施工期间得到了很好的保护,没有发生任何不利情况。
2)浦东南路-南浦大桥区间重叠隧道保护
浦东南路站~南浦大桥站区间隧道工程由于受南浦大桥浦西引桥的限制,在靠近南浦大桥站端头井处,隧道要上、下重叠在一起,重叠长度约为235m,见图6。两条隧道的最小净距仅为2m。如何减少或避免两隧道间相互不利影响,以达到互相保护,在施工措施上的难度之大,在国内隧道施工中尚属首例。
为此采取如下措施,取得很理想的保护效果。
(1)施工时间、空间顺序上采取措施。两个盾构同向、分时错开从浦东向浦西推进,先下后上;(2)采用信息化反馈施工,动态调整物理、材料、空间等参数,始终合理控制推进速度,严格控制土仓压力、出土量及盾构姿态变化;(3)采取动态、全程、可控、精确的注浆加固措施,动态补偿因土层蠕变、地层损失等可能影响的两隧道间的空间关系及结构平衡。为此,a.在盾构掘进时,对盾构与衬砌间的环形空隙压注缓凝浆液;b.在下部隧道施工后,上部隧道施工前,通过压浆孔对下部隧道土体进行二次双液注浆加固;c.在上部隧道推进已成段与先行隧道间,利用隧道内注浆孔全天候、动态双液注浆,直至上部隧道地表沉降稳定;d.在上行线隧道施工时,通过对下行线隧道内的监测数据反馈,调整上行线的推进参数、隧道内注浆量、注浆压力及注浆部位;e.在后行隧道也结束后,根据实测资料,对隧道变形尚未稳定区段,打开剩余的管片注浆孔,再进行双液注浆来达到控制变形的目的。(4)周密安排叠交盾构进洞施工。由于上行线、上部盾构后进洞,基座要腾空架设,由于车站底板的结构强度低,且叠交的上下两条隧道外缘最小净距只有2m,为此建立可靠的盾构基座的支撑体系。并观察基座的变形,为防止变形量过大而造成破坏。
4.4多种地基加固方法
地铁4号线施工中,由于地基的软弱性,为各种地基加固方法提供了广阔的舞台,有时一个车站就成为多种加固方法的聚会场所(如东安路站在不同时期采用了旋喷,搅拌,注浆,树根桩,冰冻,降水等多种方法)。地铁4号线中较常用的的方法有坑抽条加固(搅拌或旋喷),群边加固(满高),连续墙的墙址加固及钻孔桩的桩底加固,多种方法经常并用,各取所长,往往取得较好的效果。
4.5各种穿越
如前所述,地铁4号线的线路特点就决定施工方面要面临众多的穿越。在施工中常遇到的是盾构穿越房屋,根据目前的盾构保护环境的水平,控制地面沉降在2-3公分内还是比较容易的。但是对其他穿越,还是有相当风险的,主要包括:对高架桥墩的穿越,对黄浦江的穿越。地铁4号线的正线、某些长出入口和出入场线穿越上海内环高架、1好线、2好线及高架明珠一期的桥墩桩基不下于10次,其中上体场站穿越1好线为最难;穿越黄浦江4次,其中浦东南路-南浦大桥区间为Ω大曲线(图6),为目前穿越黄浦江最长的隧道,穿越地层相当复杂,其中第⑥层暗绿色硬土层,地层强度高,为此严格控制速度,隧道下方第⑦层草黄色砂质粉土层有承压水,为此特别注意加强同步注浆管理,严格控制压浆量,充分压注盾尾油脂,防止泥水从盾尾涌入,加强盾构补压浆系统管理,确保螺旋机的密封性能,在盾构转入垂直同向推进时将穿过第②2层含砂量较高的灰色粉质粘土,为此在推进过程中每隔一定距离在盾构前方及螺旋机内压注膨润土或加注泡沫剂,进行土体改良。由于各项施工措施得当,各种穿越均安然无恙,说明地铁4号线工程穿越技术的成熟。
4.6冰冻法及旁通道技术
上海地下水位高,在两区间间打通旁通道一般采用冰冻法施工,主要的冻结法为水平冻结法。而在浦东南路-南浦大桥的过江风井兼深旁通道施工中,采用密闭连续墙内的垂直冻结法施工,如果获得成功,是很有积极意义的。
4.7时空效应、环境保护与远程监控系统
在上海的地铁施工中,时空效应是很多从都能耳熟能详的词。但是能将时空效应、环境保护与远程监控系统有机结合起来,在上海地铁建设中还是第一次。无论是地铁工程本身的受力变形,还是周边环境(房屋,管线,构筑物等)的沉降,其结果都通过远程监控系统得到即时、准确的反映,方便远程专家决策。
地铁4号线所有车站,都安装了由上海时空软土研究中心开发的远程监控系统。
远程监控系统是指将现场量测数据的远程采集系统与有关分析系统结合起来,形成一套集数据自动采集、远程传送、数据处理与分析、施工全过程分析、动态施工反馈和预测的集成化系统。其实施过程是:在工程施工中及时监测,及时把监测和管理信息发送到上层管理部门和有丰富经验的专家部门分析并决策,把由决策产生的措施通过管理部门及时反馈到施工现场以指导施工,从而实现现场施工的全过程控制以及工程建设的现代化管理。该系统从2001年8月15日起,在地铁4号线各车站先后安装。在一年内,该系统对施工过程共发现了险情2起,异常5起,但都得到了及时解决,将工程事故扼杀在萌芽之中,取得了良好的经济效益和社会效益。图6为远程监控系统中监测数据测斜分析、工程挖土支撑工况两个子系统示意图。
图6远程监控系统测斜分析和工程挖土支撑工况界面图
4.8自动化监测
地铁4号线工程穿越或影响的内环线高架、明珠一期高架及地铁一、2好线都是上海的生命线交通工程,其的安危是任何时候都必须放在第一位的。为了随时、动态把握可能受地铁4号线工程影响的那一部分的受力及变形反应,采用了自动化监测手段,即将受力和变形传感器连续或间隔地布置在监测对象上,并与自动化数据采集、分析、报警等系统相连,从而达到全天候、精确化监控。对南浦大桥桥墩、地铁1好线、明珠一期的应用表明,自动化监测取得可观的效果,减少了人员开支和劳动,增加了监测对象的安全系数。
4.9结构一体化施工技术
如前所述,由于早期地铁建设未为后来的地铁线路预留连接措施,导致后来线路对先建线路先“外科手术”再“缝合”的一体化施工技术的产生。其中最有代表性的就是地铁4号线与地铁1好线上体馆站及2好线东方路站的一体化。
1)上体场车站换乘节点的一体化施工技术
地铁4号线上海体育场站为地下三层曲线车站,与地铁1好线上海体育馆站(地下二层、上有漕溪北路高架)呈“T”字相接,见图8。设计车站与1好线车站站厅共享并从上体馆车站下穿过,形成与1好线车站的站厅和站台直接换乘节点。因1好线上体馆未预留任何换乘措施,同时换乘段开挖土层中上部约2.2m为④1层淤泥质粘土,下部4m为④2层砂质粉土夹粉质砂土,施工中极易产生流砂。故为保证工程的安全,尤其是确保1好线、高架的正常运营,本换乘段采取了多种特别措施。
(1)1好线车站与高架的托换:为克服换乘段施工对1好线地墙开孔造成的影响,在换乘段两侧围护边各设置四根Φ1000托换支承桩(长度79m,底板以上部分为450×450H型钢);在各层楼板位置设置托换梁,并通过植筋形式将联系梁与上体馆车站地下墙和主体结构连接;在穿越施工前,换乘段范围上部1好线车站顶板覆土挖除,并在该范围顶板跨中设置一根钢横梁,搁置在两侧托换梁上,并与原车站立柱、顶板连接,以提高车站整体刚度。
(2)U型水平冻结:换乘段结构划分为上行线隧道、换乘通道和下行线隧道三部分进行施工。冻土帷幕采用“U_U”形式进行分期冻结,两个“U”形冻土帷幕厚度取1.5m,中部“_”形冻土帷幕取2.5m。同时,为克服冻胀、融沉、冻土帷幕与原有混凝土结构之间接触薄弱等问题,施工中采取泄压孔放水卸压;泄压孔或冻结孔补偿注浆;冻结管靠近混凝土底板以及打入混凝土连续墙等措施。
(3)矿山法施工:在冰冻体达到设计强度后,在1好线站台底板下,进行边挖边撑的矿山法施工,换乘通道矿山法开挖:待上、下行隧道结构达到设计强度后进行换乘通道矿山法开挖,土方开挖分二层进行,先进行上层3m土方开挖,间隔2m设置45度斜撑;待上层开挖出一定断面长度后,进行下层约3m土方开挖,间隔2m设置2道垂直支撑、1道水平支撑。由于是随挖随撑式,再结合托换桩的作用,可以将影响降到最小。
2)张杨路车站平行换乘节点一体化施工技术
张杨路车站外包尺寸为220.6m×27.3m,深20.5m,为地下三层车站,该车站和已建地铁2好线东方路车站(地下二层)平行换乘(图9)。两车站西端头井贴在一起共用一堵围护墙,标准段两车站最大间距也只有5.4m。
由于张杨路车站比东方路车站埋深深6.9m,为尽量减少张杨路车站建设对已建车站和区间隧道的影响,施工中采取了如下措施:(1)采用“化整为零”的方法充分发挥时空效应理论,增设4道封头墙,将220m长的大型基坑划分为五只小基坑,分阶段独立进行施工,以减小对东方路站的不利影响。(2)东、西端头井均采用旋喷加固。西端头井另浇灌一排灌注桩。临近东方路车站一侧4.0米范围内的旋喷桩桩间距加密,加固区底标高超出东方路站围护墙墙底标高,解决基坑开挖原有地下连续墙插入比不足问题。(3)标准段基坑坑底土体采用水泥土搅拌桩与双液注浆抽条加固。(4)东、西端头井施工区内设置两道钢筋混凝土支撑(下一、下四道),其余为φ609钢管支撑,其中标准段内六道支撑为双榀,并对所有钢支撑施加支撑轴向预应力,保持轴力稳定,以控制基坑变形量。(5)加强监测,在端头井基坑与区间隧道间设置自动监测点,根据监测结果及时调整施工参数,必要时采取一些措施如跟踪注浆等,确保区间隧道的安全。
5结语
地铁4号线线是上海轨道交通网的重要环线,其建设时机处在上海轨道交通正在大规模兴起之时,时间上是承前启后,空间上是与多条已建、在建及规划的线路相交,是一个巨大繁杂的系统工程,工程巨大、困难重重,该工程建设不仅需要上海业已建好的三条地铁线已积累的可贵经验,更需要的是开拓进取、与时俱进的探索、创新精神,因为在建设过程中遇到大量的新情况、新困难、新问题,这些问题在上海过去的建设词典中都很难找到答案而又必须要回答的。从地铁4号线工程的建设情况,可以得出以下几点:
(1)对于特大城市和有条件的城市,地铁建设中采用环线加辐射线的模式,形成枢纽核心,可以发挥极高的运输效率,并且从时展与城市交通空间整合的角度看,该种模式具有持续发展、升级的优点。为了最大限度地发挥轨道交通网的运输效率,地铁4号线线结合实际情况,与已建的和规划中的轨道交通线路之间,采取了“L”形、“T”形、“十”字形、同站台、通道以及平行换乘等多种换乘方式,充分体现了作为交通纽带的功能。
(2)地铁4号线工程在设计施工中遇到了大量的技术难题,都牵涉到工程本身的建设与周边环境保护等普遍的矛盾问题,体现了发展与保护的辩证关系,解决这些矛盾,正确处理二者关系的办法,既不是退缩无为,也不是野蛮建设,而是必须依靠科技进步、生产力提高来解决城市交通发展问题。地铁4号线工程为解决这类矛盾积累了大量的成功经验,对我国其他城市尤其是沿海软土城市提供了宝贵的借鉴。
(3)信息化施工的趋势。地铁4号线工程建设中采用的远程监控系统及自动化监测等系统并取得成功,为高科技的应用和信息化施工在地铁建设中应用作了很好的注解,标志着地下工程建设朝着施工的信息化、监测的自动化、管理的科学化目标跨上了一个新的台阶。
由于地铁4号线截止到本文成稿时,还处于建设当中,本文中所介绍的地铁4号线工程设计和施工中所体现的新特点、新技术和新措施等,均是被地铁4号线建设实践证明是科学可行、合理可靠、效果显著的部分,而地铁4号线工程还有一些重大科技难题,目前正在被地铁4号线工程的参建各方用自己的汗水和智慧去面对、去攻克。
毫无疑问,地铁4号线工程建设过程中所积累的设计施工的技术和经验,必将成为今后地铁建设可以借鉴的宝库。
篇11
1.2土方开挖
在进行建筑地基和基础工程施工前,要及时对土方的开挖位置进行全面的清除垃圾物工作,与此同时还要彻彻底底排除施工位置的电线和排水管道等设备,要想及时明确好施工现场的相关路线,边缘的坡度、排水渠和聚水进的方位,就要通过合理的勘探,科学的绘制出工程施工现场的平面图。对于施工现场的测量控制网,要满足相关的控制要求,无论是基线还是水位点都要在标准范围之内。在对土方开挖时,事先要确定好开挖的具体深度,深度较大时就要对土方进行分层的开挖。对于土方开挖的泥土运输问题,来往运输车辆要停在挖掘机工作的侧方,最大程度的降低挖掘机的运动幅度。如果开挖的基坑过大,挖掘机就要保证以之字形状的方式移动操作,同时挖掘机的大小直接决定了运输车辆的相关数目。
2.地基与基础工程施工质量与安全管理
2.1强化施工技术管理
在进行土方开挖的工作时,每道施工工序要符合施工标准,操作规范,施工技术达到相关的要求:比如要根据测定定位,抄平放线,根据施工场地的地质情况和排水状况选择开挖的方式和土方边缘的坡度大小,严格按照工程的施工顺序,从上而下、分段分层的去施工;根据观察测量基坑和水沟周围的地面情况,使用合理的排水方式,在进行降排水过程的环节时,要严格把水位降低到小于水槽底500m以下,同时在进行开挖基坑时要保护好地基土的完好无损,不受到很到的破坏,基坑边缘的荷载不能超出规定范围,在基坑周围上方堆土时,要保证与基坑边缘相距1.5m以上的长度。
2.2提高质量监督控制
建筑企业要根据国家的政策法规,建筑行业的质量鉴定体系,不断加强对建筑施工人员的综合素质教育,积极完善各项内部建筑规章制度,健全安全管理体系,全面提高地基与基础工程的现场施工管理水平。
2.3地基与基础施工安全管理
施工企业要不断加强地基与基础施工的安全管理,采用先进的机械设备和施工技术,加强对施工人员素质和专业技能的学习教育,优化施工人员的配置,合理安排任务,对任务完成的情况评价分析,任务完成的好坏直接与经济利益相挂钩。
篇12
1.2沉降量大软土地基所含有的天然水量大,其松散程度也就随之增加,施工中因为压力失水就会导致沉降,如果处理不当出现的沉降呈现不规则的情况,就会导致后续施工的困难,严重的时候会导致路面出现倾斜甚至塌方,尤其对桥梁施工的影响最大。
1.3压缩性大软土的特征是孔隙大,呈现松散的状态,其可以被大范围的压缩,如果在市政施工中不能进行妥善处理,其在后续施工中容易出现基坑边坡失稳、边坡错位、路基塌方等情况,导致施工的安全性降低,也会影响周边建筑的稳定。
2市政路桥施工中出现软土地基的基本思路
2.1因地制宜各个地区的土质特征不同其选择的处理技术也就存在差异,因此在市政路桥施工中应对软土地基的具体情况进行考察,如粘性土可以采用压实技术为主,在施工中尽量减少对地基的扰动,以此保证整体性;砂性土质则可以利用挤压技术为主,进行压实,包括砂桩或者震动压实等,改善地基的流动性,这样的选择主要是因为粘土已经扰动就会降低强度。再如,应根据软土地基的深度和厚度选择处理技术,如果土层浅则选择表层处理技术,即换填技术。而软土厚且无砂层,则应采取固结技术为主加以处理。
2.2根据市政道路要求处理市政道路建设中对道路的要求不同其稳定性和平整度要求也就不同,等级高则应选择强力的软土地基处理措施,将沉降降至最低。如果等级低则应进行加载等技术待沉降结束后进行施工。如果先铺设简易路面沉降结束在铺设常规路面。还可根据道路形状选择不同的处理方式,设计宽度与高度也会影响软土地基的处理技术。通常采用换填技术的时候,对于宽且低的路堤而言就容易出现破坏的情况,设计高度大且不够稳定的路堤时应考虑加载的措施来增加地基承载的极限强度。
2.3考虑周边情况市政路基施工对周边的建筑会产生影响,如果震动、噪声、地下水、环境污染等都应考虑在技术选择中,因此在软土地基的处理中应综合诸多因素进行确定。对路堤高而地基软弱的情况更应注意对周边建筑的影响。因此如果路堤坡脚附近有建筑的时候,应考虑减少总体沉降的技术,以此保证周边建筑的稳定。
3市政路桥施工中软土地基的处理技术
3.1排水技术软土地基的突出特征就是含水量高,因此在处理中如果可排除过多的水分则可以提高地基的承载能力。因此排水技术是一种有效的软土地基处理技术,如表层排水技术。表层排水处理是提高土体固结性能和稳定性的重要技术措施。具体的做法就是在软土基上设置砂垫层,这样改善软土地基的含水量,通过砂垫层的压力和排水实施配合,排除地基中大量的水分,以此促进软土层固结沉降,保证施工后续作业的稳定和安全。
3.2粉喷桩技术该技术在市政路桥工程中经常被纳入到软土地基的处理中。所谓的粉喷桩处理技术就是利用设备在软土地基上钻孔,并利用压力将固化剂压入软土中利用固化剂与土层中的水发生化学反应而促进软土地基失水,从而达到固结软土地基的作用。固化剂通常为石灰和水泥,多数工程选择的是水泥,在实际的应用中应考虑掺入比的选择。其标准为桩的强度,如高于1.5MPa则选择425号以上水泥,如低于这个标准则选择325号水泥。这样可以增加掺入比,提高桩体的性能。为了保证固化剂的流动性,可以掺入减水剂或者硫酸钠、石膏等材料,这样可以增加固化剂的处理效果。同时喷粉桩在加固中还形成多个相对稳定的隐形桩,这样可以增加地基的承载能力,为后续的施工打下基础。当然其必须在场地整洁且作业空间较大的场地上进行施工。在粉喷桩技术应用前还应对地质土质进行检测,尤其是土质、含水量等技术参数都会影响喷粉桩的固化效果。所以应按照技术要求对其进行采集和分析,并利用工程实验室进行试验保证固化剂的适应性。
3.3深层排水技术排水是软土地基处理的核心思路之一,排水固结技术与表层排水技术不同,其主要是利用挤密技术对软土基的深层水分进行排除,通常需要配合排水井来完成对软土地基的排水措施。该技术利用向软土地基中打入挤密装置的方式来挤压软土层,促进其水分排除,然后利用排水井抽出多余水分,促进地基失水固结。该技术的选择应考虑地基含水量、软土厚度等情况,按照技术流程进行操作,这样才能保证处理效果最佳。但是此类方法不能单独使用,应配合其他方式促进水分排出,增加地基的稳定性。
3.4加载压实处理加载压实技术是一种静态固结技术,在软土地基上施加一个外表载荷,人为的促进土体的压缩,出现超载沉降,以此达到处理软土地基的目的,但是单纯的加载不能保证地基的承载能力提升,因此该技术也必须与其他技术配合使用。在使用加载压实前应对软土层的厚度和含水量进行分析,计算加载的重量,如果超过范围则不能采取该项技术。技术的核心就是降低地下水位,在加载的过程中可以打入钢板来保证施工中地基的稳定性。主要是防止其对周围的建筑和土体产生影响。应注意的是填土加载的技术主要是保证路面铺装后的残余应力被提前释放。如果加载过大反而会导致地基的稳定性丧失,因此应缓慢的增加加载速度,每一次加载都应保证地基稳定后进行。并在施工中做好观测工作,控制沉降的速度和范围等。
3.5挤密技术挤密技术就是通过外力对软土地基进行挤压,在市政桥梁施工中较为常见。通过挤密桩间的土体来提高地基强度。将桩孔用灰土、素土等回填并夯实。因为土质的类型不同其方法也存在差异。如果使用素土则称之为土桩挤密法,使用灰土则为灰土挤密法。这两种技术措施对于厚度较大的地基作用较好,其中湿陷性黄土的处理效果最佳,应在具体的工程中合理选择。
篇13
本文以广州地铁五号线建设风险管理的实践,并以基坑开挖为重点,分析地铁基坑开挖地质风险分类。
1)在软土地层、淤泥质土体进行基坑开挖施工引起地面沉陷的风险。
明挖基坑施工沿线存在很大厚度具有低强度和高压缩性的软土、淤泥质土体时,很难控制好地面沉降及邻近地下管线、构筑物的位移,容易引起一定的地面沉陷,给地面建筑、构筑物、地下管线带来危害。因此更会导致诸多连环性质的工程灾害,如:管线爆裂渗水进而导致暗挖段土体力学参数急剧下降,承载能力大幅下降和变形急剧扩大,如此恶性循环后必将出现灾难性后果。
2)明挖时,容易因失水造成地面塌陷。
一般在基坑开挖时,需要进行坑内降水,这需要防止土体失水引起的地面塌陷风险。砂土地区应该防止因降水引起水土流失导致的地面塌陷。
如果地层失水严重,上伏软土则会引起大幅沉降,特别是沿线地表均存在相当厚度的软土或淤泥土,明挖施工时浅层地下水可能透过岩石层的裂隙进行渗漏,如果渗水过多则会引起地表沉降过大。
3)粉细砂层容易发生液化、流砂、涌砂现象,给明挖造成危险。工作面前方遭遇流砂或发生管涌,这种现象的发生对于基坑施工都是灾难性的后果。
4)花岗岩各风化带遇水软化、崩解,给施工带来很大风险。结构设计过程中,一般不会将花岗岩各风化带遇水软化、崩解作为荷载验算工况。因此,如果施工过程中发生岩石崩解,将威胁明挖施工的安全。
5)岩层风化带的岩面起伏问题对车站差异沉降的影响。沿线地质中,花岗岩各风化带的岩面起伏问题相当严重并且普遍。一般而言,根据现行GB50157-2003地铁设计规范设计方都会在车站主体结构方向设置1道~3道变形缝,间距约50m。而岩面的起伏造成车站底板分别坐落于不同地层,甚至造成有的底板坐落于砂层、软土层,有的底板坐落于岩层。这种巨大的差异会造成:同一埋深范围内土体强度和刚度不一,使得主体结构纵向沉降差异显著增大,当变形缝两侧主体结构的差异沉降超过轨道允许的最大沉降差时,会严重影响地铁车辆的运行。
6)地下结构在岩面起伏的地质中地震响应的风险。
上软下硬、岩面起伏的地质使得盾构隧道的地震响应比较复杂,尤其是盾构属于地下超长结构,其地震响应更加复杂,不仅受到纵向地震波的影响,还受到折射波的影响,并且随地震波的入射角度不同而存在不同的地震响应给工程带来较大设计和运营风险。
7)断层破碎带中进行地下工程施工的风险。
在各断裂的断层破碎带之中,基坑开挖施工容易受到地质断裂带中沿岩石裂隙面滑动的滑动力不利影响,这种滑动也会带来很大的风险。明挖基坑在计算基坑侧壁滑裂面时,应考虑本断裂面的不利工况。施工过程中对围岩的破坏程度、工序衔接的快慢、施工技术措施是否得当等,均有很大的关系。
8)断层活动的风险(包括抗震和地震响应等方面)。
断层活动对广州地区第四系覆盖区的全新统可液化砂层和可能发生震陷的淤泥层有着重要影响,因而也往往容易沿这些断层造成地基失效。因此,在工程建设中应注意抗震问题。
广州地区断层的活动性较弱,现代跨断层的形变观测表明其活动速率较小,不可能孕发强震,对地面建筑破坏较轻,但不排除在局部地段或地区,尤其是砂层或淤泥层较厚的珠江沿岸及其西部一带,发生砂土液化和淤泥震陷等震害的可能性。
9)地下水腐蚀地下结构的风险。
沿线地下水对混凝土结构工程无腐蚀性,但对结构中的钢筋具有弱腐蚀性。此种腐蚀性会随着时间的增长,加速结构的老化过程。特别是地铁结构一般均处于高应力状态,钢筋受到腐蚀会影响结构的安全性。
10)隐伏溶沟、溶槽、地质漏斗、风化深槽等的风险。
在断裂发生地带多隐伏溶沟、溶槽、漏斗等,这种地质“空洞”,改变了地质应力分布状态,使得土体经开挖后处于松散状态而发生坍塌。
11)爆破震动引起砂层和淤泥质土层震陷的风险。
由于各站站址均下卧岩石层,施工时使用微型爆破或钻孔设备时,施工机具的频繁振动或爆破震动传至砂层或上层淤泥质土层时,易产生液化、涌砂现象。
12)缺乏地质超前预报带来的风险。
广州地质条件相对复杂,突发性地质事件很多,缺乏地质超前预报易带来很多风险。岩溶、断裂、隐伏风化深槽等地质勘探、预报局限性也会带来风险。
广州地区存在岩溶、断裂、隐伏风化深槽等大量的不良地质,这些均需要做大量的地质勘探工作。根据五号线的勘探实践经验,岩溶地质勘探很难反映溶洞的分布,这给施工带来很大的困难和风险。
13)明挖基坑穿越上软下硬复合地层(土、石交界面)的风险。
明挖基坑大多穿越上软下硬复合地层(土、石交界面),因而此类问题具有很大的普遍性。此时,软土地层应力逐渐增大,而硬岩、风化岩地层则突然减小。此类基坑的支撑设计阶段也应考虑到这种变化。
14)流砂的风险。
广州部分地区砂层较厚,基坑遭遇流砂危害的可能性也较大。虽然围护结构都设置了桩间止水措施,但难免存在空隙渗漏流砂。
15)硬岩层内成桩困难的风险。