引论:我们为您整理了13篇土壤检测论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
篇1
2.1终端节点硬件设计
终端节点是组成无线传感网络的基本单元,用于采集各采集点土壤参数信息,并将数据通过无线发送给协调器。
2.1.1传感器模块
土壤温度决定作物生长环境,土壤水分是作物水分的主要来源,土壤pH值反映土壤酸碱程度,土壤电导率反映了土壤压实度、黏土层深度及水分保持能力等。本设计选择在大区域农田种植中对农作物生长影响较大的温度、湿度、pH值及电导率4个参数进行监测,选取的传感器如图3所示。1)温度传感器:选用Dallas公司推出的数字式防水封装的DS18B20温度传感器,采用不锈钢外壳封装,防水防潮输出数字信号,无需进行AD转换,大大提高了系统的抗干扰性;工作电压3.0~5.5V,测量温度范围为-55~+125℃,在-10~+85℃范围内,精度为±0.5℃。2)湿度传感器:选用SMTS-II-50型土壤湿度传感器,4~20mA输出,响应速度快,性能可靠,平均电流小于10mA,功耗低;抽真空灌封,密封性极好,耐土壤中酸碱盐的腐蚀,适用于各种土质。3)pH值传感器:选用上海陆基公司的土壤pH值传感器,输出4~20mA;测量范围为0~14pH,零电位pH值为7±0.25pH,斜率≥95%;功耗低,抗干扰性能较强,耐腐蚀性好。4)电导率传感器:选用上海陆基公司E-113-02-t型电导率传感器,电导范围10~2000μs/cm,适合各种土质;分辨率为1μs/cm,5~35℃内温度自动补偿;耐腐蚀好,适合长期进行土壤测量。
2.1.2CC2530模块
农田土壤监测节点选用TI公司的高性能CC2530芯片作为射频模块,采集并传送土壤数据。CC2530应用了业界领先的Z-StackTM协议栈,提供了一套解决ZigBee网络的完整方案。CC2530集成了RF前端、高灵敏度的接收器、8kBRAM、可编程Flash及101dB的链路质量,输出功率最高可达4.5dBm,包括定时器、5通道的DMA、8通道12位ADC、AES安全协处理器、21个通用I/O引脚和2个串行通信协议UART等。CC2530适用于对功耗要求严格的系统。
2.2嵌入式网关硬件设计
嵌入式网关的主要工作是接收各终端节点采集到的土壤参数并通过WCDMA发送给远程监测中心。嵌入式网关主要由协调器及DTU无线通信模块两部分组成。
2.2.1协调器模块
协调器部分仍然选用TI公司的CC2530芯片,与终端节点共同构成ZigBee网络,底板比终端节点只增加了串口通信部分。
2.2.2DTU无线通信模块
无线通信系统主要由DTU组成,是一种可以使用2G/3G/4G网络进行远程数据传输的终端设备。综合考虑成本和实用性,本设计采用通过第三代移动通信WCDMA上网方式的DTU,其内部集成了高性能ARMCortex-M332RISC内核STM32F107处理器和WCDMA联通3G模块,支持1900M/1800M/900M/850M工作频段;内嵌TCP/IP协议栈,数据无线透明传输;采用低功耗电源监控技术,值守电流小于2mA;采用软件和电路双重滤波,稳定可靠。
2.3电源模块设计
系统采用太阳能电池为终端节点和嵌入式网关供电。电源模块主要包括:蓄电池、太阳能电池板和太阳能控制器3个部分。蓄电池选用12V7.5AH免维护铅酸蓄电池;太阳能电池板选用功率20W,工作电压18V的单晶硅太阳能电池板。太阳能控制器选用额定充电/负载电流均为10A,12V/24V充电电压自动识别的DL-12/24-10a系列控制器,内置充放电智能控制技术。
3软件设计
3.1终端节点软件设计
终端节点的主要任务是负责大区域农田土壤参数的采集与数据的无线传输。ZigBee协议实现数据的短距离无线传输,终端节点在ZigBee协议中属于半功能节点,不支持路由功能,只能与上层的路由器、协调器节点进行通信,负责向上一层节点传输土壤数据。
3.2嵌入式网关软件设计
嵌入式网关节点的软件设计由两部分组成,分别为协调器接收土壤参数和WCDMA远程发送土壤数据。工作时,需要先给DTU无线通信终端设备安装联通3G手机卡,并将DTU和PC机通过RS232相连对其波特率、中心IP、端口号及SIM卡号等参数进行配置,配置软件界面。
3.3远程监测中心软件设计
远程监测管理中心界面采用LabVIEW图形化软件进行设计。其主要实现的功能如下:1)多通道农田土壤参数采集功能。设置了多个数据采集通道,可实时采集大区域农田土壤的温度、湿度、pH值及电导率4个参数。2)报警功能。设置土壤参数上下限,远程监测中心会相应的给出报警信号。3)通过LabVIEW的Web功能,外网用户可通过互联网进行实时访问。
4测试与结果分析
考虑到农田土壤的特性,为了在监测区域内得到全面、准确、实时的有效数据,对传感器节点的布置进行了合理的优化。选取的试验田为长宽均为200m的矩形区域,分成4块长宽均为100m的区域,每块农田4个终端节点数值取均值后通过汇聚节点发送给协调器,后期可根据大区域农田实际需求灵活对其进行扩展。系统设置安装完成后,给整个系统上电1min后,观察协调器和终端节点,看到绿色组网LED亮,可以判定系统组网成功。打开位于监测中心的上位机软件对系统功能和稳定性进行测试。上位机软件以人性化的方式向用户显示采集到的参数,并具有人员登录、参数设置、历史数据查询等功能,可以通过选项卡切换不同区域农田的土壤参数。监测界面既可以数值方式显示温度、湿度、pH值和电导率数值,也可以绘制参数的变化曲线。经过与标准仪器比较,各参数误差均小于3%,满足农业监测精度要求,达到预期设计标准。通过LabVIEW软件的Web工具,将软件进行Web。经测试,外网用户能通过互联网随时随地进行访问。
篇2
1.实验部分1.1仪器与试剂WFX-110原子吸收分光光度计(北京瑞利分析仪器公司)
AE240型电子分析天平(梅特勒-托利多仪器有限公司)
光纤压力密闭微波消解器MK-Ⅲ型(上海新拓微波溶样技术有限公司)
MILII-Q超纯水净水系统(Miillipore.Lit.Co.)
铅标:500mg/L 国家标准物质GBW(E)080362
所使用的试剂均为优级纯试剂,实验用水为超纯水。
1.2实验部分1.2.1试样材料①土样来源:源自漳州市蔬菜传统供应基地诗埔村菜地,约12亩地,常年种植当季蔬菜,土壤类型是水稻土,种植期5年以上。
②采集方法:以20m×20m将菜地划分19个网格。详见图1.2-1.。采集每个网格内的土壤样品(样本甲)以及相应位置的菠菜样品(样本乙)。
篇3
俗语道“庄稼一枝花,全靠粪当家”,肥效的大小,决定了农产品的质量和品质。而我省自50年代开始施用化学肥料,打破了原来那种单靠投入有机肥,维持作物营养物质在农业内部循环的状态,耕地土壤的肥力性状不断得到改善,使产出水平逐渐从低产向中产阶段、高产阶段逐渐发展,但当前,在农业生产上施肥结构还很不合理,普遍存在着施肥不科学、肥料投入不足、投肥结构及比例失调等肥料误区,严重影响农作物的优质高产,有的还片面追求产量效益,忽略了产品质量效应。目前,国内国外对农产品的需求愈来愈高,如何合理施肥从而获得最大农产品效益成为摆在我们面前的问题?众所周知,合理施肥必须重视施肥技术,包括肥料种类,肥料结构,施肥时期,数量和方法以提高肥料利用率,从而获得大的经济效益,主要有如下几点:
一、以有机肥料为主,化学肥料为辅,做到“用地和养地相结合”。
化学肥料主要有养分含量高,肥效发挥快,浓度大,溶解度高,而有机肥恰恰相反,他们相互弥补,实行有机肥与无机肥相结合培肥地力的方针,二者取长补短,缓急相济,就能迅速提高地力,充分发挥肥料的增产潜力。
还应注意的是,有机肥腐熟后,才能施到作物或蔬菜上,切不可将生粪施入田地,一是可能放出大量的热或有毒的气体危害植株的生长。二是将病虫害带入土壤,引起植株的再次感染,使农业经济产量下降。
二适时施肥,品种多样。
1、按作物种类及其养分习性来施肥。一般禾谷类作物需氮、钾较多,在生育期内供给充分的氮肥是禾谷作物增产施肥的关键;豆类整个生育期需要较多的氮素营养,但通过根瘤固氮可满足一部分。因此豆类在肥料分配上以磷肥为主,马铃薯、叶菜类同其他作物比较,需钾、氮较多,因此在肥料分配和使用上,要把含钾丰富的有机肥、工业钾肥等优先分配给茎和蔬菜上,并在生育期内追施适量氮肥。
2、按气候条件施肥。温度高低、雨量大小、光照强度不一等于施肥关系十分密切。论文参考。这些因子不仅影响植株对养分的吸收和同化,同时也影响土壤中营养物质的转化、微生物活动大小等状况。如风大、干旱、少雨的情况下,为保墒、保温、保苗,在施肥方法上采用种肥、追肥等。
3、按作物营养时期进行施肥。在作物营养临界期和最大效率期合理施肥,以相同的肥料就可以获得较好的产量。如玉米出苗后一星期、小麦三叶期,此段时期因种子内的磷被消耗完,根系小,吸收土壤磷的能力弱,所以土壤缺磷,作物得不到磷的补充,引起生长缓慢严重时影响产量。生产时将磷肥做种肥,就是补充临界期的营养。而作物蔬菜还有一个对施肥反应最为明显的时期,叫作物营养最大效率期,它一般出现在作物生长的旺盛时期或在营养生长与生殖生长并进时期,如氮素最大效率期在小麦拔节期、玉米大喇叭口期、棉花的花铃期、水稻的分蘖期,但要注意,施肥必须提前几天。
4、依据土壤类型和作物的特征,科学的分配化肥,并采用有效的施肥方法。如氨态氮肥应注意防止氮的挥发损失,以深施为好;硝态氮肥应注意养分的渗淋,不宜用于水田,速效磷肥要尽量集中使用,以减少土壤对磷的固定。
5、测土配方施肥,注重品种多样化 。我国在80年代初期开始研究推广测土配方施肥技术,种菜、种作物以前首先对土壤进行化验,看看土壤中缺少什么,就重施什么,土壤中不缺的可少施或不施,但也不能补的过急、过多,那样不仅会造成肥料浪费,还极易出现肥害。论文参考。(如果没有测土条件的,可根据以上几条科学施肥),所以说土壤检测出来后,一定要合理的进行配方,不要认准那种肥料好用,就一味的用下去,植株吸收不了,在土壤中集结,引起植株的减产,萎焉,注重各种肥料的搭配,节约生产成本,从而提高农业经济产量。
三、注意肥料的混合。
在使用肥料过程中,为了节省施肥劳力,同时给植株几种养分,提高肥效,常将几种肥料混合施用。但不是所有的肥料都可任意混合,有时会产生肥效降低等不良后果。
1、有机肥和化肥,有些有机肥料与化肥混合,会降低肥效。如腐熟的有机肥料与碱性肥料混合,会引起氨的挥发损失。未腐熟的猪牛粪和新鲜秸秆等与硝态氮混合,引起反硝化作用,造成植株脱氮。
2、化肥之间不能混合的肥料,他们之间混合后会引起养分损失。如速效磷肥和含钙肥料,会使磷肥发生退化作用。难溶性磷肥(骨粉、磷矿粉等)与碱性肥料混合,施入土壤后,土壤中的酸被中和,磷肥难以发挥作用。铵态氮肥(硫酸铵、硝酸铵、氯化铵、碳酸氢铵)与碱性肥料(石灰、草木灰)混合时,引起氮的损失。
篇4
1.农业产业中信息机构产业的发展和进化
人们了解生物生活状态及环境变化等情况是通过农业生物及环境信息的采集而来的,这是实施人工调控及管理决策的基本途径。一般传统的人工手动观测方法,难以实现精确农业对农业信息的需求,如准确、大量、及时、有效等。传统的信息采集方法如今已逐步被以计算机为中心的自动信息获取方法所代替,从而成为农业信息获取的主要手段。
农作物的生长环境信息主要包括农作物的需水量、需肥量、生产量、气候环境等信息。检测这些情况的主要技术有计算机视觉、传感器、微电极、显微图像等。目前,对于精细农业的实践研究国内外已在开展,大多数是从农田土壤特性的变异性开始研究的,研究的主要内容是集中对一些要素的快速采集方面,如土壤的养分及水分、电导率、土壤PH值、耕作阻力和耕作层深度等要素。对于土壤养分的快速测量,目前为止采用的测量仪器有3类,分别是基于光电分色等传统的养分速测技术的土壤养分速测仪;基于近红外技术通过土壤或叶面反射光谱特性直接或者间接进行农田肥力水平快速评估的仪器和基于离子选择场效应晶体管集成元件的土壤主要矿物元素含量测量仪器。
土壤的重要组成部分是土壤水分。精细农业中实施节水灌溉的基础是土壤水分的测量。土壤信息主要包括土壤质地、结构、有机物质含量等一系列的参数,这些参数对于特定土壤来说是基本固定不变的,一般是不需要测定多次的。对于土壤的含水量、含盐量、含养分量等是需要进行多次采集测定的,因为这些参数会随着时间的变化而变化。土壤水盐的电磁测定是基于土壤的节点型质,而介电常数又与土壤水分含量的多少有着密切的联系。在土壤介质中插入“L”型的波导棒,高频的电磁脉冲信号会从波导棒的前端传播到末端,且会在探头的周围产生电磁场,波导棒由于前端是出于开路状态的,脉冲信号则会因反射而又沿波导棒返回于前端。土壤的电导率可从检测脉冲输入与反射回的时间以及发射时间的脉冲幅度的衰减情况反映出来,从而计算出土壤水盐含量。土壤的电导率能不同程度的反映出土壤中盐分、水分、有机物含量等参数的大小。对于确定各种田间参数时空分布的差异来说有效的获取土壤电导率是具有一定意义的。 转贴于
2.农作物生产目标信息检测技术
农作物的生产目标信息主要有病虫害、农产品质量、成熟度等。农作物品质检测的技术主要有超声波、视觉技术、红外、激光、GPS、频谱、近红外检测、人工嗅觉及味觉和图像处理等。农作物品质反映三方面内容,一是农作物外表特征的外部品质;二是农作物基本物理性质的品质;三是农作物内部特征的内部品质。无损检测(即非破坏性检测)是在不破坏所测物品的化学性质及状态的前提下,为获取与所测物品品质有关的性质、内容等信息所采用的一种检测方法。农产品中采用的无损检测技术一般有电磁特性、声学特性、X射线与激光、可见光与近红外光谱、机器视觉技术等。而机器视觉检测技术是通过图像传感器获取农产品的图像,然后对图像进行转换成数字图像,利用计算机判别准则去对图像进行识别和理解,以达到分析图像并作出结论目的的一种技术。它可以对农产品的大小、形状、成熟度、颜色等内外品质进行无损检测。
3.信息中介机构的完善
在信息化发展的今天信息中介通过其自身的竞争力和发展力,信息化产业如雨后春笋出现在在各个行业中,是行业进步的推动剂也是行业发展的快速发展的必要条件,在一定程度上信息中介机构减少了行业间的操作步骤,节省时间提高工程效益,行业对于信息中介机构的要求也促进了信息中介机构的快速发展。在行业竞争和信息要求的不断升级中,信息中介机构不断的优化和完善。
4.结语
精确农业可合理利用有限的水土资源,提高农作物的产量,且又保护农业生态环境的可持续发展,是农业生产中的关键所在。精细农业的其他技术发展大大优先于田间信息的快速采集技术的研究。为了满足我国精细农业实施中不同用户多层次的需求,需对精确变量肥水处方的多源信息获取与诊断决策,进行研究分析,探讨方法。对于农村品的无损测试技术可快速获取农作物的优势、营养等基础上,对农作物的营养及水分胁迫特征信息的诊断和提取方法进行研究。
参考文献
[1]高进田,邝健安.网络时代房地产中介业生存基础剖析[J].云南财贸学院学报.2002,(01).
篇5
遥感技术,即RS技术广泛应用于对旱情的检测与评估、检测水质、监测和评价土壤侵蚀和洪涝灾害等水文领域之中,取得了明显的经济效益。在洪涝灾害之中经常会使用遥感技术。紧急救灾、灾后重建和快速反应是遥感技术应用集中的主要方面。例如,我国早在80年代就利用了MSS数据检测到了三江平原的洪涝灾害。之后民政局、中科院和水利部门都进行了相关的研究工作,在实践之中取得了显著的成效。遥感技术可以大幅度的减少洪涝灾害的损失,尤其是在灾后重建等当面,与其他普通手段相比具有全面性、客观性和快捷性的优势。遥感技术评估在灾害的监测评估方面也有了显著的发展。通过对土壤表面发射的电磁能量来测量估计土壤的湿度,再加上实测数据的支持,可以实现对旱情的遥感监测。同时还可以通过对作物的长势、地表温度的监测来监测旱情。通过了解不同地域的具体情况,建立针对它们的具体模型。我国目前建立在遥感技术基础之上的监测模型包括热惯量模型、作物缺水指数模型、植被指数模型和植被地表温度空间模型、气象模型、水文模型和微波模型等。使用遥感技术可以更快速和更低廉的获取大面积土壤的水分信息。因为监测模型的简繁程度有很大差异,所以遥感技术的使用范围和使用精度也有不同。我国目前已经建立了初步的旱情遥感技术监测体系,在一些试点地区获得了显著的成效。遥感技术在水质监测之中也有很大的作用。运用遥感监测技术,可以动态的监测地表水质在时间和空间上参数的变化情况,具体表现在对湿地的评价、和测定水质参数等方面。遥感技术在水质监测方面的应用已经开始在实践生产之中使用,随着它在水质监测领域的地位更加重要,它的发展也不断完善。
GPS技术在水文领域中的应用分析
全球卫星定位系统,即GPS技术,具有自动化、高效率、精确度高、全天候的优点,成功应用于工程测量、航空摄影、资源勘测、地球动力学、大地测量、水文领域之中,取得巨大的社会效益和经济效益。水利信息与空间地理位置有很大的关系,GPS可以更准确的获取水利信息的空间位置,可以运用在减灾防汛和水下地形测量等方面。使用全球卫星定位技术,可以及时准确的定位灾害的发生地点,尤其是在使用了无线通话功能之后,实现了双向的通话功能,使指挥中心和灾害现场能够自由及时的对象,方便二者进行沟通,对紧急情况做出应急反应。以往在汛期来临时,在大堤上排查险情,在发现了险情隐患之后,通过对讲机向指挥部门汇报,耽误了抢险时间,而且无法准确的描述出险情发生的位置。一旦报警系统上运用了GPS技术,能够在第一时间将灾害的发生地点和灾害类别传送到指挥中心,可以对险情做出有效的反应。在运送抢险物资的车辆中,安装GPS监控系统,编码后的汽车可以将其定位信息传送到指挥中心,指挥中心在接受到定位信号之后,可以将移动的船只和车辆的位置在地图上动态的显示出来。再配合电子地图,例如公路交通图、水系分配图、居民区分布图、物资仓库分布图等,利用网络的分析功能,可以将抢险物资以更快捷的方式送入受灾群众手中。而水下地形的测量在水库、港口、码头和桥梁的建设之中起着很大的作用,尤其是在减灾防洪的过程之中,会带来巨大的社会效益。
3 GIS技术在水文领域中的应用分析
地理信息系统,即GIS,是在计算机软件和硬件系统的支持下的特定的空间信息系统,可以采集地球表层的相关地理分布数据,同时对数据进行储存、运算、分析、管理、描述和显示。我国目前的地理信息系统已经广泛的使用在减灾防汛、水土保持、水环境等水文领域。在减灾防汛的领域之中,GIS技术可以预测预报城市的积水和退水状况、管理更新现有的排水设施情况、对排水设施进行设计和规划。规划城市绿地的面积和位置。分析暴雨的空间特征、对积水街道和暴雨的分布进行可视化的显示、储存具有分辨率高、层次多、更新频率快的数据,并对数据进行维护和管理。地理信息系统在再请评估方面也有很大的作用,例如管理基础背景数据、查询空间和属性数据、对数据进行统计、显示和检索。GIS技术在水土保持之中的应用十分全面。主要包括判断是否发生土壤侵蚀、土壤侵蚀的程度划分、计算土壤侵蚀量、评价水土保持的效益、泥沙输移的状况、预测和模拟土壤的侵蚀过程等。在水土保持之中往往直接使用GIS作为建立模型的平台,这是与GIS在其他领域的使用中最大的区别。遥感技术、地理信息技术和全球卫星定位系统,即3S技术的集成使用为空间信息的管理、分析、应用、更新、获取和存储等方面提供了技术支撑。使用RS技术采集图像信息,使用GPS技术提供主要的位置信息,最后使用GIS使用一些技术手段,例如分析应用和图像处理等。将这三个技术紧密的结合起来,可以提供精确的数据资料的文本资料,可以通过动态电子地图的使用查看不同水文领域的信息,同时可以借助人工神经网络的实施,对洪峰流量、降水等水文要素进行科学、合理的分析,为减灾防汛提供科学的依据。
4 ANN技术在水文领域中的应用分析
ANN技术,即人工神经网络技术,是使用数学方法对自然神经或人脑进行模拟和抽象,是一种模仿人脑结构的信息处理系统。在水文领域,ANN技术主要可以进行洪水的预报和降雨流量预报等。人工神经网络技术具有适应能力强、计算速度快和自主学习能力强的功能。首先对输入条件和输出条件进行分析。输入条件包括降雨历时、降雨量、降雨过程、河道基流等。输出条件包括出口段面的流量信息。输入层、输出层和隐层这三个部分一起构成了降雨径流的预报模型。防洪的非工程性措施是洪水预报,做出及时的洪水预报可以帮助相关部门制定准确可行的防洪决策。ANN技术在水文预报方面的作用主要通过实测资料,使用神经元的模拟关系,模拟影响洪水的其他因素和洪水之间的关系。
5 结语
总之,现代化的信息技术支持可以促进水文信息化建设,本文讲述的RS技术、GIS技术、GPS技术和ANN技术都在水文领域之中得到了广泛的使用。随着社会主义现代化进程的不断加快,国家过度重视信息的基础设施建设,使水文技术和现代信息技术共同发展。
参考资料:
篇6
阿月的爷爷曾在锡矿工作30多年,阿月的爸爸是当地小有名气的锡艺工匠,阿月的哥哥在做锡工艺品进出口生意。
锡,让这片土地变得热闹异常,随处可挖的锡矿让附近村民迅速富裕起来,出嫁的女儿身上,都会缀满沉甸甸的锡饰。当地人认为,锡是神灵赐予他们的珍宝。但与锡相生相伴的,是砷,其化合物是砒霜的主要成分。
根据中国科学院地理科学与资源研究所环境修复研究中心的公开论文资料显示,在我国,砷作为锡的伴生矿由于利用价值不高,70%以上都成了被废弃的尾矿。截至2008年,我国至少有116.7万吨的砷被遗留在环境中,这就相当于百万吨的砒霜被散落在旷野中,任雨水冲刷,注入河流,渗进土壤……
于是,这片因锡而富裕的土地也在因砷而痛苦。
阿月的爷爷死于砷中毒引发的肺癌。阿月的三个伯伯也是老矿工,因同样的病症已先后去世,阿月的爸爸后来离开了锡矿,可是已经染上了严重的砷中毒,连劈柴的力气都没有。
从此,阿月的家乡被称为“癌症村”。这里的癌症病发率一度高达2%,接近全国平均水平的100倍,平均寿命不足50岁。
阿月的家里原来有12亩地,种烟叶和柿子树,每年能有上万元的收入。“烟叶早就没了,谁敢抽‘砒霜烟’啊?柿子树上结的柿子都黄澄澄的,拨开了核儿都是黑的。妈妈原来最爱吃柿子,我这辈子都不会吃柿子了。”
这片曾经富饶的土地已经无法耕作,农民们没了生路,水和菜都要到几百里外的镇上买,入不敷出的生活让越来越多的人选择背井离乡。
记者问阿月,毕业了会回家乡工作吗?阿月沉默了很久,小声说:“我也不知道。”
类似的案例不只是出现在云南省个旧市。
2001年,广西环江毛南族自治县遭遇了百年一遇的洪水,突如其来的天灾摧毁了家园,可是,更大的痛苦却在洪水之后。
洪水冲垮了上游废弃的尾砂坝,导致下游万余亩农田有害元素最高超标246倍,农作物基本绝收,临近的刁江100多公里河段鱼虾绝迹,沿河地区全部污染。直到2004年,仍有60%的农田寸草不生,成为荒漠。刁江下游的河池市长老乡多年来报名应征入伍的青年,竟没有一个能通过体检关。
曾有调研专家估算,“毒水”将经刁江进入珠江水系,整个珠三角都将因此遇难,污染会很快蔓延至百万亩土地,影响过亿人口,修复年限超过百年。
除了云南、广西,还有湖南、四川、贵州等重金属主产区,很多矿区周围都已经形成了日渐扩散的重金属污染土地。
国土资源部曾公开表示,中国每年有1200万吨粮食遭到重金属污染,直接经济损失超过200亿元。而这些粮食足以每年多养活4000多万人,同样,如果这些粮食流入市场,后果将不堪设想。
曾有一位从事土地污染研究多年的科学家告诉了记者一个意味深长的故事。
就在前几年,这位科学家受邀到某地检测土地重金属污染情况,实验结果出来后,科学家大为震惊,因为这块全国著名的粮食主产区污染情况已经严重到令人咂舌!科学家亲自将监测报告递交给当地的一位高级官员,这位官员在沉思良久后说道:“这个情况确实非常严重,我们也一直很重视,但是,我们目前无力治理,所以请不要告诉任何人我看过这份报告。”
记者通过多方搜集,找到了权威机构中国科学院地理科学与资源研究所环境修复研究中心的多篇学术论文,这些论文尚未在社会上公开披露。
根据论文资料显示,广东连南、广西南丹、湖南常宁、湖南常德、湖南郴州等地都存在着大量砷渣废弃,导致矿区周围农作物含砷量超过国家标准几百倍的情况。
湘江,全长856公里,流域面积9.46万平方公里。这条灌溉了半个湖南的“母亲河”如今却因为接纳了大量工业废水,使河水中的砷、镉、铅的总量占全省排放总量的90%以上。
课题研究组还做了农作物重金属含量实验,实验结果证明,从衡阳到长沙段的湘江中下游沿岸,蔬菜中的砷、镉、镍、铅含量与国家《食品中污染物限量》标准比较,超标率分别为95.8%、68.8%、10.4%和95.8%。而这些“超标农作物”不仅被当地农户每天食用,还被运送到更多的乡镇和城市……
论文中还提及,水田土壤中的砷、锌的含量还要高于菜地。据科研专家介绍,由于水对重金属的吸附能力更强,水稻等水田农作物的重金属含量会更高。
2008年,湘江中下游农田土壤和蔬菜重金属污染调查实验结果全部出炉,但是仅作为科研成果在学术刊物上发表,并未能在社会上公开以得到足够的重视。
那么,这些“污染重灾区”的粮食是否流入市场,严重影响粮食安全呢?
2010年11月,记者致电湖南国家粮食质量监测中心,接线人员称,粮食重金属含量检测对设备和技术人员的要求都极高,目前国内能做出权威检测的机构很少,他们目前还没有相关检测项目,因此不能表态。
2011年2月16日,记者再次致电湖南省粮油产品质量监测站,该站负责人员称,从仪器设备和技术水平上而言,该站可以做粮食重金属含量的相关检测,但是,“我们单位没有做过湖南任何地区的粮食重金属含量的检测,所以没有数据。”
大规模的土壤重金属污染,究竟是如何逐渐形成的?
曾对矿业市场做过多年深度调研的中国社会科学院工业经济研究所研究员罗仲伟认为,自上世纪80年代中期以来,国内实行的是“大矿大开,小矿放开,有水快流”的政策。“其结果就是地方政府拥有中小矿产资源开发的审批权,‘一哄而上’全民办矿的局面就此形成。”罗仲伟认为,正是因为采矿权的混乱导致了我国矿业多年来一直存在着集中度不足,开采工艺落后、统筹规划欠缺的“三大短板”。
据了解,在我国已探明的矿产储量中,共生伴生矿床的比重占80%以上,可是,只有2%的矿山综合利用率在70%以上,75%的矿产综合利用率不到2.5%,也就是说,我国绝大多数矿山都只是为了开发极少数矿石,将更多的矿产资源破坏和废弃了。
有媒体曾报道,在广西环江,绝大多数矿山都没有石排场和尾矿库,大量废石和尾矿就堆放在山上,这不仅占用了本可以利用的耕地,还容易在暴雨来临时形成泥石流,最可怕的是,尾矿中的有害成分在伴随雨水逐渐扩散到更大的范围,危害在时刻发生着。
另一个“定时炸弹”是堆放的矿渣。
在云南省个旧市,冶炼厂、电镀厂非常密集,矿石在这里经过加工就可以身价倍增,同时,大量的矿渣被生产出来,废弃在矿山和矿厂附近。
在云南省个旧市老厂矿田竹叶山矿段,十几万吨砷渣已经堆放在旷野里几十年,为了阻挡砷渣对农田的污染,农民们在砷渣周围堆砌了“土坝”,但是,砷还是通过雨水进入了地下水系统,据检测,该矿段附近的农作物含砷量超标100多倍。
而砷渣还只是重金属污染“5毒”之一,其他的还有汞、镉、铅、铬等重金属废渣。
另一个污染的来源则是化工企业排放的污水。
除此之外,农户们过度使用化肥也能使土壤重金属含量急速攀高。
土壤重金属污染问题已经引起政府部门的高度重视。在前不久公布的2010年全国环保专项行动成果中,截至9月30日,共排金属排放企业11510家,取缔关闭584家,在14个省(区、市)确定了148个重金属重点监管区域,19个省(区、市)确定了1149家重点监管企业,其整治力度和监管效应都是前所未有的。
篇7
[9]王权典.生态农业发展法律调控保障体系之探讨[J].生态经济,2011(6):115121.
[10]桑东莉.论我国农业用地土壤污染防治的法律保障[J].国土资源科技管理, 2004(4):5457.
[11]于华江,侯静.农地污染防治的法律问题研究[J].环境与可持续发展,2006(6):3536.
[12]严厚福.再也不能重蹈覆辙――新农村建设中农村环境保护立法和执法问题[M].武汉:湖北人民出版社,2007:238.
[13]宋才发,向叶生.我国耕地土壤污染防治的法律问题探讨[J].中央民族大学学报(哲学社会科学版),2014(6):3033.
[14]任洁,王文美,黄智明.加快实施农业环境保护条例的若干浅见[J].福建农业科技,2003(6):3133.
[15]张昕,杨芳.产业承接地农地土壤污染防治法律根源及因应对策[J].西南石油大学学报(社会科学版),2014(1):2628.
[16]罗吉.我国土壤污染发展立法研究[J].现代法学,2013(11):6869.
[17]汪再祥.中国土壤污染防治立法述评[J].法学评论,2008(3):3839.
[18]蔡守秋,李建勋.土壤污染防治法论纲[J].河南政法管理干部学院学报,2008(3):8283.
[19]郭巍.环境立法将有较大的发展[N].中国环境报,20071030(4).
[20]李建勋.论土壤污染防治法[C]//2007年全国环境资源法学研讨会论文集.武汉:武汉大学出版社,2007:236238.
篇8
土地是关系到国计民生的重要战略资源,耕地是广大农民赖以生存的基础[1]。我国处于工业化和城市化快速发展时期,在经济快速发展、城市化不断推进的这一历史时期,占用耕地数量继续加大,已不可避免。在新增建设用地中占用耕地数量较多,表土浪费问题严重。如何从资源可持续利用的角度,通过表土剥离使宝贵的土壤资源得以循环利用,已引起社会各界的广泛关注,并成为改进耕地保护方式、提高耕地保护水平的重大课题。我国又是农业大国和绿色食品大国,对优质农业资源的依赖性更强。因此要改变过去建设占用耕地的表土处理办法,率先在粮食主产区,特别是东北黑土区开展表土剥离技术研究和试点,实行表土剥离。
1 表土剥离的定义
表土剥离(Topsoil stripping)是指将建设占用地或露天开采用地(包括临时性或永久性用地)所涉及到的适合耕种的表层土壤进行剥离,并用于原地或异地土地复垦、土壤改良、造地及其他用途的剥离、存放、搬运、耕层构造与检测等一系列相关技术的总称。
这种技术具有诸多优点。表土剥离技术能减少土地资源浪费,有效保护地表熟土资源不被流失;减少复垦造地时外调土产生的额外资金投入,额外费用和时间;保证剥离表土的土壤肥力;保证了作物产量和建设使用土地面积,增效显著。
2 项目工程表土剥离技术要点
本论文以前郭尔罗斯蒙古族自治县长山镇繁荣村高速公路取土场表土剥离工程为背景,项目工程包括7个临时取土场,总用地面积71.49hm2,其中占用耕地面积27.07hm2,经勘查均为优质耕地,全部实行表土剥离。工程中表土临时堆放,取土完成后回填恢复耕地。前郭取土场工程实质就是将项目区高程较高的耕地的表层沃土剥离,就近按层次堆放储存。待取土作业完成之后,将存放的沃土层回填复垦,恢复耕种。
大规模土地复垦是一项系统工程,而由于地理位置的不同,每一个取土场的复垦要求又千差万别。要求首先对每个取土场做出复垦设计,对每个取土场进行地质勘查、地形测量。因此,在有关土地管理、环境保护、水文资源专家的指导下,进行了地点选择,并依据保留场地施工前的土壤和景观资料,确定表土剥离的厚度,设计排水系统,堆放和回填剥离的表土与土壤,以及对耕种前土体和土壤进行检测,从而最终完成取土场复垦设计。
其中,地点选择时,根据10年一遇的防洪防涝标准,结合取土场地形情况,尽量选择地形较高的取土场以保证取土量,又能较易恢复复垦后的农业生产条件,平均挖深6.5m。平地取土场,平均挖深3.5m。表土剥离时,为确保土壤肥力,最大限度地恢复耕种条件,必须确保表土剥离在50cm以上。取土样时需经过一定阶段的土壤沉实期,取土深度均为0-20cm和20-40cm。剥离的土层堆放时应覆盖土工编织物,防止产生扬尘;土体扬撒部分草籽以防水土流失和土壤风化;土体坡脚用沙袋码放堆置,防止土体滑坡。宜树则树、宜草则草、宜藤则藤,适物种植,美化环境,防止水土流失[2]。取土工程完毕后,按原来层次顺序进行剥离土壤的回填,可先粗略平整,再精平,应考虑到土壤的沉降,复垦的土层坡度不应大于2°。
3 耕地质量
分别于2010年9月11日和10月22日在前郭县长山镇繁荣村取样,就不同深度(5、6、8是0-20cm,9是在坑内400cm处)、不同植被覆盖情况(5是绿豆,8是玉米,6和9无植被)、不同表土剥离土壤(5、8是原耕地土壤和6、9待处理土壤),在项目区现场选择了土壤容重、入渗率、pH值、有机质、全氮、速效磷、速效钾、毛管持水量、总孔隙度、团粒结构等10项指标进行测试,评价耕地质量。土壤化验结果如下:
表1 土壤化验结果
编号 地点 有机质(g/kg) 速效磷(mg/kg) 碱解氮(mg/kg) 全氮
(g/kg) 速效钾(mg/kg) pH 电导(ms/cm)
纬度(N) 经度(E)
5 45°16′36″ 124°32′41″ 21.50 30.89 108.51 1.828 161.54 7.98 0.31
6 45°16′41″ 124°32′19″ 16.15 25.05 75.06 1.435 173.65 8.18 0.54
8 45°16′28″ 124°32′37″ 20.50 29.22 100.12 1.687 152.40 7.36 0.13
9 45°16′31″ 124°32′36″ 11.15 25.05 75.06 1.330 173.65 7.90 0.23
根据土壤化验结果,前郭取土场表土符合复垦用土要求,并且有毒重金属和持久性有机物检测合格,只要保证有效土层厚度、结构,就可以达到耕种要求。
参考文献
[1] 孙宏斌,马云龙.公路建设表土利用的几点措施[J].黑龙江科技,2007,(12):162.
篇9
生长在自然界中的植物在长期的进化过程中形成了适应环境的形态结构、生理功能及生态特征,使植物本身与环境形成了一个相对和谐的统一体;另一方面,环境的变化又使植物受到逆境的影响,给植物的生长及经济产量造成一定的损失。目前影响植物生长和产量的最主要环境胁迫因素是盐碱和干旱。
一、盐分对植物细胞的伤害和渗透调节物质
盐分对植物细胞的伤害主要是生理干旱和离子毒害。植物细胞中的原生质膜,是一个半透性膜,它允许水分自由透过,而其它物质只能有选择地通过。这样就使膜内存在的有机分子、无机离子等形成一定的渗透势。当细胞内的渗透势大于土壤溶液的渗透势时植物就能吸水;如果小于土壤溶液的渗透压时,植物就不能吸水,结果植物缺水。免费论文,基因工程。另一方面外界盐离子的大量进入,破坏了细胞中原有的离子平衡,进而影响细胞的正常代谢。过量的盐离子进入细胞质后,会使原生质凝聚、叶绿素破坏、蛋白质合成受到抑制、蛋白质水解作用加强,造成体内氨基酸积累。这些氨基酸有一部分会转化为丁二胺、戊二胺及游离氨,当它们达到一定浓度时细胞就会中毒死亡。
与此同时,植物在长期的进化过程中也形成了一系列的适应机制来抵御盐胁迫的伤害,其中合成并积累高浓度平衡渗透物质以调节细胞的渗透势就是一重要策略。在正常情况下,这些渗透物质是细胞代谢的一般组成物,它们具备以下特点:①分子量小,水溶性好;②在生理pH范围内呈电中性;③本身不改变酶结构,且能维持酶结构的稳定;④合成酶系统对盐胁迫敏感,且能在很短时间内积累到足以降低渗透势的水平。在这些有机溶质中,较重要的、研究最多的是甜菜碱。
二、盐胁迫下甜菜碱对植物的保护作用
甜菜碱对植物细胞的保护主要集中在渗透调节和保护酶活性方面。植物受盐碱或水分胁迫时,为了生长和生存必须保持其膨压。细胞质中积累大旱有机渗透调节剂如甜菜碱,而将细胞质中的无机渗透调节剂(主要是K+离子)挤向液泡,使胞质与细胞内(液泡)外环境维持渗透平衡,这样就避免了细胞质高浓度无机离子对酶和代谢的伤害。甜菜碱绝大部分存在于细胞质中,在占植物细胞体积90%的液泡中,却很难找到它的踪迹。因此甜菜碱随着盐胁迫强度的增加在细胞质中逐渐积累直到很高水平,从而调节渗透压,维持细胞的水分平衡,并且对细胞没有毒害作用。除此之外,甜菜碱还起到保护细胞内蛋白质和代谢酶类的活性,稳定膜结构的功能。对小麦施用外源甜菜碱和转BADH基因烟草的研究发现,甜菜碱能保护抗氧化酶系统如超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、抗坏血酸氧化酶(AsAPOD)和谷胱甘肽还原酶(GR)等的活性,增强细胞有效排除活性氧和氧自由基的能力,保证细胞质膜和叶绿体膜结构的稳定性和完整性。同时它还能提高呼吸过程中的酶如异柠檬酸脱氢酶(IDH)、苹果酸脱氢酶(MDH)、琥珀酸脱氢酶(SDH)、细胞色素氧化酶(CO)和光呼吸途径中的羟基丙酮酸还原酶(HPR)、乙醇酸氧化酶(GO)等的活性,明显增强光呼吸过程,使植物减少或免受光抑制的破坏。免费论文,基因工程。保护叶绿体PSII颗粒,防止高盐浓度造成的外周蛋白脱落。
三、甜菜碱的生物合成途径
1、植物中的甜菜碱合成途径
植物体内甜菜碱是在叶绿体内通过光或激素(如ABA)诱导合成的。一般认为甜菜碱的合成是以丝氨酸为原料,经过一系列的反应生成胆碱,再由胆碱经甜菜碱醛通过两步不可逆的氧化反应生成甜菜碱。这两步氧化反应需要两个酶的催化:第一个是胆碱单氧化酶(choline monooxygenase,CMO),它催化胆碱氧化成甜菜碱醛(betaine aldehyde)。第二个是甜菜碱醛脱氢酶(betaine aldehydedehydrogenase,BADH,),它催化甜菜碱醛形成甜菜碱(betaine)。
(1)胆碱单加氧酶(CMO)
CMO是由核基因编码并定位于叶绿体基质中一种特殊的酶。其活性受盐或干旱胁迫的诱导。由CMO催化的氧化反应在叶绿体中进行。Rathinasabapathi等(1997)用RT-PCR的方法从菠菜的叶片中分离出了CMO的完整cDNA。开放读码框(ORF)(1320bp)编码一个440个氨基酸的多肽,其中有一个60残基的转运肽(信号肽)。转运肽的大小和组成是一个典型的叶绿体基质靶向的信号肽,这与CMO定位于时绿体基质的意见完全一致。CMO基因中包含一个很大的启动子,重组实验表明CMO是单拷贝基因。菠菜中的CMO基因同BADH基因类似,都有一个胁迫应答的顺式调节组件,其表达可能受到盐胁迫的调控。
(2)甜菜碱醛脱氢酶(BADH)
与CMO基因的研究相比,BADH基因的研究则要深入得多。从不同植物中克隆出来的BADH基因全长稍有差异,其长度一般为1.5-1.8kb,包含一个1.5kb开放阅读框。BADH基因在整个植物基因组中一般至少有两个拷贝。目前为止,BADH基因已从大肠杆菌、菠菜、山菠菜、大麦、高粱、水稻、等中得到克隆和鉴定,不同生物的BADH基因有较高的同源性。BADH是由单一核基因编码的多肽二聚体(Mr≈60~64kD),几乎所有植物的BADH酶中都有一个高度保守的十肽区域,即VTLELGGKSP,这段序列可能与NAD的结合并与催化反应的位点有关(Ishitani等,1995)。免费论文,基因工程。但是不同物种间BADH的氨基酸序列差异很大。免费论文,基因工程。免费论文,基因工程。
2、微生物中的甜菜碱合成途径
(1)单酶催化合成途径
在原核生物――土壤细菌(Arthrobacterglobiformis)中甜菜碱合成关键基因是CodA,该基因编码胆碱氧化酶(COD)。这个酶能独立催化胆碱生成甘氨酸甜菜碱的两步反应,即兼具胆碱单氧化酶和甜菜碱醛脱氢酶的催化功能。
(2)双酶催化合成途径
大肠杆菌中甜菜碱合成途径
胆碱脱氢酶(CDH),在氧的参与下催化胆碱生成甜菜碱醛。而催化甜菜碱醛生成甜菜碱的酶同植物中一样,均为BADH。
3、甜菜碱的甘氨酸合成途径
通过甘氨酸合成甜菜碱的途径只是在最近才被发现。到目前为止,只在两个极端耐盐的海洋微生物中Ectothiorhodospirahalochloris 和 Actinopolysporahalophilia存在。在这些微生物中,甜菜碱由甘氨酸通过由S-腺苷四甲硫氨酸依赖的甲基转移酶GSMT和SDMT的三次N-甲基化作用催化合成。
从目前已转化成功的甜菜碱基因工程植株来看,尽管在它们体内都检测到了甜菜碱的积累并在胁迫下具有显著的保护作用,但没有一种转基因植物的甜菜碱含量能超过1μmol/g FW ,这个水平比起许多能够自身合成并积累甜菜碱的物种来要低10~100倍(Rhodes和Hanson,1993)。通过对转CMO基因烟草仔细研究后发现,无论是导入的甜菜碱代谢途径还是甜菜碱醛的毒性,均未对甜菜碱在转基因植株中的最终积累造成影响,而在施加外源胆碱后,却发现甜菜碱的含量大幅度增加。免费论文,基因工程。由此可知,是内源胆碱这一原料的供应不足限制了转基因植株中甜菜碱的最终含量。因此,通过甜菜碱基因工程来改善植物的耐盐性是有一定限度的,
总之,我们还需要辅以其它的手段,如寻找更有效的耐盐基因或多个耐盐基因的联合使用。毕竟,植物的耐盐性是一个多基因控制的复杂性状,我们要彻底阐明耐盐的机理,并通过现代生物技术培育出理想的耐盐植物新品种,还需要一个过程。
主要参考文献
篇10
城市污水厂的污泥是指处理污水所产生的固态、半固态及液态的废弃物,含有大量的有机物、丰富的氮磷等营养物、重金属以及致病菌和病原菌等,如果不加处理的任意排放和投弃会对环境造成严重的污染。随着污水处理设施的普及、处理率的提高和处理程度的深化,污泥的产生量必将有较大的增长。如何妥善地处置污水厂污泥,并将其作为一种新的资源加以有效利用,变废为宝,已成为城市污水厂和相关部门提高技术水平和管理水平的重要因素,也是全球共同关注的课题。
1、污泥最终处置的主要方式
目前,国内外污泥最终处置方式主要有:综合利用、填埋、投海。
(1)综合利用
①农田林地利用
污泥脱水后堆肥农用是目前国内一些污水处理厂正在进行研究和开发的课题,污泥中含有大量植物生长所必需的肥分(N、P、K)、微量元素及土壤改良剂(有机腐殖质)。我国城市污水处理厂的各种污泥所含肥分见表1,故污泥农田林地利用是最佳的最终处置方法,但污泥中也含有对植物及土壤有危害作用的病菌、寄生虫卵、难降解有机物、重金属离子以及N、P的流失对地表水和地下水的污染,甚至可能含有一些致癌物质,目前对重金属污染研究较多。因此,在作农田林地利用前,应进行堆肥处理以杀死病菌及寄生虫卵,同时还应去除这些有害物质。目前普遍的问题是检测手段跟不上要求,处理成本无法和经济效益相平衡,化肥的普遍应用造成销售市场难以开发等,这些使得此种处置方式尚未得到普遍的推广。我国有大量工业废水进入污水处理厂,污水中重金属离子约有50%以上转移到污泥中,污泥中的重金属离子含量一般都较高,见表2。
表1我国城市污水处理厂污泥肥分表
污泥类别
初沉污泥活性污泥消化污泥
总氮(%)
2~33.3~7.71.6~3.4
磷(以P2O5计)%
1~30.78~4.3 0.6~0.8
钾(以K2O计)%
篇11
正文
一、引言
随着经济的发展和城市人口的增多,高层建筑如雨后春笋般拔地而起,遭受雷击的案例也越来越多。据不完全统计,进入21世界以来的十几年间,全国因雷击造成直接经济损失在百万元以上的事故就有近400多起,每年因雷电灾害造成人员伤亡数千人。高层建筑在社会中起到很重要的作用,许多商业写字楼往往将银行、公司、酒店等多种功能的场所集中在一起,人员密集,电子通讯设备繁多,电力系统复杂,一旦遭受雷击将会造成巨大的经济损失。
雷电防护是一种保护建筑物及人身安全、电力系统及其他一些装置和设施免遭雷电损害的技术措施,也是近年来愈发重要的一门学科,其保护内容涉及建筑物、发射塔、输电线路、加油站、航空、军事等重要领域及工作生活场所。
一、雷击对高层建筑的常见侵袭途径
1、 直接雷击
对一般高层建筑外部来说,所属建筑物、建筑物天面设备和电力线及传输线都有可能遭受直接雷击,即使在避雷针保护范围之内的设备也有被雷电绕击的可能。直击雷的特点是能量大,电力线发生直接雷击,容易发生火花放电,引起火灾,同时,雷电流通过电力线进入机房,也可能击中电源及设备。传输线发生直接雷击,可能导致线路焦化、短路、致使传输中断。
2、侧击雷
对于高层建筑来说,不仅屋顶容易遭受直击雷的雷击,在滚球半径以上的侧面,外墙的电线、金属门窗、外挂空调机、节日彩灯和轮廓灯都容易遭受侧击雷的侵袭,损坏设备、烧毁线路甚至危害人身安全。因此高层建筑要做好相应的侧击雷防护措施。
3、电磁感应
当雷击发生时,将在雷击点附近产生电磁场。当雷电流沿着高层建筑的引下线和内部钢筋向下泄放时,由于电磁感应原理,整个建筑物会处在一个强大且变化的电磁场中,这个电磁场很容易使正在工作的电子设备产生过电压或浪涌故障,即使是一些与外界没有联系的系统,也可能在雷响过后发生瘫痪。研究建筑物内部的
雷击电磁脉冲是非常必要的。
4、雷电波侵入
架空高压输电线路和金属管道在进入高层建筑物时,线路管道附近有可能被雷电击中而产生过电压和静电感应,通过供电线路进入设备使设备造成损坏。
5、地电位反击
地电位反击是雷电流入地瞬间,由于地电位不同而产生的电位差,沿接地线到达设备的外壳、电力线的中性线以及直流地的基准电位点。
二、防雷设计原则、依据、标准及规范
设计原则 :
(1)保障高层建筑内的人身安全;
(2)保护高层建筑主体以及各处电子设备不受直击雷影响和破坏;
( 3)保护高层设备不受侧击雷的破坏;
(4)尽可能保护建筑内设备和电力系统不受雷击各项效应破坏;
设计依据:
根据高层的建筑结构、防雷等级、当地年平均雷暴日、楼高、建筑材料、土壤电阻率、以及测量的数据等资料,结合相关技术指标以及GB50057-94 《建筑物防雷设计规范》以及其他相关行业规范标准等综合考虑制定。
设计标准、规范:
GB50057-94 《建筑物防雷设计规范》 02D502-2 《等电位连接图集》
GB/T 21431-2008 《建筑物防雷装置检测技术规范》 03D501-4 《接地装置安装图集》
99D562(原99D501-1)《建筑物防雷设施安装图集》 JGJ/T16-92《民用建筑电气设计规范》
IEC61643-12 《低压配电系统的电涌保护器选择和使用导则》
IECI312《雷电电磁脉冲的防护 》
DL/T 620―1997 《交流电气装置的过电压保护和绝缘配合》
三、 防雷检测
对高层建筑的防雷设计比较科学的方法是首先进行雷电风险评估。雷电风险评估综合了建筑物所处的地理、土壤、气象以及建筑物使用、设备等情况,进行高层建筑防雷设计时,不能单纯的从建筑物使用性质来确定防雷类别。全面执行防雷管理办法,提高产品和工程质量。
四、防雷措施
1、 接地网
当发生雷电时,雷电流通过引下线向自然接地体周围大地泄流外散,土壤呈现的电阻称为接地电阻,接地电阻公式:Rd=p*ε/c,我们从公式可以得出一个结论:当增大接地网的面积,接地电阻将减小。接地网是指水平方向由钢筋绑扎或焊接成的网格,水平钢筋组成的接地网可以近似看成一块独立的平板,它的电容主要由它的面积决定的。在设计利用底板接地网做自然接地体时,不应认为自然接地体埋得越深,接地电阻就越小,应通过地质勘探报告了解周围的土质情况。
2、引下线
引下线的作用是将避雷带与自然接地体连接在一起,使雷电流构成通路。在高层建筑中利用其柱或剪力墙中的主筋做为引下线,随主体结构逐层串联焊接至屋顶与避雷线连接。为了安全起见每条引下线不应少于两根主筋,主筋的截面不应小于Φ16mm。 在高层建筑的设计、施工中,利用其结构主筋做引下线,这样做具有经济、实用、易于操作的特点,由于现浇混凝土内的引下线不易氧化,所以具有使用寿命长的特点。按建筑物的防雷类别适当减小引下线的间距,这样做可以迅速分流,降低反击电压。
3、避雷带
避雷带由避雷线和支持卡子组成,避雷带应设置在建筑物易受雷击的层檐、女儿墙等处,其作用是引雷效应,雷电流通过引下线向大地泄流,避免高层建筑物雷击。
4、均压环
在高层建筑的设计和施工中,除了防止雷电的直击外,还应防止侧向雷击,超过30米高的建筑物,应在30米及其以下每隔三层围绕建筑物外廓的墙内做均压环,并与引下线连接。保证建筑物接构圈梁的各点电位相同,防止出现电位差。
5、内部防雷接地装置
高层建筑除了采用外部防雷措施外,还应采用内部防雷措施。
笼式避雷网利用建筑物柱、剪力墙内的竖向钢筋迅速分流并疏导雷电流,与板内水平钢筋形成笼网状,在一定程度上屏蔽雷电流产生的电磁感应,还可以达到良好的均压环及等电位作用。现代高层建筑物内重要的强、弱电机房多采用笼式避雷网,因此建议在高层建筑的防雷接地系统的设计和施工中,将内部防雷接地装置与外部防雷接地装置结合起来,构成统一的防雷接地系统,防雷效果将是最理想、安全和可靠的。
四、总结
目前随着计算机、通讯、控制(3C)技术的发展,对防雷接地系统提出了更高的要求,以保证建筑物内的各种设备的正常工作。高层建筑的雷电灾害必须引起我们的高度重视,必须加强对防雷设计进行研究、审核、检测和验收等一系列规范化管理,从而达到高层建筑防雷的真正安全。
参考文献:
[1] GB50057―1994,建筑物防雷设计规范[S].
[2] 孙景梅.高层建筑的防雷[J].设计建筑电气,2001
篇12
5月21日,镉大米来源地湖南攸县官方通报了不合格大米的镉含量范围,披露原稻主要收自当地农户,涉事米厂“手续齐全,周边也无重金属企业”。
既然生产环节无污染、原稻来源也没有问题,那么,污染大米的镉又源自哪里?
南京农业大学农业资源与生态环境研究所教授潘根兴说,这些重金属的确不应该存在于农田,因为它们原本是来自矿山。
早在2007年,潘根兴和他的研究团队在全国华东、东北、华中、西南、华南和华北六个地区的县级以上市场中,随机采购大米样品91个,结果表明:10%左右的市售大米镉超标。研究还表明,中国稻米重金属污染以南方籼米为主,尤以湖南、江西等省份最为严重。潘根兴表示,大米镉超标的关键在环境污染,“这取决于两个因素:土壤和品种。”
“镉污染大部分来自开矿。工厂排放废气中含有镉,可能会通过大气沉降影响较远的地方。”环保部南京环境科学研究所所长高吉喜表示,此外,一些肥料中也含有重金属镉。即使冶炼厂距离远,其排放的废气扩散后也可能随降雨落到农田中。专家表示,要寻找稻米镉超标的原因,需对当地大气、水和土壤进行检测。
现状:农业污染状况触目惊心
镉大米事件已经引起了社会对于农产品,特别是水稻、小麦等粮食作物安全及农田污染问题的关注。
“我国土壤污染呈日趋加剧的态势,防治形势十分严峻。”多年来,中国土壤学会副理事长张维理长期关注我国土壤污染问题,“我国土壤污染呈现一种十分复杂的特点,呈现新老污染物并存、无机有机污染混合的局面。”
农药化肥污染同样严重。据张维理分析,我国农药使用量达130万吨,是世界平均水平的2.5倍。而据测算,每年大量使用的农药仅有0.1%左右可以作用于目标病虫,99.9%的农药则进入生态系统,造成大量土壤重金属、激素的有机污染。
农业部环境保护科研监测所研究员侯彦林指出,一项针对30多年来近5000篇中文论文的统计数据表明,矿山周边、工厂周边、城镇周边、高速路两侧、公园等经济活动和人员活动密集区域的土壤几乎都受到不同程度的污染,并且经济越发达,污染就越严重,南方比北方严重。
对此,中国工程院院士、华南农业大学副校长罗锡文也曾公开指出,我国受重金属污染的耕地面积已达2000万公顷,占全国总耕地面积的1/6。
环保部门一项统计显示,全国每年因重金属污染的粮食高达1200万吨,造成的直接经济损失超过200亿元。
治理:法规和技术亟待完善
“这是一项长期策略,需投入大量资源,短期很难见效。”侯彦林指出,切断污染源无疑是当下最重要的事情。“治理农田的重金属污染,不能破坏土壤原有使用功能。比方说有些化学药剂能析出重金属但会破坏土壤功能,要采取生态治理的方法。”侯彦林呼吁,建立国家级的长期运行的预警和预测系统,对农田污染现状和发展趋势进行及时监控。
篇13
一、土固精土壤固化剂施工前期的准备工作
(1)固化土结构层施工采用路拌法和厂拌法。对于二级以下的公路或塑性指数较大的土质,基层和底基层可采用路拌法施工;对于二级公路,底基层宜采用稳定土拌和机路拌,基层宜采用厂拌法拌制混合料。对于高速公路和一级公路,基层必须采用厂拌法拌制混合料并宜用摊铺机摊铺混合料
(2)固化土结构层完成施工日最低气温应在3。c以上,宜经历半个月左右温暖和热的气候养生为最佳。多雨地区,应避免在雨季进行固化土结构层的施工
(3)在雨季施工固化土结构层时,应采取必要的防雨水措施,防止运到路上集料过分潮湿,并应采取措施保护石灰(或水泥)免遭雨淋。有条件的地方要做好基层用土的土场防雨,防止雨后土中水分过大,影响使用
(4)在固化土结构层施工时,应遵守下列原则:
a、细粒土应尽可能粉碎,土块最大尺寸不应大于15mm。
b、配料应准确,根据不同层次,采用0.012%-0.018%的比例稀释。
c、路拌法施工时,水泥或石灰应摊铺均匀。
d、固化剂剂量应准确,使用前摇匀,合沉淀充分溶解。
e、喷洒固化剂稀释液及拌和应均匀。
f、应严格控制基层的厚度和高程,其路拱横坡应与面层一致。
g、应在混合料处于最佳含水量或略小于最佳含水量(1%-2%)时进行碾压。
h、固化土结构层结构层应用18-22t以上的压路机碾压,最好采用重型压路机,以达到最佳的压实效果。每层的压实厚度可以根据试验适量增加。压实厚度过大时,应分层铺筑,每层的最小压实厚度为12cm,下层宜稍厚。对于固化土结构层,应采用先轻型、后重型压路机碾压。
j、用于固化层的素土摊铺为要求压实厚度的1.5倍左右。
k、路拌法施工时,必须严密组织,采用流水作业法施工,宜边拌和边运至现场摊铺,防止混合料积存和堆底不净现象。尽可能缩短从加固化剂稀释液拌到碾压终了的延迟时间,此时间不应超过3-4h,并应短于水泥的终凝时间。
l、固化土结构层上未铺封层和面层时,禁止开放交通;当施工中断,临时开放交通时,应采取保护措施,不使基层表面遭到破坏。
i、固化土结构层作为沥青路面的基层时,还应采取措施加强基层与面层的联结。
二、土固精土壤固化剂在旧路改造的施工工艺流程
针对旧路改造给施工带来的不便和旧路改造综合处治方案设计时考虑,最好采取固化土厂拌法来施工SHAPE\*MERGEFORMAT
三、厂拌法的特点
(1)机动灵活。(可以分几个步骤施工、取土。晒土、保存、搅碎、拌合、摊铺、压实)
(2)施工时间短,摊铺后直接压实,不会引起半封闭路段堵车,特别是路窄,车流量大的道路
(3)粘性度大的土壤易被搅碎,土壤保持干燥
(4)适宜于变化多端的南方雨水天气
厂拌法要具有的条件:挖取土壤的特点,土壤的实验报告,最佳含水量的配比,晾晒土壤的场地,干土壤保存场所,挖土机,搅碎拌合机,运输车辆,平铺机(可用人工),压路机等设备,石灰或水泥,固化剂的准备,依天气情况进行施工。
制定合理科学的施工方案。
在施工现场提取具有代表性的样土做实验报告,落实取土地点,晒土场地。
拌合之前应充分了解天气情况,拌合时首先用搅拌机把现场土充分搅碎,然后依据实验报告按比例加入稀释的固化剂、水泥和石灰等进行拌合。
搅拌好的混合土应迅速运入路床进行摊铺,摊铺时做好路床两边路桩、放样、标高。混合料放入路面中要迅速摊铺。(摊铺20cm高的路基需铺30cm高的混合土)要求摊铺平整,厚度一致。
四、土壤固化剂厂拌法在施工过程中的注意事项
路床压实时:
(1)清除路床表层积水、垃圾及松软土
(2)控制路床平整度
(3)路床压实时,应先稳压后振动再碾压,压实度要达到检测要求
(4)压实后,如路床出现弹簧,应及时清理弹簧路床下的松软土或其他杂物,然后回填;路面开裂应及时翻晒,也可加适量的石灰或水泥搅拌;如果出现路床表面翘皮,首先清除表面翘皮部分,然后用旋耕机打毛表层,再加适量的灰土,再压实。
旧路在做路基处理时:
软路基一定要换填。
换填时,压实机一定要压实。
换填处不要用干土壤掺和,只能是碎石(或加入一点有固化剂的混合料)。
是老路基的,较硬部分不要再动,只要填平。
最好做厂拌法拌合混合料。
做样路时:
没有洒水车的,可以使用洗车机或者喷雾器。
没有中置式拌和机的,可以用20—30公分刀径的大型施耕机。